

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632

United States

Date of Testing: 11/09/17 - 11/17/17 Test Site/Location:

PCTEST Lab, Columbia, MD, USA

Document Serial No.: 1M1711080291-01-R1.ZNF

FCC ID: ZNFX210VPP

APPLICANT: LG ELECTRONICS MOBILECOMM U.S.A., INC.

DUT Type: Portable Handset Application Type: Certification
FCC Rule Part(s): CFR §2.1093
Model: LM-X210VPP

Additional Model(s): LMX210VPP, X210VPP

Equipment	Band & Mode	Tx Frequency		SAR	
Class	Dania a mede	TXTTOQUOTES	1g Head (W/kg)	1g Body-Worn (W/kg)	1g Hotspot (W/kg)
PCE	Cell. CDMA/EVDO	824.70 - 848.31 MHz	0.56	0.80	0.82
PCE	PCS CDMA/EVDO	1851.25 - 1908.75 MHz	0.75	0.82	0.78
PCE	LTE Band 13	779.5 - 784.5 MHz	0.39	0.53	0.53
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.55	0.78	0.78
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	0.51	0.74	0.90
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	0.59	0.84	0.84
DTS	2.4 GHz WLAN	2412 - 2462 MHz	1.15	0.25	0.25
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.34	N/A	N/A
Simultaneous	SAR per KDB 690783 D01v0)1r03:	1.59	1.11	1.17

This revised Test Report (S/N: 1M1711080291-01-R1.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: ZNFX210VPP	PCTEST INC.	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dans 4 of 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 1 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

REV 20.05 M

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INF	ORMATION	7
3	INTROD	UCTION	8
4	DOSIME	TRIC ASSESSMENT	9
5	DEFINIT	ION OF REFERENCE POINTS	10
6	TEST C	ONFIGURATION POSITIONS	11
7	RF EXP	OSURE LIMITS	14
8	FCC ME	ASUREMENT PROCEDURES	15
9	RF CON	DUCTED POWERS	20
10	SYSTEM	I VERIFICATION	33
11	SAR DA	TA SUMMARY	35
12	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	45
13	SAR ME	ASUREMENT VARIABILITY	53
14	EQUIPM	IENT LIST	54
15	MEASU	REMENT UNCERTAINTIES	55
16	CONCLU	JSION	56
17	REFERE	NCES	57
APPEI APPEI	NDIX A: NDIX B: NDIX C: NDIX D:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS PROBE AND DIPOLE CALIBRATION CERTIFICATES SAR TISSUE SPECIFICATIONS	
APPEI	NDIX E:	SAR SYSTEM VALIDATION	
APPEN	NDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	

FCC ID: ZNFX210VPP	PCTEST:	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D0-450
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 2 of 58

DEVICE UNDER TEST

1.1 **Device Overview**

Band & Mode	Operating Modes	Tx Frequency
Cell. CDMA/EVDO	Voice/Data	824.70 - 848.31 MHz
PCS CDMA/EVDO	Voice/Data	1851.25 - 1908.75 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 **Power Reduction for SAR**

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

FCC ID: ZNFX210VPP	PCTEST.	SAR EVALUATION REPORT	(the LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 3 of 58

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.3.1 Maximum Output Power

Mode / Band	Modulated Average (dBm)	
Cell. CDMA/EVDO	Maximum	24.7
Cell. CDIVIA/EVDO	Nominal	24.2
	Maximum	24.7
PCS CDMA/EVDO	Nominal	24.2

Mode / Band		Modulated Average (dBm)
LTE Band 13	Maximum	24.7
LIE Ballu 13	Nominal	24.2
LTE Band E (Coll)	Maximum	24.7
LTE Band 5 (Cell)	Nominal	24.2
LTE Dand 4 (A)A(S)	Maximum	24.2
LTE Band 4 (AWS)	Nominal	23.7
LTE Band 2 (DCS)	Maximum	24.7
LTE Band 2 (PCS)	Nominal	24.2

Mode / Band	Modulated Average (dBm)				
		Ch 1	Ch 2-10	Ch 11	
IEEE 902 11b (2.4 CUz)	Maximum	16.0			
IEEE 802.11b (2.4 GHz)	Nominal	15.0			
IEEE 802.11g (2.4 GHz)	Maximum	9.5	13.0	8.0	
TEEE 802.11g (2.4 GHz)	Nominal	8.5	12.0	7.0	
IEEE 802.11n (2.4 GHz)	Maximum	7.5	11.5	7.0	
TEEE 802.1111 (2.4 GHz)	Nominal	6.5	10.5	6.0	
Bluetooth	Maximum		11.0		
Biuetooth	Nominal		10.0		
Bluetooth LE	Maximum		2.5		
BidetOOtii LE	Nominal		1.5		

FCC ID: ZNFX210VPP	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 4 (50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 4 of 58
17 DOTECT Engineering Laboraton, Inc.				DEVISO OF M

1.4 **DUT Antenna Locations**

The overall dimensions of this device are > 9 x 5 cm. The overall diagonal dimension of the device is ≤160 mm and the diagonal display is ≤150 mm. A diagram showing the location of the device antennas can be found in Appendix F.

Table 1-1 **Device Edges/Sides for SAR Testing**

Mode	Back	Front	Тор	Bottom	Right	Left
Cell. EVDO	Yes	Yes	No	Yes	Yes	Yes
PCS EVDO	Yes	Yes	No	Yes	No	Yes
LTE Band 13	Yes	Yes	No	Yes	Yes	Yes
LTE Band 5 (Cell)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 4 (AWS)	Yes	Yes	No	Yes	No	Yes
LTE Band 2 (PCS)	Yes	Yes	No	Yes	No	Yes
2.4 GHz WLAN	Yes	Yes	Yes	No	Yes	No

Note: Particular DUT edges were not required to be evaluated for wireless router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III. The distances between the transmit antennas and the edges of the device are included in the filing.

1.5 **Simultaneous Transmission Capabilities**

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-2 Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Notes
1	1x CDMA voice + 2.4 GHz WI-FI	Yes	Yes	N/A	
2	1x CDMA voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	^Bluetooth Tethering is considered
3	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes	
4	LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	^Bluetooth Tethering is considered
5	CDMA/EVDO data + 2.4 GHz WI-FI	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered
6	CDMA/EVDO data + 2.4 GHz Bluetooth	Yes*^	Yes*	Yes^	* Pre-installed VOIP applications are considered ^ Bluetooth Tethering is considered

- 1. 2.4 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 4. This device supports VOLTE and VOWIFI.

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 5 -4 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 5 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, body-worn and hotspot Bluetooth SAR were not required; $[(13/10)^* \sqrt{2.480}] = 2 < 3.0$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

(B) Licensed Transmitter(s)

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

1.7 **Guidance Applied**

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)

1.8 **Device Serial Numbers**

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo C of EQ
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 6 of 58

2 LTE INFORMATION

LTE Information			
FCC ID	ZNFX210VPP		
Form Factor		Portable Handse	t
Frequency Range of each LTE transmission band	L-	TE Band 13 (779.5 - 78	4.5 MHz)
		Band 5 (Cell) (824.7 -	,
		and 4 (AWS) (1710.7 -	·
		Band 2 (PCS) (1850.7 -	
Channel Bandwidths		LTE Band 13: 5 MHz,	
	LTE Band	5 (Cell): 1.4 MHz, 3 MH	łz, 5 MHz, 10 MHz
			z, 10 MHz, 15 MHz, 20 MHz
	LTE Band 2 (PCS):	1.4 MHz, 3 MHz, 5 MHz	z, 10 MHz, 15 MHz, 20 MHz
Channel Numbers and Frequencies (MHz)	Low	Mid	High
LTE Band 13: 5 MHz	779.5 (23205)	782 (23230)	784.5 (23255)
LTE Band 13: 10 MHz	N/A	782 (23230)	N/A
LTE Band 5 (Cell): 1.4 MHz	824.7 (20407)	836.5 (20525)	848.3 (20643)
LTE Band 5 (Cell): 3 MHz	825.5 (20415)	836.5 (20525)	847.5 (20635)
LTE Band 5 (Cell): 5 MHz	826.5 (20425)	836.5 (20525)	846.5 (20625)
LTE Band 5 (Cell): 10 MHz	829 (20450)	836.5 (20525)	844 (20600)
LTE Band 4 (AWS): 1.4 MHz	1710.7 (19957)	1732.5 (20175)	1754.3 (20393)
LTE Band 4 (AWS): 3 MHz	1711.5 (19965)	1732.5 (20175)	1753.5 (20385)
LTE Band 4 (AWS): 5 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)
LTE Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)
LTE Band 4 (AWS): 15 MHz	1717.5 (20025)	1732.5 (20175)	1747.5 (20325)
LTE Band 4 (AWS): 20 MHz	1720 (20050)	1732.5 (20175)	1745 (20300)
LTE Band 2 (PCS): 1.4 MHz	1850.7 (18607)	1880 (18900)	1909.3 (19193)
LTE Band 2 (PCS): 3 MHz	1851.5 (18615)	1880 (18900)	1908.5 (19185)
LTE Band 2 (PCS): 5 MHz	1852.5 (18625)	1880 (18900)	1907.5 (19175)
LTE Band 2 (PCS): 10 MHz	1855 (18650)	1880 (18900)	1905 (19150)
LTE Band 2 (PCS): 15 MHz	1857.5 (18675)	1880 (18900)	1902.5 (19125)
LTE Band 2 (PCS): 20 MHz	1860 (18700)	1880 (18900)	1900 (19100)
UE Category	4		
Modulations Supported in UL	QPSK, 16QAM		
LTE MPR Permanently implemented per 3GPP TS			
36.101 section 6.2.3~6.2.5? (manufacturer attestation	YES		
to be provided)	VES		
A-MPR (Additional MPR) disabled for SAR Testing?	This device desire	YES	20DD Dalassa 40 All
LTE Additional Information			es on 3GPP Release 10. All
			elease 8 Specifications. The
			pported: Carrier Aggregation, FI Offloading, MDH, eMBMS,
		arrier Scheduling, Enha	<u> </u>
	UIUSS-Ca	arrier Scrieduling, Enna	IIUGU 3U-FDIVIA.

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 7 -4 50	
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset	Page 7 of 58	

© 2017 PCTEST Engineering Laboratory, Inc.

REV 20.05 M

3

INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 0 -4 50	
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 8 of 58	

© 2017 PCTEST Engineering Laboratory, Inc.

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

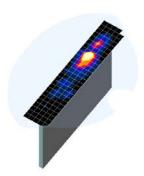


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan	Maximum Zoom Scan	Max	imum Zoom So Resolution (Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: ZNFX210VPP	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D	
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 9 of 58	
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		DEV 20.05 M	

© 2017 PCTEST Engineering Laboratory, Inc.

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

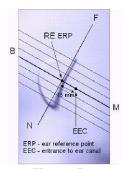


Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2
Front, back and side view of SAM Twin Phantom

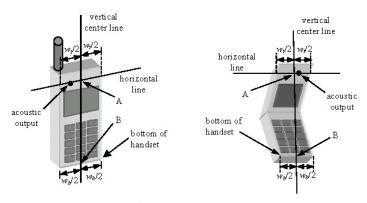


Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

Document S/N: Test Dates: DUT Type:	D: ZNFX210VPP	Approved by: Quality Manager	
	nent S/N:	D 40 (50	
1M1711080291-01-R1.ZNF	11080291-01-R1.ZNF	Page 10 of 58	

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: ZNFX210VPP	PCTEST INDIVIDUAL TO THE	SAR EVALUATION REPORT	(the LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D	
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 11 of 58	

© 2017 PCTEST Engineering Laboratory, Inc.

Figure 6-2 Front, Side and Top View of Ear/15° Tilt
Position

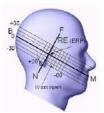


Figure 6-3
Side view w/ relevant markings

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

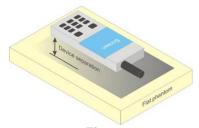


Figure 6-4
Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

Document S/N: Test Dates: DUT Type:	Manager	
1M1711080291-01-R1.ZNF	Page 12 of 58	

© 2017 PCTEST Engineering Laboratory, Inc.

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

FCC ID: ZNFX210VPP	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 -4 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 13 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUN	MAN EXPOSURE LIMITS	
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT
	General Population (W/kg) or (mW/g)	Occupational (W/kg) or (mW/g)
Peak Spatial Average SAR _{Head}	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Da == 44 =£50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 14 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is \leq 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is \leq 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for CDMA2000

The following procedures were performed according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

8.4.1 Output Power Verification

See 3GPP2 C.S0011/TIA-98-E as recommended by FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures." Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in the "All Up" condition.

Decument S(N)	/ Manager
Document S/N: Test Dates: DUT Type:	45 (50
1M1711080291-01-R1.ZNF	15 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 8-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH₀ and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- Under RC3, C.S0011 Table 4.4.5.2-2, Table 8-2 was applied.

Table 8-1 Parameters for Max. Power for RC1

Parameter	Units	Value
Îor	dBm/1.23 MHz	-104
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

Table 8-2 Parameters for Max. Power for RC3

Parameter	Units	Value
I _{or}	dBm/1.23 MHz	-86
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

8.4.2 **Head SAR Measurements**

SAR for next to the ear head exposure is measured in RC3 with the handset configured to transmit at fullrate in SO55. The 3G SAR test reduction procedure is applied to RC1 with RC3 as the primary mode; otherwise, SAR is required for the channel with maximum measured output in RC1 using the head exposure configuration that results in the highest reported SAR in RC3.

Head SAR is additionally evaluated using EVDO Rev. A to support compliance for VoIP operations. See Section 8.4.5 for EVDO Rev. A configuration parameters.

8.4.3 **Body-worn SAR Measurements**

SAR for body-worn exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCHn), with FCH only as the primary mode. Otherwise, SAR is required for multiple code channel configuration (FCH + SCHn), with FCH at full rate and SCH0 enabled at 9600 bps, using the highest reported SAR configuration for FCH only. When multiple code channels are enabled, the transmitter output can shift by more than 0.5 dB and may lead to higher SAR drifts and SCH dropouts.

The 3G SAR test reduction procedure is applied to body-worn accessory SAR in RC1 with RC3 as the primary mode. Otherwise, SAR is required for RC1, with SO55 and full rate, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

Body-worn SAR Measurements for EVDO Devices 8.4.4

For handsets with EVDO capabilities, the 3G SAR test reduction procedure is applied to EVDO Rev. 0 with 1x RTT RC3 as the primary mode to determine body-worn accessory test requirements. Otherwise, body-worn accessory SAR is required for Rev. 0, at 153.6 kbps, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

The 3G SAR test reduction procedure is applied to Rev. A, with Rev. 0 as the primary mode to determine body-worn accessory SAR test requirements. When SAR is not required for Rev. 0, the 3G SAR test reduction is applied with 1x RTT RC3 as the primary mode.

Document S/N: Test Dates: DUT Type:	FCC ID: ZNFX210VPP	PCTEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
D	Document S/N:	Test Dates:	DUT Type:		D	
1M1711080291-01-R1.ZNF	1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 16 of 58	

When SAR is required for EVDO Rev. A, SAR is measured with a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations, using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0 or 1x RTT RC3, as appropriate.

8.4.5 Body SAR Measurements for EVDO Hotspot

Hotspot Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0. The 3G SAR test reduction procedure is applied to Rev. A, Subtype 2 Physical layer configuration, with Rev. 0 as the primary mode; otherwise, SAR is measured for Rev. A using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations.

For EVDO data devices that also support 1x RTT voice and/or data operations, the 3G SAR test reduction procedure is applied to 1x RTT RC3 and RC1 with EVDO Rev. 0 and Rev. A as the respective primary modes. Otherwise, the 'Body-Worn Accessory SAR' procedures in the '3GPP2 CDMA 2000 1x Handsets' section are applied.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining

FCC ID: ZNFX210VPP	PCTEST SECULIARIZATION INC.	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 47 - 450
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 17 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

- required test channels using the RB offset configuration with highest output power for that channel.
- iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.</p>
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.6.2 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

8.6.3 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

 When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.

FCC ID: ZNFX210VPP	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Da 40 at 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 18 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.6.4 **OFDM Transmission Mode and SAR Test Channel Selection**

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.6.5 **Initial Test Configuration Procedure**

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.6.4).

8.6.6 **Subsequent Test Configuration Procedures**

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required.

Document S/N: Test Dates: DUT Type: Page 19 of 58	FCC ID: ZNFX210VPP	PCTEST*	SAR EVALUATION REPORT	(†) LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D	
1M1711080291-01-R1.ZNF 11/09/17 - 11/17/17 Portable Handset	1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 19 of 58	

CDMA Conducted Powers 9.1

Table 9-1 **Maximum Conducted Power**

Band	Channel	Frequency	SO55 [dBm]	SO55 [dBm]	TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDO Rev. 0 [dBm]	1x EvDO Rev. A [dBm]
	F-RC	MHz	RC1	RC3	FCH+SCH	FCH	(RTAP)	(RETAP)
	1013	824.7	24.69	24.64	24.64	24.65	24.53	24.61
Cellular	384	836.52	24.51	24.55	24.51	24.61	24.51	24.47
	777	848.31	24.70	24.69	24.62	24.61	24.61	24.67
	25	1851.25	24.68	24.69	24.62	24.60	24.70	24.69
PCS	600	1880	24.34	24.41	24.40	24.38	24.52	24.54
	1175	1908.75	24.68	24.68	24.67	24.64	24.64	24.65

Note: RC1 is only applicable for IS-95 compatibility.

Figure 9-1 **Power Measurement Setup**

FCC ID: ZNFX210VPP	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 20 of 58
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset	table Handset	
17 PCTEST Engineering Laboratory, Inc.		•		REV 20.05 M

9.2 LTE Conducted Powers

9.2.1 LTE Band 13

Table 9-2
LTE Band 13 Conducted Powers - 10 MHz Bandwidth

			LTE Band 13 10 MHz Bandwidth		
			Mid Channel		
Modulation RB Size	RB Size	RB Offset	23230 (782.0 MHz)	MPR Allowed per	MPR [dB]
			Conducted Power [dBm]	- 3GPP [dB]	
	1	0	24.54		0
	1	25	24.60	0	0
	1	49	24.59		0
QPSK	25	0	23.64		1
	25	12	23.62	0-1	1
	25	25	23.55]	1
	50	0	23.54		1
	1	0	23.62		1
16QAM	1	25	23.69	0-1	1
	1	49	23.61		1
	25	0	22.45		2
	25	12	22.55	0-2	2
	25	25	22.57] 0-2	2
	50	0	22.54		2

Table 9-3
LTE Band 13 Conducted Powers - 5 MHz Bandwidth

			LTE Band 13 5 MHz Bandwidth		
Modulation	RB Size	RB Offset	Mid Channel 23230 (782.0 MHz) Conducted Power	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	[dBm] 24.49		0
	<u>.</u> 1	12	24.69	0	0
QPSK	<u>·</u> 1	24	24.53		0
	12	0	23.68		1
	12	6	23.62	0-1	1
	12	13	23.66] 0-1	1
	25	0	23.64		1
	1	0	23.55	0-1	1
	1	12	23.69		1
16QAM	1	24	23.32		1
	12	0	22.69		2
	12	6	22.63	0-2	2
	12	13	22.45] 0-2	2
	25	0	22.66		2

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	(1) LG	Approved by: Quality Manager
Document S/N:	Test Dates: DUT Type:		D 04 . (50	
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 21 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

9.2.2 LTE Band 5 (Cell)

Table 9-4
LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth

			LTE Band 5 (Cell) 10 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	20525 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	5611 [d2]	
	1	0	24.28		0
	1	25	24.70	0	0
	1	49	24.48		0
QPSK	25	0	23.44		1
	25	12	23.46	0-1	1
	25	25	23.52	0-1	1
	50	0	23.45		1
	1	0	23.56		1
	1	25	23.52	0-1	1
	1	49	23.66		1
16QAM	25	0	22.48		2
	25	12	22.49	0-2	2
	25	25	22.67	0-2	2
	50	0	22.60		2

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-5
LTE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth

	LTE Band 5 (Cell)									
				5 MHz Bandwidth						
			Low Channel	Mid Channel	High Channel	el le				
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
				Conducted Power [dBm]					
	1	0	24.27	24.47	24.34		0			
	1	12	24.65	24.61	24.66	0-1	0			
	1	24	24.27	24.43	24.36		0			
QPSK	12	0	23.39	23.46	23.43		1			
	12	6	23.41	23.40	23.52		1			
	12	13	23.44	23.42	23.49		1			
	25	0	23.47	23.36	23.50		1			
	1	0	23.03	23.28	23.22		1			
	1	12	23.29	23.24	23.27	0-1	1			
	1	24	23.27	23.05	23.22		1			
16QAM	12	0	22.50	22.47	22.53		2			
	12	6	22.27	22.41	22.66]	2			
	12	13	22.47	22.40	22.40	0-2	2			
	25	0	22.51	22.47	22.63		2			

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	lates: DUT Type:		D
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 22 of 58
17 DOTECT Engineering Laboratory Inc.				DEVISO OF M

© 2017 PCTEST Engineering Laboratory, Inc.

