

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

DUAL BAND PHONE WITH BT & WLAN

MODEL NUMBER: LG-P769, LGP769, P769

FCC ID: ZNFP769

REPORT NUMBER: 12U14516

ISSUE DATE: 2012-08-07

Prepared for

LG ELECTRONICS USA 1000 SYLVAN AVENUE ENGLEWOOD CLIFFS NJ, 07632, USA

> Prepared by UL LLC

1285 WALT WHITMAN RD. MELVILLE, NY 11747, U.S.A.

TEL: (631) 271-6200 FAX: (877) 854-3577

Revision History

Rev.	Issue Date	Revisions	Revised By
	08/07/12	Initial Issue	M. Antola

TABLE OF CONTENTS

1.		1. ATTESTATION OF TEST RESULTS	5
2		2. TEST METHODOLOGY	6
3		3. FACILITIES AND ACCREDITATION	6
4		4. CALIBRATION AND UNCERTAINTY	6
	4.	4.1. MEASURING INSTRUMENT CALIBRATION	6
	4.	4.2. SAMPLE CALCULATION	6
	4.	4.3. MEASUREMENT UNCERTAINTY	6
5		5. EQUIPMENT UNDER TEST	7
	5.	5.1. DESCRIPTION OF EUT	7
	5.	5.2. MAXIMUM OUTPUT POWER	7
	5.	5.3. DESCRIPTION OF AVAILABLE ANTENNAS	7
	5.	5.4. SOFTWARE AND FIRMWARE	7
	5.	5.5. WORST-CASE CONFIGURATION AND MODE	
	5.	5.6. DESCRIPTION OF TEST SETUP	
6		6. TEST AND MEASUREMENT EQUIPMENT	10
7		7. ANTENNA PORT TEST RESULTS	12
7.		7. ANTENNA PORT TEST RESULTS7.1. 802.11b MODE IN THE 2.4 GHz BAND	
7.	7.	7.1. 802.11b MODE IN THE 2.4 GHz BAND	12 12
7.	7.	7.1. 802.11b MODE IN THE 2.4 GHz BAND	12 12 16
7.	7.	7.1. 802.11b MODE IN THE 2.4 GHz BAND	12 12 16 20
7.	7.	7.1. 802.11b MODE IN THE 2.4 GHz BAND	12 16 20 24
7.	7.	7.1. 802.11b MODE IN THE 2.4 GHz BAND	12 16 20 24
7.	7	7.1. 802.11b MODE IN THE 2.4 GHz BAND 7.1.1. 6 dB BANDWIDTH 7.1.2. 99% BANDWIDTH 7.1.3. OUTPUT POWER 7.1.4. AVERAGE POWER 7.1.5. POWER SPECTRAL DENSITY 7.1.6. CONDUCTED SPURIOUS EMISSIONS 7.2. 802.11g MODE IN THE 2.4 GHz BAND	
7.	7.	7.1. 802.11b MODE IN THE 2.4 GHz BAND 7.1.1. 6 dB BANDWIDTH 7.1.2. 99% BANDWIDTH 7.1.3. OUTPUT POWER 7.1.4. AVERAGE POWER 7.1.5. POWER SPECTRAL DENSITY 7.1.6. CONDUCTED SPURIOUS EMISSIONS 7.2. 802.11g MODE IN THE 2.4 GHz BAND 7.2.1. 6 dB BANDWIDTH	
7.	7.	7.1. 802.11b MODE IN THE 2.4 GHz BAND. 7.1.1. 6 dB BANDWIDTH 7.1.2. 99% BANDWIDTH 7.1.3. OUTPUT POWER 7.1.4. AVERAGE POWER 7.1.5. POWER SPECTRAL DENSITY 7.1.6. CONDUCTED SPURIOUS EMISSIONS. 7.2. 802.11g MODE IN THE 2.4 GHz BAND 7.2.1. 6 dB BANDWIDTH 7.2.2. 99% BANDWIDTH	
7.	7	7.1. 802.11b MODE IN THE 2.4 GHz BAND. 7.1.1. 6 dB BANDWIDTH. 7.1.2. 99% BANDWIDTH. 7.1.3. OUTPUT POWER. 7.1.4. AVERAGE POWER. 7.1.5. POWER SPECTRAL DENSITY. 7.1.6. CONDUCTED SPURIOUS EMISSIONS. 7.2. 802.11g MODE IN THE 2.4 GHz BAND. 7.2.1. 6 dB BANDWIDTH. 7.2.2. 99% BANDWIDTH. 7.2.3. OUTPUT POWER.	
7.	7	7.1. 802.11b MODE IN THE 2.4 GHz BAND. 7.1.1. 6 dB BANDWIDTH 7.1.2. 99% BANDWIDTH 7.1.3. OUTPUT POWER 7.1.4. AVERAGE POWER 7.1.5. POWER SPECTRAL DENSITY. 7.1.6. CONDUCTED SPURIOUS EMISSIONS. 7.2. 802.11g MODE IN THE 2.4 GHz BAND 7.2.1. 6 dB BANDWIDTH 7.2.2. 99% BANDWIDTH 7.2.3. OUTPUT POWER 7.2.4. AVERAGE POWER 7.2.5. POWER SPECTRAL DENSITY	
7.	7	7.1. 802.11b MODE IN THE 2.4 GHz BAND. 7.1.1. 6 dB BANDWIDTH. 7.1.2. 99% BANDWIDTH. 7.1.3. OUTPUT POWER. 7.1.4. AVERAGE POWER. 7.1.5. POWER SPECTRAL DENSITY. 7.1.6. CONDUCTED SPURIOUS EMISSIONS. 7.2. 802.11g MODE IN THE 2.4 GHz BAND. 7.2.1. 6 dB BANDWIDTH. 7.2.2. 99% BANDWIDTH. 7.2.3. OUTPUT POWER. 7.2.4. AVERAGE POWER.	
7.	7	7.1. 802.11b MODE IN THE 2.4 GHz BAND 7.1.1. 6 dB BANDWIDTH 7.1.2. 99% BANDWIDTH 7.1.3. OUTPUT POWER 7.1.4. AVERAGE POWER 7.1.5. POWER SPECTRAL DENSITY 7.1.6. CONDUCTED SPURIOUS EMISSIONS 7.2. 802.11g MODE IN THE 2.4 GHz BAND 7.2.1. 6 dB BANDWIDTH 7.2.2. 99% BANDWIDTH 7.2.3. OUTPUT POWER 7.2.4. AVERAGE POWER 7.2.5. POWER SPECTRAL DENSITY 7.2.6. CONDUCTED SPURIOUS EMISSIONS 7.3. 802.11n HT20 MODE IN THE 2.4 GHz BAND	
7.	7	7.1. 802.11b MODE IN THE 2.4 GHz BAND 7.1.1. 6 dB BANDWIDTH 7.1.2. 99% BANDWIDTH 7.1.3. OUTPUT POWER 7.1.4. AVERAGE POWER 7.1.5. POWER SPECTRAL DENSITY 7.1.6. CONDUCTED SPURIOUS EMISSIONS 7.2. 802.11g MODE IN THE 2.4 GHz BAND 7.2.1. 6 dB BANDWIDTH 7.2.2. 99% BANDWIDTH 7.2.3. OUTPUT POWER 7.2.4. AVERAGE POWER 7.2.5. POWER SPECTRAL DENSITY 7.2.6. CONDUCTED SPURIOUS EMISSIONS 7.3. 802.11n HT20 MODE IN THE 2.4 GHz BAND 7.3.1. 6 dB BANDWIDTH	
7.	7	7.1. 802.11b MODE IN THE 2.4 GHz BAND. 7.1.1. 6 dB BANDWIDTH. 7.1.2. 99% BANDWIDTH. 7.1.3. OUTPUT POWER. 7.1.4. AVERAGE POWER. 7.1.5. POWER SPECTRAL DENSITY. 7.1.6. CONDUCTED SPURIOUS EMISSIONS. 7.2. 802.11g MODE IN THE 2.4 GHz BAND. 7.2.1. 6 dB BANDWIDTH. 7.2.2. 99% BANDWIDTH. 7.2.3. OUTPUT POWER. 7.2.4. AVERAGE POWER. 7.2.5. POWER SPECTRAL DENSITY. 7.2.6. CONDUCTED SPURIOUS EMISSIONS. 7.3. 802.11n HT20 MODE IN THE 2.4 GHz BAND. 7.3.1. 6 dB BANDWIDTH. 7.3.2. 99% BANDWIDTH.	
7.	7	7.1. 802.11b MODE IN THE 2.4 GHz BAND. 7.1.1. 6 dB BANDWIDTH. 7.1.2. 99% BANDWIDTH. 7.1.3. OUTPUT POWER. 7.1.4. AVERAGE POWER. 7.1.5. POWER SPECTRAL DENSITY. 7.1.6. CONDUCTED SPURIOUS EMISSIONS. 7.2. 802.11g MODE IN THE 2.4 GHz BAND. 7.2.1. 6 dB BANDWIDTH. 7.2.2. 99% BANDWIDTH. 7.2.3. OUTPUT POWER. 7.2.4. AVERAGE POWER. 7.2.5. POWER SPECTRAL DENSITY. 7.2.6. CONDUCTED SPURIOUS EMISSIONS. 7.3. 802.11n HT20 MODE IN THE 2.4 GHz BAND. 7.3.1. 6 dB BANDWIDTH. 7.3.2. 99% BANDWIDTH. 7.3.3. OUTPUT POWER.	
7.	7	7.1. 802.11b MODE IN THE 2.4 GHz BAND 7.1.1. 6 dB BANDWIDTH 7.1.2. 99% BANDWIDTH 7.1.3. OUTPUT POWER 7.1.4. AVERAGE POWER 7.1.5. POWER SPECTRAL DENSITY 7.1.6. CONDUCTED SPURIOUS EMISSIONS 7.2. 802.11g MODE IN THE 2.4 GHz BAND 7.2.1. 6 dB BANDWIDTH 7.2.2. 99% BANDWIDTH 7.2.3. OUTPUT POWER 7.2.4. AVERAGE POWER 7.2.5. POWER SPECTRAL DENSITY 7.2.6. CONDUCTED SPURIOUS EMISSIONS 7.3. 802.11n HT20 MODE IN THE 2.4 GHz BAND 7.3.1. 6 dB BANDWIDTH 7.3.2. 99% BANDWIDTH 7.3.3. OUTPUT POWER 7.3.4. AVERAGE POWER 7.3.5. POWER SPECTRAL DENSITY 7.3.5. POWER SPECTRAL DENSITY 7.3.6. OUTPUT POWER 7.3.7.5. POWER SPECTRAL DENSITY 7.3.7.5. POWER SPECTRAL DENSITY	
7.	7	7.1. 802.11b MODE IN THE 2.4 GHz BAND 7.1.1. 6 dB BANDWIDTH 7.1.2. 99% BANDWIDTH 7.1.3. OUTPUT POWER 7.1.4. AVERAGE POWER 7.1.5. POWER SPECTRAL DENSITY 7.1.6. CONDUCTED SPURIOUS EMISSIONS 7.2. 802.11g MODE IN THE 2.4 GHz BAND 7.2.1. 6 dB BANDWIDTH 7.2.2. 99% BANDWIDTH 7.2.3. OUTPUT POWER 7.2.4. AVERAGE POWER 7.2.5. POWER SPECTRAL DENSITY 7.2.6. CONDUCTED SPURIOUS EMISSIONS 7.3. 802.11n HT20 MODE IN THE 2.4 GHz BAND 7.3.1. 6 dB BANDWIDTH 7.3.2. 99% BANDWIDTH 7.3.3. OUTPUT POWER 7.3.4. AVERAGE POWER 7.3.4. AVERAGE POWER	

