

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Report No.: SZEM161201075004

Email: ee.shenzhen@sgs.com Page: 1 of 78

FCC REPORT

Application No: SZEM1612010750RG

Applicant: LG Electronics Mobile Comm USA

Manufacturer: Huagin Telecom Technology Co. Ltd.

Factory: Dong Guan Huabel Electronic Technology Co., Ltd

Product Name: Mobile Handset

Model No.(EUT): LG-X230ds

Trade Mark: LG

FCC ID: ZNFX230DS

Standards: 47 CFR Part 15, Subpart C (2015)

Test Method KDB 558074 D01 558074 D01 DTS Meas Guidance v03r05

ANSI C63.10 2013

Date of Receipt: 2016-12-18

Date of Test: 2016-12-20 to 2016-12-28

Date of Issue: 2017-02-16

Test Result: PASS *

Authorized Signature:

Derole yang

Derek Yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document departies to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

^{. *} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM161201075004

Page: 2 of 78

2 Version

Revision Record						
Version	Chapter	Modifier	Remark			
01		2017-01-06		Original		
02		2017-02-16	Jim Huang	Revised report to address TCB's questions		

Authorized for issue by:		
Tested By	Mike Uu	2017-01-06
	(Mike Hu) /Project Engineer	Date
Checked By	Jihn Hog	2017-02-16
	(Jim Huang) /Reviewer	Date

Report No.: SZEM161201075004

Page: 3 of 78

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

Report No.: SZEM161201075004

Page: 4 of 78

4 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3	TES	T SUMMARY	3
4	CON	ITENTS	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	7
	5.7	DEVIATION FROM STANDARDS	8
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	8
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
	5.11	EQUIPMENT LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	12
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	6DB OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	RF CONDUCTED SPURIOUS EMISSIONS	
	6.8	RADIATED SPURIOUS EMISSIONS	
	6.8.1		
	6.8.2		
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	61
7	PHO	TOGRAPHS - FUT CONSTRUCTIONAL DETAILS	78

Report No.: SZEM161201075004

Page: 5 of 78

5 General Information

5.1 Client Information

Applicant:	LG Electronics Mobile Comm USA		
Address of Applicant:	1000 Sylvan Avenue Englewood Cliffs, NJ 07632		
Manufacturer:	Huaqin Telecom Technology Co. Ltd.		
Address of Manufacturer:	No.1 Building,399 Keyuan Road ,Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, China		
Factory:	Dong Guan Huabel Electronic Technology Co., Ltd		
Address of Factory:	No.9 Industrial Northern Road, National High-Tech Industrial Development Zone, SongShan Lake, Dong Guan		

5.2 General Description of EUT

Product Name:	Mobile Handset		
Model No.:	LG-X230ds		
Trade Mark:	LG		
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz		
Operation Frequency.	IEEE 802.11n(HT40): 2422MHz to 2452MHz		
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels		
Charmer Numbers.	IEEE 802.11n HT40: 7 Channels		
Channel Separation:	5MHz		
	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)		
Type of Modulation:	IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK)		
	IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM,		
	QPSK,BPSK)		
Sample Type:	Portable Device		
Antenna Type:	PIFA		
Antenna Gain:	-1.8dBi		
Power Supply	DC3.85V (1 x 3.85V Rechargeable battery) 2500mAh		
Fower Supply	Battery: Charge by DC 5V		
	Model:MCS-02WR2		
AC adaptor:	Input: AC100-240V 50/60Hz 0.2A		
	Output:DC5.0V 0.85A		

Report No.: SZEM161201075004

Page: 6 of 78

Operation Frequency each of channel(802.11b/g/n HT20)										
Channel	Fre	equency	Channe	I Frequency	Channel	Fre	quency Chan		nel	Frequency
1	24	112MHz	4	2427MHz	7	244	12MHz	1()	2457MHz
2	24	117MHz	5	2432MHz	8	244	17MHz 11			2462MHz
3	24	122MHz	6	2437MHz	9	245	2452MHz			
Operation F	Operation Frequency each of channel(802.11n HT40)									
Channe	I	Frequ	ency	Channel	Frequen	су	Chan	nel	ı	requency
3 2422MHz		MHz	6	2437MHz		9			2452MHz	
4 2427MH;		MHz	7	2442MF	lz					
5 2		2432	ИНz	8	2447MF	łz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

Channel	Frequency		
The Lowest channel	2412MHz		
The Middle channel	2437MHz		
The Highest channel	2462MHz		

For 802.11n (HT40):

Channel	Frequency		
The Lowest channel	2422MHz		
The Middle channel	2437MHz		
The Highest channel	2452MHz		

Report No.: SZEM161201075004

Page: 7 of 78

5.3 Test Environment and Mode

Operating Environment:				
Temperature:	25.0 °C			
Humidity:	50 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.			

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

· A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

· VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1,

Report No.: SZEM161201075004

Page: 8 of 78

4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Total RF power, conducted	0.75dB		
2	RF power density, conducted	ducted 2.84dB		
3	Spurious emissions, conducted	0.75dB		
		4.5dB (30MHz-1GHz)		
4	Radiated Spurious emission test	4.8dB (1GHz-25GHz)		
5	Conduct emission test	3.12 dB(9KHz- 30MHz)		
6	Temperature test	1℃		
7	Humidity test	3%		
8	DC and low frequency voltages	0.5%		

Report No.: SZEM161201075004

Page: 9 of 78

5.11 Equipment List

	Conducted Emission							
Item	Test Equipment	Test Equipment Manufacturer Model No. Inventor		Inventory No.	Cal. date	Cal.Due date (yyyy-mm-dd)		
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2016-05-13	2017-05-13		
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2016-10-09	2017-10-09		
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2016-04-25	2017-04-25		
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	EMC0120	2016-09-28	2017-09-28		
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	EMC0121	2016-09-28	2017-09-28		
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	EMC0122	2016-09-28	2017-09-28		
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2016-04-25	2017-04-25		
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09		

	RF connected test							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)		
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09		
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-17	2017-10-17		
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25		
4	Power Meter	Agilent Technologies	N1914A	W008-02	2016-06-27	2017-06-27		
5	Power Sensor	Agilent Technologies	U2021XA	SEM009-01	2016-10-09	2017-10-09		

Report No.: SZEM161201075004

Page: 10 of 78

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2016-05-13	2017-05-13
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2016-09-16	2017-09-16
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2014-11-01	2017-11-01
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2014-11-24	2017-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2016-04-25	2017-04-25
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2016-05-13	2017-05-13
2	EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2016-04-25	2017-04-25
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016-06-29	2019-06-29
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2016-07-06	2017-07-06
5	.Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015-08-14	2018-08-14

Report No.: SZEM161201075004

Page: 11 of 78

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEM004-04	2016-04-25	2017-04-25
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2016-10-09	2017-10-09
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

Report No.: SZEM161201075004

Page: 12 of 78

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

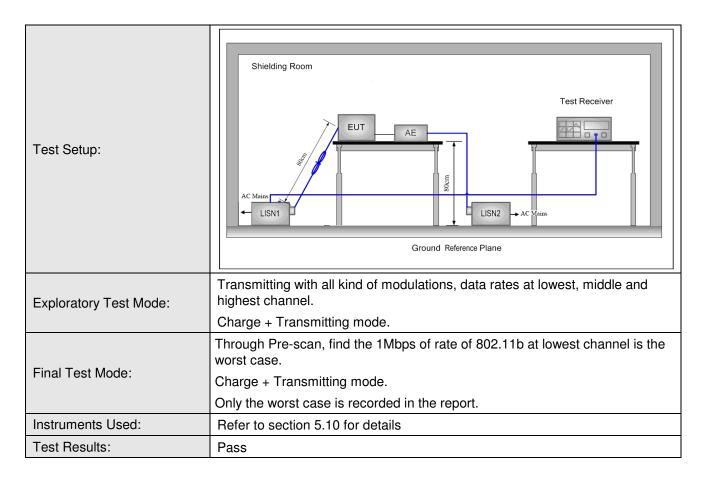
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1.8dBi.

Report No.: SZEM161201075004

Page: 13 of 78

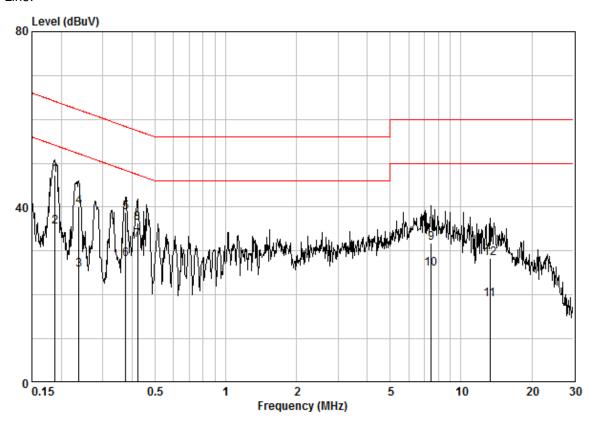

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.2	207				
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz					
	Francisco (MIII-)	Limit (d	BuV)			
	Frequency range (MHz)	Quasi-peak	Average			
Limit:	0.15-0.5	66 to 56*	56 to 46*			
Littit.	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithn					
Test Procedure:	 The mains terminal disturb room. The EUT was connected to Impedance Stabilization Not impedance. The power call connected to a second LIS plane in the same way as the multiple socket outlet strip single LISN provided the radius of the tabletop EUT was placed on the horizontal ground reference plane. An placed on the horizontal ground reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated experience to the importance of the impor	ance voltage test was on AC power source through the content of all other units of all other units of the LISN 1 for the unit is was used to connect mating of the LISN was not be upon a non-metallic and for floor-standing arround reference plane, the a vertical ground referom the vertical ground referom the vertical ground referom the vertical ground referom the vertical ground reference und reference plane. The of the LISN 1 and the quipment was at least 0 am emission, the relative terface cables must be	bugh a LISN 1 (Line a 50Ω/50μH + 5Ω line the EUT were do to the ground refered to the ground refered to the ground refered to the ground refered to the ground above the transperse of the latest plane. The end reference plane. The horizontal ground of the horizontal ground of the boundary of the plane for LISNs has distance was EUT. All other units of the positions of	near ence to a he was ear he he		

Report No.: SZEM161201075004

Page: 14 of 78

Report No.: SZEM161201075004


Page: 15 of 78

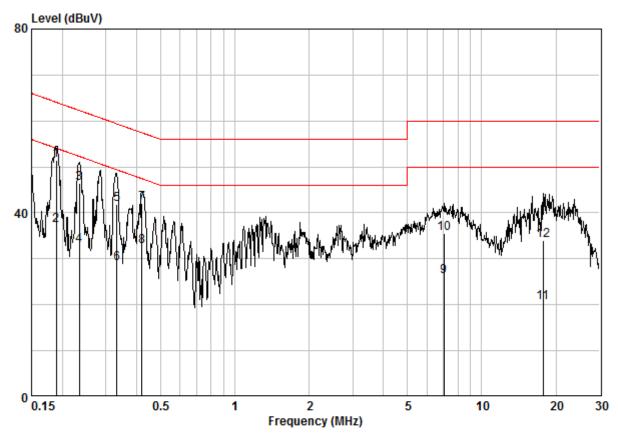
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:

Site : Shielding Room Condition : CE LINE Job No. : 10750RG Test Mode : WIFI


	Freq	Cable Loss	LISN Factor	Read Level		Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.18838	0.02	9.60	37.65	47.27	64.11	-16.84	QP
2	0.18838	0.02	9.60	25.91	35.53	54.11	-18.57	AVERAGE
3	0.23784	0.02	9.60	16.13	25.75	52.17	-26.42	AVERAGE
4	0.23784	0.02	9.60	30.55	40.17	62.17	-22.01	QP
5	0.37512	0.02	9.60	29.20	38.81	58.39	-19.57	QP
6	0.37512	0.02	9.60	18.59	28.20	48.39	-20.18	AVERAGE
7 @	0.42149	0.02	9.60	22.78	32.40	47.42	-15.02	AVERAGE
8	0.42149	0.02	9.60	26.72	36.34	57.42	-21.08	QP
9	7.486	0.09	9.69	22.06	31.84	60.00	-28.16	QP
10	7.486	0.09	9.69	16.21	25.99	50.00	-24.01	AVERAGE
11	13.267	0.15	9.74	9.11	19.00	50.00	-31.00	AVERAGE
12	13.267	0.15	9.74	18.45	28.34	60.00	-31.66	QP