Table 9-6 LTE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

			Bana o (ocii) o	LTE Band 5 (Cell)	13 O WILL BUIL	awiatii	
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20415 (825.5 MHz)	20525 (836.5 MHz)	20635 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.68	24.51	24.58		0
	1	7	24.61	24.70	24.56	0	0
	1	14	24.60	24.53	24.42		0
QPSK	8	0	23.44	23.39	23.49		1
	8	4	23.42	23.41	23.40	0-1	1
	8	7	23.40	23.53	23.34	0-1	1
	15	0	23.42	23.47	23.40		1
	1	0	23.65	23.56	23.66		1
	1	7	23.31	23.61	23.62	0-1	1
	1	14	23.28	23.30	23.67		1
16QAM	8	0	22.43	22.43	22.48		2
	8	4	22.60	22.58	22.40	0-2	2
	8	7	22.63	22.36	22.11] 0-2	2
	15	0	22.45	22.36	22.37		2

Table 9-7 LTE Band 5 (Cell) Conducted Powers -1.4 MHz Bandwidth

				LTE Band 5 (Cell) 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.62	24.59	24.51		0
	1	2	24.60	24.44	24.29]	0
	1	5	24.28	24.50	24.24	0	0
QPSK	3	0	24.53	24.43	24.37		0
	3	2	24.52	24.55	24.53		0
	3	3	24.34	24.52	24.39] [0
	6	0	23.33	23.39	23.32	0-1	1
	1	0	23.55	23.40	23.49		1
	1	2	23.63	23.10	23.05] [1
	1	5	23.18	23.45	23.44]	1
16QAM	3	0	23.32	23.65	23.65	0-1	1
	3	2	23.64	23.23	23.06] [1
	3	3	23.11	23.12	23.29		1
	6	0	22.41	22.64	22.67	0-2	2

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates: DUT Type:		D 00 (50	
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 23 of 58
47 DOTECT Engineering Laboratory Inc.				DEVISOR OF M

9.2.3 LTE Band 4 (AWS)

Table 9-8
LTE Band 4 (AWS) Conducted Powers - 20 MHz Bandwidth

			LTE Band 4 (AWS) 20 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	20175 (1732.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	0011 [db]	
	1	0	23.53		0
	1	50	24.14	0	0
	1	99	23.91		0
QPSK	50	0	22.85		1
	50	25	22.99	0-1	1
	50	50	22.80	0-1	1
	100	0	22.89		1
	1	0	22.70		1
	1	50	22.90	0-1	1
	1	99	22.76		1
16QAM	50	0	21.72		2
	50	25	21.76	0-2	2
	50	50	21.73	0-2	2
	100	0	21.83		2

Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-9 LTE Band 4 (AWS) Conducted Powers - 15 MHz Bandwidth

			una 1 (7 1110) 0	onauctou i ciro	<u> </u>						
	LTE Band 4 (AWS) 15 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	20025 (1717.5 MHz)	20175 (1732.5 MHz)	20325 (1747.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
				Conducted Power [dBm]]						
	1	0	23.74	23.72	24.07		0				
	1	36	24.14	23.89	24.02	0	0				
	1	74	23.80	23.55	23.94		0				
QPSK	36	0	22.88	22.88	22.87		1				
	36	18	22.96	22.83	22.90	0-1	1				
	36	37	22.81	22.82	22.92		1				
	75	0	22.99	22.79	22.92		1				
	1	0	22.64	22.74	23.18		1				
	1	36	22.64	23.13	22.79	0-1	1				
	1	74	22.62	22.84	23.15		1				
16QAM	36	0	22.03	21.80	21.85		2				
	36	18	22.09	21.79	22.00	0-2	2				
	36	37	21.93	21.80	21.85] 0-2	2				
	75	0	21.79	21.89	21.84		2				

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dana 04 at 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset	Page 24 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

REV 20.05 M 11/15/2017

Table 9-10 LTE Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth

			ana + (ATTO) O	LTE Devil 4 (AWO)	10 Mille Bai	IdWidtii	
				LTE Band 4 (AWS) 10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
					, ,		
Modulation	RB Size	RB Offset	20000	20175	20350	MPR Allowed per	MPR [dB]
			(1715.0 MHz)	(1732.5 MHz)	(1750.0 MHz)	3GPP [dB]	
			(Conducted Power [dBm]		
	1	0	23.79	23.63	24.01		0
	1	25	24.07	23.83	24.12	0	0
	1	49	23.62	23.81	24.17		0
QPSK	25	0	22.91	22.90	22.86		1
	25	12	22.88	22.88	22.95	0-1	1
	25	25	22.83	22.79	22.92	0-1	1
	50	0	22.96	22.86	22.84		1
	1	0	23.20	22.51	23.00		1
	1	25	23.20	23.17	23.14	0-1	1
	1	49	22.60	22.68	22.84		1
16QAM	25	0	21.85	21.87	21.88		2
	25	12	21.88	21.94	22.01	0-2	2
•	25	25	21.88	21.97	21.95	0-2	2
	50	0	21.77	21.78	21.85		2

Table 9-11 LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth

			Jana + (Allo) o	LTE Band 4 (AWS)	70 O MILLE BUIL	awiatii	
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	19975 (1712.5 MHz)	20175 (1732.5 MHz)	20375 (1752.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.81	23.68	23.75		0
	1	12	23.84	23.81	24.20	0	0
	1	24	23.80	23.63	24.17		0
QPSK	12	0	22.78	22.83	22.80		1
	12	6	22.81	22.84	22.86	0-1	1
	12	13	22.82	22.72	23.00		1
	25	0	22.81	22.78	22.82		1
	1	0	22.74	22.66	22.55		1
	1	12	22.59	22.67	23.18	0-1	1
	1	24	22.56	22.64	23.09		1
16QAM	12	0	21.66	21.72	21.83		2
	12	6	21.68	21.83	21.94	0-2	2
	12	13	21.67	21.77	21.87	0-2	2
	25	0	21.97	21.86	22.06		2

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 05 (50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	7/17 Portable Handset		Page 25 of 58
17 DOTECT Engineering Laboratory Inc.				DEV 20 OF M

Table 9-12 LTE Band 4 (AWS) Conducted Powers - 3 MHz Bandwidth

			Jana + (Allo) C	LTE Band 4 (AWS)	15 CIVILIZ Dall	awiatii	
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	19965 (1711.5 MHz)	20175 (1732.5 MHz)	20385 (1753.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	23.90	23.80	23.98		0
-	1	7	24.00	23.78	24.10	0	0
	1	14	23.88	23.61	24.09		0
QPSK	8	0	22.79	22.81	22.77		1
	8	4	22.83	22.81	22.74	0-1	1
	8	7	22.81	22.74	22.96		1
	15	0	22.80	22.80	22.89		1
	1	0	22.52	22.87	22.64		1
	1	7	23.11	22.93	23.15	0-1	1
	1	14	22.72	22.69	23.08		1
16QAM	8	0	21.85	21.96	21.87		2
	8	4	21.83	21.71	21.84	0-2	2
	8	7	21.97	21.90	22.18	0-2	2
	15	0	21.86	21.88	21.87] [2

Table 9-13 LTE Band 4 (AWS) Conducted Powers -1.4 MHz Bandwidth

	LTE Band 4 (AWS) 1.4 MHz Bandwidth										
		Size RB Offset	Low Channel	Mid Channel	High Channel						
Modulation	RB Size		19957 (1710.7 MHz)	20175 (1732.5 MHz)	20393 (1754.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
				Conducted Power [dBm]						
	1	0	23.82	23.88	23.78		0				
	1	2	23.94	23.87	24.16		0				
	1	5	23.93	23.78	24.01	0	0				
QPSK	3	0	23.86	23.83	23.81		0				
	3	2	24.09	23.85	23.96		0				
	3	3	23.90	23.82	23.95		0				
	6	0	22.87	22.82	22.93	0-1	1				
	1	0	22.79	23.02	22.93		1				
	1	2	23.07	22.84	22.58		1				
	1	5	22.95	22.91	22.66	0-1	1				
16QAM	3	0	23.19	22.92	23.03		1				
	3	2	23.17	22.86	23.18		1				
	3	3	23.12	22.82	23.18		1				
	6	0	21.95	22.06	21.98	0-2	2				

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 -4 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	1/17/17 Portable Handset		Page 26 of 58
17 DOTECT Engineering Laboratory Inc.				DEV/ 20 OF M

LTE Band 2 (PCS) 9.2.4

Table 9-14 LTE Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth

			and 2 (1 00) 00	naucted Power	3 - 20 WILL Dall	awiatii	
				LTE Band 2 (PCS)			
1		1	1 011	20 MHz Bandwidth	High Observat	T	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.69	24.47	24.64		0
	1	50	24.68	24.52	24.67	0	0
	1	99	24.45	24.48	24.50		0
QPSK	50	0	23.45	23.39	23.51	0-1	1
	50	25	23.35	23.47	23.60		1
	50	50	23.33	23.35	23.57		1
	100	0	23.34	23.38	23.49		1
	1	0	23.18	23.02	23.23		1
	1	50	23.51	23.42	23.30	0-1	1
	1	99	23.20	23.49	23.17		1
16QAM	50	0	22.44	22.33	22.58		2
	50	25	22.44	22.60	22.64	0-2	2
	50	50	22.40	22.34	22.45	0-2	2
	100	0	22.52	22.31	22.58		2

Table 9-15 LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth

			ana 2 (1 00) 00	iluucieu Powei	5 10 Miliz Ball	awiatii	
				LTE Band 2 (PCS)			
				15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18675	18900	19125	MPR Allowed per	MDD [4D]
Wodulation	KD SIZE	KB Oliset	(1857.5 MHz)	(1880.0 MHz)	(1902.5 MHz)	3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.52	24.23	24.64		0
	1	36	24.42	24.46	24.69	0	0
	1	74	24.30	24.46	24.68		0
QPSK	36	0	23.52	23.33	23.53	0-1	1
	36	18	23.45	23.44	23.64		1
	36	37	23.46	23.38	23.52		1
	75	0	23.43	23.38	23.52		1
	1	0	23.46	23.38	23.67		1
	1	36	23.60	23.64	23.65	0-1	1
	1	74	23.23	23.68	23.60		1
16QAM	36	0	22.55	22.55	22.45		2
	36	18	22.45	22.57	22.64	0-2	2
	36	37	22.65	22.40	22.58	U-2	2
	75	0	22.53	22.43	22.60		2

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	SAR EVALUATION REPORT		
Document S/N:	Test Dates:	DUT Type:		D 07 . (50	
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 27 of 58	
17 DOTECT Engineering Laboratory Inc.				DEVISO OF M	

Table 9-16 LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth

			ana 2 (1 00) 00	nauctea Power	5 TO MILE BUIL	awiatii	
				LTE Band 2 (PCS)			
				10 MHz Bandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18650 (1855.0 MHz)	18900 (1880.0 MHz)	19150 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.68	24.37	24.64		0
	1	25	24.60	24.60	24.70	0	0
	1	49	24.57	24.41	24.56		0
QPSK	25	0	23.65	23.40	23.60		1
	25	12	23.47	23.44	23.60	0-1	1
	25	25	23.45	23.40	23.61		1
	50	0	23.50	23.46	23.65		1
	1	0	23.41	23.29	23.57		1
	1	25	23.51	23.26	23.65	0-1	1
	1	49	23.42	23.47	23.62		1
16QAM	25	0	22.64	22.54	22.64		2
	25	12	22.45	22.69	22.63	0-2	2
	25	25	22.55	22.46	22.68	0-2	2
	50	0	22.59	22.46	22.69		2

Table 9-17 LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth

			Dana 2 (1 00) 00	Jiluucieu Powe	13 O MILIZ Ball	awiatii	
				LTE Band 2 (PCS)			
				5 MHz Bandwidth			
			Low Channel Mid Channel High Channel				
Modulation	RB Size	RB Offset	18625 (1852.5 MHz)	18900 (1880.0 MHz)	19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.66	24.39	24.60		0
	1	12	24.55	24.67	24.65	0	0
	1	24	24.35	24.33	24.63		0
QPSK	12	0	23.58	23.39	23.62	0-1	1
	12	6	23.68	23.44	23.69		1
	12	13	23.45	23.45	23.57		1
	25	0	23.63	23.38	23.64		1
	1	0	23.66	23.24	23.52		1
	1	12	23.56	23.62	23.25	0-1	1
	1	24	23.19	23.32	23.06		1
16QAM	12	0	22.55	22.41	22.52		2
	12	6	22.66	22.46	22.50	0-2	2
	12	13	22.65	22.57	22.65		2
	25	0	22.64	22.40	22.66		2

FCC ID: ZNFX210VPP	PCTEST.	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 -4 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	1/17/17 Portable Handset		Page 28 of 58

Table 9-18 LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth

			and 2 (1 00) 00	onducted Power	13 - 3 WILL Dall	awiatii	
				LTE Band 2 (PCS)			
		1	1 011	3 MHz Bandwidth	Illiah Ohaanad	1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18615	18900	19185	MPR Allowed per	MPR [dB]
		112 011001	(1851.5 MHz)	(1880.0 MHz)	(1908.5 MHz)	3GPP [dB]	
				Conducted Power [dBm]		
	1	0	24.65	24.47	24.60		0
	1	7	24.68	24.60	24.70	0	0
	1	14	24.64	24.49	24.61		0
QPSK	8	0	23.56	23.48	23.68		1
	8	4	23.65	23.50	23.65	0-1	1
	8	7	23.64	23.55	23.54		1
	15	0	23.58	23.49	23.63		1
	1	0	23.25	23.52	23.62		1
	1	7	23.68	23.54	23.61	0-1	1
	1	14	23.32	23.43	23.69		1
16QAM	8	0	22.65	22.55	22.64		2
[8	4	22.66	22.52	22.41	0-2	2
	8	7	22.64	22.62	22.41	0-2	2
	15	0	22.66	22.62	22.51		2

Table 9-19 LTE Band 2 (PCS) Conducted Powers -1.4 MHz Bandwidth

				LTE Band 2 (PCS) 1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 18607	Mid Channel 18900	High Channel 19193	MPR Allowed per	MPR [dB]
			(1850.7 MHz)	(1880.0 MHz) Conducted Power [dBm]	(1909.3 MHz)	3GPP [dB]	
	1	0	24.30	24.47	24.67		0
	1	2	24.42	24.48	24.66		0
	1	5	24.58	24.51	24.54	0	0
QPSK	3	0	24.58	24.45	24.63		0
	3	2	24.51	24.49	24.55		0
	3	3	24.64	24.47	24.65		0
	6	0	23.57	23.44	23.61	0-1	1
	1	0	23.66	23.53	23.46		1
	1	2	23.22	23.45	23.52		1
	1	5	23.23	23.55	23.52	0-1	1
16QAM	3	0	23.48	23.50	23.50]	1
	3	2	23.64	23.45	23.42		1
	3	3	23.33	23.42	23.41		1
	6	0	22.35	22.37	22.60	0-2	2

FCC ID: ZNFX210VPP		PCTEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:		Test Dates:	DUT Type:		D 00 -f 50
1M	1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 29 of 58
47 00	TEOT En ain a sain a Lab anatama Inc.				DEV 00 05 M

9.3 **WLAN Conducted Powers**

Table 9-20 2.4 GHz WLAN Maximum Average RF Power

2.4GHz Conducted Power [dBm]										
Frog [MU-1	Channel	IEEE Transm	nission Mode							
Freq [MHz]	Channel	802.11b	802.11g							
2412	1	15.45	9.17							
2437	6	15.68	12.42							
2462	11	15.65	7.99							

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

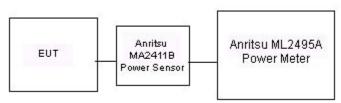


Figure 9-2 **Power Measurement Setup**

FCC ID: ZNFX210VPP		SAR EVALUATION REPORT	(1) LG	Approved by: Quality Manager	
Do	ocument S/N:	Test Dates:	DUT Type:		D 20 -4 50
1N	/1711080291-01-R1.ZNF	11/09/17 - 11/17/17		Page 30 of 58	

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

9.4 **Bluetooth Conducted Powers**

Table 9-21 Bluetooth Average RF Power

	Data		_	nducted wer
Frequency [MHz]	Rate [Mbps]	Channel No.	[dBm]	[mW]
2402	1.0	0	9.75	9.448
2441	1.0	39	10.98	12.536
2480	1.0	78	9.50	8.915
2402	2.0	0	6.17	4.141
2441	2.0	39	7.61	5.768
2480	2.0	78	6.05	4.031
2402	3.0	0	6.24	4.210
2441	3.0	39	7.68	5.859
2480	3.0	78	6.12	4.095

FCC ID: ZNFX210VPP	PCTEST'	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 04 -4 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 31 of 58

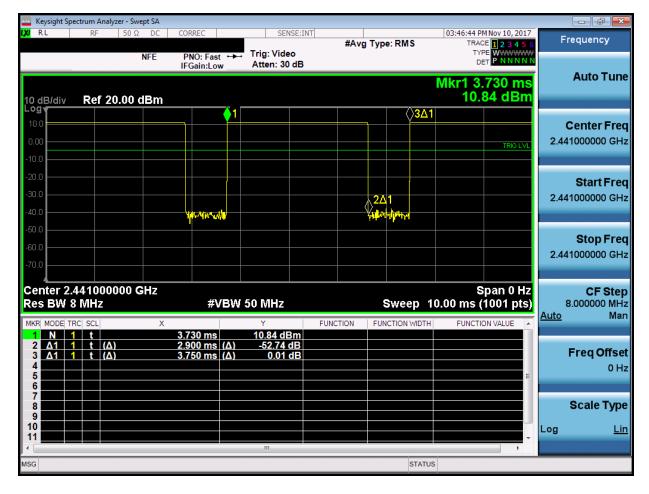


Figure 9-3
Bluetooth Transmission Plot

Equation 9-1 Bluetooth Duty Cycle Calculation

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.900 \textit{ms}}{3.750 \textit{ms}} * 100\% = 77.3\%$$