	a MODE IN THE 5.8 GHz BAND	
7.4.1. 6 c	B BANDWIDTH	84
	% BANDWIDTH	
	JTPUT POWER	
	/ERAGE POWER	
	OWER SPECTRAL DENSITY	
7.4.6. CC	ONDUCTED SPURIOUS EMISSIONS	.101
	n HT20 MODE IN THE 5.8 GHz BAND	
	B BANDWIDTH	
	% BANDWIDTH	
	JTPUT POWER	
	/ERAGE POWER	
7.5.5. PC	OWER SPECTRAL DENSITY	.121
7.5.6. CC	ONDUCTED SPURIOUS EMISSIONS	.125
8. RADIATED	TEST RESULTS	.132
8.1. LIMITS	S AND PROCEDURE	.132
8.2. TRANS	SMITTER ABOVE 1 GHz	.133
8.2.1. TX	(ABOVE 1 GHz FOR 802.11b 1TX MODE IN THE 2.4 GHz BAND	133
8.2.2. TX	(ABOVE 1 GHz FOR 802.11g 1TX MODE IN THE 2.4 GHz BAND	.138
8.2.3. TX	(ABOVE 1 GHz FOR 802.11n HT20 1TX MODE IN THE 2.4 GHz BAND	.143
8.2.4. TR	RANSMITTER ABOVE 1 GHz FOR 802.11a MODE IN THE 5.8 GHz BAND $$	148
8.2.5. TR	RANSMITTER ABOVE 1 GHz FOR 802.11 ${\sf n}$ MODE IN THE 5.8 GHz BAND	.151
8.3. WORS	T-CASE BELOW 1 GHz	.154
9. AC POWER	R LINE CONDUCTED EMISSIONS	.158
10 SETUD D	PHOTOS	162

FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: LG ELECTRONICS USA

1000 SYLVAN AVENUE

ENGLEWOOD, NJ 07632, USA

EUT DESCRIPTION: DUAL BAND PHONE WITH BT & WLAN

MODEL: LG-P769, LGP769, P769

SERIAL NUMBER: 205KPYR203330 & 205KPCA203331

DATE TESTED: 2012-07-26 to 2012-08-07

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards, using test results reported in the test report documents referenced below and/or documentation furnished by the applicant. All indications of Pass/Fail in this report are opinions expressed by Underwriters Laboratories Inc. based on interpretations of these calculations. The results show that the equipment is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation, as described by the referenced documents. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL By: Tested By:

Bob DeLisi

WiSE Principal Engineer

UL LLC

Mike Antola

WiSE Project Lead

Mirtel 12

UL LLC

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1285 Walt Whitman Rd. Melville, NY 11747, USA.

UL Melville is accredited by NVLAP, Laboratory Code 100255-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/1002550.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.3 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.00 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11b/g/n transceiver in the 2.4GHz band and is an 802.11 a/n transceiver in the 5GHz band.

The radio module is manufactured by Broadcom utilizing WLAN chipset: BCM4330X.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2412 - 2462	802.11b	17.70	58.88
2412 - 2462	802.11g	15.90	38.90
2412 - 2462	802.11n	13.90	24.55
5745 - 5825	802.11a	14.00	25.12
5745 - 5825	802.11n	13.00	19.95

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PIFA antenna, with a maximum gain of -0.45 dBi.

5.4. SOFTWARE AND FIRMWARE

The Baseband version was LGP769AT-00-V08_RevC-310-260-JUN-16-2012+0. The Kernel version was 3.0.21. The HW version was Rev.C.

The firmware installed in the EUT during testing was Version 4.0.4.

The EUT software version installed during testing LGP769-V08e.

The test utility software used during testing was WLAN Test and Module Test.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

In the 2.4GHz band the worse-case data rates for 802.11b/g/n were 1Mpbs, 6Mbps and 6.5Mbps, respectively. In the 5GHz band the worse-case data rates for 802.11a/n were 6Mbps and 6.5Mbps, respectively.

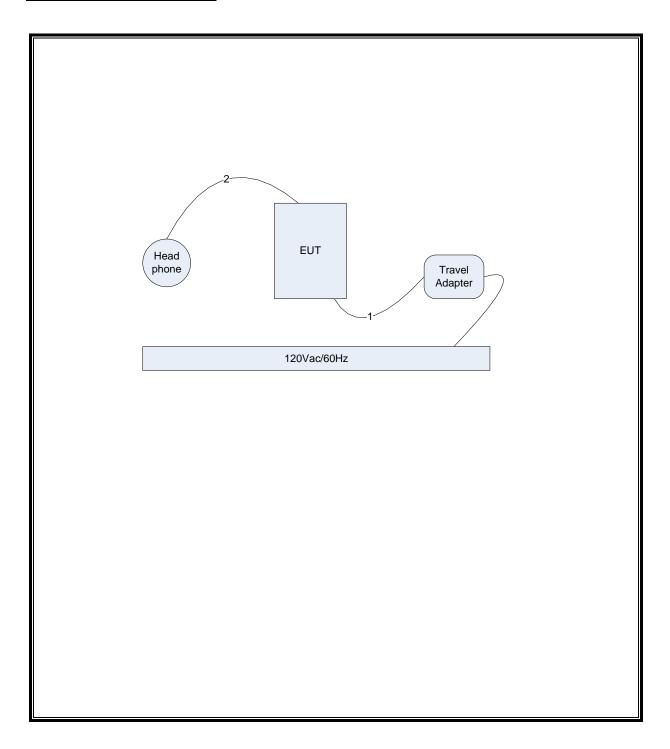
It was determined that the x-axis yielded the worse-case orientation.

Page 7 of 169

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Number FCC ID						
Travel Adapter	LG Electronics	MCS-02WR	RA250126368	N/A		
Headphones	LG Electronics	N/A	N/A	N/A		


I/O CABLES

	I/O CABLE LIST					
Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks
1	USB	1	USB	Shielded	<3M	
2	Headphone	1	Audio	Unshielded	<3M	

TEST SETUP

The EUT is a stand-alone device.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

DATE: 2012-08-07

Radiated Emissions					
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date
30-1000MHz		•			
EMI Receiver	Rohde & Schwarz	ESIB26	ME5B-081	2012-01-30	2013-01-30
Bicon Antenna	Schaffner	VBA6106A	54		2013-04-10
Log-P Antenna	Schaffner	UPA6109	44067	2012-05-16	
Switch Driver	HP	11713A	ME7A-627	N/A	N/A
System Controller	Sunol Sciences	SC99V	44396	N/A	N/A
Camera Controller	Panasonic	WV-CU254	44395	N/A	N/A
RF Switch Box	UL	1	44398	N/A	N/A
Measurement Software	UL	Version 9.5	44740	N/A	N/A
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2010-12-07	2012-12-07
Multimeter	Fluke	83111	ME5B-305	2012-02-01	2013-02-28
Above 1GHz (Band Optimized Sy	stem)				
	Rohde &				
EMI Receiver	Schwarz	ESIB40	34968	2012-03-06	
Horn Antenna (1-2 GHz)	ETS	3161-01	51442		See * below
Horn Antenna (2-4 GHz)	ETS	3161-02	48107	2007-09-27	See * below
Horn Antenna (4-8 GHz)	ETS	3161-03	48106	2007-09-27	See * below
Horn Antenna (8-12 GHz)	ETS	3160-07	8933	2008-11-24	See * below
Horn Antenna (12-18 GHz)	ETS	3160-08	8932	2007-09-27	See * below
Horn Antenna (18-26.5 GHz)	ETS	3160-09	8947	2007-09-26	See * below
Horn Antenna (26.5-40 GHz)	ETS	3160-10	73004	2007-09-26	See * below
Signal Path Controller	HP	11713A	50250	N/A	N/A
Gain Controller	HP	11713A	50251	N/A	N/A
RF Switch / Preamp Fixture	UL	BOMS1	50249	N/A	N/A
System Controller	UL	BOMS2	50252	N/A	N/A
Measurement Software	UL	Version 9.5	44740	N/A	N/A
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2010-12-07	2012-12-07
Multimeter	Fluke	83111	ME5B-305	2012-02-01	2013-02-28

^{* -} Note: As allowed by the calibration standard ANSI C63.4 Section 4.4.2, standard gain horns need only a one-time calibration. Only if physical damage occurs will the horn antenna require re-calibration.