Report No.: SZEM161201075004

Page: 16 of 78

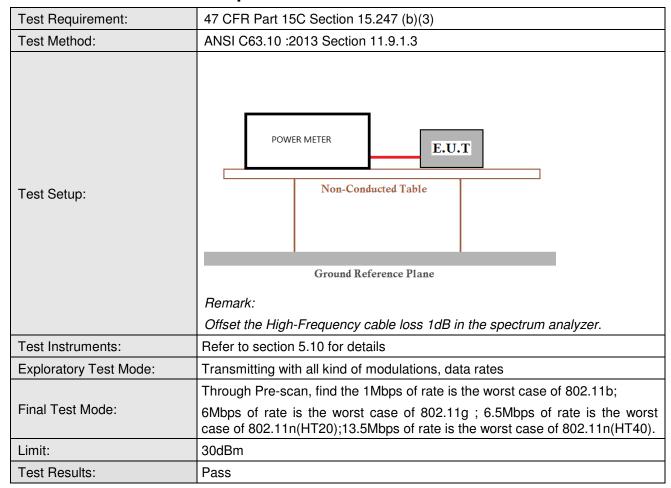
Neutral Line:

Site : Shielding Room Condition : CE NEUTRAL Job No. : 10750RG Test Mode : WIFI

			Cable	LISN	Read		Limit	Over	
		Freq	Loss	Factor	Level	Level	Line	Limit	Remark
		MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	@	0.18938	0.02	9.61	41.87	51.50	64.06	-12.56	QP
2		0.18938	0.02	9.61	27.58	37.22	54.06	-16.84	AVERAGE
3		0.23433	0.02	9.61	36.76	46.40	62.29	-15.90	QP
4		0.23433	0.02	9.61	23.39	33.02	52.29	-19.27	AVERAGE
5		0.33282	0.02	9.62	32.24	41.88	59.38	-17.50	QP
6		0.33282	0.02	9.62	19.33	28.97	49.38	-20.41	AVERAGE
7		0.41967	0.02	9.62	32.48	42.12	57.45	-15.33	QP
8	@	0.41967	0.02	9.62	23.04	32.68	47.45	-14.77	AVERAGE
9		7.029	0.08	9.74	16.23	26.05	50.00	-23.95	AVERAGE
10		7.029	0.08	9.74	25.61	35.43	60.00	-24.57	QP
11		17.755	0.16	9.95	10.42	20.53	50.00	-29.47	AVERAGE
12		17.755	0.16	9.95	23.80	33.91	60.00	-26.09	QP

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction is issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201075004

Page: 17 of 78

6.3 Conducted Peak Output Power

Report No.: SZEM161201075004

Page: 18 of 78

Measurement Data

Measurement Data							
	802.11b mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	19.41	30.00	Pass				
Middle	19.70	30.00	Pass				
Highest	19.79	30.00	Pass				
	802.11g mo	de					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	21.70	30.00	Pass				
Middle	22.04	30.00	Pass				
Highest	21.99	30.00	Pass				
	802.11n(HT20)	mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	21.45	30.00	Pass				
Middle	22.07	30.00	Pass				
Highest	21.94	30.00	Pass				
	802.11n(HT40)	mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	21.39	30.00	Pass				
Middle	21.76	30.00	Pass				
Highest	21.95	30.00	Pass				

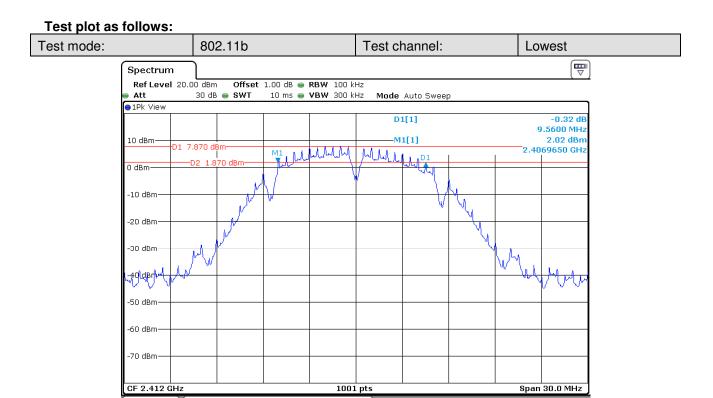
Report No.: SZEM161201075004

Page: 19 of 78

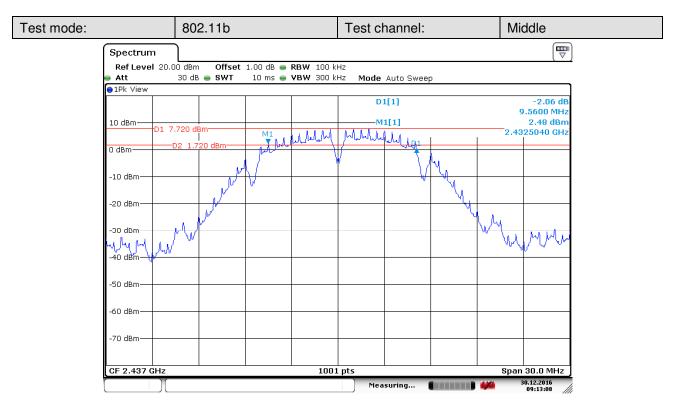
6.4 6dB Occupy Bandwidth

Report No.: SZEM161201075004

Page: 20 of 78


Measurement Data

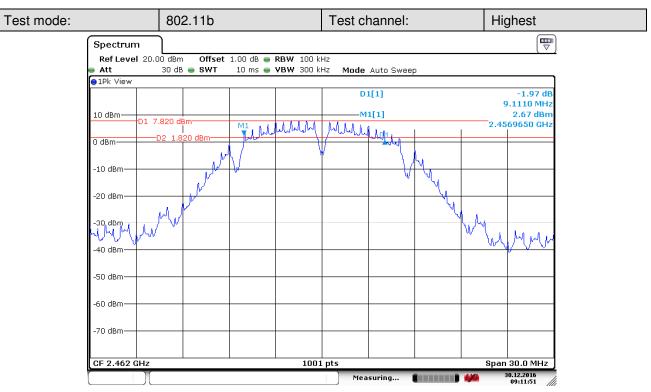
Measurement Data						
	802.11b mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result			
Lowest	9.56	≥500	Pass			
Middle	9.56	≥500	Pass			
Highest	9.11	≥500	Pass			
	802.11g mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result			
Lowest	15.14	≥500	Pass			
Middle	15.73	≥500	Pass			
Highest	15.73	≥500	Pass			
	802.11n(HT20) mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result			
Lowest	15.14	≥500	Pass			
Middle	16.36	≥500	Pass			
Highest	16.36	≥500	Pass			
	802.11n(HT40) mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result			
Lowest	35.19	≥500	Pass			
Middle	35.17	≥500	Pass			
Highest	35.15	≥500	Pass			



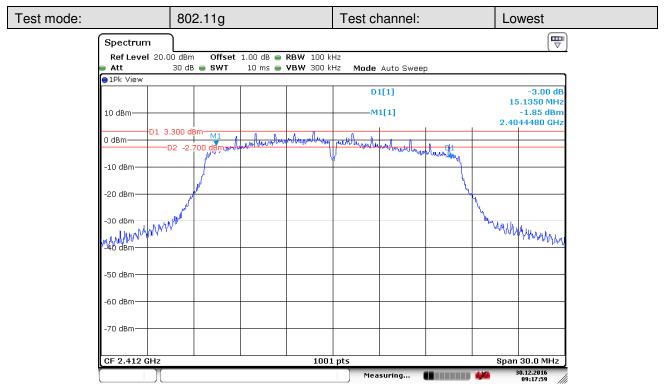
Report No.: SZEM161201075004

Page: 21 of 78

Date: 30.DEC.2016 09:16:08



Date: 30.DEC.2016 09:13:08



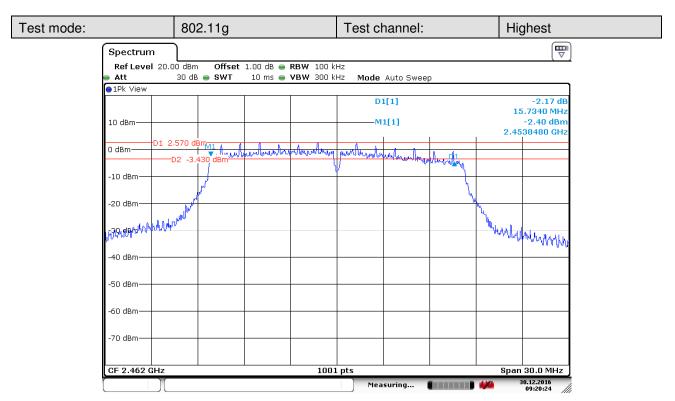
Report No.: SZEM161201075004

Page: 22 of 78

Date: 30.DEC.2016 09:11:52

Date: 30.DEC.2016 09:17:59

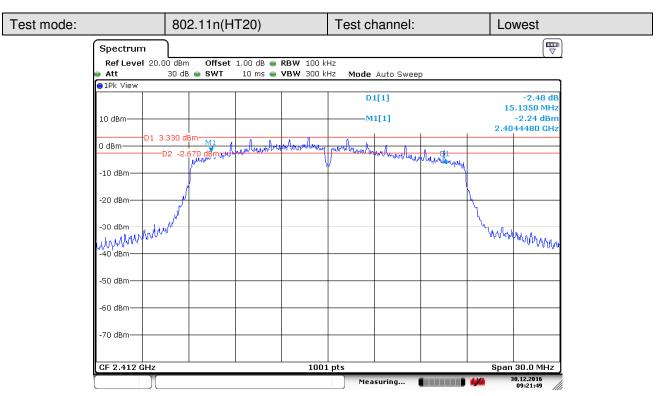
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



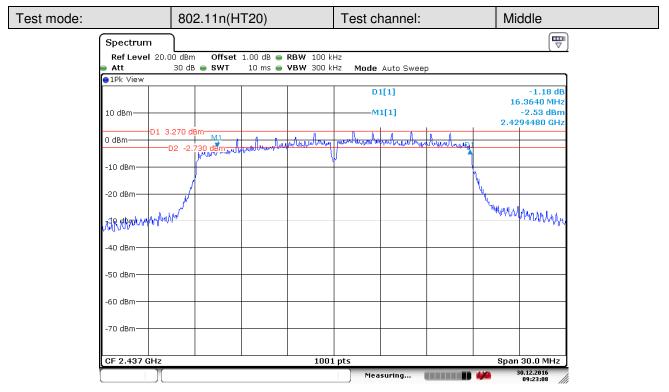
Report No.: SZEM161201075004

Page: 23 of 78

Date: 30.DEC.2016 09:19:11



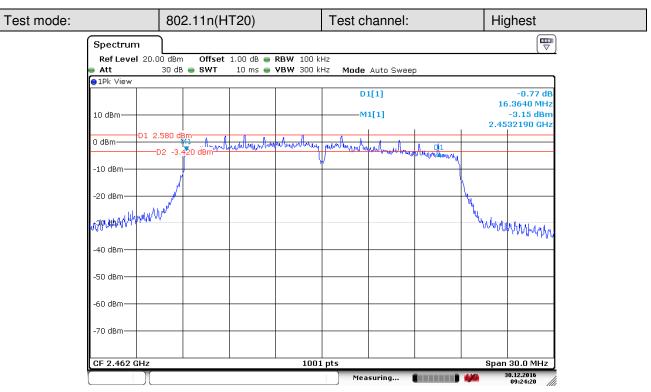
Date: 30.DEC.2016 09:20:24



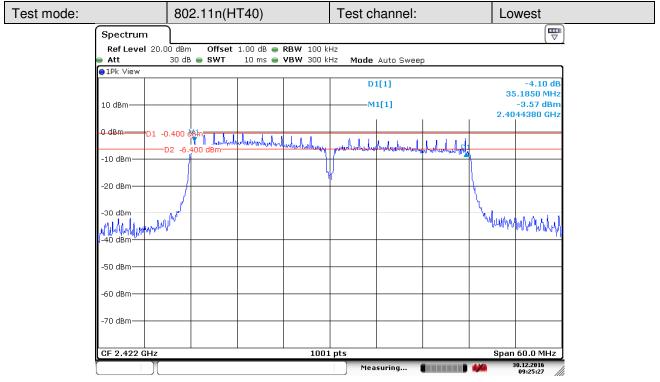
Report No.: SZEM161201075004

Page: 24 of 78

Date: 30.DEC.2016 09:21:50


Date: 30.DEC.2016 09:23:09

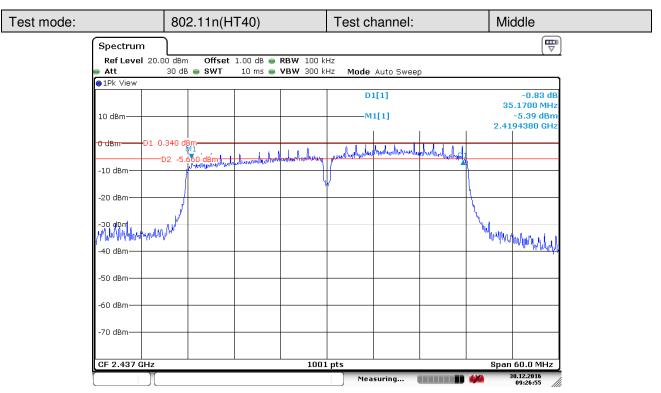
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