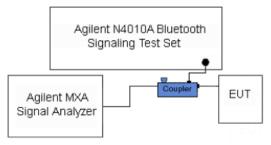


Figure 9-4
Power Measurement Setup

FCC ID: ZNFX210VPP	PCTEST INSINEERING LADVATORY, INC.	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 32 of 58	
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset			

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

10.1 Tissue Verification

Table 10-1 Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			740	0.905	42.304	0.893	41.994	1.34%	0.74%
11/17/2017	750H	22.5	755	0.910	42.255	0.894	41.916	1.79%	0.81%
11/17/2017	73011	22.5	770	0.915	42.210	0.895	41.838	2.23%	0.89%
			785	0.920	42.178	0.896	41.760	2.68%	1.00%
			820	0.887	40.921	0.899	41.578	-1.33%	-1.58%
11/12/2017	835H	20.5	835	0.902	40.759	0.900	41.500	0.22%	-1.79%
			850	0.917	40.578	0.916	41.500	0.11%	-2.22%
			820	0.878	40.600	0.899	41.578	-2.34%	-2.35%
11/14/2017	835H	22.1	835	0.891	40.419	0.900	41.500	-1.00%	-2.60%
			850	0.906	40.233	0.916	41.500	-1.09%	-3.05%
			1710	1.331	39.387	1.348	40.142	-1.26%	-1.88%
11/9/2017	1750H	21.9	1750	1.372	39.195	1.371	40.079	0.07%	-2.21%
			1790	1.414	38.998	1.394	40.016	1.43%	-2.54%
			1850	1.369	39.420	1.400	40.000	-2.21%	-1.45%
11/10/2017	1900H	22.1	1880	1.400	39.292	1.400	40.000	0.00%	-1.77%
			1910	1.432	39.160	1.400	40.000	2.29%	-2.10%
			1850	1.383	39.844	1.400	40.000	-1.21%	-0.39%
11/15/2017	1900H	21.7	1880	1.415	39.750	1.400	40.000	1.07%	-0.63%
			1910	1.446	39.637	1.400	40.000	3.29%	-0.91%
			2400	1.816	40.833	1.756	39.289	3.42%	3.93%
11/15/2017	2450 H	21.7	2450	1.881	40.678	1.800	39.200	4.50%	3.77%
			2500	1.932	40.481	1.855	39.136	4.15%	3.44%
			740	0.944	54.664	0.963	55.570	-1.97%	-1.63%
11/9/2017	750B	20.6	755	0.950	54.613	0.964	55.512	-1.45%	-1.62%
11/3/2017	7500	20.0	770	0.956	54.574	0.965	55.453	-0.93%	-1.59%
			785	0.962	54.529	0.966	55.395	-0.41%	-1.56%
			820	0.957	52.994	0.969	55.258	-1.24%	-4.10%
11/15/2017	835B	21.6	835	0.974	52.846	0.970	55.200	0.41%	-4.26%
			850	0.989	52.697	0.988	55.154	0.10%	-4.45%
			1710	1.437	51.042	1.463	53.537	-1.78%	-4.66%
11/15/2017	1750B	22.3	1750	1.483	50.918	1.488	53.432	-0.34%	-4.71%
			1790	1.522	50.739	1.514	53.326	0.53%	-4.85%
			1850	1.516	53.141	1.520	53.300	-0.26%	-0.30%
11/13/2017	1900B	22.0	1880	1.553	53.044	1.520	53.300	2.17%	-0.48%
			1910	1.586	52.953	1.520	53.300	4.34%	-0.65%
			1850	1.522	53.562	1.520	53.300	0.13%	0.49%
11/15/2017	1900B	21.9	1880	1.557	53.476	1.520	53.300	2.43%	0.33%
			1910	1.593	53.370	1.520	53.300	4.80%	0.13%
			2400	1.964	51.206	1.902	52.767	3.26%	-2.96%
11/13/2017	2450B	22.8	2450	2.029	51.000	1.950	52.700	4.05%	-3.23%
			2500	2.098	50.776	2.021	52.636	3.81%	-3.53%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: ZNFX210VPP	<u> PCTEST</u>	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 33 of 58	
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset	et		
17 DOTECT Engineering Laboraton, Inc.				DEVISO OF M	

© 2017 PCTEST Engineering Laboratory, Inc.

10.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 10-2 System Verification Results

	System vernication results														
						ystem Ve									
	TARGET & MEASURED														
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)			
D	750	HEAD	11/17/2017	23.2	22.4	0.200	1054	3318	1.680	8.370	8.400	0.36%			
Н	835	HEAD	11/12/2017	21.5	20.6	0.200	4d133	7410	1.940	9.520	9.700	1.89%			
K	835	HEAD	11/14/2017	22.4	22.1	0.200	4d132	7406	1.910	9.520	9.550	0.32%			
Н	1750	HEAD	11/09/2017	24.2	22.0	0.100	1148	7410	3.530	36.400	35.300	-3.02%			
G	1900	HEAD	11/10/2017	23.5	21.2	0.100	5d148	3332	4.000	40.200	40.000	-0.50%			
Н	1900	HEAD	11/15/2017	23.6	21.0	0.100	5d148	7410	3.840	40.200	38.400	-4.48%			
Е	2450	HEAD	11/15/2017	22.5	21.7	0.100	981	3319	5.190	52.800	51.900	-1.70%			
D	750	BODY	11/09/2017	20.8	20.5	0.200	1054	3318	1.740	8.610	8.700	1.05%			
J	835	BODY	11/15/2017	24.1	21.5	0.200	4d133	3209	1.960	9.410	9.800	4.14%			
K	1750	BODY	11/15/2017	23.3	22.3	0.100	1148	7406	3.820	37.000	38.200	3.24%			
J	1900	BODY	11/13/2017	21.0	21.8	0.100	5d148	3209	3.890	40.900	38.900	-4.89%			
J	1900	BODY	11/15/2017	21.5	21.9	0.100	5d148	3209	3.960	40.900	39.600	-3.18%			
I	2450	BODY	11/13/2017	21.3	21.0	0.100	719	3213	4.860	50.100	48.600	-2.99%			

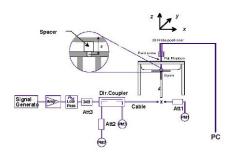


Figure 10-1
System Verification Setup Diagram

Figure 10-2
System Verification Setup Photo

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 04 -4 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset	Page 34 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

11.1 **Standalone Head SAR Data**

Table 11-1 Cell. CDMA Head SAR

					МЕ	ASURE	MENT R	ESULTS						
FREQU	ENCY	Mode/Band	nd Service	Maximum Allowed	Conducted Power [dBm]	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]		Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
836.52	384	Cell. CDMA	RC3 / SO55	24.7	24.55	0.03	Right	Cheek	03575	1:1	0.542	1.035	0.561	A1
836.52	384	Cell. CDMA	RC3 / SO55	24.7	24.55	0.03	Right	Tilt	03575	1:1	0.277	1.035	0.287	
836.52	384	Cell. CDMA	RC3 / SO55	24.7	24.55	0.15	Left	Cheek	03575	1:1	0.416	1.035	0.431	
836.52	384	Cell. CDMA	RC3 / SO55	24.7	24.55	0.06	Left	Tilt	03575	1:1	0.269	1.035	0.278	
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	24.47	0.03	Right	Cheek	03575	1:1	0.530	1.054	0.559	
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	24.47	0.01	Right	Tilt	03575	1:1	0.254	1.054	0.268	
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	24.47	0.15	Left	Cheek	03575	1:1	0.397	1.054	0.418	
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	24.47	0.04	Left	Tilt	03575	1:1	0.262	1.054	0.276	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							Head 1.6 W/kg (mW/g) averaged over 1 gram						

Table 11-2 PCS CDMA Head SAR

	PCS CDIMA NEAU SAK													
					ME	ASURE	MENT R	ESULTS						
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.	11040, 24114	0011100	Power [dBm]	Power [dBm]	Drift [dB]	0.40	Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.41	0.00	Right	Cheek	03575	1:1	0.475	1.069	0.508	
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.41	0.01	Right	Tilt	03575	1:1	0.197	1.069	0.211	
1851.25	25	PCS CDMA	RC3 / SO55	24.7	24.69	0.02	Left	Cheek	03575	1:1	0.561	1.002	0.562	
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.41	0.13	Left	Cheek	03575	1:1	0.660	1.069	0.706	
1908.75	1175	PCS CDMA	RC3 / SO55	24.7	24.68	-0.13	Left	Cheek	03575	1:1	0.748	1.005	0.752	A2
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.41	0.05	Left	Tilt	03575	1:1	0.306	1.069	0.327	
1880.00	600	PCS CDMA	EVDO Rev. A	24.7	24.54	-0.04	Right	Cheek	03575	1:1	0.490	1.038	0.509	
1880.00	600	PCS CDMA	EVDO Rev. A	24.7	24.54	-0.20	Right	Tilt	03575	1:1	0.196	1.038	0.203	
1851.25	25	PCS CDMA	EVDO Rev. A	24.7	24.69	-0.19	Left	Cheek	03575	1:1	0.566	1.002	0.567	
1880.00	600	PCS CDMA	EVDO Rev. A	24.7	24.54	0.04	Left	Cheek	03575	1:1	0.660	1.038	0.685	
1908.75	1175	PCS CDMA	EVDO Rev. A	24.7	24.65	0.15	Left	Cheek	03575	1:1	0.744	1.012	0.753	
1880.00	600	PCS CDMA	EVDO Rev. A	24.7	24.54	-0.01	Left	Tilt	03575	1:1	0.301	1.038	0.312	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Head							
	Spatial Peak							1.6 W/kg (mW/g)						
	Uncontrolled Exposure/General Population									averag	ed over 1 gra	am		

FCC ID: ZNFX210VPP	PCTEST INSINEERING LADVATORY, INC.	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 05 . (50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset	Page 35 of 58	

© 2017 PCTEST Engineering Laboratory, Inc.

Table 11-3 LTE Band 13 Head SAR

	ETE Build To House Offic																													
	MEASUREMENT RESULTS																													
FRI	FREQUENCY		NCY Mode		Mode	Mode	Mode	Mode	Mode	Mode	Mode	Mode	Mode	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)												
782.00	23230	Mid	LTE Band 13	10	24.7	24.60	-0.10	0	Right	Cheek	QPSK	1	25	03559	1:1	0.384	1.023	0.393	A3											
782.00	23230	Mid	LTE Band 13	10	23.7	23.64	0.08	1	Right	Cheek	QPSK	25	0	03559	1:1	0.293	1.014	0.297												
782.00	23230	Mid	LTE Band 13	10	24.7	24.60	0.04	0	Right	Tilt	QPSK	1	25	03559	1:1	0.243	1.023	0.249												
782.00	23230	Mid	LTE Band 13	10	23.7	23.64	0.13	1	Right	Tilt	QPSK	25	0	03559	1:1	0.186	1.014	0.189												
782.00	23230	Mid	LTE Band 13	10	24.7	24.60	0.01	0	Left	Cheek	QPSK	1	25	03559	1:1	0.298	1.023	0.305												
782.00	23230	Mid	LTE Band 13	10	23.7	23.64	0.02	1	Left	Cheek	QPSK	25	0	03559	1:1	0.230	1.014	0.233												
782.00	23230	Mid	LTE Band 13	10	24.7	24.60	0.01	0	Left	Tilt	QPSK	1	25	03559	1:1	0.232	1.023	0.237												
782.00	23230	Mid	LTE Band 13	10	23.7	23.64	0.08	1	Left	Tilt	QPSK	25	0	03559	1:1	0.172	1.014	0.174												
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Head																					
				Spatial Pea					1.6 W/kg (mW/g)																					
			Uncontrolled E	xposure/G	eneral Popul	lation							ave	eraged over	1 gram															

Table 11-4 LTE Band 5 (Cell) Head SAR

	ETE Band o (Och) Ticad OAK																		
	MEASUREMENT RESULTS																		
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling (19)		Plot#
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Dritt [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.70	0.02	0	Right	Cheek	QPSK	1	25	03609	1:1	0.550	1.000	0.550	A4
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.52	-0.09	1	Right	Cheek	QPSK	25	25	03609	1:1	0.410	1.042	0.427	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.70	0.02	0	Right	Tilt	QPSK	1	25	03609	1:1	0.270	1.000	0.270	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.52	-0.04	1	Right	Tilt	QPSK	25	25	03609	1:1	0.201	1.042	0.209	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.70	0.11	0	Left	Cheek	QPSK	1	25	03609	1:1	0.444	1.000	0.444	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.52	0.02	1	Left	Cheek	QPSK	25	25	03609	1:1	0.343	1.042	0.357	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.70	0.21	0	Left	Tilt	QPSK	1	25	03609	1:1	0.225	1.000	0.225	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.52	0.03	1	Left	Tilt	QPSK	25	25	03609	1:1	0.179	1.042	0.187	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Head 1.6 W/kg (mW/g) averaged over 1 gram												

Table 11-5 LTE Band 4 (AWS) Head SAR

	ETE Balla + (ATTO) Ticaa OAR																		
	MEASUREMENT RESULTS																		
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted Power [dBm]	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Scale	Scaling	Reported SAR (1g)	Plot #	
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Dritt (aB)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.14	0.00	0	Right	Cheek	QPSK	1	50	03559	1:1	0.360	1.014	0.365	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.99	0.02	1	Right	Cheek	QPSK	50	25	03559	1:1	0.294	1.050	0.309	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.14	0.11	0	Right	Tilt	QPSK	1	50	03559	1:1	0.214	1.014	0.217	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.99	-0.06	1	Right	Tilt	QPSK	50	25	03559	1:1	0.172	1.050	0.181	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.14	0.06	0	Left	Cheek	QPSK	1	50	03559	1:1	0.502	1.014	0.509	A5
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.99	-0.02	1	Left	Cheek	QPSK	50	25	03559	1:1	0.392	1.050	0.412	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.14	0.00	0	Left	Tilt	QPSK	1	50	03559	1:1	0.279	1.014	0.283	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.99	0.15	1	Left	Tilt	QPSK	50	25	03559	1:1	0.218	1.050	0.229	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Head											
				Spatial Pe	ak				1.6 W/kg (mW/g)										
	Uncontrolled Exposure/General Population							averaged over 1 gram											

FCC ID: ZNFX210VPP	PCTEST STORILLING LADRATUTY, INC.	SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 20 -4 50	
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset	Page 36 of 58		

© 2017 PCTEST Engineering Laboratory, Inc.

REV 20.05 M

Table 11-6 LTE Band 2 (PCS) Head SAR

								MEAS	SUREM	ENT RES	SULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	24.69	0.09	0	Right	Cheek	QPSK	1	0	03575	1:1	0.467	1.002	0.468	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.60	0.05	1	Right	Cheek	QPSK	50	25	03575	1:1	0.409	1.023	0.418	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	24.69	0.12	0	Right	Tilt	QPSK	1	0	03575	1:1	0.251	1.002	0.252	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.60	0.15	1	Right	Tilt	QPSK	50	25	03575	1:1	0.133	1.023	0.136	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	24.69	-0.08	0	Left	Cheek	QPSK	1	0	03575	1:1	0.587	1.002	0.588	A6
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.60	0.00	1	Left	Cheek	QPSK	50	25	03575	1:1	0.534	1.023	0.546	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	24.69	-0.08	0	Left	Tilt	QPSK	1	0	03575	1:1	0.305	1.002	0.306	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.60	-0.04	1	Left	Tilt	QPSK	50	25	03575	1:1	0.216	1.023	0.221	
				Spatial Pea	ak									Head .6 W/kg (r	nW/g)				
			Uncontrolled Ex	(posure/G	eneral Popul	lation							ave	eraged over	1 gram				

Table 11-7 DTS Head SAR

							N	IEASUF	REMENT	RESUL	TS							
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test Position	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	16.0	15.68	0.04	Right	Cheek	03732	1	99.9	0.562	0.516	1.076	1.001	0.556	
2437	6	802.11b	DSSS	22	16.0	15.68	0.11	Right	Tilt	03732	1	99.9	0.408	-	1.076	1.001	-	
2412	1	802.11b	DSSS	22	16.0	15.45	0.04	Left	Cheek	03732	1	99.9	1.117	0.991	1.135	1.001	1.126	
2437	6	802.11b	DSSS	22	16.0	15.68	0.03	Left	Cheek	03732	1	99.9	1.085	0.988	1.076	1.001	1.064	
2462	11	802.11b	DSSS	22	16.0	15.65	0.04	Left	Cheek	03732	1	99.9	1.176	1.050	1.084	1.001	1.139	
2437	6	802.11b	DSSS	22	16.0	15.68	0.06	Left	Tilt	03732	1	99.9	0.854	0.665	1.076	1.001	0.716	
2462	11	802.11b	DSSS	22	16.0	15.65	0.11	Left	Cheek	03732	1	99.9	1.245	1.060	1.084	1.001	1.150	A7
		ANSI / I	EEE C95.1		ETY LIMIT								Hea			•	•	
		Uncontro		ial Peak ure/Genera	al Population								1.6 W/kg averaged ov					

Note: Blue entry represents variability measurement.