^{*} Gain standard horn antennas (sometimes called standard gain horn antennas) need not be calibrated beyond that which is provided by the manufacturer unless they are damaged or deterioration is suspected, or they are used at a distance closer than $2D^2/\lambda$. Gain standard horn antennas have gains that are fixed by their dimensions and dimensional tolerances.

Conducted Antenna Port Tests						
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date	
Spectrum Analyzer	Agilent	E4446A	72822	2012-01-31	2013-02-28	
Power Sensor	Rohde & Schwarz	NRP-Z81	73137	2011-09-27	2012-09-27	
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	43733	2012-03-13	2014-03-13	
Multimeter	Fluke	83III	ME5B-305	2012-02-01	2013-02-28	

Conducted Emissions - Mains						
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date	
Conducted Emissions – GP 1						
	Rohde &					
EMI Receiver	Schwarz	ESCI7	75141	2012-01-05	2013-01-05	
LISN	Solar	9252-50-R-24-BNC	ME5A-636	2012-02-03	2013-02-28	
Switch Driver	HP	11713A	44397	N/A	N/A	
RF Switch Box	UL	4	44404	N/A	N/A	
Measurement Software	UL	Version 9.5	44736	N/A	N/A	
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	43734	2012-03-13	2014-03-13	
Multimeter	Fluke	83III	ME5B-305	2012-02-01	2013-02-28	

7. ANTENNA PORT TEST RESULTS

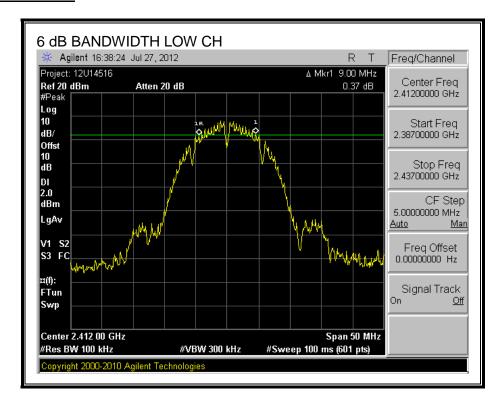
7.1. 802.11b MODE IN THE 2.4 GHz BAND

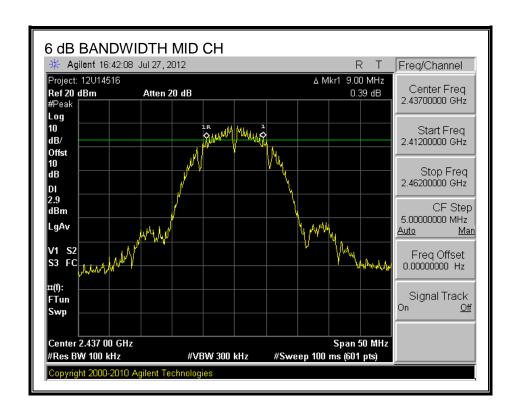
7.1.1. 6 dB BANDWIDTH

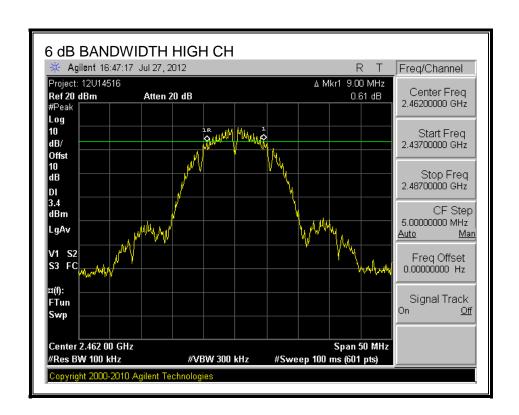
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.

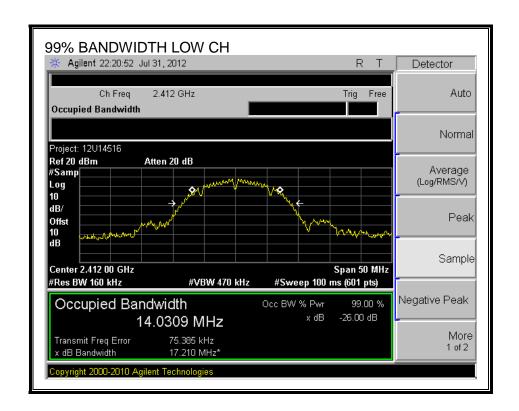

TEST PROCEDURE

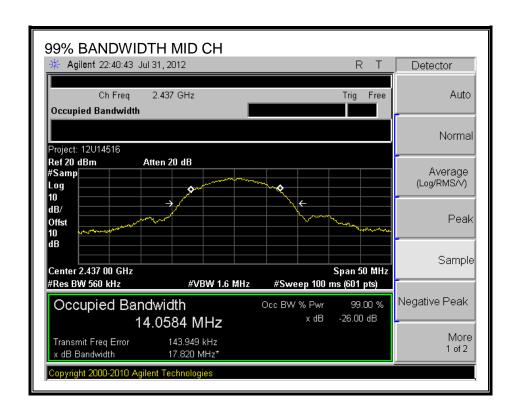

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the 6dB BW and the VBW is set to ≥ 3 times the RBW. The sweep time is coupled.

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2412	9.0000	0.5
Middle	2437	9.0000	0.5
High	2462	9.0000	0.5

6 dB BANDWIDTH

7.1.2. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

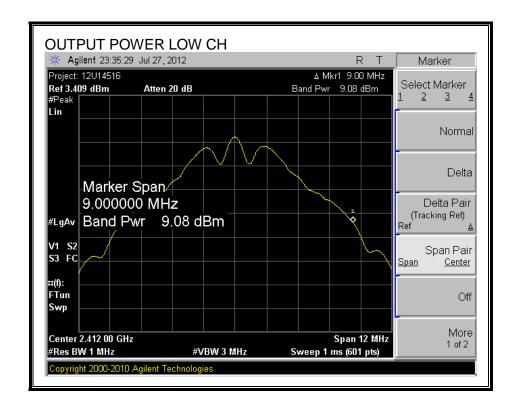
Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2412	14.0309
Middle	2437	14.0584
High	2462	14.2575

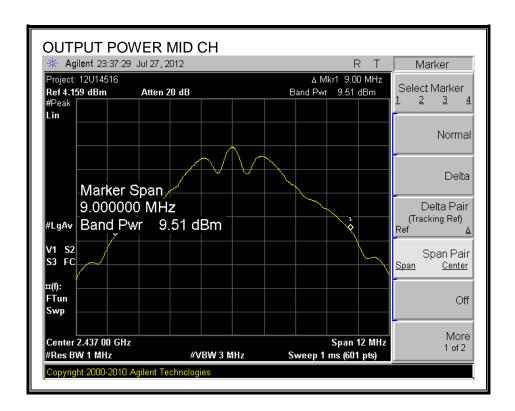
7.1.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4


The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.


TEST PROCEDURE


Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

Channel	Frequency	Measured	Offset	Output	Limit	Margin
		Reading		Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
Low	2412	9.08	10	19.08	30	-10.92
Middle	2437	9.51	10	19.51	30	-10.49
High	2462	10.22	10	20.22	30	-9.78

OUTPUT POWER

7.1.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10 dB (including 10 dB pad and 0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

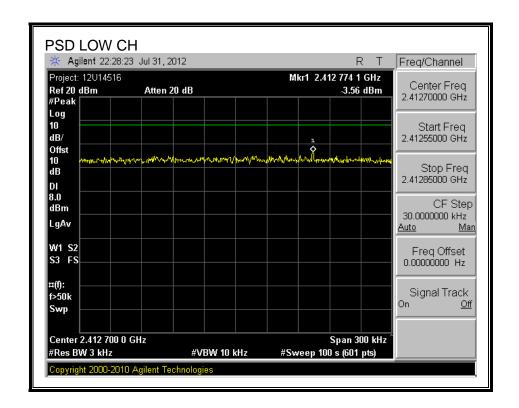
Channel	Frequency (MHz)	AV power (dBm)
Low	2412	16.6
Middle	2437	17.2
High	2462	17.7