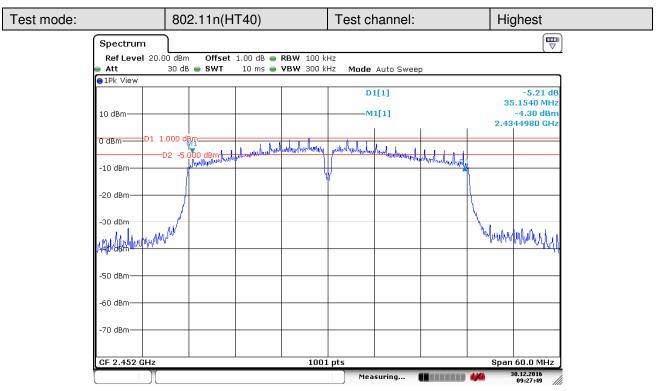
Report No.: SZEM161201075004

Page: 25 of 78

Date: 30.DEC.2016 09:24:20


Date: 30.DEC.2016 09:25:27

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM161201075004

Page: 26 of 78

Date: 30.DEC.2016 09:26:55

Date: 30.DEC.2016 09:27:50

Report No.: SZEM161201075004

Page: 27 of 78

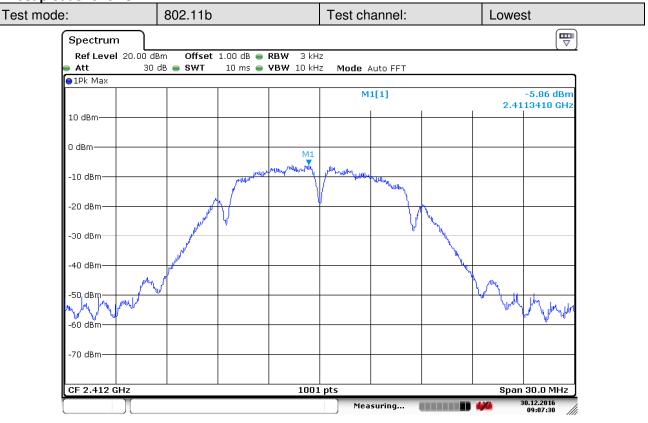
6.5 Power Spectral Density

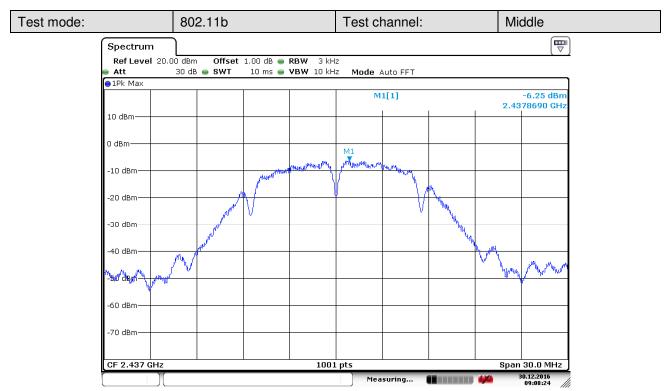
Test Requirement:	47 CFR Part 15C Section 15.247 (e)				
Test Method:	ANSI C63.10 :2013 Section 11.10.2				
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark:				
	Offset the High-Frequency cable loss 1dB in the spectrum analyzer.				
Test Instruments:	Refer to section 5.10 for details				
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates				
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;				
Final Test Mode:	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20);13.5Mbps of rate is the worst case of 802.11n(HT40).				
Limit:	≤8.00dBm/3kHz				
Test Results:	Pass				

Report No.: SZEM161201075004

Page: 28 of 78

Measurement Data

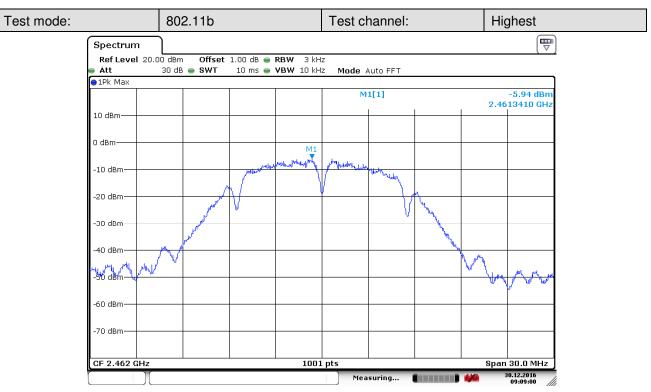

weasurement Data							
	802.11b mode						
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result				
Lowest	-5.86	≤8.00	Pass				
Middle	-6.25	≤8.00	Pass				
Highest	-5.94	≤8.00	Pass				
	802.11g mode						
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result				
Lowest	-9.48	≤8.00	Pass				
Middle	-9.33	≤8.00	Pass				
Highest	-9.52	≤8.00	Pass				
	802.11n(HT20) mode						
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result				
Lowest	-9.09	≤8.00	Pass				
Middle	-9.74	≤8.00	Pass				
Highest	-10.03	≤8.00	Pass				
	802.11n(HT40) mode						
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result				
Lowest	-13.15	≤8.00	Pass				
Middle	-12.77	≤8.00	Pass				
Highest	-12.57	≤8.00	Pass				


Report No.: SZEM161201075004

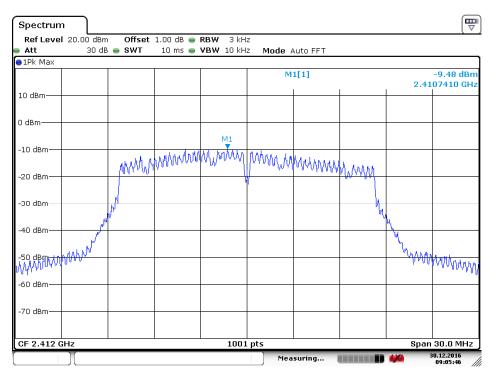
Page: 29 of 78

Test plot as follows:

Date: 30.DEC.2016 09:07:30

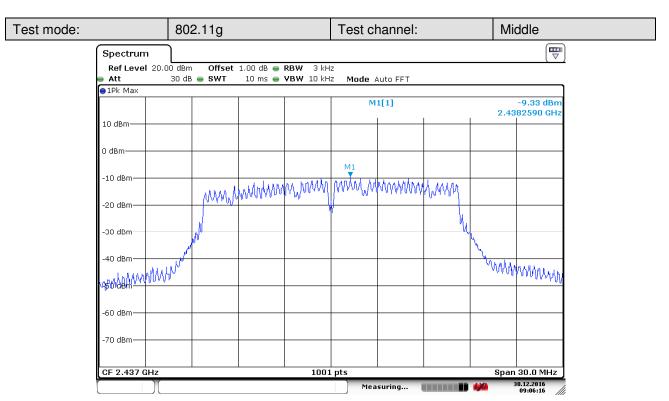


Date: 30.DEC.2016 09:08:25

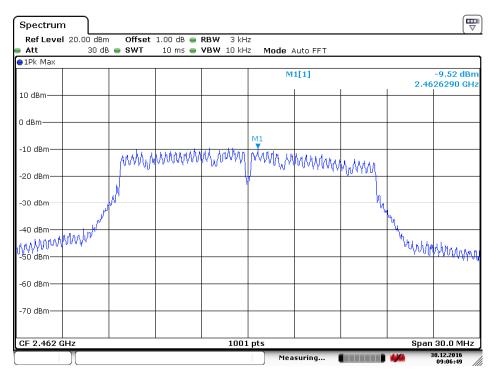

Report No.: SZEM161201075004

Page: 30 of 78

Date: 30.DEC.2016 09:09:00

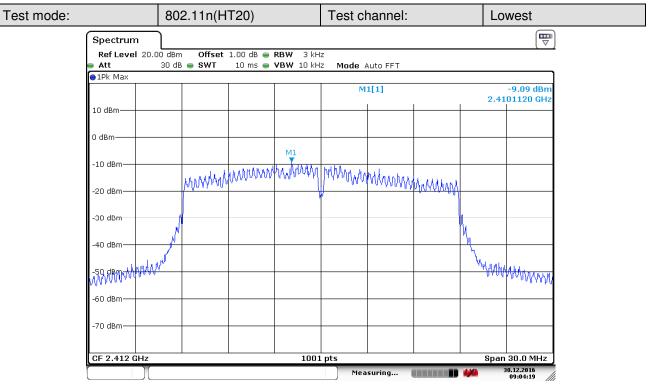

Date: 30.DEC.2016 09:05:46

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

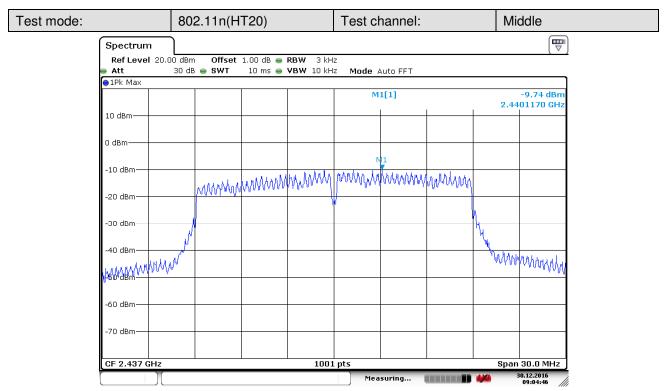

Report No.: SZEM161201075004

Page: 31 of 78

Date: 30.DEC.2016 09:06:17



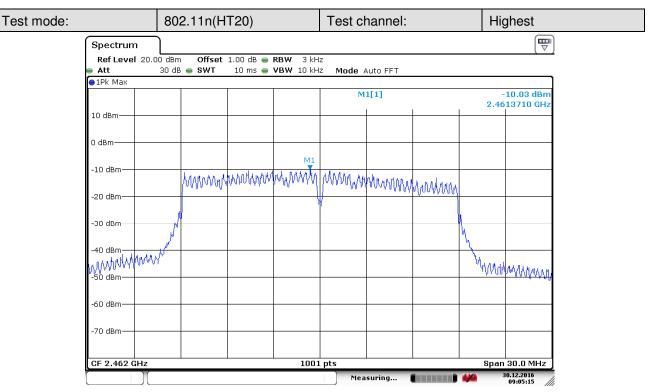
Date: 30.DEC.2016 09:06:49



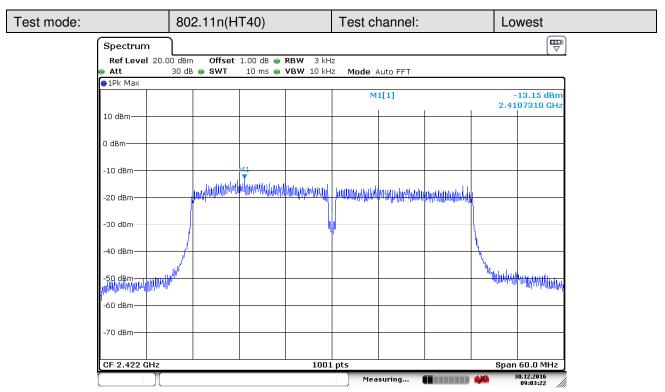
Report No.: SZEM161201075004

Page: 32 of 78

Date: 30.DEC.2016 09:04:20



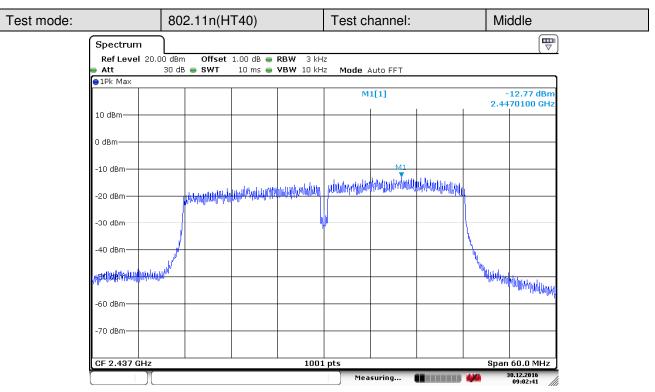
Date: 30.DEC.2016 09:04:46



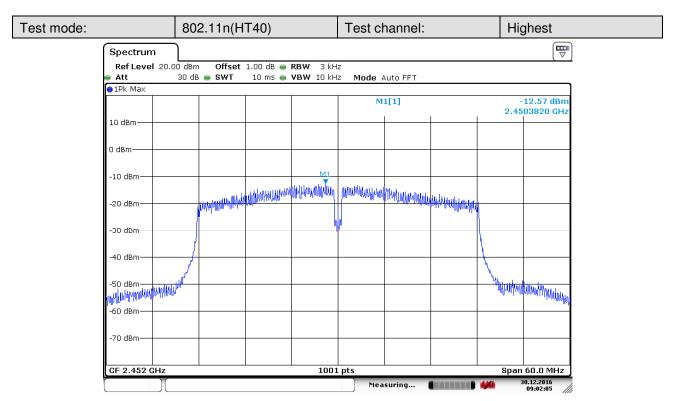
Report No.: SZEM161201075004

Page: 33 of 78

Date: 30.DEC.2016 09:05:15



Date: 30.DEC.2016 09:03:22



Report No.: SZEM161201075004

Page: 34 of 78

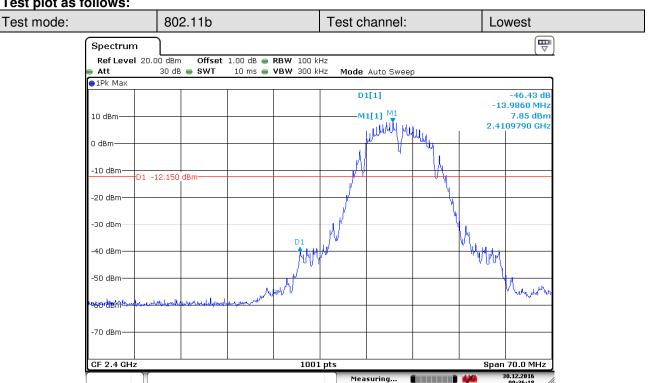
Date: 30.DEC.2016 09:02:42

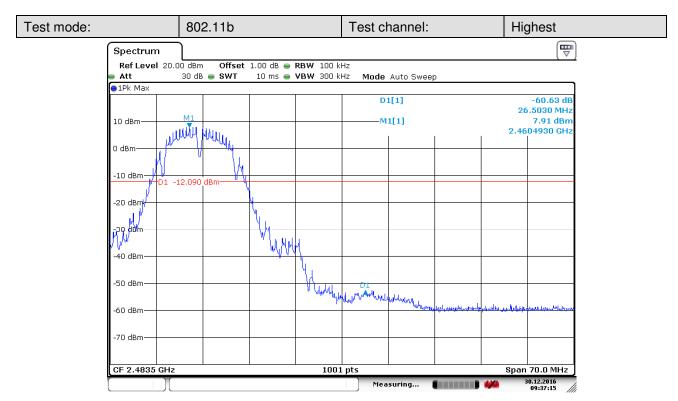
Date: 30.DEC.2016 09:02:05

Report No.: SZEM161201075004

Page: 35 of 78

6.6 Band-edge for RF Conducted Emissions

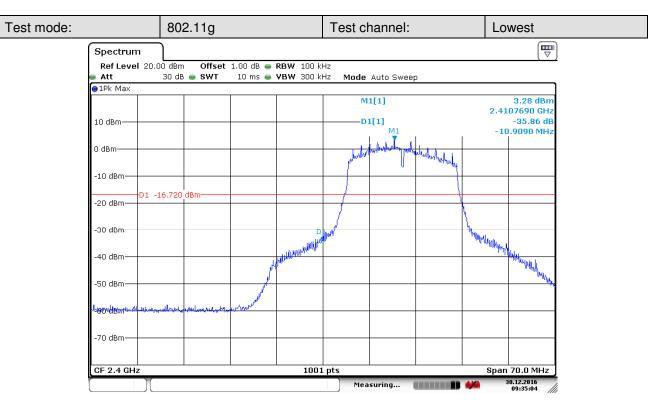

Test Requirement:	47 CFR Part 15C Section 15.247 (d)				
Test Method:	ANSI C63.10: 2013 Section 11.13				
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
	Remark:				
Cyploratory Toot Modes	Offset the High-Frequency cable loss 1dB in the spectrum analyzer.				
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates				
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).				
	In any 100 kHz bandwidth outside the frequency band in which the spread				
	spectrum intentional radiator is operating, the radio frequency power that is				
Limit:	produced by the intentional radiator shall be at least 20 dB below that in the				
LIIIIIL.	100 kHz bandwidth within the band that contains the highest level of the				
	desired power, based on either an RF conducted or a radiated				
	measurement.				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				


Report No.: SZEM161201075004

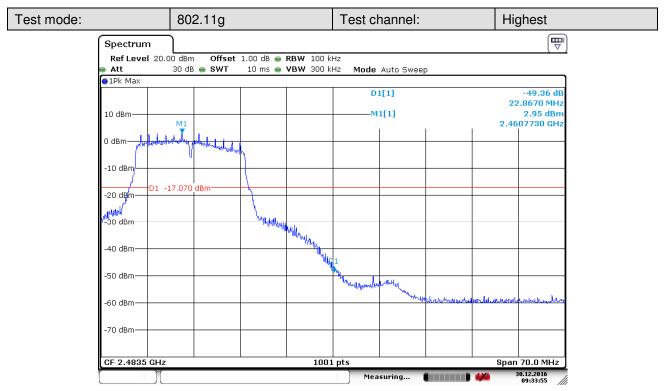
Page: 36 of 78

Test plot as follows:

Date: 30.DEC.2016 09:36:18


Date: 30.DEC.2016 09:37:16

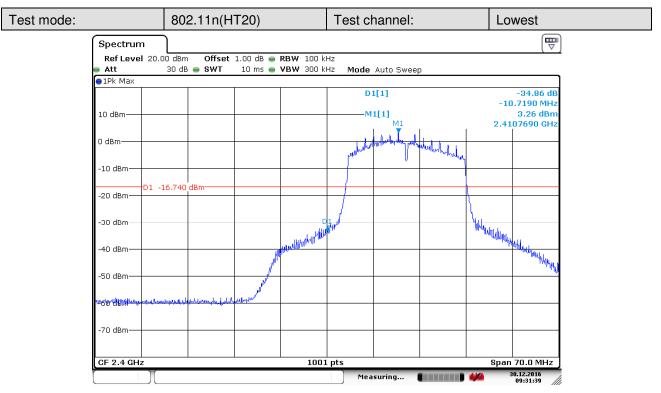
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



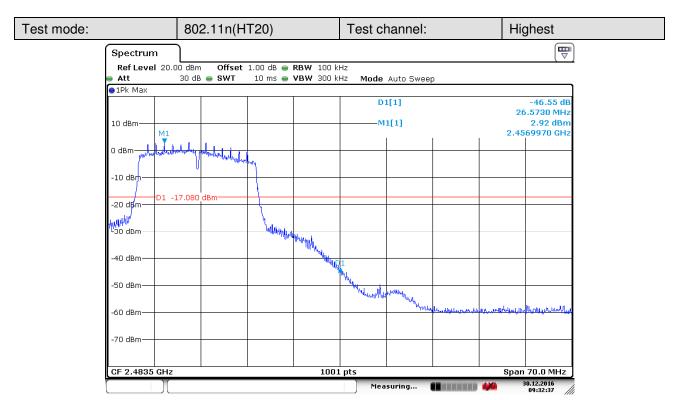
Report No.: SZEM161201075004

Page: 37 of 78

Date: 30.DEC.2016 09:35:04



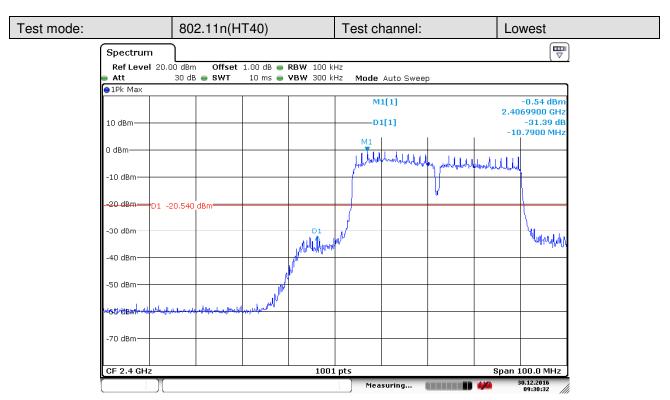
Date: 30.DEC.2016 09:33:56



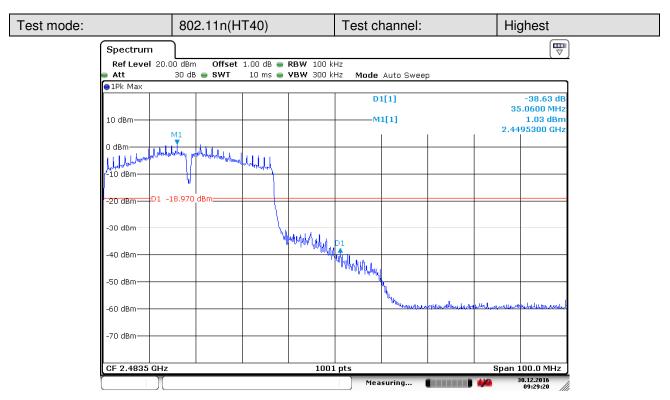
Report No.: SZEM161201075004

Page: 38 of 78

Date: 30.DEC.2016 09:31:40



Date: 30.DEC.2016 09:32:38

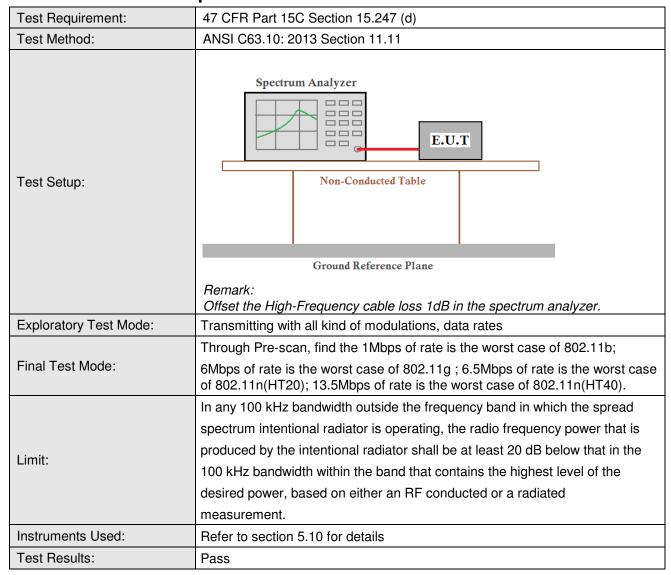


Report No.: SZEM161201075004

Page: 39 of 78

Date: 30.DEC.2016 09:30:32

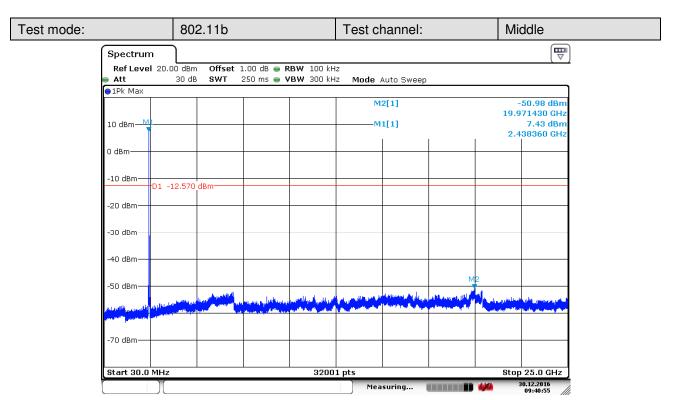
Date: 30.DEC.2016 09:29:20


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201075004

Page: 40 of 78

6.7 RF Conducted Spurious Emissions

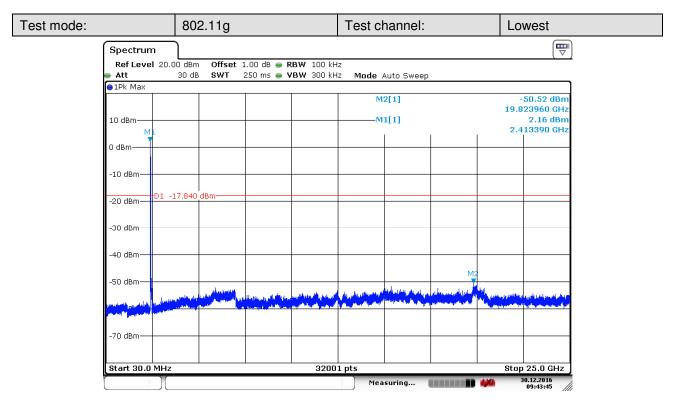

Report No.: SZEM161201075004

Page: 41 of 78

Test plot as follows:

Date: 30.DEC.2016 09:41:57

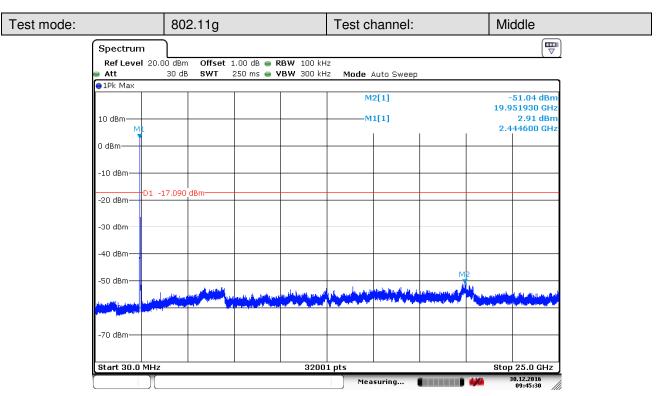
Date: 30.DEC.2016 09:40:56



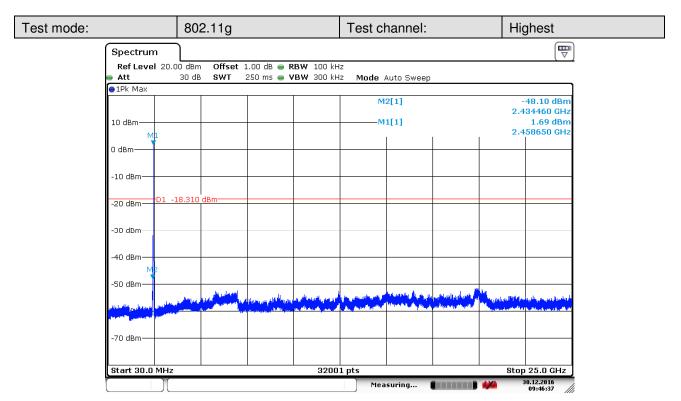
Report No.: SZEM161201075004

Page: 42 of 78

Date: 30.DEC.2016 09:39:05



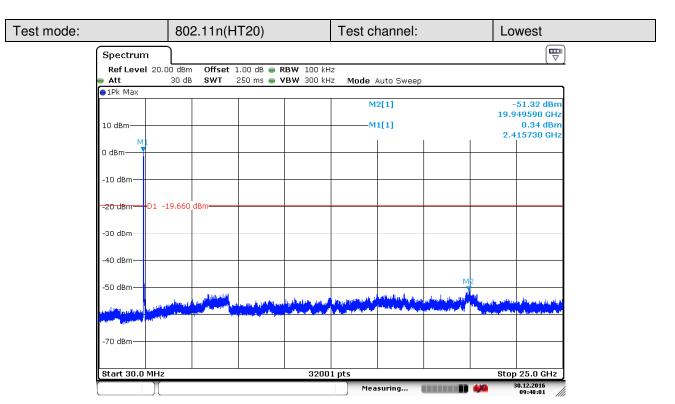
Date: 30.DEC.2016 09:43:46



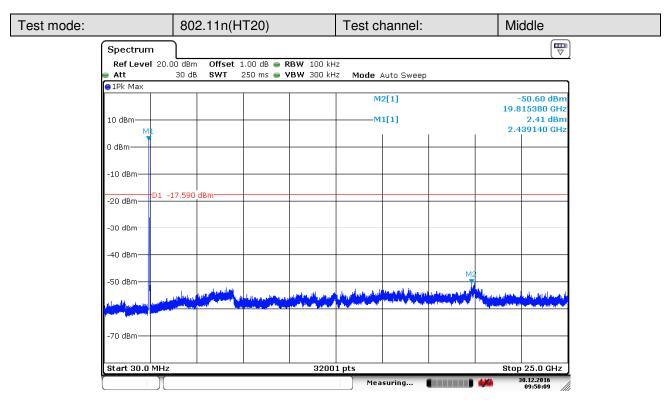
Report No.: SZEM161201075004

Page: 43 of 78

Date: 30.DEC.2016 09:45:30



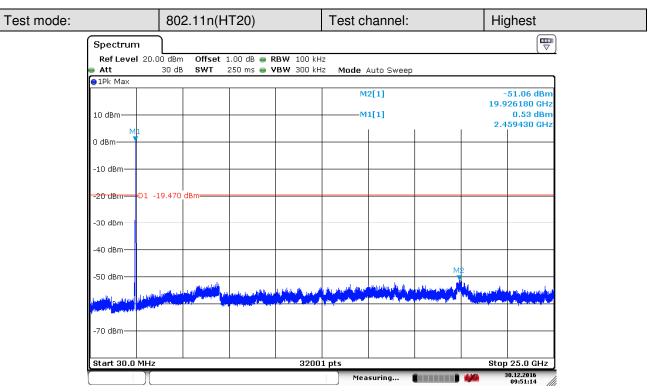
Date: 30.DEC.2016 09:46:37



Report No.: SZEM161201075004

Page: 44 of 78

Date: 30.DEC.2016 09:48:02

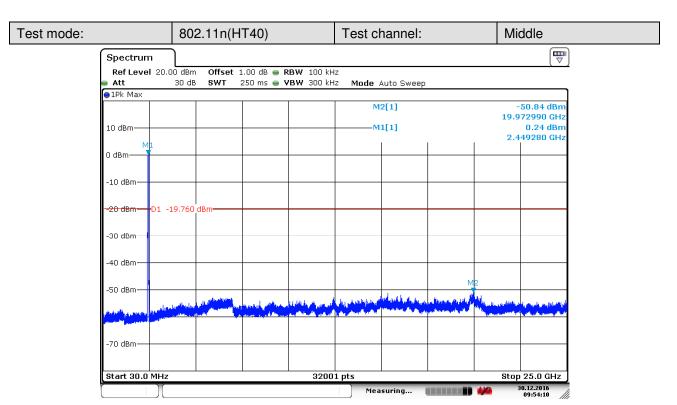

Date: 30.DEC.2016 09:50:10

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

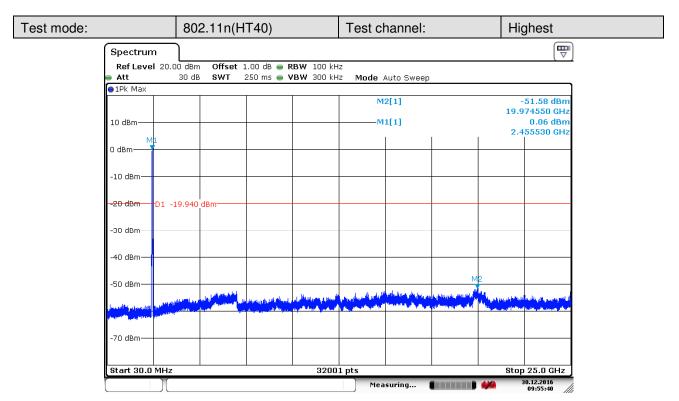
Report No.: SZEM161201075004

Page: 45 of 78

Date: 30.DEC.2016 09:51:14


Date: 30.DEC.2016 09:52:28

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM161201075004

Page: 46 of 78

Date: 30.DEC.2016 09:54:10

Date: 30.DEC.2016 09:55:41

Report No.: SZEM161201075004

Page: 47 of 78

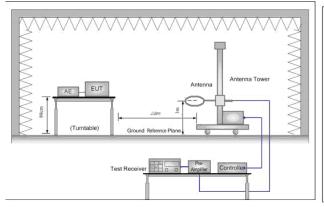
Remark:

Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported

Report No.: SZEM161201075004

Page: 48 of 78

6.8 Radiated Spurious Emissions


ANSI C63.10 :2013 Section 11.12									
Measurement Distance:	3m (Semi-Anechoi	c Chamber)							
Frequency	Detector	RBW	VBW	Remark					
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak					
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average					
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak					
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak					
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average					
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak					
30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak					
Above 1011	Peak	1MHz	3MHz	Peak					
Above IGHZ	Peak	1MHz	10Hz	Average					
Fraguanay	Field strength	Limit	Domork	Measurement					
Frequency	(microvolt/meter)	(dBuV/m)	nemark	distance (m)					
0.009MHz-0.490MHz	2400/F(kHz)	-	1	300					
0.490MHz-1.705MHz	24000/F(kHz)	-	1	30					
1.705MHz-30MHz	30	-	1	30					
30MHz-88MHz	100	40.0	Quasi-peak	3					
88MHz-216MHz	150	43.5	Quasi-peak	3					
216MHz-960MHz	200	46.0	Quasi-peak	3					
960MHz-1GHz	500	54.0	Quasi-peak	3					
Above 1GHz	500	54.0	Average	3					
Note: 15.35(b), Unless of	therwise specified,	the limit on p	eak radio fre	quency					
emissions is 20dB above	the maximum per	mitted avera	ge emission li	mit					
applicable to the equipme	ent under test. This	s peak limit a	pplies to the t	otal peak					
emission level radi	ated by the device								
	Frequency 0.009MHz-0.090MHz 0.009MHz-0.090MHz 0.090MHz-0.110MHz 0.110MHz-0.490MHz 0.110MHz-0.490MHz 0.490MHz -30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490MHz 1.705MHz-30MHz 1.705MHz-30MHz 30MHz-1A90MHz 216MHz-30MHz 30MHz-1A90MHz 4009MHz-1A90MHz	Frequency Detector 0.009MHz-0.090MHz Peak 0.009MHz-0.090MHz Average 0.090MHz-0.110MHz Quasi-peak 0.110MHz-0.490MHz Peak 0.110MHz-0.490MHz Average 0.490MHz -30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Frequency Field strength (microvolt/meter) 0.009MHz-0.490MHz 2400/F(kHz) 1.705MHz-30MHz 30 30MHz-1T-705MHz 24000/F(kHz) 1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500 Note: 15.35(b), Unless otherwise specified, emissions is 20dB above the maximum per applicable to the equipment under test. This	Prequency Detector RBW 10kHz 10kHz	Prequency					

Report No.: SZEM161201075004

Page: 49 of 78

Test Setup:

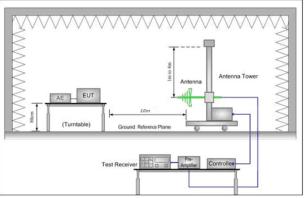


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

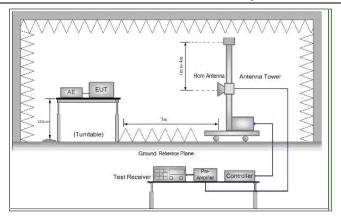


Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201075004

Page: 50 of 78

	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average
	method as specified and then reported in a data sheet.
	h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
	 The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Charge + Transmitting mode.
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode.
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;
	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case
	of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40)
	For below 1GHz, through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM161201075004

Page: 51 of 78

6.8.1 Radiated emission below 1GHz

The test was performed at a 10m test site. According to below formulate and the test data at 10m test distance,

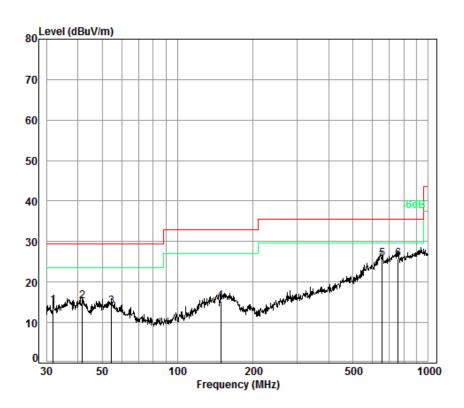
 $L_3 / L_{10} = D_{10} / D_3$

Note:

 L_3 : Level @ 3m distance. Unit: uV/m; L_{10} : Level @ 10m distance. Unit: uV/m;

D₃: 3m distance. Unit: m D₁₀: 10m distance. Unit: m

The level at 3m test distance is below:


Frequency (MHz)	Level @ 10m (dBuV/m)	Level @ 10m (uV/m)	Level @ 3m (uV/m)	Level @ 3m (dBuV/m)	Limit @ 3m (dBuV/m)	Margin (dB)	Ant. Polarization
31.95	14.07	5.05	16.84	24.53	40.00	-15.47	V
41.71	15.30	5.82	19.40	25.76	40.00	-14.24	V
54.64	13.87	4.94	16.46	24.33	40.00	-15.67	V
148.96	15.34	5.85	19.49	25.80	43.50	-17.70	V
654.23	25.68	19.23	64.10	36.14	46.00	-9.86	V
758.04	25.77	19.43	64.77	36.23	46.00	-9.77	V
41.86	15.70	6.10	20.32	26.16	40.00	-13.84	Н
48.67	15.19	5.75	19.16	25.65	40.00	-14.35	Н
144.84	16.72	6.85	22.85	27.18	43.50	-16.32	Н
344.39	19.74	9.71	32.35	30.20	46.00	-15.80	Н
658.84	23.56	15.07	50.22	34.02	46.00	-11.98	Н
948.76	25.76	19.41	64.70	36.22	46.00	-9.78	Н