Table 11-8 DSS Head SAR

						MEAS	UREME	NT RES	JLTS						
FREQUI	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.	Wode	Service	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Number	Cycle %	(W/kg)	Factor (Cond Power)	Factor (Duty Cycle)	(W/kg)	Plot #
2441.00	39	Bluetooth	FHSS	11.0	10.98	0.10	Right	Cheek	03732	77.3	0.151	1.005	1.294	0.196	
2441.00	39	Bluetooth	FHSS	11.0	10.98	0.05	Right	Tilt	03732	77.3	0.125	1.005	1.294	0.163	
2441.00	39	Bluetooth	FHSS	11.0	10.98	-0.04	Left	Cheek	03732	77.3	0.260	1.005	1.294	0.338	A8
2441.00	39	Bluetooth	FHSS	11.0	10.98	0.09	Left	Tilt	03732	77.3	0.168	1.005	1.294	0.218	
		ANSI / IEE	E C95.1 1992	- SAFETY LI	MIT						Head	t			
			Spatial Pe								1.6 W/kg (
		Uncontrolled	d Exposure/G	eneral Popul	lation						averaged over	er 1 gram			

FCC ID: ZNFX210VPP	PCTEST INCIDENT INC.	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 07 -4 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 37 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

REV 20.05 M

11.2 Standalone Body-Worn SAR Data

Table 11-9 CDMA Body-Worn SAR Data

						 								
					MEAS	UREMEI	NT RES	ULTS						
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing	Device Serial	Duty	Side	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Number	Cycle		(W/kg)	Factor	(W/kg)	
824.70	1013	Cell. CDMA	TDSO / SO32	24.7	24.65	-0.03	10 mm	03575	1:1	back	0.775	1.012	0.784	
836.52	384	Cell. CDMA	TDSO / SO32	24.7	24.61	-0.04	10 mm	03575	1:1	back	0.785	1.021	0.801	A9
848.31	777	Cell. CDMA	TDSO / SO32	24.7	24.61	0.03	10 mm	03575	1:1	back	0.776	1.021	0.792	
1851.25	25	PCS CDMA	TDSO / SO32	24.7	24.60	-0.14	10 mm	03609	1:1	back	0.712	1.023	0.728	
1880.00	600	PCS CDMA	TDSO / SO32	24.7	24.38	-0.02	10 mm	03609	1:1	back	0.763	1.076	0.821	A11
1908.75	1175	PCS CDMA	TDSO / SO32	24.7	24.64	-0.10	10 mm	03609	1:1	back	0.681	1.014	0.691	
		ANSI / IEEE	C95.1 1992 - S	AFETY LIMIT							Body			
			Spatial Peak							1.6	W/kg (mW/g	1)		
		Uncontrolled	Exposure/Gene	ral Population	on					avera	ged over 1 gr	am		

Table 11-10 LTE Body-Worn SAR

								MEASU	REMENT	RESULT	S								
FR	EQUENCY	r	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	С	h.		[IIII12]	Power [dBm]	i ower [dbiii]	Dint [db]		Number						Cycle	(W/kg)	racio	(W/kg)	
782.00	23230	Mid	LTE Band 13	10	24.7	24.60	0.03	0	03559	QPSK	1	25	10 mm	back	1:1	0.517	1.023	0.529	A13
782.00	23230	Mid	LTE Band 13	10	23.7	23.64	0.01	1	03559	QPSK	25	0	10 mm	back	1:1	0.389	1.014	0.394	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.70	0.02	0	03575	QPSK	1	25	10 mm	back	1:1	0.783	1.000	0.783	A14
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.52	0.02	1	03575	QPSK	25	25	10 mm	back	1:1	0.594	1.042	0.619	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	0	03609	QPSK	1	50	10 mm	back	1:1	0.728	1.014	0.738	A15			
1732.50	20175	Mid	LTE Band 4 (AWS)	1	03609	QPSK	50	25	10 mm	back	1:1	0.578	1.050	0.607					
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	24.69	-0.19	0	03559	QPSK	1	0	10 mm	back	1:1	0.707	1.002	0.708	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.7	24.52	-0.06	0	03559	QPSK	1	50	10 mm	back	1:1	0.803	1.042	0.837	A17
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.67	-0.03	0	03559	QPSK	1	50	10 mm	back	1:1	0.751	1.007	0.756	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.60	-0.06	1	03559	QPSK	50	25	10 mm	back	1:1	0.543	1.023	0.555	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.49	-0.17	1	03559	QPSK	100	0	10 mm	back	1:1	0.561	1.050	0.589	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.7	24.52	-0.18	0	03559	QPSK	1	50	10 mm	back	1:1	0.796	1.042	0.829	
			ANSI / IEEE C	C95.1 1992 Spatial Pea		VIIT									dy g (mW/g)	,	•		
			Uncontrolled E	xposure/G	eneral Popul	ation							av	eraged c	ver 1 gra	ım			

Note: Blue entry represents variability measurement.

Table 11-11 DTS Body-Worn SAR

							MEAS	SUREME	NT RE	SULTS	,							
FREQU	IENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power		Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	[dBm]	[dBm]	[dB]	. •	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	16.0	15.68	-0.10	10 mm	03732	1	back	99.9	0.231	0.228	1.076	1.001	0.246	A18
		ANS	SI / IEEE	C95.1 1992	- SAFETY LIMIT								В	ody				
				Spatial Pe										(g (mW/g)				
		Unco	ntrolled E	Exposure/G	eneral Populati	on							averaged	over 1 gram				

FCC ID: ZNFX210VPP	PCTEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 20 -4 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 38 of 58
17 PCTEST Engineering Laboratory, Inc.				REV 20.05 M

© 2017 PCTEST Engineering Laboratory, Inc.

11/15/2017

11.3 Standalone Hotspot SAR Data

Table 11-12 CDMA Hotspot SAR Data

						UREME		ULTS						
FREQUE	ENCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	Duty Cycle	Side	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [abin]	Drift [ab]		Number	Cycle		(W/kg)	Factor	(W/kg)	
824.70	1013	Cell. CDMA	EVDO Rev. 0	24.7	24.53	-0.04	10 mm	03575	1:1	back	0.768	1.040	0.799	
836.52	384	Cell. CDMA	EVDO Rev. 0	24.7	24.51	-0.01	10 mm	03575	1:1	back	0.780	1.045	0.815	A10
848.31	777	Cell. CDMA	EVDO Rev. 0	24.7	24.61	-0.01	10 mm	03575	1:1	back	0.774	1.021	0.790	
836.52	384	Cell. CDMA	EVDO Rev. 0	24.7	24.51	-0.01	10 mm	03575	1:1	front	0.535	1.045	0.559	
836.52	384	Cell. CDMA	EVDO Rev. 0	24.7	24.51	-0.06	10 mm	03575	1:1	bottom	0.224	1.045	0.234	
836.52	384	Cell. CDMA	EVDO Rev. 0	24.7	24.51	-0.08	10 mm	03575	1:1	right	0.761	1.045	0.795	
836.52	384	Cell. CDMA	EVDO Rev. 0	24.7	24.51	-0.05	10 mm	03575	1:1	left	0.451	1.045	0.471	
1851.25	25	PCS CDMA	EVDO Rev. 0	24.7	24.70	0.02	10 mm	03609	1:1	back	0.713	1.000	0.713	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.52	0.02	10 mm	03609	1:1	back	0.745	1.042	0.776	A12
1908.75	1175	PCS CDMA	EVDO Rev. 0	24.7	24.64	-0.11	10 mm	03609	1:1	back	0.676	1.014	0.685	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.52	0.03	10 mm	03609	1:1	front	0.733	1.042	0.764	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.52	0.01	10 mm	03609	1:1	bottom	0.349	1.042	0.364	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.52	0.03	10 mm	03609	1:1	left	0.548	1.042	0.571	
			C95.1 1992 - S Spatial Peak Exposure/Gen								Body W/kg (mW/ g ged over 1 gr			

FCC ID: ZNFX210VPP	PCTEST.	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 20 -f 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 39 of 58

Table 11-13 LTE Band 13 Hotspot SAR

								Dune	<i>a</i> 10 1	ισισμο	. 0/	11.							
								MEASU	JREMENT	T RESULT	s								
FRI	QUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	CI	١.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	<u>. </u>
782.00	23230	Mid	LTE Band 13	10	24.7	24.60	0.03	0	03559	QPSK	1	25	10 mm	back	1:1	0.517	1.023	0.529	A13
782.00	23230	Mid	LTE Band 13	10	23.7	23.64	0.01	1	03559	QPSK	25	0	10 mm	back	1:1	0.389	1.014	0.394	
782.00	23230	Mid	LTE Band 13	10	24.7	24.60	0.09	0	03559	QPSK	1	25	10 mm	front	1:1	0.360	1.023	0.368	
782.00	23230	Mid	LTE Band 13	10	23.7	23.64	-0.03	1	03559	QPSK	25	0	10 mm	front	1:1	0.267	1.014	0.271	
782.00	23230	Mid	LTE Band 13	10	24.7	24.60	-0.03	-0.03 0 03559 QPSK 1 25 10 mm bottom 1:1 0.157 1.023											
782.00	23230	Mid	LTE Band 13	10	23.7	23.64	-0.08	1	03559	QPSK	25	0	10 mm	bottom	1:1	0.122	1.014	0.124	
782.00	23230	Mid	LTE Band 13	10	24.7	24.60	0.03	0	03559	QPSK	1	25	10 mm	right	1:1	0.431	1.023	0.441	
782.00	23230	Mid	LTE Band 13	10	23.7	23.64	0.02	1	03559	QPSK	25	0	10 mm	right	1:1	0.310	1.014	0.314	
782.00	23230	Mid	LTE Band 13	10	24.7	24.60	-0.02	0	03559	QPSK	1	25	10 mm	left	1:1	0.238	1.023	0.243	
782.00	23230	Mid	LTE Band 13	10	23.7	23.64	-0.12	1	03559	QPSK	25	0	10 mm	left	1:1	0.178	1.014	0.180	
		-	ANSI / IEEE C95.		FETY LIMIT									Body				·	
			•	atial Peak										//kg (mV					
		Un	controlled Expo	sure/Gener	ral Populatio	n							average	ed over 1	gram				

Table 11-14 LTE Band 5 (Cell) Hotspot SAR

								MEASU	REMENT	RESULT	s								
FRE	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Cl	١.			Power [dBm]				Number							(W/kg)		(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.70	0.02	0	03575	QPSK	1	25	10 mm	back	1:1	0.783	1.000	0.783	A14
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.52	0.02	1	03575	QPSK	25	25	10 mm	back	1:1	0.594	1.042	0.619	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.70	-0.02	0	03575	QPSK	1	25	10 mm	front	1:1	0.544	1.000	0.544	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.52	0.01												
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.70	-0.05	-0.05 0 03575 QPSK 1 25 10 mm bottom 1:1 0.215 1.000 0.215											
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.52	-0.06	1	03575	QPSK	25	25	10 mm	bottom	1:1	0.165	1.042	0.172	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.70	-0.04	0	03575	QPSK	1	25	10 mm	right	1:1	0.744	1.000	0.744	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.52	-0.08	1	03575	QPSK	25	25	10 mm	right	1:1	0.575	1.042	0.599	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.70	-0.09	0	03575	QPSK	1	25	10 mm	left	1:1	0.455	1.000	0.455	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.52	-0.05	1	03575	QPSK	25	25	10 mm	left	1:1	0.341	1.042	0.355	
		- 1	ANSI / IEEE C95.1	1 1992 - SA	FETY LIMIT									Body					
			Spa	tial Peak									1.6 W	//kg (mV	V/g)				
		Ur	controlled Expos	sure/Gener	ral Populatio	n							average	ed over 1	gram				

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 -4 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 40 of 58

Table 11-15 LTE Band 4 (AWS) Hotspot SAR

	<u> </u>							411G T	(71110	<i>)</i> 110ts	pot	<u>OAIX</u>							
								MEASU	JREMENT	T RESULT	s								
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Cl	n.		[MITZ]	Power [dBm]	Power [dBm]	Drift [db]		Number							(W/kg)	Factor	(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.14	0.06	0	03609	QPSK	1	50	10 mm	back	1:1	0.728	1.014	0.738	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.99	0.02	1	03609	QPSK	50	25	10 mm	back	1:1	0.578	1.050	0.607	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.14	-0.03	0	03609	QPSK	1	50	10 mm	front	1:1	0.853	1.014	0.865	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.99	-0.02	1	03609	QPSK	50	25	10 mm	front	1:1	0.674	1.050	0.708	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.89	0.03	1	03609	QPSK	100	0	10 mm	front	1:1	0.675	1.074	0.725	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.14	0.01	0	03609	QPSK	1	50	10 mm	bottom	1:1	0.471	1.014	0.478	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.99	-0.01	1	03609	QPSK	50	25	10 mm	bottom	1:1	0.370	1.050	0.389	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.14	-0.03	0	03609	QPSK	1	50	10 mm	left	1:1	0.472	1.014	0.479	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.99	-0.04	1	03609	QPSK	50	25	10 mm	left	1:1	0.370	1.050	0.389	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.14	-0.06	0	03609	QPSK	1	50	10 mm	front	1:1	0.889	1.014	0.901	A16
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT											Body							
	Spatial Peak				1.6 W/kg (mW/g)														
	Uncontrolled Exposure/General Population				averaged over 1 gram														

Note: Blue entry represents variability measurement.

Table 11-16 LTE Band 2 (PCS) Hotspot SAR

	ETE Baild 2 (1 CO) Hotspot SAN																		
								MEASU	JREMENT	T RESULT	s								
FRE	QUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	24.69	-0.19	0	03559	QPSK	1	0	10 mm	back	1:1	0.707	1.002	0.708	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.7	24.52	-0.06	0	03559	QPSK	1	50	10 mm	back	1:1	0.803	1.042	0.837	A17
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.67	-0.03	0	03559	QPSK	1	50	10 mm	back	1:1	0.751	1.007	0.756	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.60	-0.06	1	03559	QPSK	50	25	10 mm	back	1:1	0.543	1.023	0.555	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.49	-0.17	1	03559	QPSK	100	0	10 mm	back	1:1	0.561	1.050	0.589	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	24.69	0.12	0	03559	QPSK	1	0	10 mm	front	1:1	0.674	1.002	0.675	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.60	0.02	1	03559	QPSK	50	25	10 mm	front	1:1	0.548	1.023	0.561	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	24.69	0.09	0	03559	QPSK	1	0	10 mm	bottom	1:1	0.266	1.002	0.267	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.60	-0.01	1	03559	QPSK	50	25	10 mm	bottom	1:1	0.253	1.023	0.259	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	24.69	-0.10	0	03559	QPSK	1	0	10 mm	left	1:1	0.569	1.002	0.570	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.60	-0.11	1	03559	QPSK	50	25	10 mm	left	1:1	0.525	1.023	0.537	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.7	24.52	-0.18	0	03559	QPSK	1	50	10 mm	back	1:1	0.796	1.042	0.829	
			ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT			Body											
			Spa	atial Peak									1.6 W	/kg (mV	V/g)				
	Uncontrolled Exposure/General Population										average	ed over 1	gram						

Note: Blue entry represents variability measurement.

Document S/N: Test Dates: DUT Type:	FCC ID: ZNFX210VPP	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 44 (50
1M1711080291-01-R1.ZNF	1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 41 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

Table 11-17 WLAN Hotspot SAR

	MEASUREMENT RESULTS																	
FREQU	JENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power		Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]	[dBm]	[dBm]	[dB]	. •	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	16.0	15.68	-0.10	10 mm	03732	1	back	99.9	0.231	0.228	1.076	1.001	0.246	A18
2437	6	802.11b	DSSS	22	16.0	15.68	0.08	3 10 mm 03732 1 front 99.9 0.206 - 1.076 1.001						-				
2437	6	802.11b	DSSS	22	16.0	15.68	0.08	10 mm	03732	1	top	99.9	0.108	-	1.076	1.001	-	
2437	6	802.11b	DSSS	22	16.0	15.68	-0.03	10 mm	03732	1	right	99.9	0.112	-	1.076	1.001	-	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT											В	ody					
	Spatial Peak											1.6 W/k	g (mW/g)					
	Uncontrolled Exposure/General Population											averaged	over 1 gram					

FCC ID: ZNFX210VPP	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 (50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 42 of 58

11.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).

CDMA Notes:

- 1. Head SAR for CDMA2000 mode was tested under RC3/SO55 per FCC KDB Publication 941225 D01v03r01.
- 2. Body-Worn SAR was tested with 1x RTT with TDSO / SO32 FCH Only. EVDO Rev0 and RevA and TDSO / SO32 FCH+SCH SAR tests were not required per the 3G SAR Test Reduction Procedure in FCC KDB Publication 941225 D01v03r01.
- 3. CDMA Wireless Router SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 according to KDB 941225 D01v03r01 procedures for data devices. Wireless Router SAR tests for Subtype 2 of Rev.A and 1x RTT configurations were not required per the 3G SAR Test Reduction Policy in KDB Publication 941225 D01v03r01.
- 4. Head SAR was additionally evaluated using EVDO Rev. A to determine compliance for VoIP operations.
- 5. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

FCC ID: ZNFX210VPP	PCTEST.	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 -f 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 43 of 58

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

WLAN Notes:

- 1. For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.3 for more information.
- 3. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

Bluetooth Notes

- Head Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5 operation and Tx Tests test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 100% transmission duty factor to determine compliance. See Section 9.4 for the time domain plot and calculation for the duty factor of the device.
- 2. Head Bluetooth SAR was evaluated for BT BR tethering applications.

FCC ID: ZNFX210VPP	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 44 of 58
17 DOTECT Engineering Laboratory Inc.				DEVISO OF M

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS 12

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

When standalone SAR is not required to be measured, per FCC KDB 447498 D01v06 4.3.2 b), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Table 12-1 Estimated SAR

Mode	Frequency	Maximum Allowed Power	Separation Distance (Body)	Estimated SAR (Body)
	[MHz]	[dBm]	[mm]	[W/kg]
Bluetooth	2480	11.00	10	0.273

Note: Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Da == 45 = 450
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 45 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Head SAR Simultaneous Transmission Analysis

(*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB Publication 248227, the worst case WLAN head SAR result was used for simultaneous transmission analysis.

Table 12-2 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Exposure Condition	Mode	CDMA/LTE SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
Head SAR	Cell. CDMA/EVDO	0.561	1.150	See Table Below
	PCS CDMA/EVDO	0.753	1.150	See Table Below
	LTE Band 13	0.393	1.150	1.543
	LTE Band 5 (Cell)	0.550	1.150	See Table Below
	LTE Band 4 (AWS)	0.509	1.150	See Table Below
	LTE Band 2 (PCS)	0.588	1.150	See Table Below

Simult Tx	Configuration	Cell. CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1 + 2	1+2
	Right Cheek	0.561	0.556	1.117	N/A
Head SAR	Right Tilt	0.287	1.150*	1.437	N/A
	Left Cheek	0.431	1.150	1.581	N/A
	Left Tilt	0.278	0.716	0.994	N/A

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 -4 F0
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 46 of 58

Simult Tx	Configuration	Cell. EVDO SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1 + 2	1+2
	Right Cheek	0.559	0.556	1.115	N/A
Head SAR	Right Tilt	0.268	1.150*	1.418	N/A
	Left Cheek	0.418	1.150	1.568	N/A
	Left Tilt	0.276	0.716	0.992	N/A

Simult Tx Configuration		PCS CDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1 + 2	1+2
	Right Cheek	0.508	0.556	1.064	N/A
Head SAR	Right Tilt	0.211	1.150*	1.361	N/A
	Left Cheek	0.752	1.150	See Note 1	0.03
	Left Tilt	0.327	0.716	1.043	N/A

Simult Tx	Configuration	PCS EVDO SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1 + 2	1+2
	Right Cheek	0.509	0.556	1.065	N/A
Head SAR	Right Tilt	0.203	1.150*	1.353	N/A
	Left Cheek	0.753	1.150	See Note 1	0.03
	Left Tilt	0.312	0.716	1.028	N/A

Simult Tx	Configuration	LTE Band 5 (Cell) SAR (W/kg)	Cell) SAR 2.4 GHz WLAN SAR (W/kg)		SPLSR
		1	2	1 + 2	1+2
	Right Cheek	0.550	0.556	1.106	N/A
Head	Right Tilt	0.270	1.150*	1.420	N/A
SAR	Left Cheek	0.444	1.150	1.594	N/A
	Left Tilt	0.225	0.716	0.941	N/A

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 47 -4 F0
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 47 of 58

Simult Tx Configuration		LTE Band 4 (AWS) SAR (W/kg) 2.4 GHz WLAN SAR (W/kg)		Σ SAR (W/kg)	SPLSR
		1	2	1 + 2	1+2
	Right Cheek	0.365	0.556	0.921	N/A
Head SAR	Right Tilt	0.217	1.150*	1.367	N/A
	Left Cheek	0.509	1.150	See Note 1	0.03
	Left Tilt	0.283	0.716	0.999	N/A

Simult Tx Configuration		LTE Band 2 (PCS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1 + 2	1+2
	Right Cheek	0.468	0.556	1.024	N/A
Head SAR	Right Tilt	0.252	1.150*	1.402	N/A
	Left Cheek	0.588	1.150	See Note 1	0.03
	Left Tilt	0.306	0.716	1.022	N/A

Table 12-3 Simultaneous Transmission Scenario with Bluetooth (Held to Ear)

Simultaneous Transmission Scenario with Bluetooth (Heid to Ear)						
Exposure Condition	Mode	CDMA/LTE SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)		
		1	2	1+2		
Head SAR	Cell. CDMA/EVDO	0.561	0.338	0.899		
	PCS CDMA/EVDO	0.753	0.338	1.091		
	LTE Band 13	0.393	0.338	0.731		
	LTE Band 5 (Cell)	0.550	0.338	0.888		
	LTE Band 4 (AWS)	0.509	0.338	0.847		
	LTE Band 2 (PCS)	0.588	0.338	0.926		