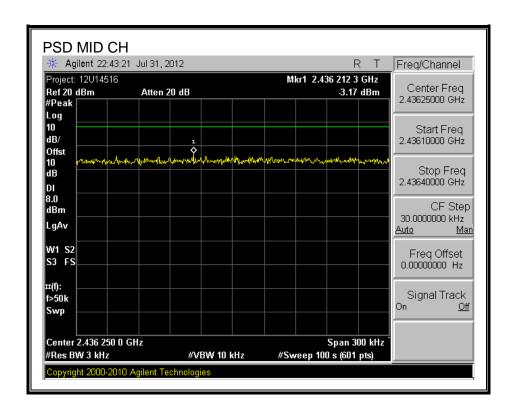
7.1.5. POWER SPECTRAL DENSITY

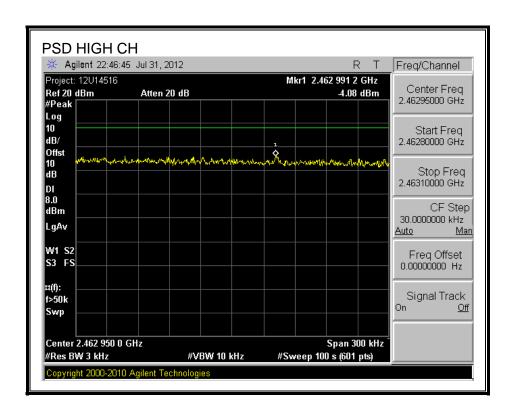
LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-3.56	8	-11.56
Middle	2437	-3.17	8	-11.17
High	2462	-4.08	8	-12.08

POWER SPECTRAL DENSITY

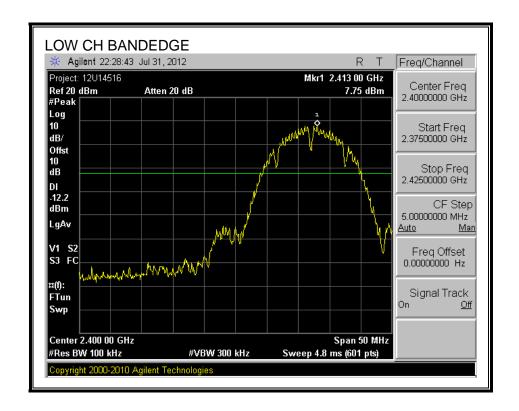
7.1.6. CONDUCTED SPURIOUS EMISSIONS

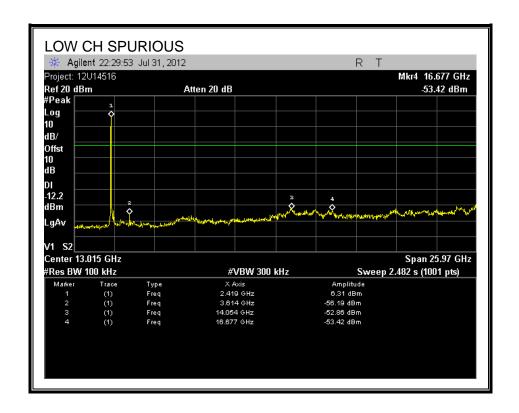
LIMITS

FCC §15.247 (d)

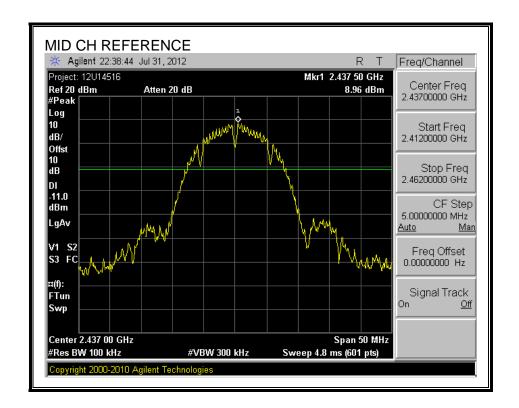
IC RSS-210 A8.5

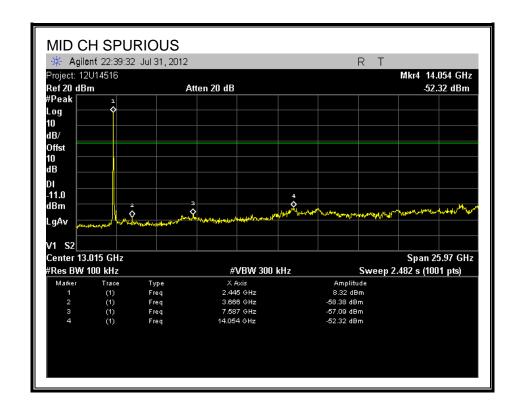
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

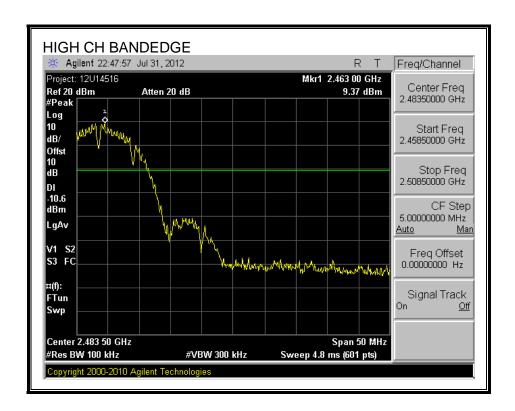

TEST PROCEDURE

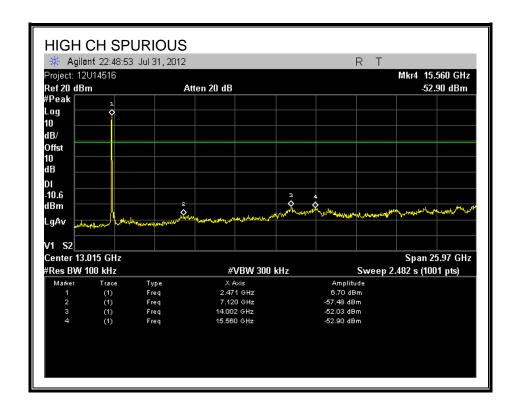

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

REPORT NO: 12U14516 FCC ID: ZNFP769 DATE: 2012-08-07

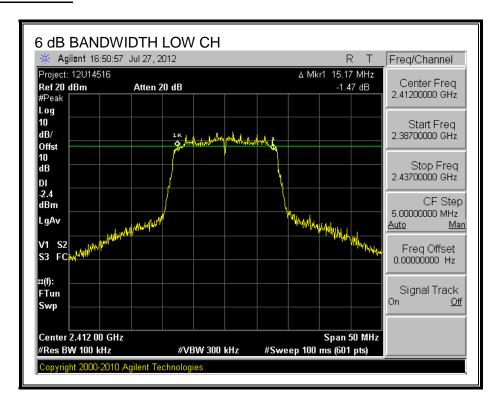
7.2. 802.11g MODE IN THE 2.4 GHz BAND

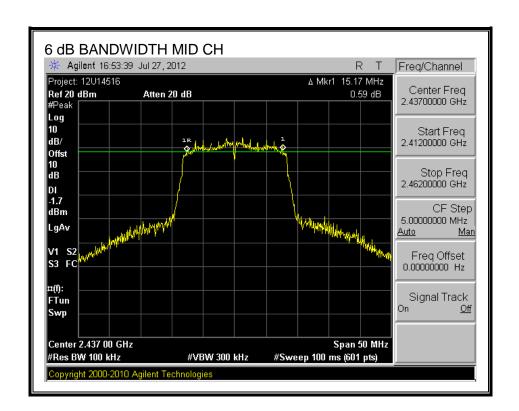
7.2.1. 6 dB BANDWIDTH

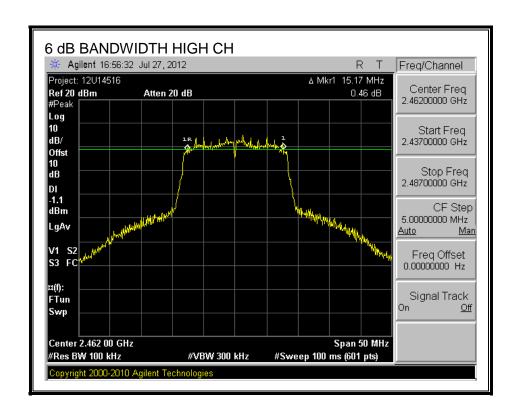
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE

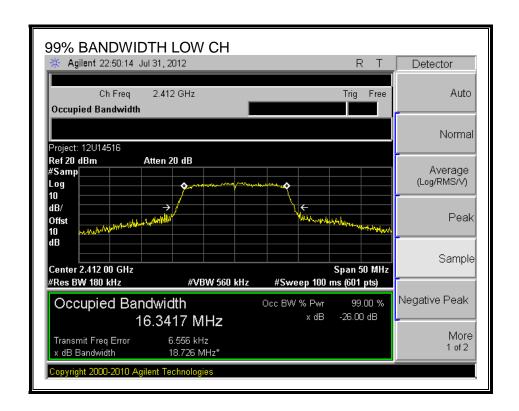

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the 6dB BW and the VBW is set to \geq 3 times the RBW. The sweep time is coupled.