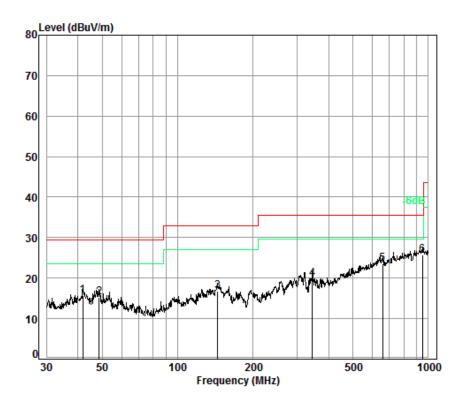
Report No.: SZEM161201075004

Page: 52 of 78

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical

Condition: 10m VERTICAL

Job No. : 10750RG Test Mode: Wifi


		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	31.95	6.70	12.54	32.97	27.80	14.07	29.50	-15.43
2	41.71	6.80	13.17	32.99	28.32	15.30	29.50	-14.20
3	54.64	6.99	12.40	32.97	27.45	13.87	29.50	-15.63
4	148.96	7.45	13.34	32.74	27.29	15.34	33.00	-17.66
5	654.23	9.04	19.59	32.60	29.65	25.68	35.60	-9.92
6 pp	758.04	9.20	20.86	32.60	28.31	25.77	35.60	-9.83

Report No.: SZEM161201075004

Page: 53 of 78

Test mode: Charge + Transmitting Horizontal

Condition: 10m HORIZONTAL

Job No. : 10750RG Test Mode: Wifi

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	_							
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
			•			•		
1	41.86	6.80	13.16	32.99	28.73	15.70	29.50	-13.80
2	48.67	6.87	12.81	33.00	28.51	15.19	29.50	-14.31
3	144.84	7.43	13.08	32.75	28.96	16.72	33.00	-16.28
4	344.39	8.22	13.74	32.60	30.38	19.74	35.60	-15.86
5	658.84	9.05	19.64	32.60	27.47	23.56	35.60	-12.04
6 pp	948.76	9.57	22.72	32.50	25.97	25.76	35.60	-9.84

Report No.: SZEM161201075004

Page: 54 of 78

6.8.2 Transmitter emission above 1GHz

Test mode:	802.1	1b	Test ch	annel:	Lowest	Remark		Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	mit Line BuV/m)	Over Limit (dB)	Polarization
3842.163	33.18	7.76	37.98	44.67	47.63	74	-26.37	Vertical
4874.000	34.28	8.97	38.44	43.65	48.46	74	-25.54	Vertical
6069.413	34.76	10.47	38.23	43.51	50.51	74	-23.49	Vertical
7311.000	36.37	10.72	37.02	41.84	51.91	74	-22.09	Vertical
9748.000	37.55	12.58	35.03	37.26	52.36	74	-21.64	Vertical
11998.25	38.6	14.56	35.6	35.70	53.26	74	-20.74	Vertical
3754.236	32.94	7.72	37.98	44.18	46.86	74	-27.14	Horizontal
4824.000	34.19	8.9	38.41	43.41	48.09	74	-25.91	Horizontal
5811.590	34.59	10.03	38.34	44.12	50.40	74	-23.60	Horizontal
7236.000	36.4	10.69	37.09	41.59	51.59	74	-22.41	Horizontal
9648.000	37.53	12.52	35.08	37.17	52.14	74	-21.86	Horizontal
12297.040	38.78	14.31	36.31	37.18	53.96	74	-20.04	Horizontal

Test mode:	802.1	1b	Test ch	annel:	Middle	Rema	rk:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m	Over Limit (dB)	Polarization
3831.06	33.15	7.75	37.98	44.83	47.75	74	-26.25	Vertical
4874.000	34.28	8.97	38.44	43.28	48.09	74	-25.91	Vertical
6069.413	34.76	10.47	38.23	43.09	50.09	74	-23.91	Vertical
7311.000	36.37	10.72	37.02	41.13	51.20	74	-22.80	Vertical
9748.000	37.55	12.58	35.03	36.97	52.07	74	-21.93	Vertical
12050.440	38.63	14.52	35.72	36.50	53.93	74	-20.07	Vertical
3842.163	33.18	7.76	37.98	44.47	47.43	74	-26.57	Horizontal
4924.000	34.37	9.04	38.46	43.62	48.57	74	-25.43	Horizontal
6078.201	34.76	10.46	38.22	43.37	50.37	74	-23.63	Horizontal
7386.000	36.34	10.75	36.95	41.31	51.45	74	-22.55	Horizontal
9848.000	37.57	12.63	34.98	37.76	52.98	74	-21.02	Horizontal
12243.770	38.75	14.36	36.19	36.99	53.91	74	-20.09	Horizontal

Report No.: SZEM161201075004

Page: 55 of 78

Test mode:	802.1	1b	Test ch	annel:	Highest	Remark:		Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit ΒμV/m)	Over Limit (dB)	Polarization
3842.163	33.18	7.76	37.98	44.47	47.43	74	-26.57	Vertical
4924.000	34.37	9.04	38.46	43.62	48.57	74	-25.43	Vertical
6078.201	34.76	10.46	38.22	43.37	50.37	74	-23.63	Vertical
7386.000	36.34	10.75	36.95	41.31	51.45	74	-22.55	Vertical
9848.000	37.57	12.63	34.98	37.76	52.98	74	-21.02	Vertical
12243.770	38.75	14.36	36.19	36.99	53.91	74	-20.09	Vertical
3442.058	32.1	7.62	37.94	43.89	45.67	74	-28.33	Horizontal
4924.000	34.37	9.04	38.46	43.95	48.90	74	-25.10	Horizontal
6078.201	34.76	10.46	38.22	43.51	50.51	74	-23.49	Horizontal
7386.000	36.34	10.75	36.95	40.91	51.05	74	-22.95	Horizontal
9848.000	37.57	12.63	34.98	37.15	52.37	74	-21.63	Horizontal
12137.940	38.68	14.45	35.93	36.23	53.43	74	-20.57	Horizontal

Test mode:	802.1	1g	Test ch	annel:	Lowest	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit ΒμV/m)	Over Limit (dB)	Polarization
3842.163	33.18	7.76	37.98	44.41	47.37	74	-26.63	Vertical
4824.000	34.19	8.9	38.41	42.73	47.41	74	-26.59	Vertical
5947.702	34.67	10.42	38.31	43.8	50.58	74	-23.42	Vertical
7236.000	36.4	10.69	37.09	41.48	51.48	74	-22.52	Vertical
9648.000	37.53	12.52	35.08	37.39	52.36	74	-21.64	Vertical
12102.870	38.66	14.47	35.85	36.62	53.90	74	-20.10	Vertical
3594.760	32.48	7.67	37.96	44.81	47.00	74	-27.00	Horizontal
4824.000	34.19	8.9	38.41	43.11	47.79	74	-26.21	Horizontal
5794.797	34.58	9.98	38.34	44.53	50.75	74	-23.25	Horizontal
7236.000	36.4	10.69	37.09	41.76	51.76	74	-22.24	Horizontal
9648.000	37.53	12.52	35.08	37.9	52.87	74	-21.13	Horizontal
12102.87	38.66	14.47	35.85	35.76	53.04	74	-20.96	Horizontal

Report No.: SZEM161201075004

Page: 56 of 78

Test mode:	802.1	1g	Test ch	annel:	Middle	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Polarization
3765.116	32.97	7.73	37.98	44.52	47.24	74	-26.76	Vertical
4874.000	34.28	8.97	38.44	41.82	46.63	74	-27.37	Vertical
5820.005	34.59	10.06	38.34	44.67	50.98	74	-23.02	Vertical
7311.000	36.37	10.72	37.02	41.04	51.11	74	-22.89	Vertical
9748.000	37.55	12.58	35.03	37.1	52.20	74	-21.80	Vertical
12190.740	38.72	14.4	36.06	36.01	53.07	74	-20.93	Vertical
3781.495	33.01	7.73	37.98	43.94	46.70	74	-27.30	Horizontal
4874.000	34.28	8.97	38.44	43.3	48.11	74	-25.89	Horizontal
5956.314	34.67	10.44	38.31	43.84	50.64	74	-23.36	Horizontal
7311.000	36.37	10.72	37.02	41.08	51.15	74	-22.85	Horizontal
9748.000	37.55	12.58	35.03	37.48	52.58	74	-21.42	Horizontal
12261.500	38.76	14.34	36.23	36.69	53.56	74	-20.44	Horizontal

Test mode:	802.1	1g	Test ch	annel:	Highest	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Polarization
3836.607	33.16	7.75	37.98	45.95	48.88	74	-25.12	Vertical
4924.000	34.37	9.04	38.46	42.93	47.88	74	-26.12	Vertical
5956.314	34.67	10.44	38.31	43.49	50.29	74	-23.71	Vertical
7386.000	36.34	10.75	36.95	41.76	51.90	74	-22.10	Vertical
9848.000	37.57	12.63	34.98	36.82	52.04	74	-21.96	Vertical
12208.390	38.73	14.39	36.1	36.05	53.07	74	-20.93	Vertical
3842.163	33.18	7.76	37.98	45.71	48.67	74	-25.33	Horizontal
4924.000	34.37	9.04	38.46	43.39	48.34	74	-25.66	Horizontal
6069.413	34.76	10.47	38.23	43.95	50.95	74	-23.05	Horizontal
7386.000	36.34	10.75	36.95	41.85	51.99	74	-22.01	Horizontal
9848.000	37.57	12.63	34.98	37.69	52.91	74	-21.09	Horizontal
12067.890	38.64	14.5	35.76	36.47	53.85	74	-20.15	Horizontal

Report No.: SZEM161201075004

Page: 57 of 78

Test mode:	802.1	1n(HT20)	Test ch	annel:	Lowest	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Polarization
3847.726	33.19	7.76	37.98	44.48	47.45	74	-26.55	Vertical
4824.000	34.19	8.9	38.41	42.01	46.69	74	-27.31	Vertical
5973.576	34.68	10.49	38.31	43.39	50.25	74	-23.75	Vertical
7236.000	36.4	10.69	37.09	41.03	51.03	74	-22.97	Vertical
9648.000	37.53	12.52	35.08	37.66	52.63	74	-21.37	Vertical
12120.390	38.67	14.46	35.89	36.70	53.94	74	-20.06	Vertical
3574.015	32.42	7.66	37.96	44.96	47.08	74	-26.92	Horizontal
4824.000	34.19	8.9	38.41	42.20	46.88	74	-27.12	Horizontal
6025.661	34.72	10.53	38.27	43.04	50.02	74	-23.98	Horizontal
7236.000	36.4	10.69	37.09	41.61	51.61	74	-22.39	Horizontal
9648.000	37.53	12.52	35.08	37.69	52.66	74	-21.34	Horizontal
12102.870	38.66	14.47	35.85	36.48	53.76	74	-20.24	Horizontal

Test mode:	802.1	1g	Test ch	annel:	: Middle		:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Polarization
3842.163	33.18	7.76	37.98	44.69	47.65	74	-26.35	Vertical
4874.000	34.28	8.97	38.44	43.19	48.00	74	-26.00	Vertical
6060.637	34.75	10.48	38.24	43.19	50.18	74	-23.82	Vertical
7311.000	36.37	10.72	37.02	41.65	51.72	74	-22.28	Vertical
9748.000	37.55	12.58	35.03	37.81	52.91	74	-21.09	Vertical
12137.94	38.68	14.45	35.93	36.13	53.33	74	-20.67	Vertical
3915.118	33.38	7.78	37.99	44.03	47.20	74	-26.80	Horizontal
4874.000	34.28	8.97	38.44	41.10	45.91	74	-28.09	Horizontal
5769.698	34.57	9.91	38.35	44.12	50.25	74	-23.75	Horizontal
7311.000	36.37	10.72	37.02	41.03	51.10	74	-22.90	Horizontal
9748.000	37.55	12.58	35.03	37.85	52.95	74	-21.05	Horizontal
12102.870	38.66	14.47	35.85	36.02	53.30	74	-20.70	Horizontal

Report No.: SZEM161201075004

Page: 58 of 78

Test mode:	802.1	1n(HT20)	Test ch	annel:	Highest	Remark		Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	_imit βμV/m)	Over Limit (dB)	Polarization
3858.877	33.22	7.76	37.99	43.9	46.89	74	-27.11	Vertical
4924.000	34.37	9.04	38.46	41.98	46.93	74	-27.07	Vertical
6087.002	34.77	10.45	38.21	43.36	50.37	74	-23.63	Vertical
7386.000	36.34	10.75	36.95	41.67	51.81	74	-22.19	Vertical
9848.000	37.57	12.63	34.98	37.44	52.66	74	-21.34	Vertical
12440.210	38.86	14.2	36.66	37.17	53.57	74	-20.43	Vertical
3847.726	33.19	7.76	37.98	44.99	47.96	74	-26.04	Horizontal
4924.000	34.37	9.04	38.46	42.07	47.02	74	-26.98	Horizontal
5939.103	34.66	10.39	38.31	43.62	50.36	74	-23.64	Horizontal
7386.000	36.34	10.75	36.95	41.04	51.18	74	-22.82	Horizontal
9748.000	37.55	12.58	35.03	37.49	52.59	74	-21.41	Horizontal
12137.940	38.68	14.45	35.93	36.57	53.77	74	-20.23	Horizontal