Notes:

1. No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.6 for detailed SPLS ratio analysis.

FCC ID: ZNFX210VPP	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	S/N: Test Dates: DUT Type:		D 40 (50	
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 48 of 58

12.4 Body-Worn Simultaneous Transmission Analysis

Table 12-4
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

Exposure Condition	Mode	CDMA/LTE SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
Body-Worn	Cell. CDMA	0.801	0.246	1.047
	PCS CDMA	0.821	0.246	1.067
	LTE Band 13	0.529	0.246	0.775
	LTE Band 5 (Cell)	0.783	0.246	1.029
	LTE Band 4 (AWS)	0.738	0.246	0.984
	LTE Band 2 (PCS)	0.837	0.246	1.083

Table 12-5
Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Exposure Condition	Mode	CDMA/LTE SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
Body-Worn	Cell. CDMA	0.801	0.273	1.074
	PCS CDMA	0.821	0.273	1.094
	LTE Band 13	0.529	0.273	0.802
	LTE Band 5 (Cell)	0.783	0.273	1.056
	LTE Band 4 (AWS)	0.738	0.273	1.011
	LTE Band 2 (PCS)	0.837	0.273	1.110

Notes: Bluetooth SAR was not required to be measured per FCC KDB Publication 447498 D01v06. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

Document S/N: Test Dates: DUT Type:	FCC ID: ZNFX210VPP	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Page 49 of :	Document S/N:	Test Dates:	DUT Type:		D 40 (50
1M1711080291-01-R1.ZNF 11/09/17 - 11/17/17 Portable Handset	1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	/09/17 - 11/17/17 Portable Handset		Page 49 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

11/15/2017

12.5 Hotspot SAR Simultaneous Transmission Analysis

Table 12-6
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

Exposure Condition	Mode	EVDO/LTE SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
Hotspot SAR	Cell. EVDO	0.815	0.246	1.061
	PCS EVDO	0.776	0.246	1.022
	LTE Band 13	0.529	0.246	0.775
	LTE Band 5 (Cell)	0.783	0.246	1.029
	LTE Band 4 (AWS)	0.901	0.246	1.147
	LTE Band 2 (PCS)	0.837	0.246	1.083

Table 12-7
Simultaneous Transmission Scenario with Bluetooth (Hotspot at 1.0 cm)

Omnantancoc	is mansimission ocenar	IO WILLI BIGC	deneral interp	ot at 1.0 only
Exposure Condition	Mode	EVDO/LTE SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
Hotspot SAR	Cell. EVDO	0.815	0.273	1.088
	PCS EVDO	0.776	0.273	1.049
	LTE Band 13	0.529	0.273	0.802
	LTE Band 5 (Cell)	0.783	0.273	1.056
	LTE Band 4 (AWS)	0.901	0.273	1.174
	LTE Band 2 (PCS)	0.837	0.273	1.110

Notes: Bluetooth SAR was not required to be measured per FCC KDB Publication 447498 D01v06. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

FCC ID: ZNFX210VPP	SNOINEERING LARDRATERT, INC.	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 50 (50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 50 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

11/15/2017

12.6 SPLSR Evaluation and Analysis

Per FCC KDB Publication 447498 D01v06, when the sum of the standalone transmitters is more than 1.6 W/kg for 1g, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. When the SAR peak to location ratio (shown below) for each pair of antennas is ≤ 0.04 for 1g, simultaneous SAR evaluation is not required. The distance between the transmitters was calculated using the following formula.

Distance_{Tx1-Tx2} = R_i =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

SPLS Ratio = $\frac{(SAR_1 + SAR_2)^{1.5}}{R_i}$

12.6.1 Head SPLSR Evaluation and Analysis

Table 12-8 Peak SAR Locations for Head

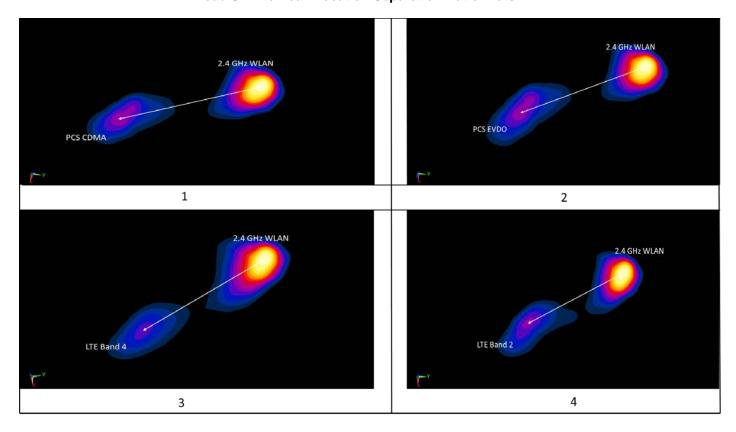

Mode/Band	x (mm)	y (mm)	z (mm)	Reported SAR (W/kg)
2.4 GHz WLAN Left Cheek	14.82	328.43	-172.58	1.15
PCS CDMA Left Cheek	47.60	248.78	-169.70	0.752
PCS EVDO Left Cheek	52.86	245.83	-167.92	0.753
LTE Band 4 (AWS) Left Cheek	47.00	250.84	-173.93	0.509
LTE Band 2 (PCS) Left Cheek	49.90	250.94	-173.53	0.588

Table 12-9 Head SAR to Peak Locations Separation Ratio Calculations

	ricad OAN to I can Ecoations Ocparation Natio Calculations									
Antenna Pair			ne 1g SAR /kg)	Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number			
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}				
PCS CDMA Left Cheek	2.4 GHz WLAN Left Cheek	0.752	1.15	1.902	86.18	0.03	1			
PCS EVDO Left Cheek	2.4 GHz WLAN Left Cheek	0.753	1.15	1.903	91.06	0.03	2			
LTE Band 4 (AWS) Left Cheek	2.4 GHz WLAN Left Cheek	0.509	1.15	1.659	84.01	0.03	3			
LTE Band 2 (PCS) Left Cheek	2.4 GHz WLAN Left Cheek	0.588	1.15	1.738	85.07	0.03	4			

Document S/N: Test Dates: DUT Type:	FCC ID: ZNFX210VPP	PCTEST INDIVIDUAL LABORATORY, INC.	SAR EVALUATION REPORT	(†) LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		D 54 . (50
1M1711080291-01-R1.ZNF	1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	/09/17 - 11/17/17 Portable Handset		Page 51 of 58

Table 12-10
Head SAR to Peak Location Separation Ratio Plots

12.7 Simultaneous Transmission Conclusion

The above numerical summed SAR results and SPLSR analysis are sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528- 2013 Section 6.3.4.1.

FCC ID: ZNFX210VPP	PCTEST INSINEERING LADVATORY, INC.	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D
1M1711080291-01-R1.ZNF	1/09/17 - 11/17/17 Portable Handset			Page 52 of 58

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 13-1
Head SAR Measurement Variability Results

	Ticad OAN measurement variability Nesatts													
	HEAD				ARIABIL	ITY RES	ULTS							
Band	Band FREQUENCY Mode/Band Service				Side Test Data Rate	Data Rate (Mbps)	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio	
	MHz Ch.							(W/kg)	(W/kg)		(W/kg)		(W/kg)	
2450	2462.00	11	802.11b, 22 MHz Bandwidth	DSSS	Left	Cheek	1	1.050	1.060	1.01	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Hea	id			,	
	Spatial Peak			1.6 W/kg (mW/g)										
	Spatial Peak Uncontrolled Exposure/General Population						а	veraged ov		n				

Table 13-2
Body SAR Measurement Variability Results

			Douy 3F	ICIIL V	ariab	ility ive	SuitS						
	BODY VARIABILIT					resu	LTS						
Band	Band Mode Service Side					Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz Ch.						(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1750	1750 1732.50 20175 LTE Band 4 (AWS), 20 MHz QPSK, 1 RB, 50 RB front Bandwidth Offset				10 mm	0.853	0.889	1.04	N/A	N/A	N/A	N/A	
1900	1900 1880.00 18900 LTE Band 2 (PCS), 20 MHz QPSK, 1 RB, 50 RB back				back	10 mm	0.803	0.796	1.01	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						-		Во	dy	-		
	Spatial Peak						1	1.6 W/kg	ı (mW/g)				
		Uncor	ntrolled Exposure/General Popul	ulation				av	eraged o	ver 1 gram			

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC	ID: ZNFX210VPP	FOTEST SEGNILISED LAJORATERY, INC.	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Docu	ument S/N:	Test Dates:	DUT Type:		D 50 -4 50
1M1	711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 53 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

11/15/2017

14 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	E4432B	ESG-D Series Signal Generator	3/24/2017	Annual	3/24/2018	US40053896
Agilent	E5515C	Wireless Communications Test Set	1/29/2016	Biennial	1/29/2018	GB46310798
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/22/2017	Annual	3/22/2018	MY45470194
Agilent	N9020A	MXA Signal Analyzer	12/28/2016	Annual	12/28/2017	US46470561
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB46170464
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB44450273
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Agilent	E4438C	ESG Vector Signal Generator	3/23/2017	Biennial	3/23/2019	MY42082659
Agilent	E4438C	ESG Vector Signal Generator	3/24/2017	Annual	3/24/2018	MY45091346
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433978
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	941001
Anritsu	MA24106A	USB Power Sensor	6/7/2017	Annual	6/7/2018	1244524
Anritsu	MA24106A	USB Power Sensor	6/7/2017	Annual	6/7/2018	1244515
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MT8820C	Radio Communication Analyzer	5/23/2017	Annual	5/23/2018	6201240328
COMTech	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-1002
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	3/8/2016	Biennial	3/8/2018	160261729
Control Company	4352	Ultra Long Stem Thermometer	3/8/2016	Biennial	3/8/2018	160261694
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
MCL	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench 5/16", 8" lbs	3/2/2016	Biennial	3/2/2018	N/A
Pasternack	NC-100	Torque Wrench (8" lb)	9/1/2016	Biennial	9/1/2018	21053
Rohde & Schwarz	CMU200	Base Station Simulator	4/11/2017	Annual	4/11/2018	836371/0079
Rohde & Schwarz	CMU200	Base Station Simulator	12/12/2016	Annual	12/12/2017	833855/0010
Rohde & Schwarz	CMW500	Radio Communication Tester	5/4/2017	Annual	5/4/2018	112347
Rohde & Schwarz	CMW500	Radio Communication Tester	9/15/2017	Annual	9/15/2018	109366
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2017	Annual	2/9/2018	1272
SPEAG	ES3DV3	SAR Probe	3/14/2017	Annual	3/14/2018	3319
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/13/2017	Annual	3/13/2018	1415
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/11/2017	Annual	4/11/2018	1407
SPEAG	D2450V2	2450 MHz SAR Dipole	8/17/2017	Annual	8/17/2018	719
SPEAG	ES3DV3	SAR Probe	2/10/2017	Annual	2/10/2018	3213
SPEAG	ES3DV3	SAR Probe	3/14/2017	Annual	3/14/2018	3209
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/9/2017	Annual	8/9/2018	1323
SPEAG	D835V2	835 MHz SAR Dipole	7/11/2017	Annual	7/11/2018	4d133
SPEAG	D750V3	750 MHz Dipole	3/7/2017	Annual	3/7/2018	1054
SPEAG	D835V2	835 MHz SAR Dipole	1/11/2017	Annual	1/11/2018	4d132
SPEAG	D1900V2	1900 MHz SAR Dipole	2/9/2017	Annual	2/9/2018	5d148
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/13/2017	Annual	7/13/2018	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/14/2017	Annual	6/14/2018	1334
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/8/2017	Annual	3/8/2018	1368
SPEAG	ES3DV3	SAR Probe	8/14/2017	Annual	8/14/2018	3332
SPEAG	EX3DV4	SAR Probe	4/18/2017	Annual	4/18/2018	7406
SPEAG	D1750V2	1750 MHz SAR Dipole	5/9/2017	Annual	5/9/2018	1148
SPEAG	EX3DV4	SAR Probe	7/17/2017	Annual	7/17/2018	7410
SPEAG	D2450V2	2450 MHz SAR Dipole	7/25/2016	Biennial	7/25/2018	981
SPEAG	ES3DV3	SAR Probe	9/22/2017	Annual	9/22/2018	3318
JI LAG	2332 43	SARTIODE	3/22/2011	Ailliadi	3/22/2010	3310

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 54 -4 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 54 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

REV 20.05 M 11/15/2017

a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		ci	ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	v _i
						(± %)	(± %)	·
Measurement System								
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	∞
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	∞
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	8
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	× ×
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	
Liquid Conductivity - deviation from target values		R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	× ×
Combined Standard Uncertainty (k=1)		RSS				11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)		-						

FCC ID: ZNFX210VPP	PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dans 55 of 50
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset	Page 55 of 58

© 2017 PCTEST Engineering Laboratory, Inc.

REV 20.05 M

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFX210VPP	PCTEST INSINEERING LADVATORY, INC.	SAR EVALUATION REPORT	(the LG	Approved by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:	Туре:			
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 56 of 58		

17 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: ZNFX210VPP	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D	
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 57 of 58	
1017 1 100029 1-01-K 1.2NF	11/03/17 - 11/11/17	1 Ottable Halluset		DEV/ 00 05 M	

© 2017 PCTEST Engineering Laboratory, Inc.

11/15/2017

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: ZNFX210VPP	PCTEST INDIVIDUAL TO THE	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:			
1M1711080291-01-R1.ZNF	11/09/17 - 11/17/17	Portable Handset		Page 58 of 58	

APPENDIX A: SAR TEST DATA

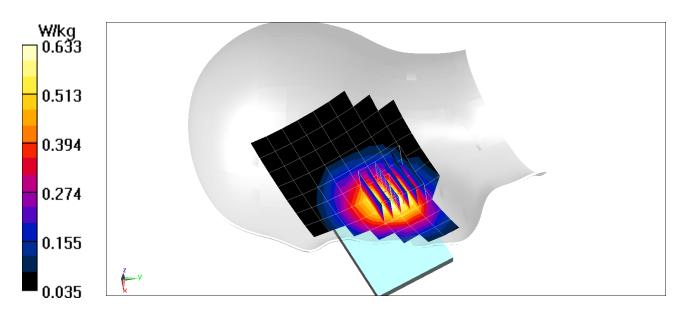
DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03575

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.893 \text{ S/m}; \ \epsilon_r = 40.4; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 11-14-2017; Ambient Temp: 22.4°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7406; ConvF(9.97, 9.97, 9.97); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/11/2017
Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: BC0 Cell. CDMA, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.78 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.694 W/kg

SAR(1 g) = 0.542 W/kg

DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03575

Communication System: UID 0, PCS CDMA; Frequency: 1908.75 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1908.75 \text{ MHz}; \ \sigma = 1.431 \text{ S/m}; \ \epsilon_r = 39.165; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

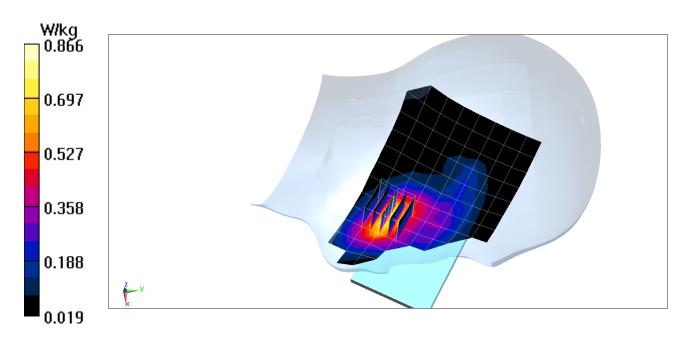
Test Date: 11-10-2017; Ambient Temp: 23.5°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3332; ConvF(5.33, 5.33, 5.33); Calibrated: 8/14/2017;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: PCS CDMA, Left Head, Cheek, High.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.32 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.748 W/kg

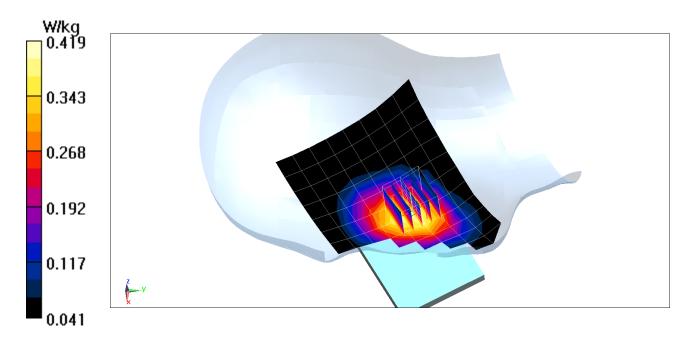
DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03559

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 0.919 \text{ S/m}; \ \epsilon_r = 42.184; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 11-17-2017; Ambient Temp: 23.2°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3318; ConvF(6.72, 6.72, 6.72); Calibrated: 9/22/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 6/14/2017
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 13, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.99 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.487 W/kg

SAR(1 g) = 0.384 W/kg

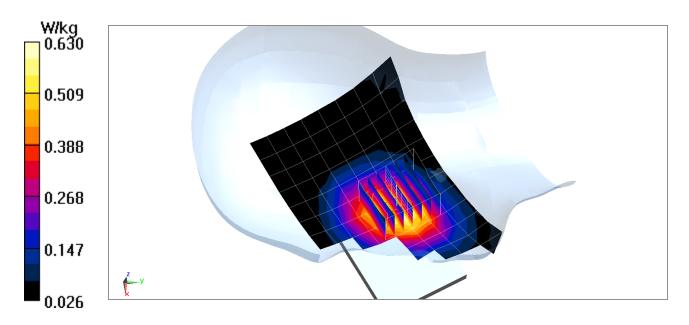
DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03609

Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.903 \text{ S/m}; \ \epsilon_r = 40.741; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 11-12-2017; Ambient Temp: 21.5°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7410; ConvF(10.08, 10.08, 10.08); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/13/2017
Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 5 (Cell.), Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (7x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.97 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.671 W/kg

SAR(1 g) = 0.550 W/kg

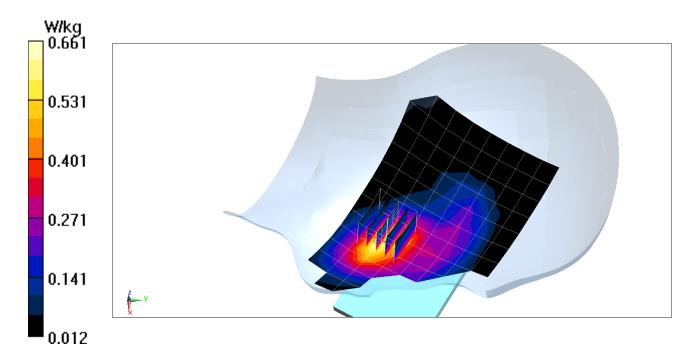
DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03559

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.354 \text{ S/m}; \ \epsilon_r = 39.279; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-09-2017; Ambient Temp: 24.2°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7410; ConvF(8.66, 8.66, 8.66); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/13/2017
Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 4 (AWS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.88 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.758 W/kg