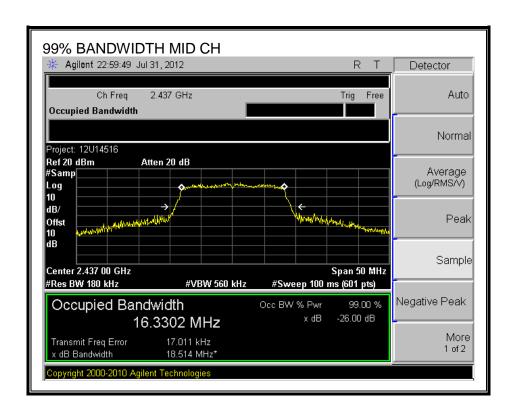
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2412	15.1700	0.5
Middle	2437	15.1700	0.5
High	2462	15.1700	0.5

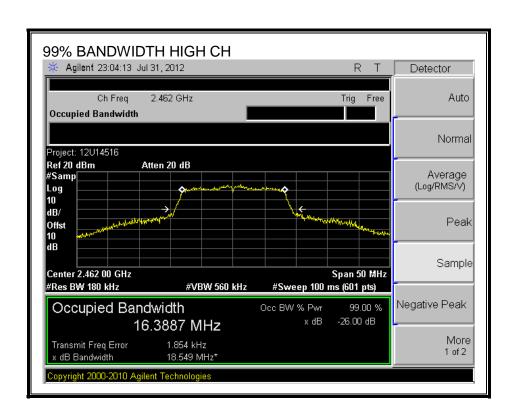
6 dB BANDWIDTH

7.2.2. 99% BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	16.3417
Middle	2437	16.3302
High	2462	16.3887

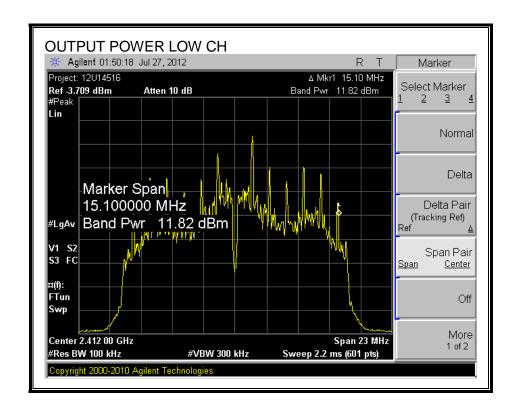
99% BANDWIDTH

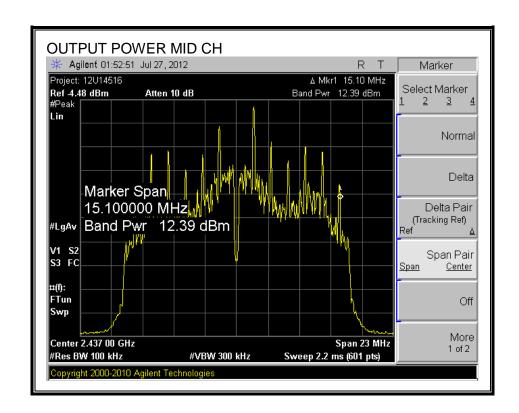
7.2.3. OUTPUT POWER

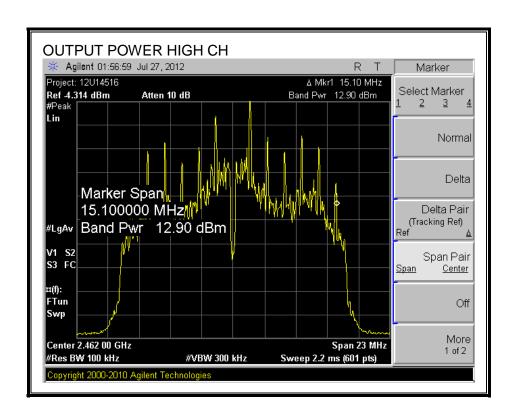
LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4


The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.


TEST PROCEDURE


Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

Channel	Frequency	Measured	Offset	Output	Limit	Margin
		Reading		Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
Low	2412	11.82	10	21.82	30	-8.18
Middle	2437	12.39	10	22.39	30	-7.61
High	2462	12.90	10	22.90	30	-7.10

OUTPUT POWER

7.2.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10 dB (including 10 dB pad and 0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

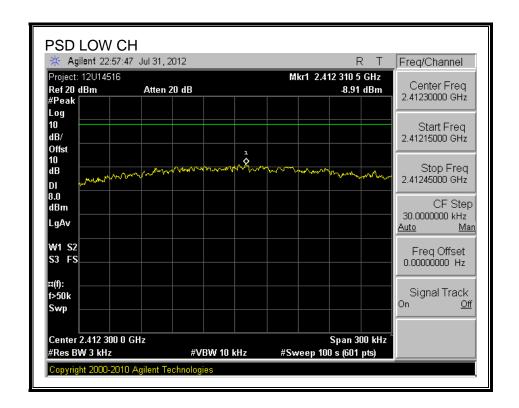
Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	14.50
Middle	2437	15.40
High	2462	15.90

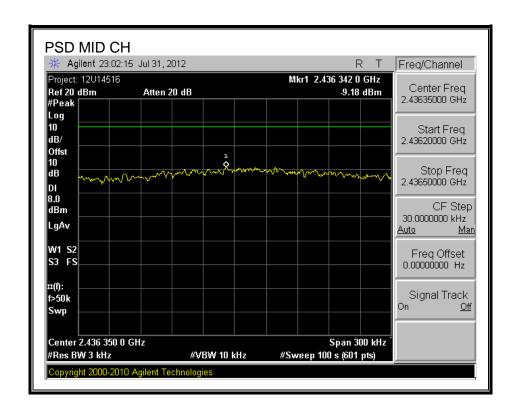
7.2.5. POWER SPECTRAL DENSITY

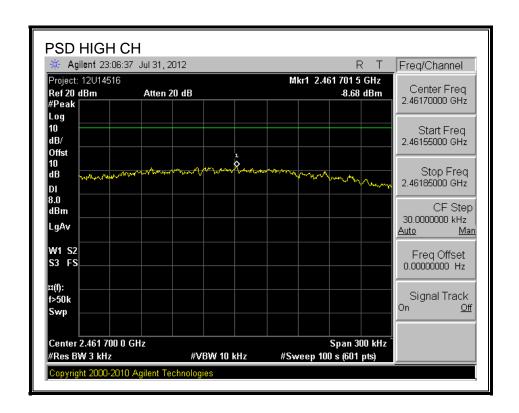
LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-8.91	8	-16.91
Middle	2437	-9.18	8	-17.18
High	2462	-8.68	8	-16.68

POWER SPECTRAL DENSITY

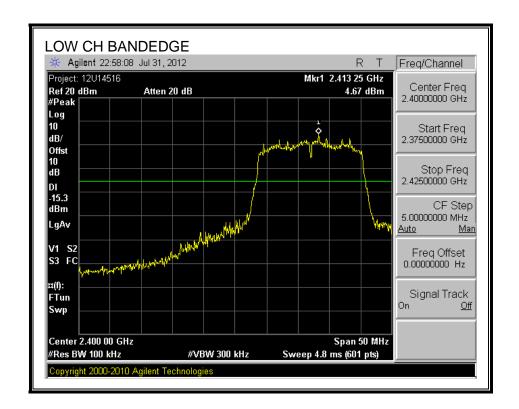
7.2.6. CONDUCTED SPURIOUS EMISSIONS

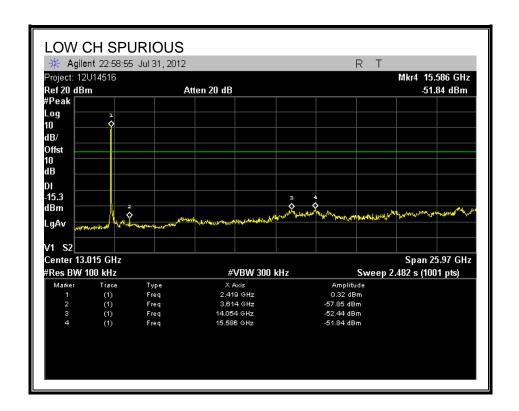
LIMITS

FCC §15.247 (d)

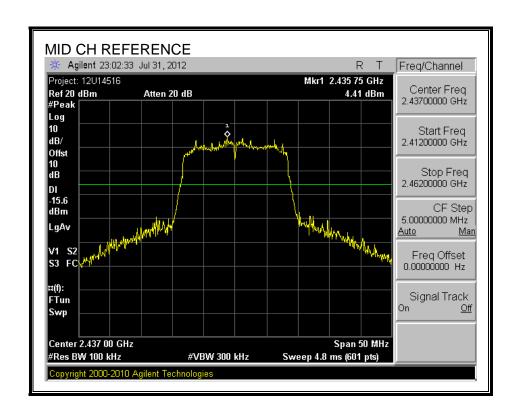
IC RSS-210 A8.5

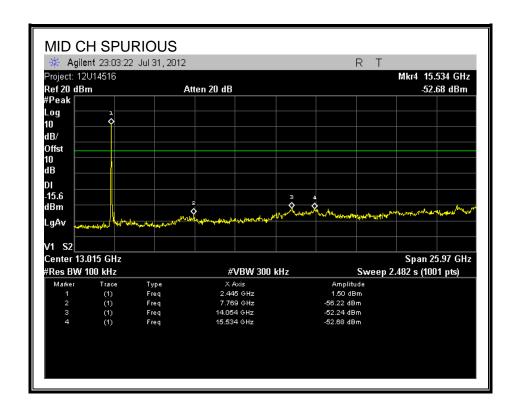
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