Test mode:	802.1	1n(HT40)	Test ch	annel:	Lowest	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Polarization
3842.163	33.18	7.76	37.98	43.55	46.51	74	-27.49	Vertical
4844.000	34.23	8.92	38.42	41.07	45.80	74	-28.20	Vertical
6025.661	34.72	10.53	38.27	43.24	50.22	74	-23.78	Vertical
7266.000	36.39	10.7	37.06	41.58	51.61	74	-22.39	Vertical
9688.000	37.54	12.54	35.06	37.30	52.32	74	-21.68	Vertical
11998.250	38.6	14.56	35.6	35.61	53.17	74	-20.83	Vertical
3842.163	33.18	7.76	37.98	44.74	47.70	74	-26.30	Horizontal
4844.000	34.23	8.92	38.42	41.50	46.23	74	-27.77	Horizontal
5956.314	34.67	10.44	38.31	43.67	50.47	74	-23.53	Horizontal
7266.000	36.39	10.7	37.06	41.61	51.64	74	-22.36	Horizontal
9688.000	37.54	12.54	35.06	37.16	52.18	74	-21.82	Horizontal
12120.390	38.67	14.46	35.89	36.18	53.42	74	-20.58	Horizontal

Report No.: SZEM161201075004

Page: 59 of 78

Test mode:	802.1	1n(HT40)	Test ch	annel:	Middle	Rema	k:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBμV/m)	Over Limit (dB)	Polarization
3797.945	33.06	7.74	37.98	43.92	46.74	74	-27.26	Vertical
4874.000	34.28	8.97	38.44	42.94	47.75	74	-26.25	Vertical
6087.002	34.77	10.45	38.21	43.04	50.05	74	-23.95	Vertical
7311.000	36.37	10.72	37.02	41.87	51.94	74	-22.06	Vertical
9748.000	37.55	12.58	35.03	37.82	52.92	74	-21.08	Vertical
12332.670	38.8	14.29	36.4	37.18	53.87	74	-20.13	Vertical
3831.060	33.15	7.75	37.98	44.31	47.23	74	-26.77	Horizontal
4874.000	34.28	8.97	38.44	41.47	46.28	74	-27.72	Horizontal
5947.702	34.67	10.42	38.31	43.92	50.70	74	-23.30	Horizontal
7311.000	36.37	10.72	37.02	41.89	51.96	74	-22.04	Horizontal
9748.000	37.55	12.58	35.03	37.54	52.64	74	-21.36	Horizontal
12033.020	38.62	14.53	35.68	36.46	53.93	74	-20.07	Horizontal

Test mode:	8	02.1	1n(HT40)	Test ch	annel:	Highest		Remark		Peak
Frequency (MHz)	Anten factor (dB/n	rs	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)		Limit ΒμV/m)	Over Limit (dB)	Polarization
3842.163	33.18	8	7.76	37.98	44.93	47.89		74	-26.11	Vertical
4904.000	34.33	3	9.01	38.45	43.62	48.51		74	-25.49	Vertical
6069.413	34.70	6	10.47	38.23	43.55	50.55		74	-23.45	Vertical
7356.000	36.36	6	10.74	36.98	41.07	51.19		74	-22.81	Vertical
9808.000	37.50	6	12.61	35	36.98	52.15		74	-21.85	Vertical
12102.870	38.60	6	14.47	35.85	36.61	53.89		74	-20.11	Vertical
3954.973	33.48	8	7.79	38	44.76	48.03		74	-25.97	Horizontal
4904.000	34.33	3	9.01	38.45	42.86	47.75		74	-26.25	Horizontal
6193.614	34.80	6	10.31	38.11	43.51	50.57		74	-23.43	Horizontal
7356.000	36.30	6	10.74	36.98	41.46	51.58		74	-22.42	Horizontal
9808.000	37.50	6	12.61	35	37.50	52.67		74	-21.33	Horizontal
12102.870	38.60	6	14.47	35.85	36.15	53.43		74	-20.57	Horizontal

Report No.: SZEM161201075004

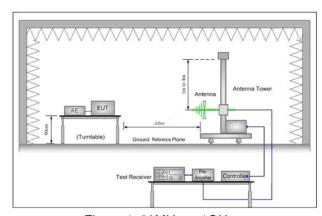
Page: 60 of 78

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Report No.: SZEM161201075004

Page: 61 of 78

6.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	47 CFR Part 15C Section 15.209 and 15.205										
Test Method:	ANSI C63.10: 2013 Section	ANSI C63.10: 2013 Section 11.12										
Test Site:	Measurement Distance: 3n	Measurement Distance: 3m (Semi-Anechoic Chamber)										
	Frequency	Limit (dBuV/m @3m)	Remark									
	30MHz-88MHz	40.0	Quasi-peak Value									
	88MHz-216MHz	43.5	Quasi-peak Value									
Limit:	216MHz-960MHz	46.0	Quasi-peak Value									
	960MHz-1GHz	54.0	Quasi-peak Value									
	Ala a 4 O l l =	54.0	Average Value									
	Above 1GHz	74.0	Peak Value									
Test Setup:												

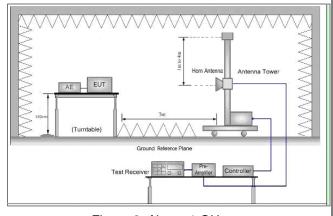


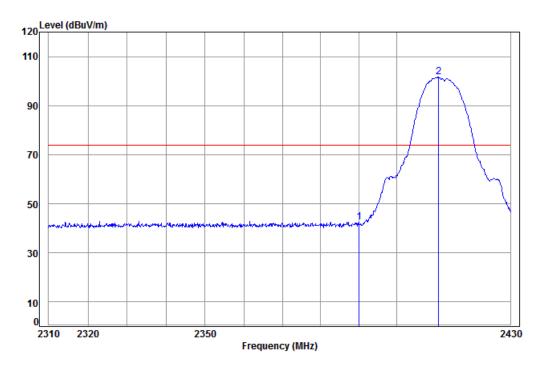
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM161201075004

Page: 62 of 78

	meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest
	radiation.
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
Test Procedure:	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	h. Test the EUT in the lowest channel , the Highest channel
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
Exploratory 1 out widdo.	Charge + Transmitting mode.
	Pretest the EUT at Charge +Transmitting mode.
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;
Final Test Mode:	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass



Report No.: SZEM161201075004

Page: 63 of 78

Test plot as follows:

Worse case mode: 802.11b Test channel: Lowest Remark: Peak Vertical

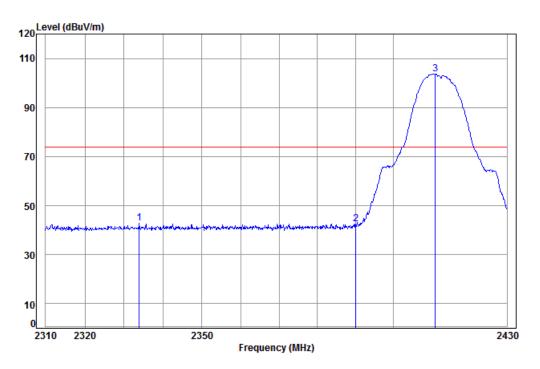
Condition: 3m VERTICAL Job No: : 10750RG

Mode: : 2412 Bandedge

: WIFI-B

Freq Cable Ant Preamp Read Limit Over Level Level Line Limit Remark

MHz dB dB/m dB dBuV dBuV/m dBuV/m dB


1 2390.000 5.34 29.08 37.96 46.10 42.56 74.00 -31.44 2 pp 2411.000 5.35 29.14 37.96 105.06 101.59 74.00 27.59

Report No.: SZEM161201075004

Page: 64 of 78

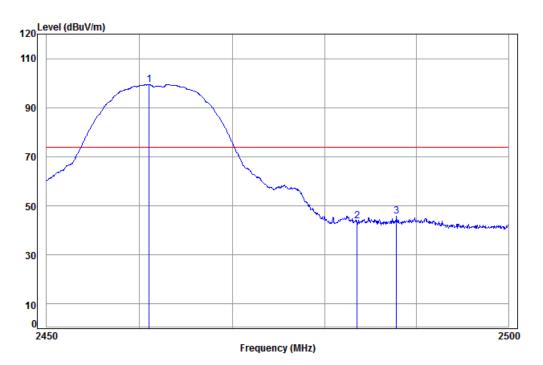
Worse case mode: 802.11b Test channel: Lowest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No: : 10750RG

Mode: : 2412 Bandedge

: WIFI-B


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2333.871	5.29	28.91	37.97	46.65	42.88	74.00	-31.12	
2		2390.000	5.34	29.08	37.96	45.92	42.38	74.00	-31.62	
3	pp	2411.000	5.35	29.14	37.96	107.22	103.75	74.00	29.75	

Report No.: SZEM161201075004

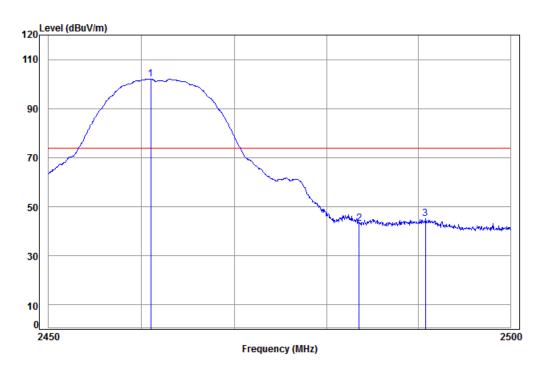
Page: 65 of 78

Highest Peak 802.11b Test channel: Vertical Worse case mode: Remark:

Condition: 3m VERTICAL Job No: : 10750RG Mode: : 2462 Bandedge

: WIFI-B

2


Cable Ant Preamp Read Limit Over Freq Loss Factor Factor Level Level Line Limit Remark dBuV dBuV/m dBuV/m MHz dB/m dB 1 pp 2461.013 5.39 29.29 37.95 102.72 99.45 74.00 25.45 5.41 29.35 37.95 47.06 43.87 74.00 -30.13 2483.500 5.41 29.36 37.95 48.88 45.70 74.00 -28.30 2487.807

Report No.: SZEM161201075004

Page: 66 of 78

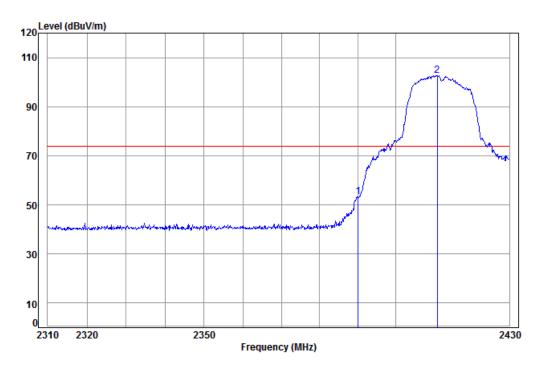
802.11b Worse case mode: Test channel: Highest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No: : 10750RG

Mode: : 2462 Bandedge

: WIFI-B


		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		-
1 pp	2460.963	5.39	29.29	37.95	105.37	102.10	74.00	28.10		
2	2483.500	5.41	29.35	37.95	46.42	43.23	74.00	-30.77		
3	2490.724	5.41	29.37	37.95	48.22	45.05	74.00	-28.95		

Report No.: SZEM161201075004

Page: 67 of 78

Worse case mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Vertical
	9					

Condition: 3m VERTICAL Job No: : 10750RG

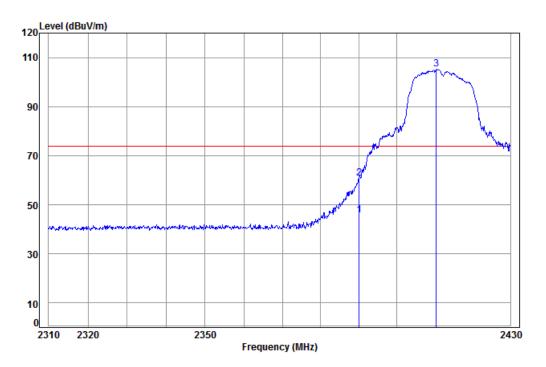
Mode: : 2412 Bandedge

: WIFI-G

Cable Ant Preamp Read Limit Over
Loss Factor Factor Level Level Line Limit Remark