SAR(1 g) = 0.502 W/kg

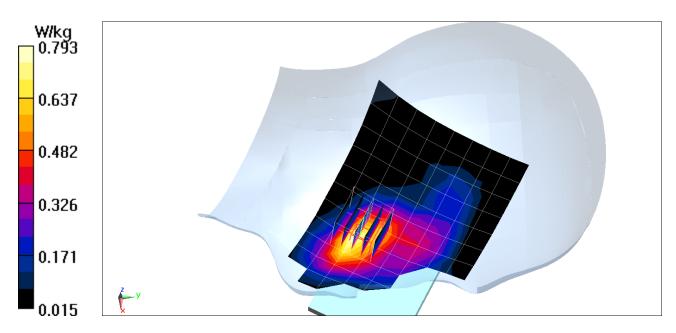
DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03575

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1860 \text{ MHz}; \ \sigma = 1.394 \text{ S/m}; \ \epsilon_r = 39.813; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-15-2017; Ambient Temp: 23.6°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7410; ConvF(8.37, 8.37, 8.37); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/13/2017
Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 2 (PCS), Left Head, Cheek, Low.ch, 20 MHz Bandwidth, OPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.64 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.892 W/kg

SAR(1 g) = 0.587 W/kg

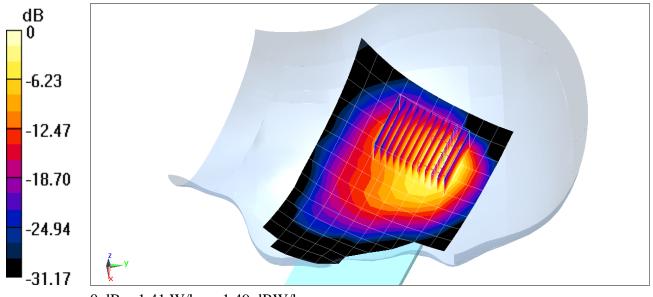
DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03732

Communication System: UID 0, IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.893 \text{ S/m}; \ \epsilon_r = 40.631; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-15-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3319; ConvF(4.6, 4.6, 4.6); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/8/2017
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Left Head, Cheek, Ch 11, 1 Mbps


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (12x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.04 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 2.44 W/kg

SAR(1 g) = 1.06 W/kg

0 dB = 1.41 W/kg = 1.49 dBW/kg

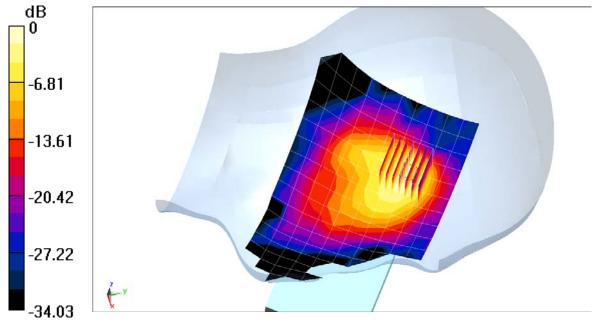
DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03732

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.294 Medium: 2450 Head Medium parameters used (interpolated): $f = 2441 \text{ MHz}; \ \sigma = 1.869 \text{ S/m}; \ \epsilon_r = 40.706; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 11-15-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3319; ConvF(4.6, 4.6, 4.6); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/8/2017
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: Bluetooth, Left Head, Cheek, Ch 39, 1 Mbps


Area Scan (11x19x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.84 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.628 W/kg

SAR(1 g) = 0.260 W/kg

DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03575

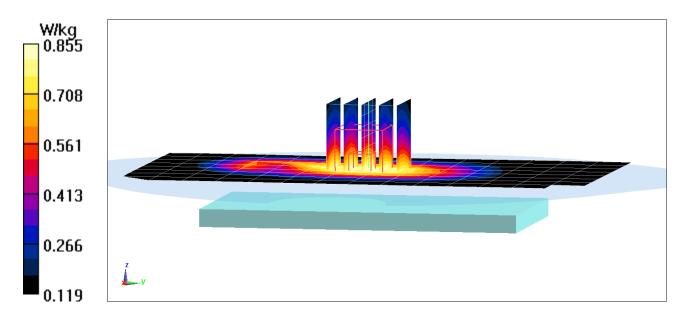
Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.976 \text{ S/m}; \ \epsilon_r = 52.831; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-15-2017; Ambient Temp: 24.1°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3209; ConvF(6.36, 6.36, 6.36); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 3/13/2017
Phantom: SAM Right; Type: QD000P40CD; Serial: 1800

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: BC0 Cell. CDMA, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.40 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.969 W/kg

SAR(1 g) = 0.785 W/kg

DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03575

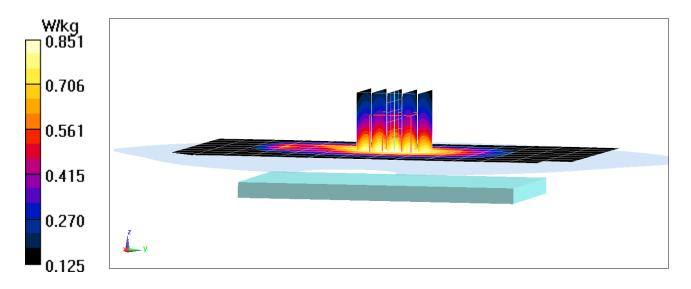
Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.976 \text{ S/m}; \ \epsilon_r = 52.831; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-15-2017; Ambient Temp: 24.1°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3209; ConvF(6.36, 6.36, 6.36); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 3/13/2017
Phantom: SAM Right; Type: QD000P40CD; Serial: 1800

Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: Cell. EVDO, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.33 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.959 W/kg

SAR(1 g) = 0.780 W/kg

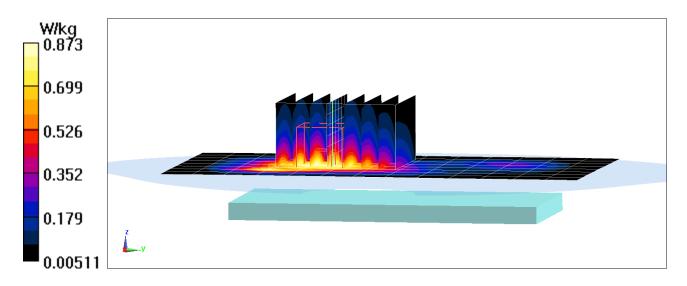
DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03609

Communication System: UID 0, CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.557 \text{ S/m}; \ \epsilon_r = 53.476; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-15-2017; Ambient Temp: 21.5°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3209; ConvF(4.93, 4.93, 4.93); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 3/13/2017
Phantom: SAM Right; Type: QD000P40CD; Serial: 1800
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: PCS CDMA, Body SAR, Back side, Mid.ch


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (8x8x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.39 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.763 W/kg

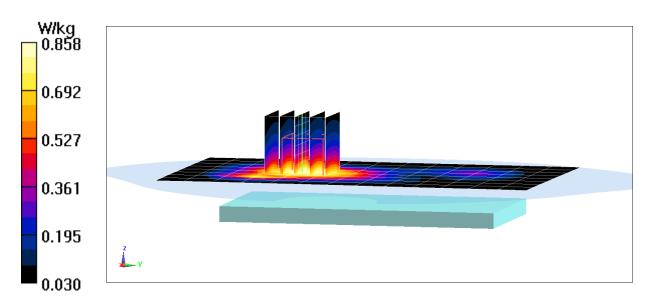
DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03609

Communication System: UID 0, CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.557 \text{ S/m}; \ \epsilon_r = 53.476; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-15-2017; Ambient Temp: 21.5°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3209; ConvF(4.93, 4.93, 4.93); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 3/13/2017
Phantom: SAM Right; Type: QD000P40CD; Serial: 1800
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: PCS EVDO, Body SAR, Back side, Mid.ch


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.18 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.745 W/kg

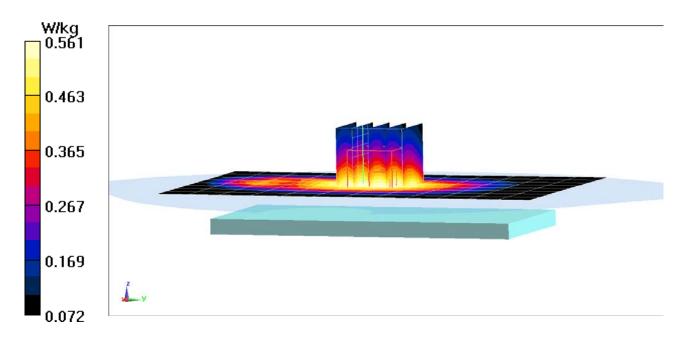
DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03559

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 0.961 \text{ S/m}; \ \epsilon_r = 54.538; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-09-2017; Ambient Temp: 20.8°C; Tissue Temp: 20.5°C

Probe: ES3DV3 - SN3318; ConvF(6.46, 6.46, 6.46); Calibrated: 9/22/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 6/14/2017
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 13, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.90 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.631 W/kg

SAR(1 g) = 0.517 W/kg

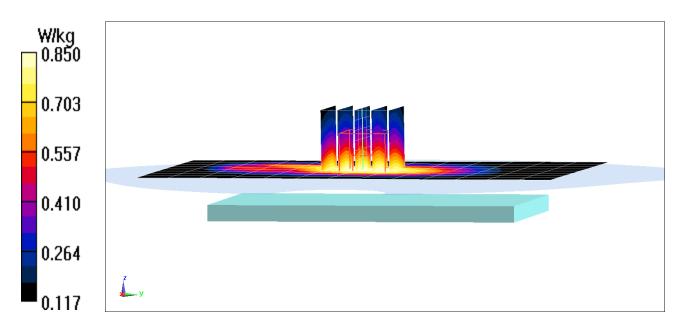
DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03575

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.975 \text{ S/m}; \ \epsilon_r = 52.831; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-15-2017; Ambient Temp: 24.1°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3209; ConvF(6.36, 6.36, 6.36); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 3/13/2017
Phantom: SAM Right; Type: QD000P40CD; Serial: 1800
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 5 (Cell.), Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.16 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.962 W/kg

SAR(1 g) = 0.783 W/kg

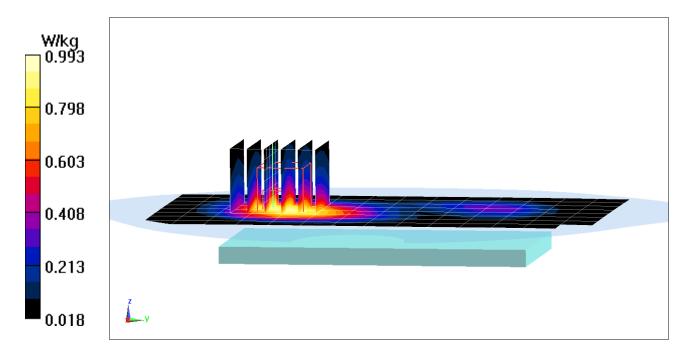
DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03609

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.463 \text{ S/m}; \ \epsilon_r = 50.972; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-15-2017; Ambient Temp: 23.3°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7406; ConvF(8.08, 8.08, 8.08); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/11/2017
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 4 (AWS), Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.31 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.728 W/kg

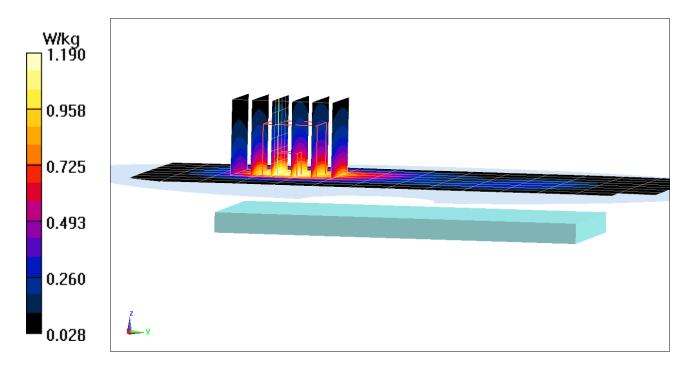
DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03609

Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.463 \text{ S/m}; \ \epsilon_r = 50.972; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-15-2017; Ambient Temp: 23.3°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7406; ConvF(8.08, 8.08, 8.08); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/11/2017
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 4 (AWS), Body SAR, Front side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.07 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.889 W/kg

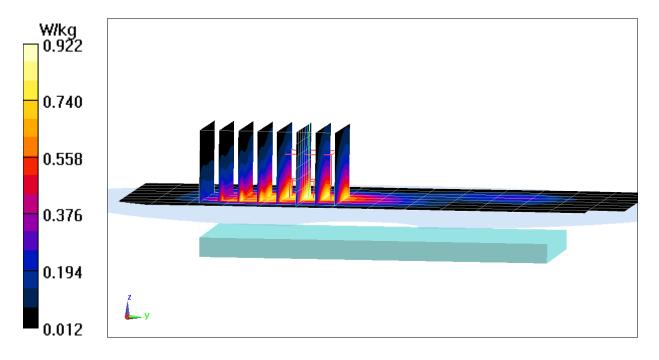
DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03559

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.553 \text{ S/m}; \ \epsilon_r = 53.044; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-13-2017; Ambient Temp: 21.0°C; Tissue Temp: 21.8°C

Probe: ES3DV3 - SN3209; ConvF(4.93, 4.93, 4.93); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 3/13/2017
Phantom: SAM Right; Type: QD000P40CD; Serial: 1800
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 2 (PCS), Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (9x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.62 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.803 W/kg

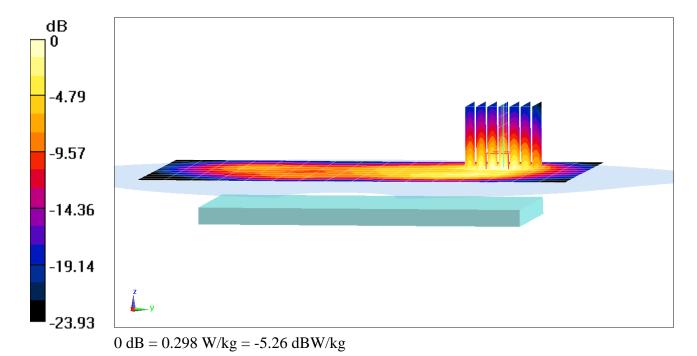
DUT: ZNFX210VPP; Type: Portable Handset; Serial: 03732

Communication System: UID 0, 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 2.012 \text{ S/m}; \ \epsilon_r = 51.054; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-13-2017; Ambient Temp: 21.3°C; Tissue Temp: 21.0°C

Probe: ES3DV3 - SN3213; ConvF(4.53, 4.53, 4.53); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2017
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 6, 1 Mbps, Back Side


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.48 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.512 W/kg

SAR(1 g) = 0.228 W/kg

APPENDIX B: SYSTEM VERIFICATION

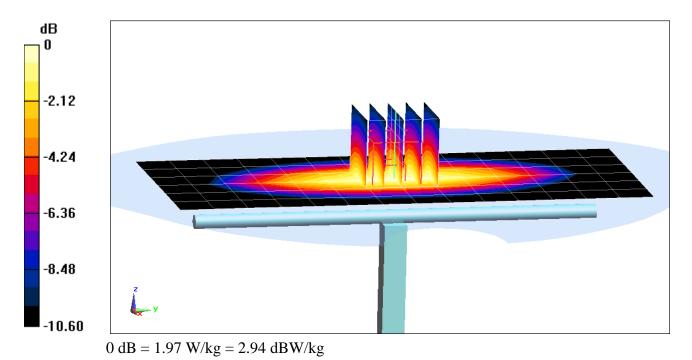
DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.908 \text{ S/m}; \ \epsilon_r = 42.271; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-17-2017; Ambient Temp: 23.2°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3318; ConvF(6.72, 6.72, 6.72); Calibrated: 9/22/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 6/14/2017
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.54 W/kg

SAR(1 g) = 1.68 W/kg

Deviation(1 g) = 0.36%

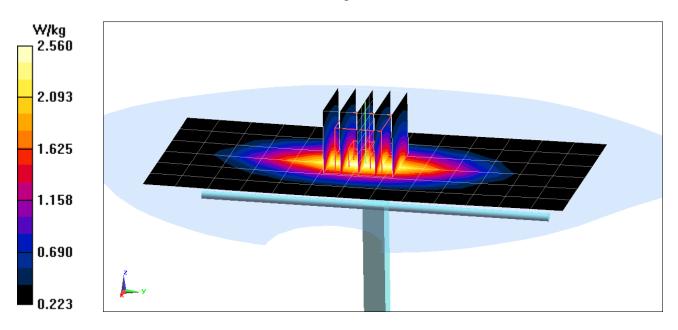
DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.902 \text{ S/m}; \ \epsilon_r = 40.759; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-12-2017; Ambient Temp: 21.5°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7410; ConvF(10.08, 10.08, 10.08); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/13/2017
Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.85 W/kg

SAR(1 g) = 1.94 W/kg

Deviation(1 g) = 1.89%

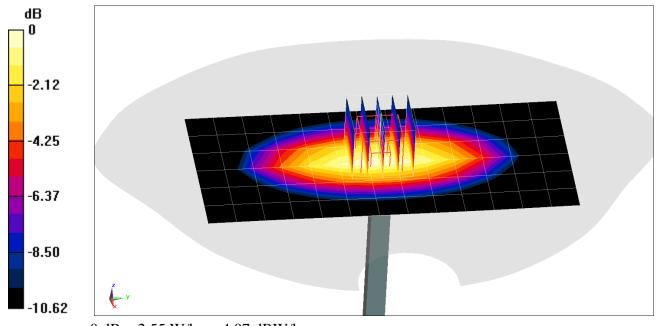
DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.891 \text{ S/m}; \ \epsilon_r = 40.419; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-14-2017; Ambient Temp: 22.4°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7406; ConvF(9.97, 9.97, 9.97); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/11/2017
Phantom: Right Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1797
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

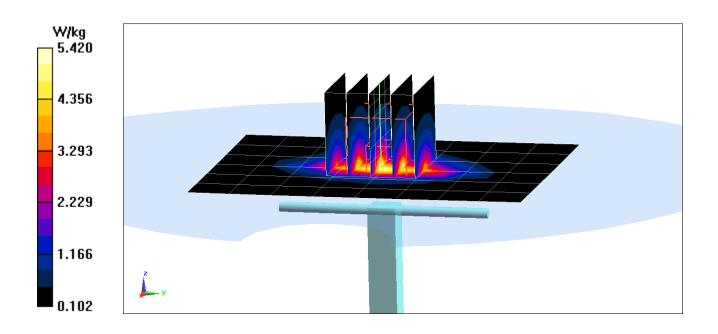
Peak SAR (extrapolated) = 2.86 W/kg

SAR(1 g) = 1.91 W/kg

Deviation(1 g) = 0.32%

0 dB = 2.55 W/kg = 4.07 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.372 \text{ S/m}; \ \epsilon_r = 39.195; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-09-2017; Ambient Temp: 24.2°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7410; ConvF(8.66, 8.66, 8.66); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/13/2017
Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.38 W/kg SAR(1 g) = 3.53 W/kgDeviation(1 g) = -3.02%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

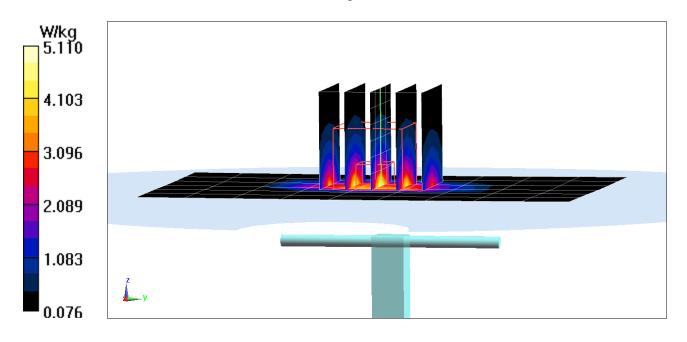
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.421 \text{ S/m}; \ \epsilon_r = 39.204; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-10-2017; Ambient Temp: 23.5°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3332; ConvF(5.33, 5.33, 5.33); Calibrated: 8/14/2017;

Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 8/9/2017
Plantage SAM Front Toron SAM Society 1686

Phantom: SAM Front; Type: SAM; Serial: 1686


Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

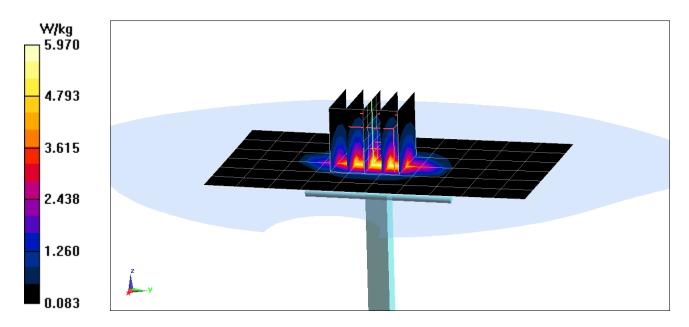
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.38 W/kgSAR(1 g) = 4 W/kgDeviation(1 g) = -0.50%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.436 \text{ S/m}; \ \epsilon_r = 39.675; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-15-2017; Ambient Temp: 23.6°C; Tissue Temp: 21.0°C


Probe: EX3DV4 - SN7410; ConvF(8.37, 8.37, 8.37); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/13/2017
Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

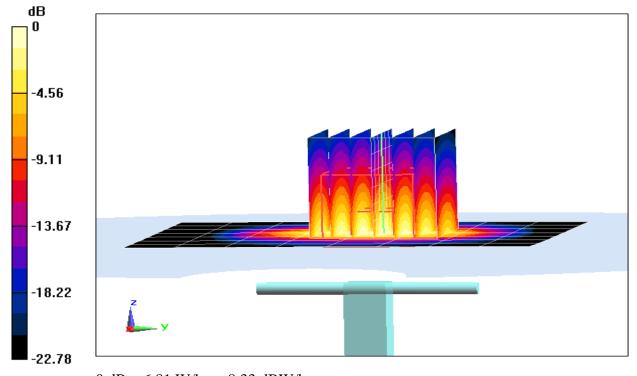
1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.07 W/kgSAR(1 g) = 3.84 W/kgDeviation(1 g) = -4.48%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.881 \text{ S/m}; \ \epsilon_r = 40.678; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-15-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3319; ConvF(4.6, 4.6, 4.6); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/8/2017
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.8 W/kg SAR(1 g) = 5.19 W/kg Deviation(1 g) = -1.70%

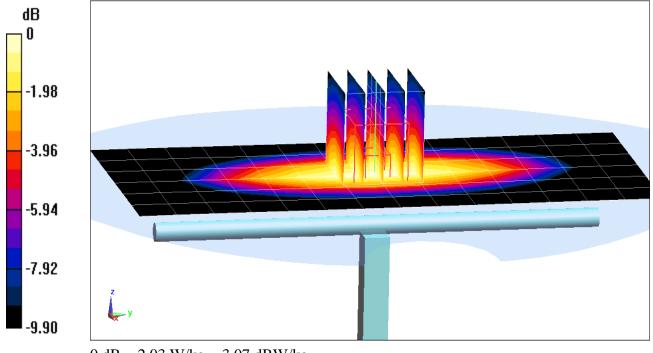
DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.948 \text{ S/m}; \ \epsilon_r = 54.63; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-09-2017; Ambient Temp: 20.8°C; Tissue Temp: 20.5°C

Probe: ES3DV3 - SN3318; ConvF(6.46, 6.46, 6.46); Calibrated: 9/22/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 6/14/2017
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.54 W/kg

SAR(1 g) = 1.74 W/kg

Deviation(1 g) = 1.05%

0 dB = 2.03 W/kg = 3.07 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.974 \text{ S/m}; \ \epsilon_r = 52.846; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

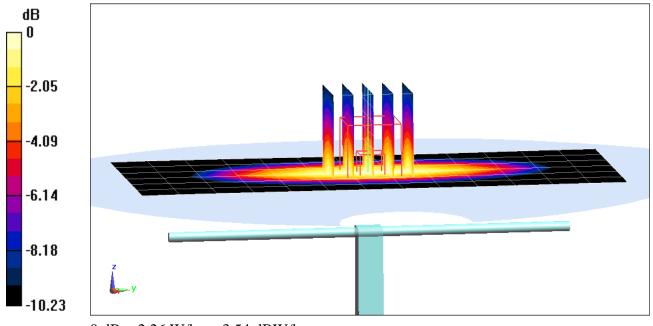
Test Date: 11-15-2017; Ambient Temp: 24.1°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3209; ConvF(6.36, 6.36, 6.36); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1415; Calibrated: 3/13/2017 Phantom: SAM Right; Type: QD000P40CD; Serial: 1800

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

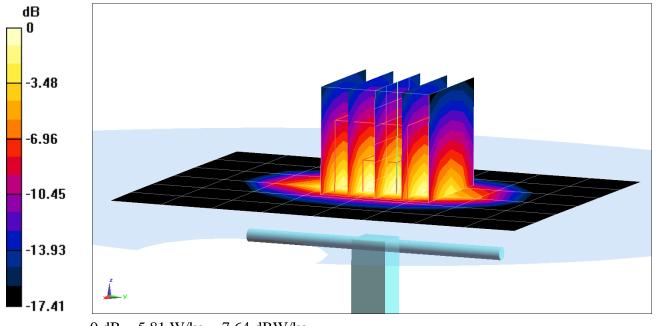
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.82 W/kg

SAR(1 g) = 1.96 W/kg

Deviation(1 g) = 4.14%

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.483 \text{ S/m}; \ \epsilon_r = 50.918; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-15-2017; Ambient Temp: 23.3°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7406; ConvF(8.08, 8.08, 8.08); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/11/2017
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.93 W/kg SAR(1 g) = 3.82 W/kg Deviation(1 g) = 3.24%

0 dB = 5.81 W/kg = 7.64 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.575 \text{ S/m}; \ \epsilon_r = 52.983; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-13-2017; Ambient Temp: 21.0°C; Tissue Temp: 21.8°C

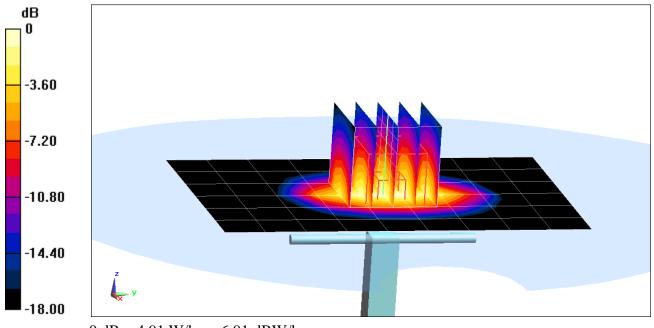
Probe: ES3DV3 - SN3209; ConvF(4.93, 4.93, 4.93); Calibrated: 3/14/2017;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 3/13/2017

Phantom: SAM Right; Type: QD000P40CD; Serial: 1800

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

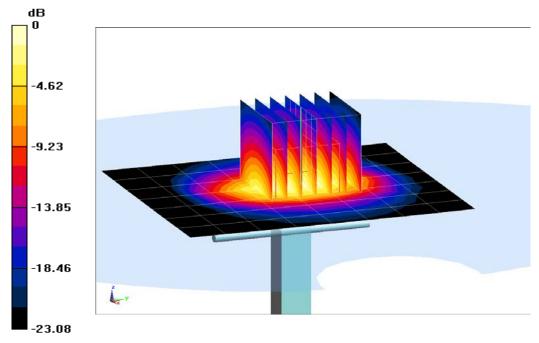
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.94 W/kg

SAR(1 g) = 3.89 W/kg

Deviation(1 g) = -4.89%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.029 \text{ S/m}; \ \epsilon_r = 51; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-13-2017; Ambient Temp: 21.3°C; Tissue Temp: 21.0°C

Probe: ES3DV3 - SN3213; ConvF(4.53, 4.53, 4.53); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2017
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.4 W/kg SAR(1 g) = 4.86 W/kg Deviation(1 g) = -2.99%

0 dB = 6.43 W/kg = 8.08 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D750V3-1054_Mar17

CALIBRATION CERTIFICATE

Object

D750V3 - SN:1054

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

BUN

1)3-27-2017

Calibration date:

March 07, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
DAE4	SN: 601	04-Jan-17 (No. DAE4-601_Jan17)	Jan-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Johannes Kurikka	Laboratory Technician	you lear
Approved by:	Katja Pokovic	Technical Manager	

Issued: March 14, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1054_Mar17

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.37 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	·
SAR measured	250 mW input power	1.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.50 W/kg ± 16.5 % (k=2)

Body TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mh o /m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.61 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.68 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.7 Ω - 0.7 jΩ
Return Loss	- 26.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.7 Ω - 3.6 jΩ
Return Loss	- 28.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.033 ns
	1.000 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 08, 2011

DASY5 Validation Report for Head TSL

Date: 07.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; σ = 0.91 S/m; ϵ_r = 40.9; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.17, 10.17, 10.17); Calibrated: 31.12.2016;

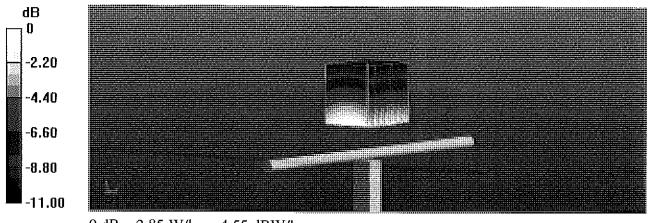
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.01.2017

• Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

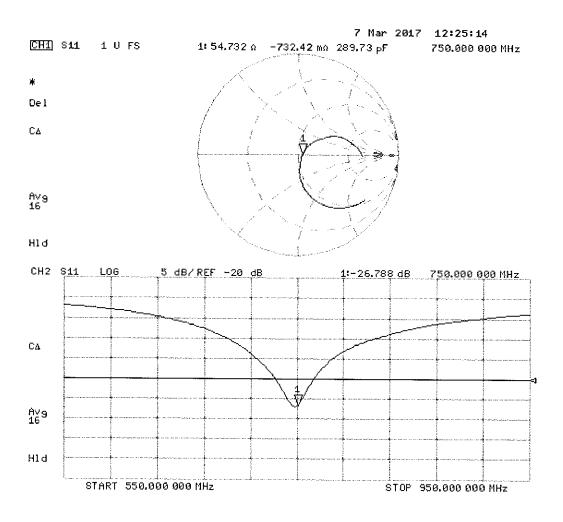
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.71 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.21 W/kg


SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.4 W/kg

Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.99 \text{ S/m}$; $\varepsilon_r = 54.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 31.12.2016;

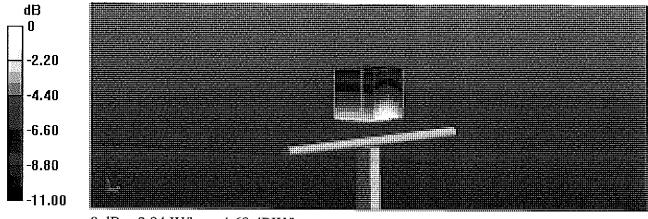
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.01.2017

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

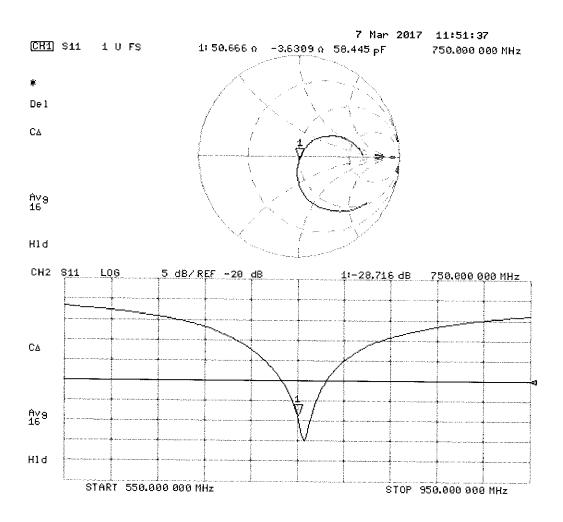
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.88 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.31 W/kg


SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.45 W/kg

Maximum value of SAR (measured) = 2.94 W/kg

0 dB = 2.94 W/kg = 4.68 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D835V2-4d133_Jul17

CALIBRATION CERTIFICATE

Object

D835V2 - SN:4d133

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 11, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Nelwork Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Johannes Kurikka	Laboratory Technician	Jun ihr
Approved by:	Katja Pokovic	Technical Manager	SCH-

Issued: July 12, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

The following persons are the same of the	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.52 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.10 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.8 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.41 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.16 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 Ω - 2.9 jΩ
Return Loss	- 30.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.7 Ω - 6.8 jΩ
Return Loss	- 22.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.196 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

DASY5 Validation Report for Head TSL

Date: 11.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.07, 10.07, 10.07); Calibrated: 31.05.2017;

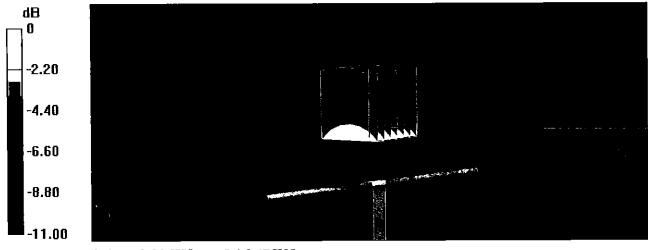
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

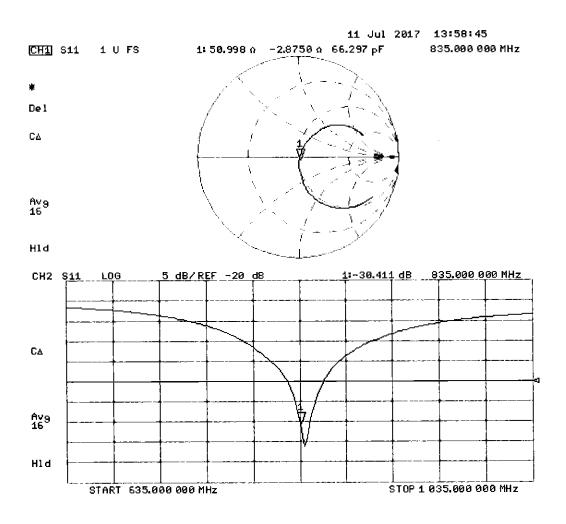
• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 62.84 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.74 W/kg


SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 3.28 W/kg

0 dB = 3.28 W/kg = 5.16 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.2, 10.2, 10.2); Calibrated: 31.05.2017;

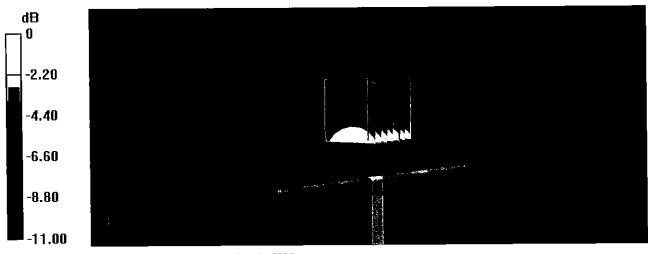
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

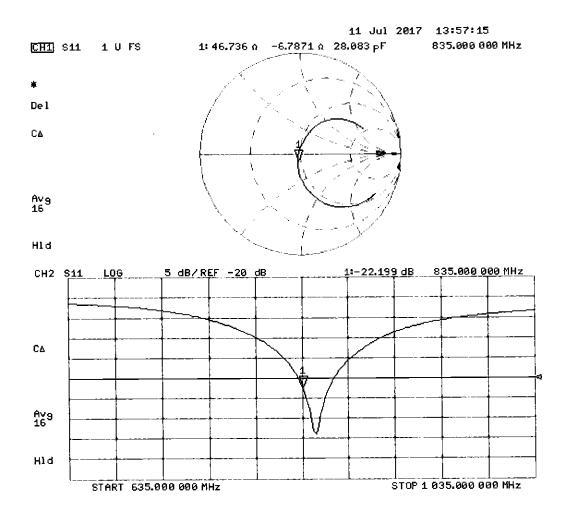
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.25 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.67 W/kg


SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 3.21 W/kg

0 dB = 3.21 W/kg = 5.07 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D835V2-4d132_Jan17

CALIBRATION CERTIFICATE

Object

D835V2 - SN:4d132

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

01/26/2017

Calibration date:

January 11, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
DAE4	SN: 601	04-Jan-17 (No. DAE4-601_Jan17)	Jan-18
Secondary Slandards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1202
Approved by:	Katja Pokovic	Technical Manager	Lelly-

Issued: January 12, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	-
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.4 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.52 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.56 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.16 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

те тольный рамонтовый при	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.0 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	••	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.50 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.80 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.64 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.46 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d132_Jan17 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω - 2.6 jΩ
Return Loss	- 29.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω - 6.1 jΩ
Return Loss	- 23.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.386 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 11.01.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 31.12.2016;

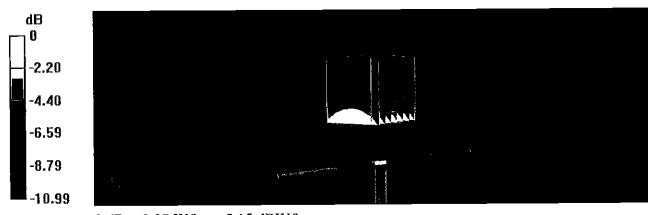
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.01.2017

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

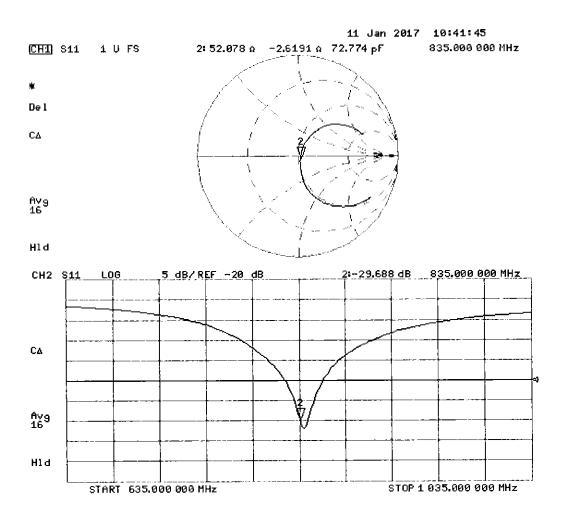
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 62.53 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.69 W/kg


SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.56 W/kg

Maximum value of SAR (measured) = 3.27 W/kg

0 dB = 3.27 W/kg = 5.15 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.01.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 31.12.2016;

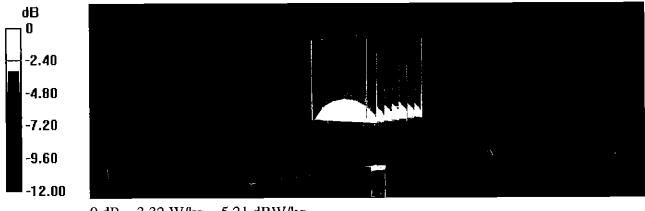
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.01.2017

• Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

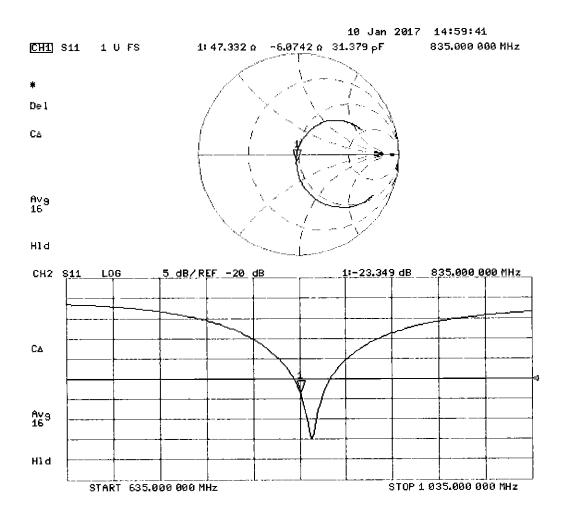
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.28 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.75 W/kg


SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.64 W/kg

Maximum value of SAR (measured) = 3.32 W/kg

0 dB = 3.32 W/kg = 5.21 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1900V2-5d148_Feb17

CALIBRATION CERTIFICATE

Object

D1900V2 - SN:5d148

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

03/06/2017

Calibration date:

February 09, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
"	SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
Reference Probe EX3DV4	SN: 601	04-Jan-17 (No. DAE4-601_Jan17)	Jan-18
DAE4	314. 001	04-0an-17 (No. DAE+ 001_0an17)	04.1.10
Secondary Standards	l id#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signatule
Approved by:	Katja Pokovic	Technical Manager	La My

Issued: February 10, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.7 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mh o /m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.33 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d148_Feb17

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.1 Ω + 5.8 jΩ
Return Loss	- 23.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.3 Ω + 7.1 jΩ
Return Loss	- 22.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 09.02.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.12.2016;

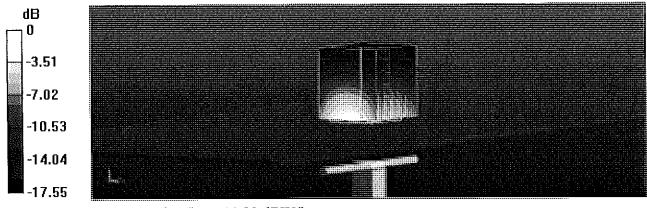
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.01.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

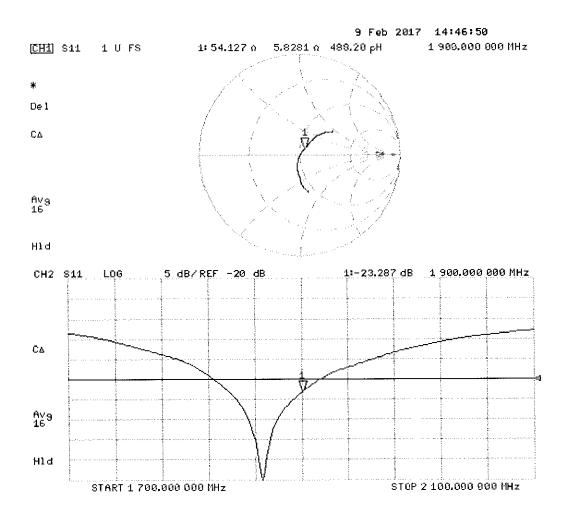
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.8 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 19.2 W/kg


SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.18 W/kg

Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.02.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.5 \text{ S/m}$; $\varepsilon_r = 54.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.03, 8.03, 8.03); Calibrated: 31.12.2016;

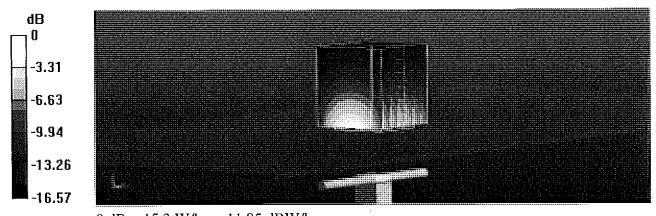
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.01.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

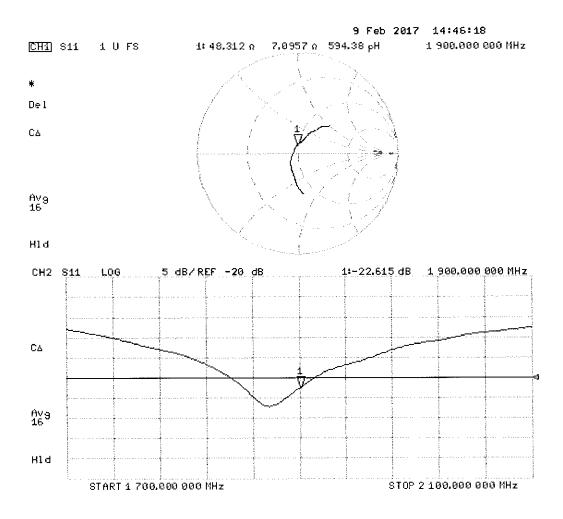
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.3 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 18.1 W/kg


SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.33 W/kg

Maximum value of SAR (measured) = 15.3 W/kg

0 dB = 15.3 W/kg = 11.85 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1750V2-1148_May17

CALIBRATION CERTIFICATE

Object D1750V2 - SN:1148

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

0(-23-2317

Calibration date:

May 09, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
Calibrated by:	Name Claudio Leubier	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	

Issued: May 11, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1148_May17

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A not applicable or not measure

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.1 7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.93 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.8 W/kg ± 16.5 % (k=2)

Page 3 of 8 Certificate No: D1750V2-1148_May17

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8 Ω - 0.7 jΩ
Return Loss	- 42.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.7 Ω - 0.5 jΩ
Return Loss	- 26.9 dB

General Antenna Parameters and Design

	Y
Electrical Delay (one direction)	1.223 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	September 30, 2014	

Certificate No: D1750V2-1148_May17 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.36 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.12.2016;

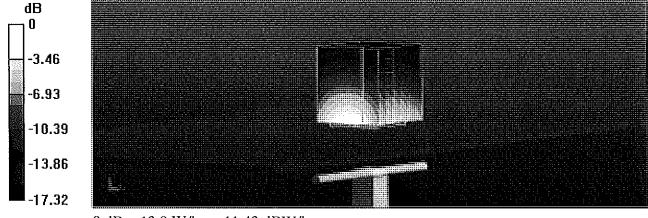
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

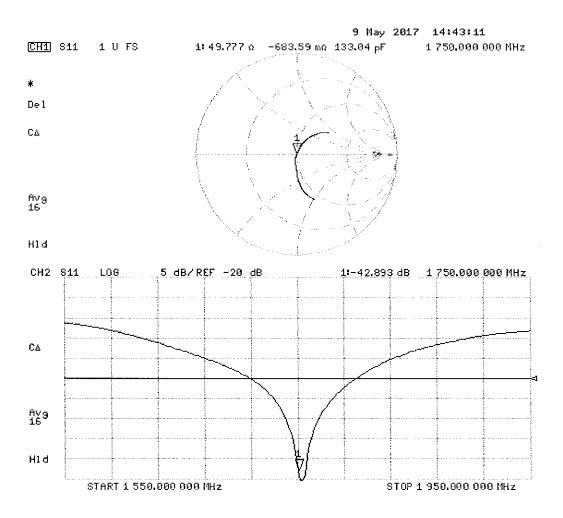
DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.4 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 16.5 W/kg


SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.83 W/kg

Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.43 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 53.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 31.12.2016;

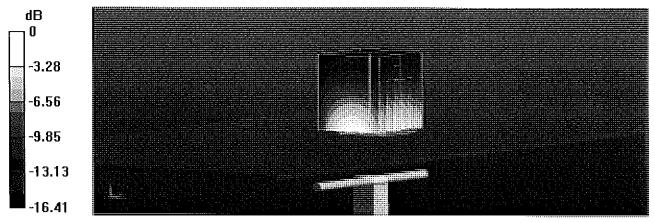
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

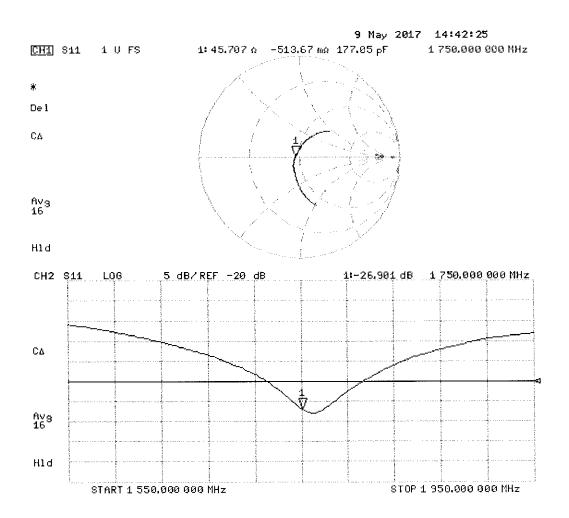
• DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.49 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 15.9 W/kg


SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.93 W/kg

Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the size.

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D2450V2-981_Jul16

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:981

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 25, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15)	Scheduled Calibration Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16
Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	Check Date (in house) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	Scheduled Check In house check: Oct-16
Calibrated by:	Name Michael Weber	Function Laboratory Technician	Signature M.K.e.S
Approved by:	Katja Pokovic	Technical Manager	XXX.

Issued: July 27, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-981_Jul16

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-981_Jul16 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature Permittivity		Conductivity	
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	1.86 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature Permittivity		Conductivity	
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.03 mho/m ± 6 %	
Body TSL temperature change during test	< 0.5 °C		****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-981_Jul16 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.2 \Omega + 3.4 j\Omega$		
Return Loss	- 26.9 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω + 4.5 jΩ
Return Loss	- 27.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 30, 2014

Certificate No: D2450V2-981_Jul16

DASY5 Validation Report for Head TSL

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 38$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.72, 7.72, 7.72); Calibrated: 15.06.2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

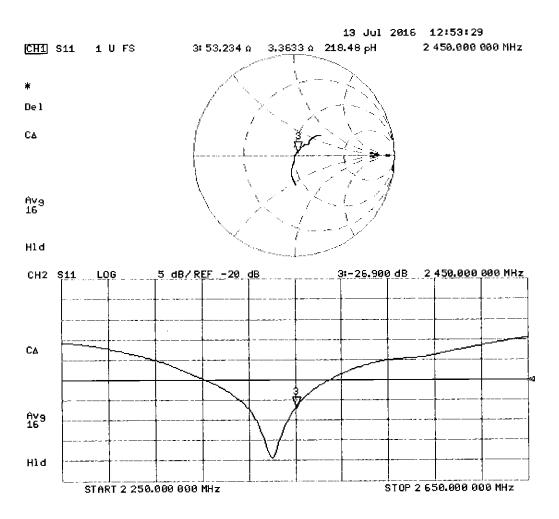
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.8 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 27.4 W/kg


SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.26 W/kg

Maximum value of SAR (measured) = 22.5 W/kg

0 dB = 22.5 W/kg = 13.52 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 25.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 15.06.2016;

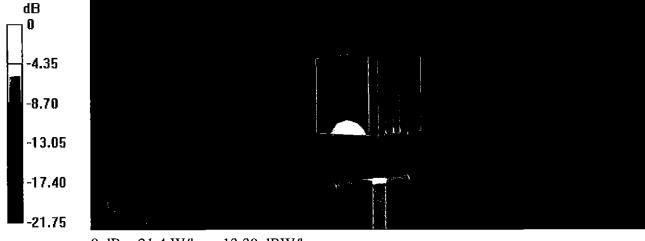
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

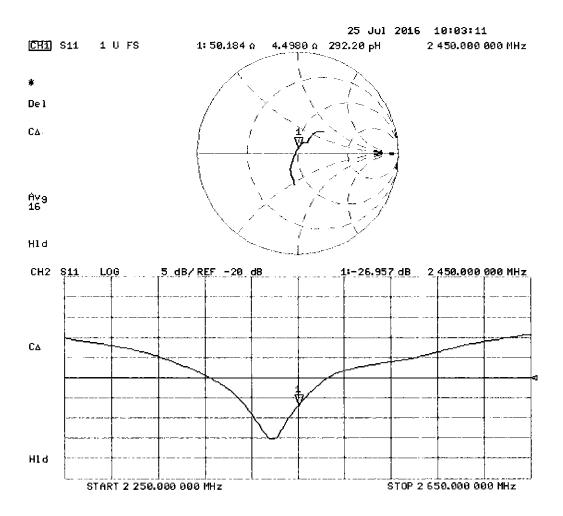
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube θ:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.1 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 26.0 W/kg


SAR(1 g) = 13 W/kg; SAR(10 g) = 6.04 W/kg

Maximum value of SAR (measured) = 21.4 W/kg

0 dB = 21.4 W/kg = 13.30 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D2450V2 – SN: 981

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Calibration date: July 24, 2017

Description: SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Agilent	8753ES	S-Parameter Network Analyzer	10/26/2016	Annual	10/26/2017	US39170118
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/14/2016	Annual	9/14/2017	1408
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2017	Annual	2/9/2018	1272
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	ES3DV3	SAR Probe	9/19/2016	Annual	9/19/2017	3287
SPEAG	ES3DV3	SAR Probe	2/10/2017	Annual	2/10/2018	3213
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1207364
Anritsu	MA2411B	Pulse Power Sensor	2/10/2017	Annual	2/10/2018	1339018
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Agilent	N5182A	MXG Vector Signal Generator	2/28/2017	Annual	2/28/2018	MY47420800
Seekonk	NC-100	Torque Wrench	11/6/2015	Biennial	11/6/2017	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A

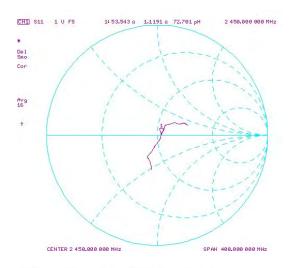
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	20K

Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 981	07/24/2017	Page 1 of 4

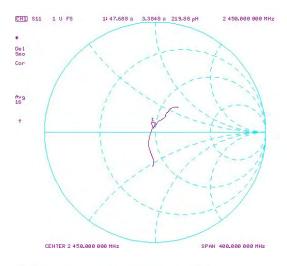
DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	70/)		(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
7/25/2016	7/24/2017	1.162	5.28	5.57	5.49%	2.47	2.56	3.64%	53.2	53.5	0.3	3.4	1.1	2.3	-26.9	-27.6	-2.60%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm		Deviation 10g (%)		Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
7/25/2016	7/24/2017	1.162	5.08	5.34	5.12%	2.38	2.39	0.42%	50.2	47.7	2.5	4.5	3.4	1.1	-27.0	-27.6	-2.20%	PASS


Object:	Date Issued:	Page 2 of 4
D2450V2 - SN: 981	07/24/2017	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Impedance & Return-Loss Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC

Certificate No: D2450V2-719_Aug17

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:719

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

8/27/

Calibration date:

August 17, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date (Certificate No.)	Scheduled Calibration
SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18
SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18
1D #	Check Date (in house)	Scheduled Check
SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
Name	Function	Signature
Michael Weber	Laboratory Technician	H.Hebes
Katja Pokovic	Technical Manager	ELK.
	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name Michael Weber	SN: 103244 04-Apr-17 (No. 217-02521) SN: 103245 04-Apr-17 (No. 217-02522) SN: 5058 (20k) 07-Apr-17 (No. 217-02528) SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) SN: 7349 31-May-17 (No. EX3-7349_May17) SN: 601 28-Mar-17 (No. DAE4-601_Mar17) ID # Check Date (in house) SN: GB37480704 07-Oct-15 (in house check Oct-16) SN: US37292783 07-Oct-15 (in house check Oct-16) SN: MY41092317 07-Oct-15 (in house check Oct-16) SN: 100972 15-Jun-15 (in house check Oct-16) SN: US37390585 18-Oct-01 (in house check Oct-16) Name Function Michael Weber Laboratory Technician

Issued: August 17, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-719_Aug17

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-719_Aug17

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V 52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	W

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-719_Aug17

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$55.7 \Omega + 7.0 j\Omega$
Return Loss	- 21.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.4 Ω + 8.1 jΩ
Return Loss	- 21.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns
	<u> </u>

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 10, 2002

DASY5 Validation Report for Head TSL

Date: 17.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;

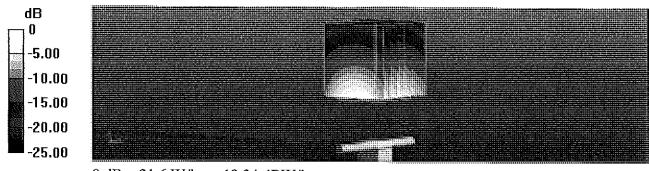
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

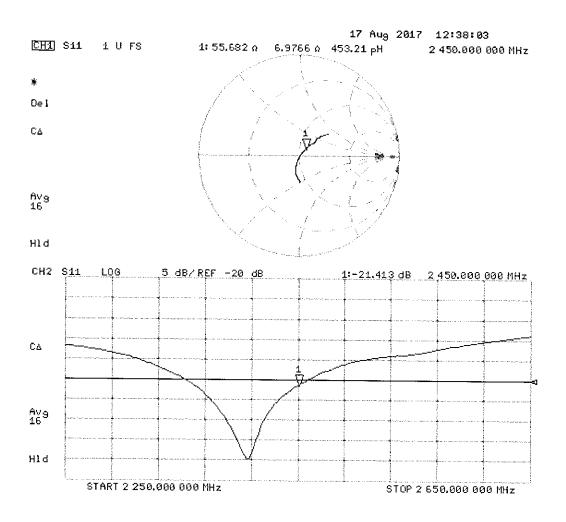
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 112.8 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 26.9 W/kg


SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.15 W/kg

Maximum value of SAR (measured) = 21.6 W/kg

0 dB = 21.6 W/kg = 13.34 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 17.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\varepsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;

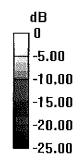
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

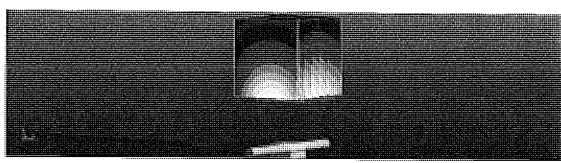
Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

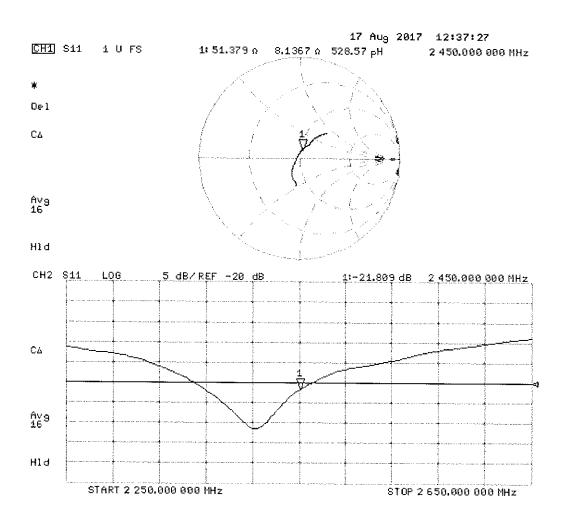
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 103.0 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 25.2 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6 W/kg


Maximum value of SAR (measured) = 19.8 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

Impedance Measurement Plot for Body TSL