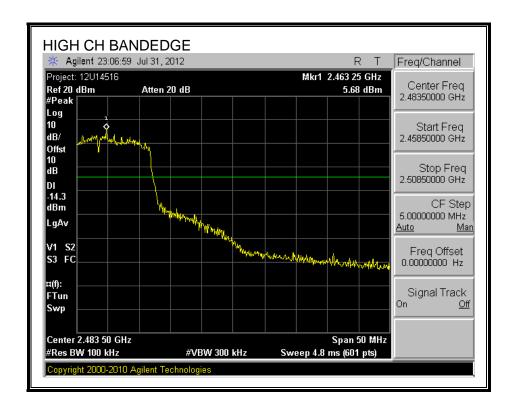

TEST PROCEDURE

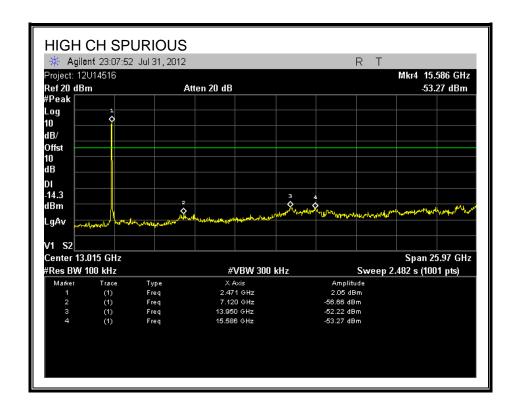

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

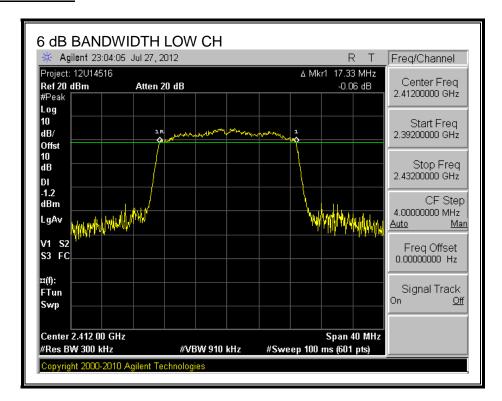
7.3. 802.11n HT20 MODE IN THE 2.4 GHz BAND

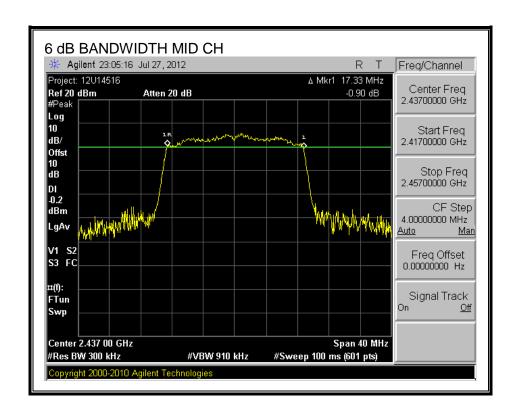
7.3.1. 6 dB BANDWIDTH

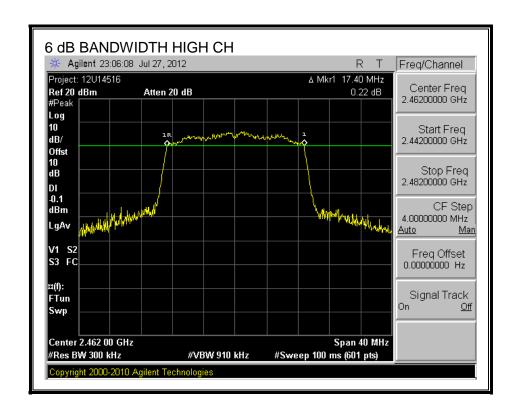
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE

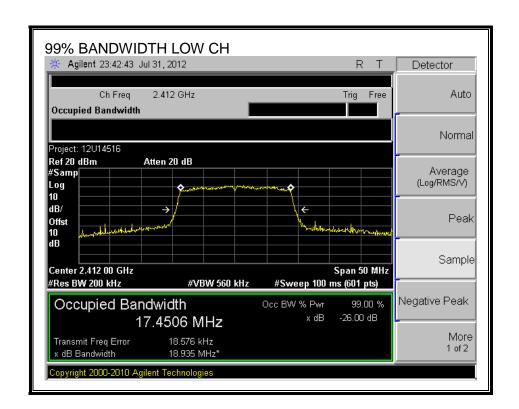

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the 6dB BW and the VBW is set to ≥ 3 times the RBW. The sweep time is coupled.

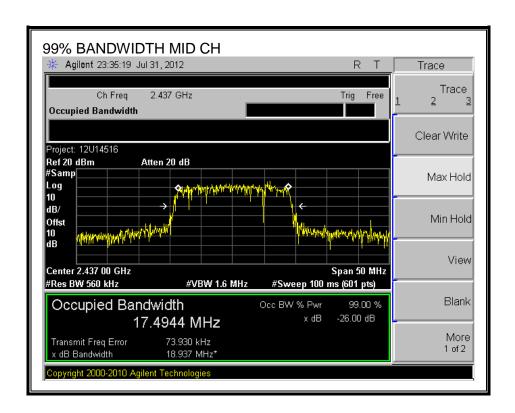
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2412	17.3300	0.5
Middle	2437	17.3300	0.5
High	2462	17.4000	0.5

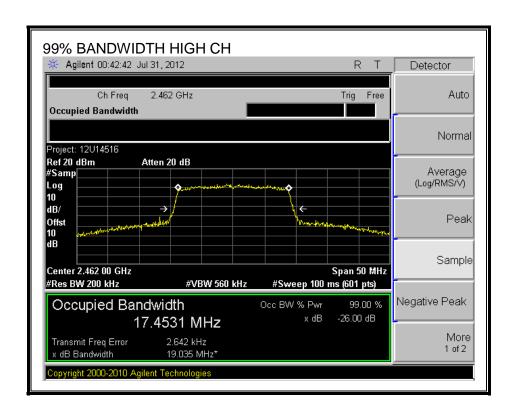
6 dB BANDWIDTH

7.3.2. 99% BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	17.4506
Middle	2437	17.4944
High	2462	17.4531

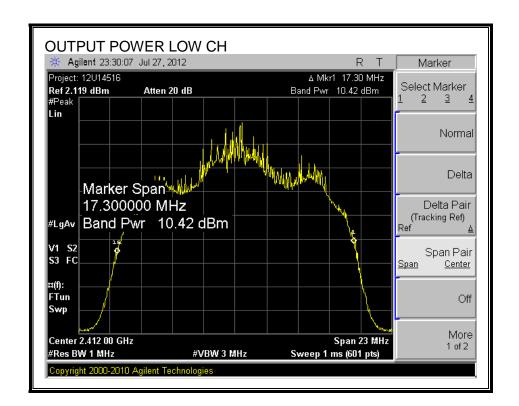
99% BANDWIDTH

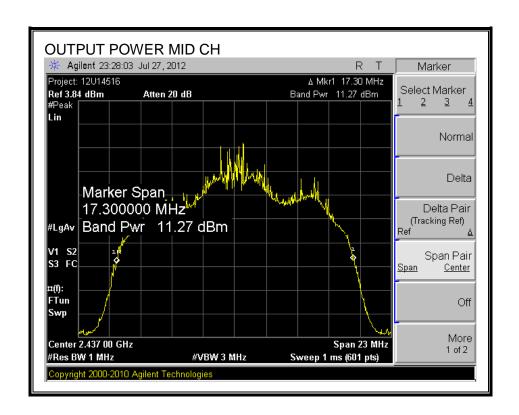
7.3.3. OUTPUT POWER

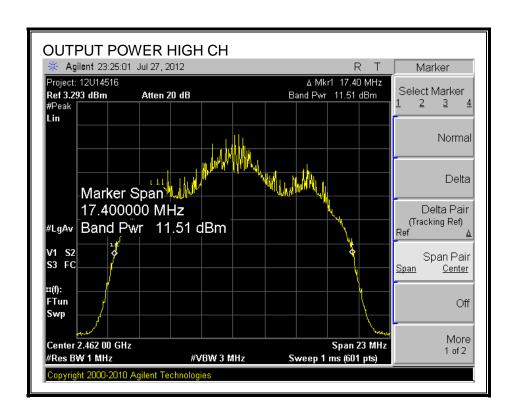
LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4


The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.


TEST PROCEDURE


Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

Channel	Frequency	Measured	Offset	Output	Limit	Margin
		Reading		Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
Low	2412	10.42	10	20.42	30	-9.58
Middle	2437	11.27	10	21.27	30	-8.73
High	2462	11.51	10	21.51	30	-8.49

OUTPUT POWER

7.3.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10 dB (including 10 dB pad and 0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

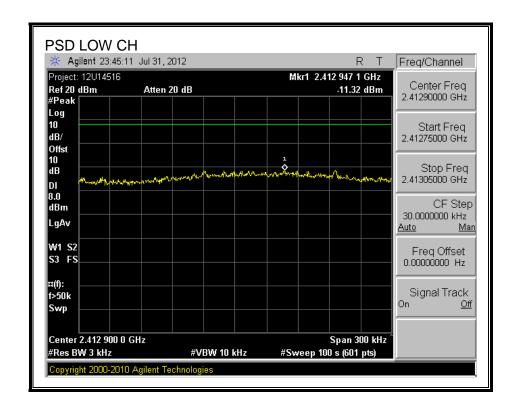
Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	12.70
Middle	2437	13.40
High	2462	13.90