MHz dB dB/m dB dBuV dBuV/m dBuV/m dB dBuV/m dB

1 pk 2390.000 5.34 29.08 37.96 56.87 53.33 74.00 -20.67 Peak


2 pp 2410.878 5.35 29.14 37.96 106.25 102.78 74.00 28.78

Report No.: SZEM161201075004

Page: 68 of 78

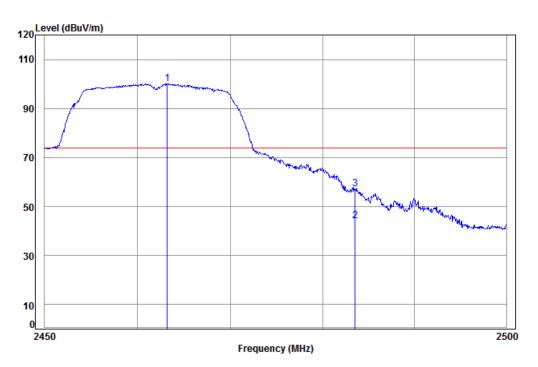
Worse case mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Horizontal
------------------	---------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No: : 10750RG

Mode: : 2412 Bandedge

: WIFI-G


	Freq						Limit Line		Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	L av 2390.000	5.34	29.08	37.96	49.38	45.84	54.00	-8.16	Average	
2	2 pk 2390.000	5.34	29.08	37.96	64.33	60.79	74.00	-13.21	Peak	
3	3 pp 2410.389	5.35	29.14	37.96	108.72	105.25	74.00	31.25		

Report No.: SZEM161201075004

Page: 69 of 78

Worse case mode: 802.11g Test channel: Highest Remark: Peak Vertical

Condition: 3m VERTICAL Job No: : 10750RG

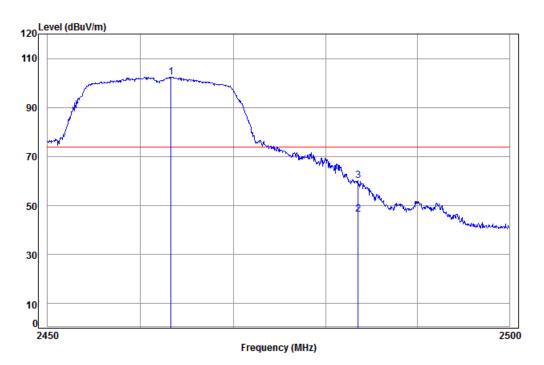
: 2462 Bandedge Mode:

: WIFI-G Cable

Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp 2463.202	5.39	29.29	37.95	103.37	100.10	74.00	26.10	
2 av 2483.500	5.41	29.35	37.95	47.19	44.00	54.00	-10.00	Average
3 pk 2483.500	5.41	29.35	37.95	60.34	57.15	74.00	-16.85	Peak

Read

Limit Over


Ant Preamp

Report No.: SZEM161201075004

Page: 70 of 78

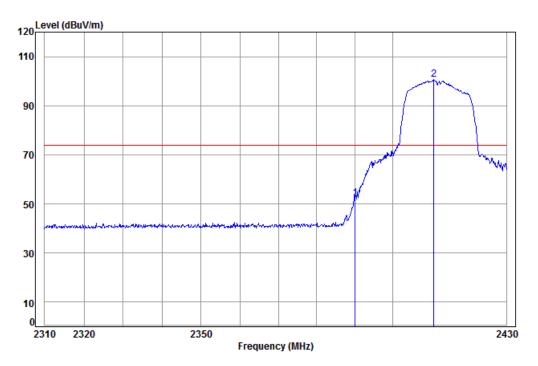
Worse case mode: 802.11g Test channel: Highest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No: : 10750RG

Mode: : 2462 Bandedge

: WIFI-G


	Cable	Ant	Preamp	Read		Limit	0ver		
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 pp 2463.251	5.39	29.29	37.95	105.69	102.42	74.00	28.42		
2 av 2483.500	5.41	29.35	37.95	49.53	46.34	54.00	-7.66	Average	
3 pk 2483,500	5.41	29.35	37.95	63.34	60.15	74.00	-13.85	Peak	

Report No.: SZEM161201075004

Page: 71 of 78

Worse case mode: 802.11n(HT20) Test channel: Lowest Remark: Peak Vertical

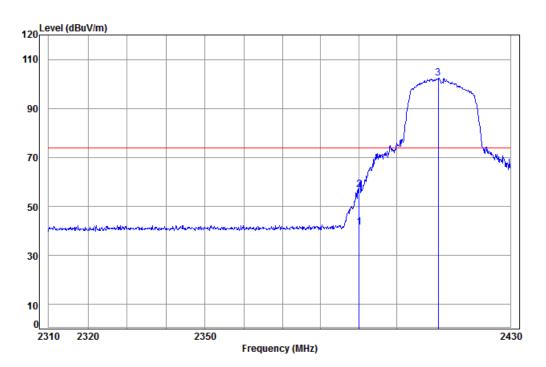
Condition: 3m VERTICAL Job No: : 10750RG

Mode: : 2412 Bandedge

: WIFI-N20

Cable Ant Preamp Read Limit Over
Freq Loss Factor Factor Level Level Line Limit Remark

MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dB


1 pk 2390.000 5.34 29.08 37.96 55.96 52.42 74.00 -21.58 Peak 2 pp 2410.756 5.35 29.14 37.96 104.22 100.75 74.00 26.75

Report No.: SZEM161201075004

Page: 72 of 78

Worse case mode: 802.11n(HT20) Test channel: Lowest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No: : 10750RG

Mode: : 2412 Bandedge

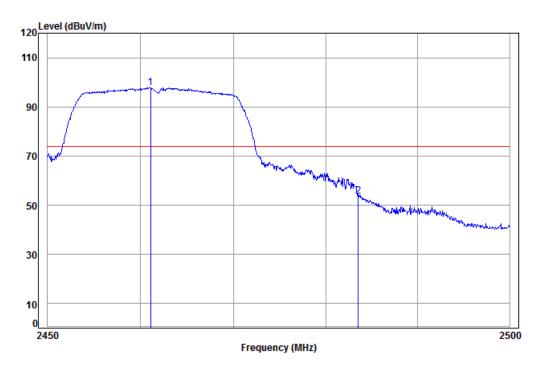
: WIFI-N20

Cable

Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 av 2390.000 2 pk 2390.000 3 pp 2410.878	5.34	29.08	37.96	60.57	57.03	74.00	-16.97	_

Read

Limit Over


Ant Preamp

Report No.: SZEM161201075004

Page: 73 of 78

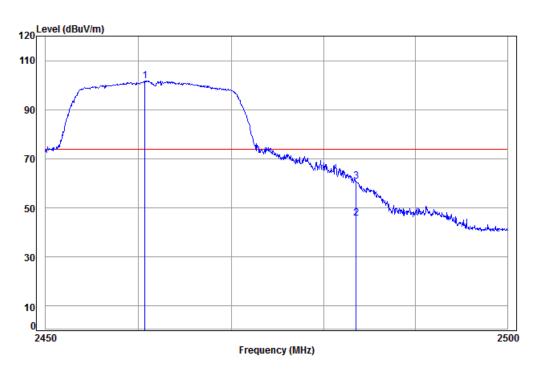
Worse case mode: | 802.11n(HT20) | Test channel: | Highest | Remark: | Peak | Vertical

Condition: 3m VERTICAL
Job No: : 10750RG
Mode: : 2462 Bandedge

: WIFI-N20

Cable Ant Preamp Read Limit Over
Freq Loss Factor Factor Level Level Line Limit Remark

MHz dB dB/m dB dBuV dBuV/m dBuV/m dB


1 pp 2461.063 5.39 29.29 37.95 101.18 97.91 74.00 23.91 2 2483.500 5.41 29.35 37.95 56.92 53.73 74.00 -20.27

Report No.: SZEM161201075004

Page: 74 of 78

Worse case mode: | 802.11n(HT20) | Test channel: | Highest | Remark: | Peak | Horizontal

Condition: 3m HORIZONTAL

Job No: : 10750RG

Mode: : 2462 Bandedge

: WIFI-N20

		Freq		Ant Factor						Remark
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	pp	2460.665	5.39	29.29	37.95	105.06	101.79	74.00	27.79	
2	av	2483.500	5.41	29.35	37.95	48.91	45.72	54.00	-8.28	Average
3	pk	2483.500	5.41	29.35	37.95	63.94	60.75	74.00	-13.25	Peak

Report No.: SZEM161201075004

Page: 75 of 78

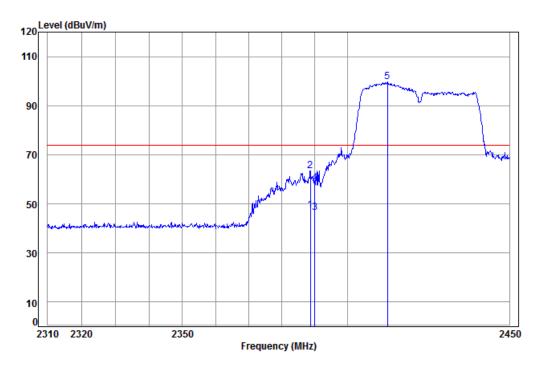
Worse case mode: | 802.11n(HT40) | Test channel: | Lowest | Remark: | Peak | Vertical

Condition: 3m VERTICAL Job No: : 10750RG

Mode: : 2422 Bandedge

: WIFI-N40

	Freq			Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 2 3 pp		5.34	29.08	37.96	52.15	48.61	74.00	-25.39	



Limit Over

Report No.: SZEM161201075004

Page: 76 of 78

Worse case mode: | 802.11n(HT40) | Test channel: | Lowest | Remark: | Peak | Horizontal

Condition: 3m HORIZONTAL

Job No: : 10750RG

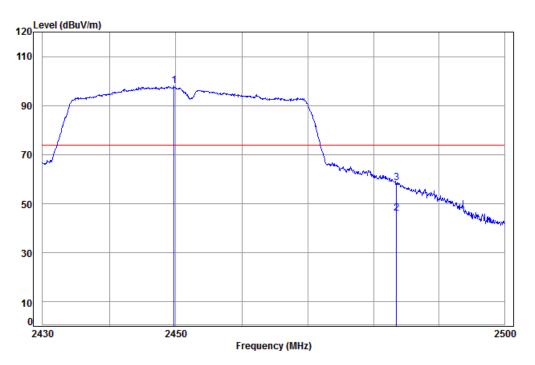
Mode: : 2422 Bandedge

: WIFI-N40

Cable

	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 av	2388.649	5.34	29.07	37.96	50.92	47.37	54.00	-6.63	Average
2 pk	2388.649	5.34	29.07	37.96	67.06	63.51	74.00	-10.49	Peak
3	2390.000	5.34	29.08	37.96	50.00	46.46	54.00	-7.54	Average
4	2390.000	5.34	29.08	37.96	62.10	58.56	74.00	-15.44	Peak
5 pp	2412.236	5.35	29.14	37.96	103.04	99.57	74.00	25.57	

Read


Ant Preamp

Report No.: SZEM161201075004

Page: 77 of 78

Worse case mode: | 802.11n(HT40) | Test channel: | Highest | Remark: | Peak | Vertical

Condition: 3m VERTICAL Job No: : 10750RG

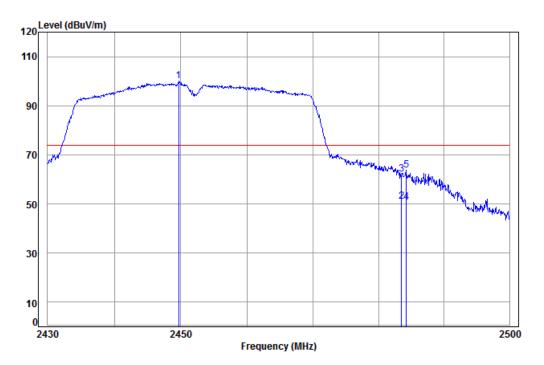
Mode: : 2452 Bandedge

: WIFI-N40 Cable

	Freq	Loss	Factor	Factor	revel	revel	Line	Limit	Kemark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 p	p 2449.748	5.38	29.25	37.96	101.53	98.20	74.00	24.20		
2 a	v 2483.500	5.41	29.35	37.95	49.29	46.10	54.00	-7.90	Average	
3 pl	k 2483.500	5.41	29.35	37.95	61.79	58.60	74.00	-15.40	Peak	

Read

Limit Over


Ant Preamp

Report No.: SZEM161201075004

Page: 78 of 78

Worse case mode: 802.11n(HT40) Test channel: Highest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No: : 10750RG

Mode: : 2452 Bandedge

: WIFI-N40

							Limit Line		Remark
	MHz -	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp 24	49.678	5.38	29.25	37.96	103.29	99.96	74.00	25.96	
2 av 24	83.500	5.41	29.35	37.95	54.22	51.03	54.00	-2.97	Average
3 24	83.500	5.41	29.35	37.95	65.44	62.25	74.00	-11.75	Peak
4 24	84.217	5.41	29.35	37.95	53.91	50.72	54.00	-3.28	Average
5 pk 24	84.217	5.41	29.35	37.95	66.85	63.66	74.00	-10.34	Peak

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1612010750RG.