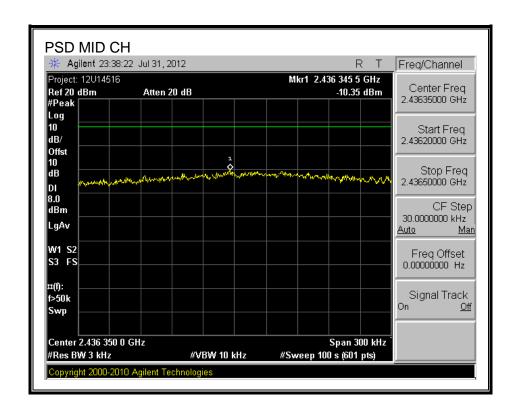
7.3.5. POWER SPECTRAL DENSITY

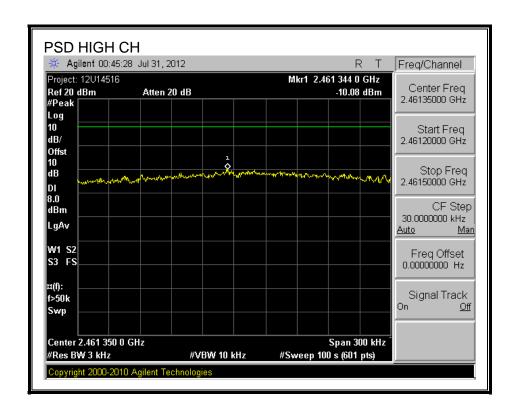
LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-11.32	8	-19.32
Middle	2437	-10.35	8	-18.35
High	2462	-10.08	8	-18.08

POWER SPECTRAL DENSITY

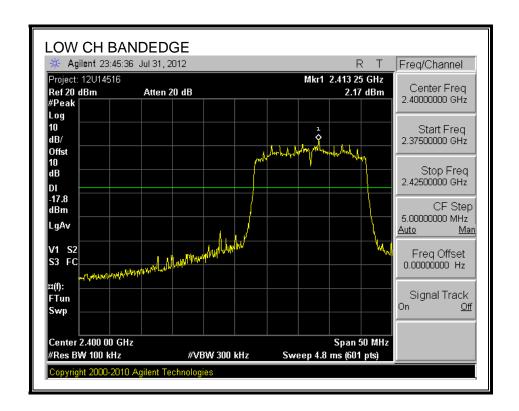
7.3.6. CONDUCTED SPURIOUS EMISSIONS

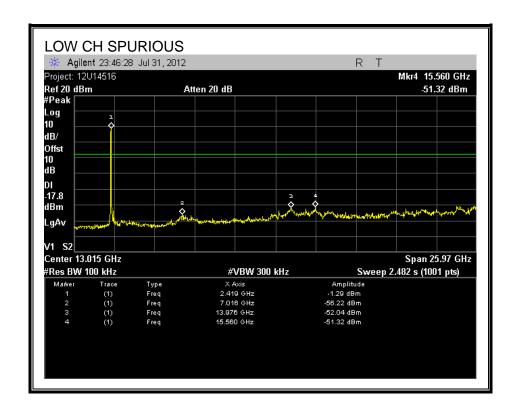
LIMITS

FCC §15.247 (d)

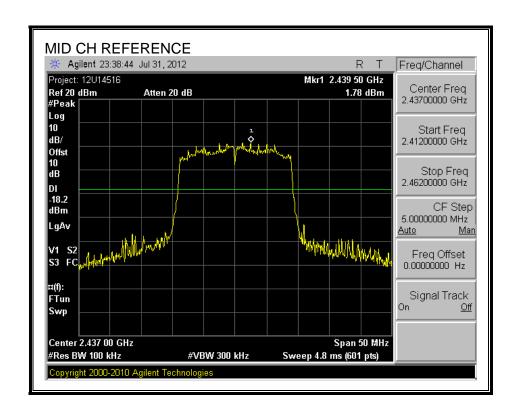
IC RSS-210 A8.5

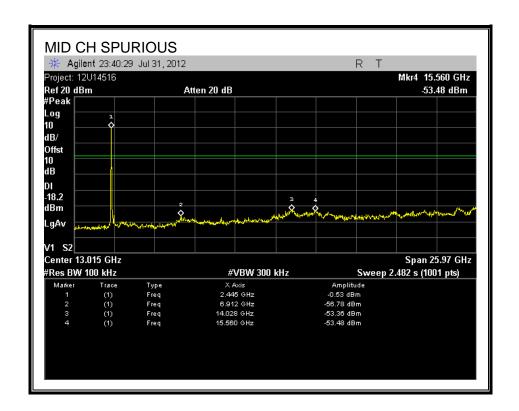
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

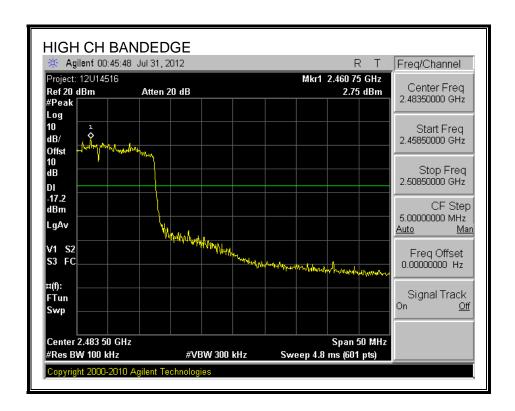

TEST PROCEDURE

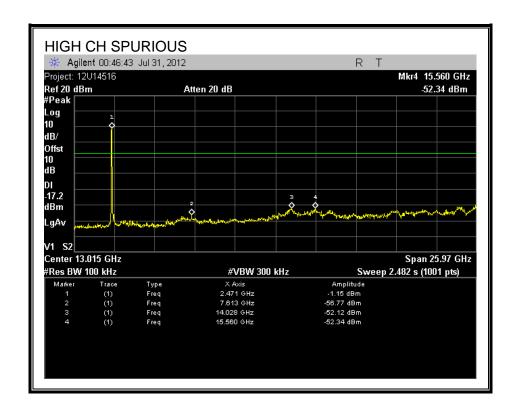

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

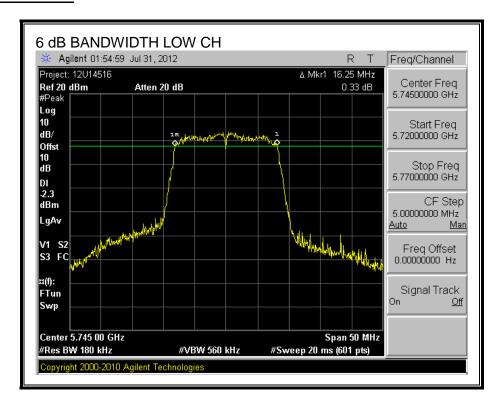
7.4. 802.11a MODE IN THE 5.8 GHz BAND

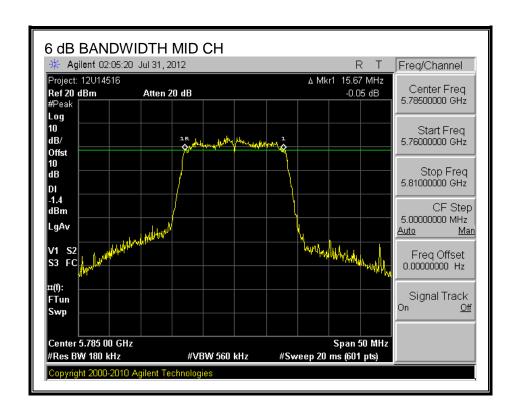
7.4.1. 6 dB BANDWIDTH

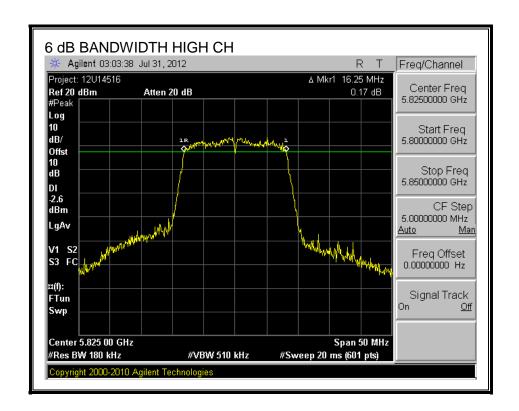
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the 6dB BW and the VBW is set to \geq 3 times the RBW. The sweep time is coupled.

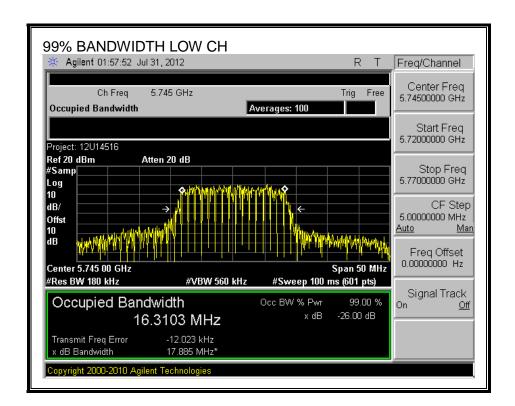
Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	5745	16.25	0.5
Middle	5785	15.67	0.5
High	5825	16.25	0.5

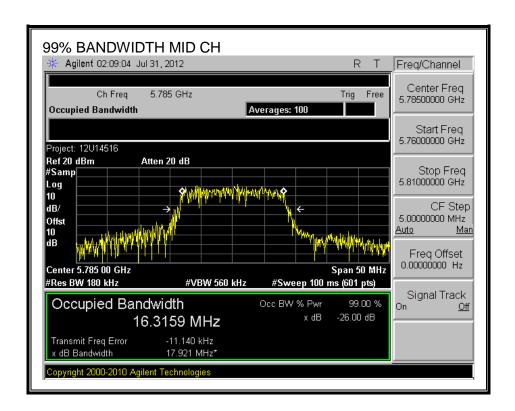
6 dB BANDWIDTH

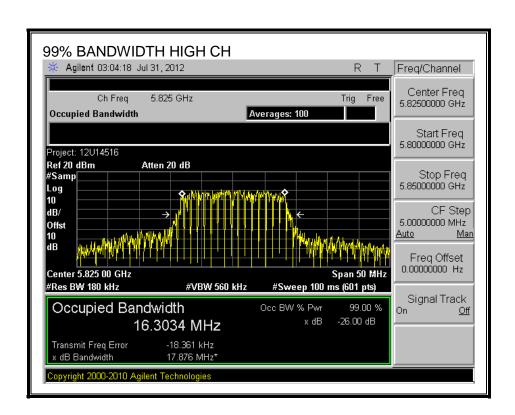
7.4.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5745	16.3103
Middle	5785	16.3159
High	5825	16.3034

DATE: 2012-08-07

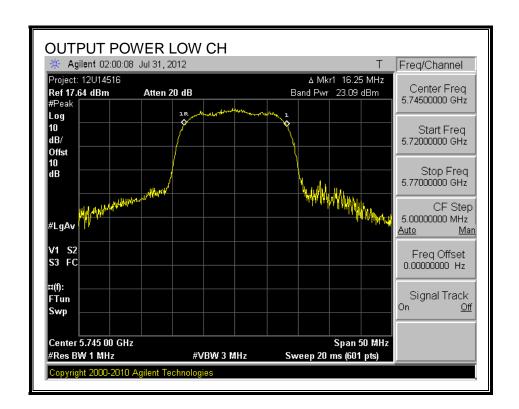
99% BANDWIDTH

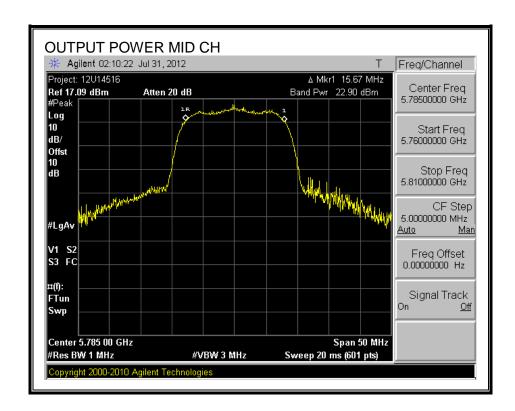
7.4.3. OUTPUT POWER

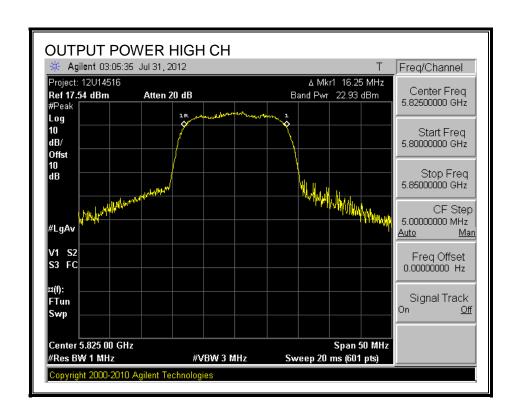
LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4


The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.


TEST PROCEDURE


Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

Channel	Frequency	Output	Limit	Margin
		Power		
	(MHz)	(dBm)	(dBm)	(dB)
Low	5745	23.09	30	-6.91
Middle	5785	22.90	30	-7.10
High	5825	22.93	30	-7.07

OUTPUT POWER

7.4.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10 dB (including 10 dB pad and 0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

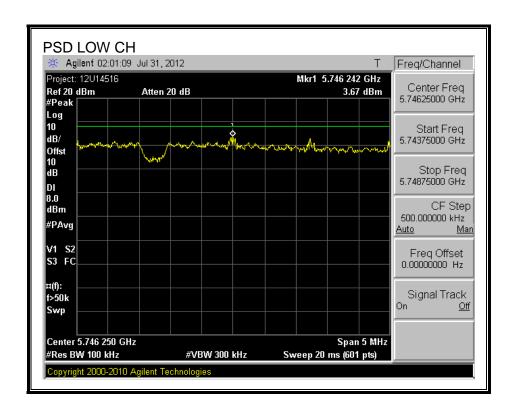
Channel	Frequency	Power
	(MHz)	(dBm)
Low	5745	14.00
Middle	5785	13.90
High	5825	13.80

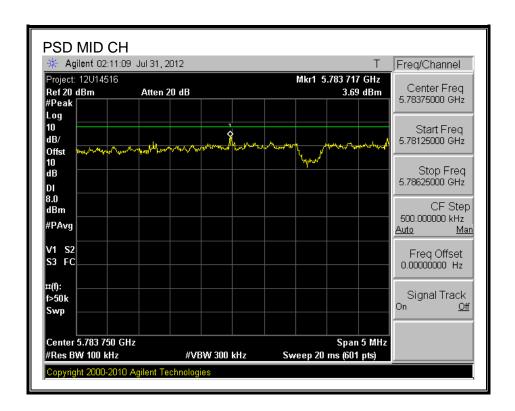
7.4.5. POWER SPECTRAL DENSITY

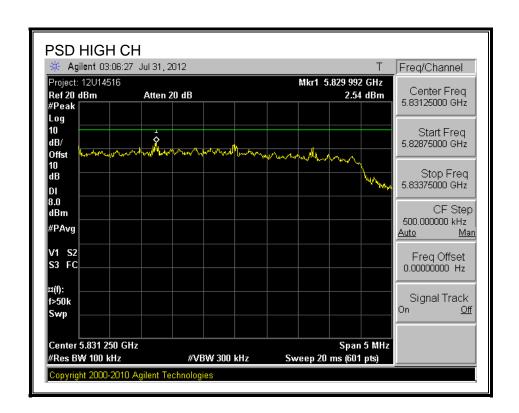
LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


KDB 558074 dated 01/18/12.

Channel	Frequency	Marker	10 log(3kHz/100kHz)	PPSD	Limit	Margin
	(MHz)	Reading		(dBm)	(dBm)	(dB)
Low	5745	3.67	15.2	-11.53	8	-19.53
Middle	5785	3.69	15.2	-11.51	8	-19.51
High	5825	2.54	15.2	-12.66	8	-20.66

POWER SPECTRAL DENSITY

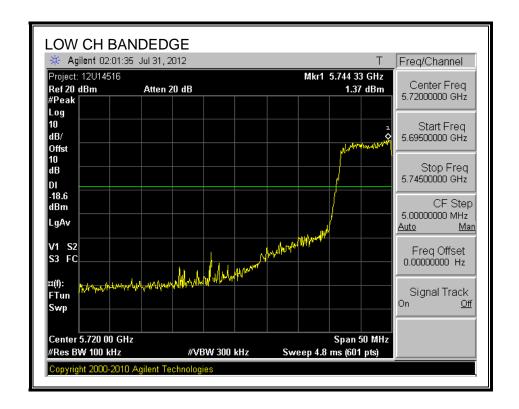
7.4.6. CONDUCTED SPURIOUS EMISSIONS

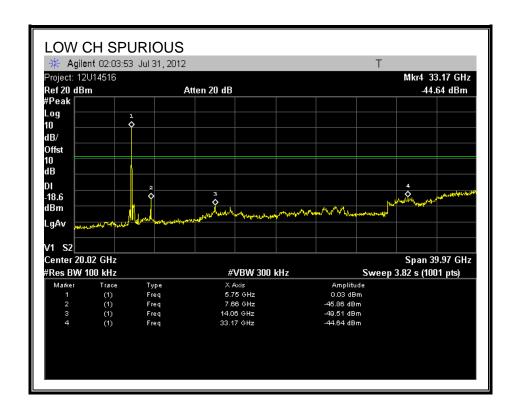
LIMITS

FCC §15.247 (d)

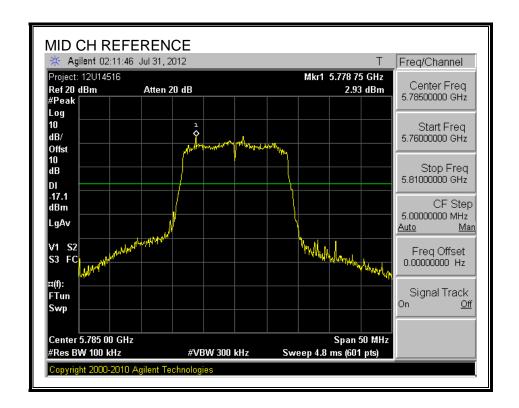
IC RSS-210 A8.5

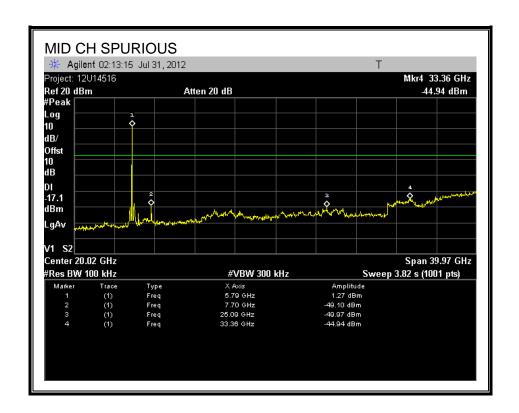
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

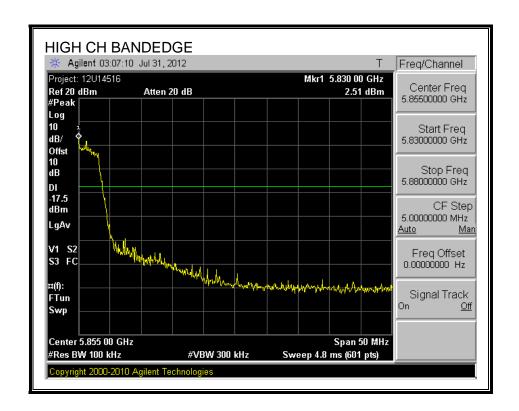

TEST PROCEDURE

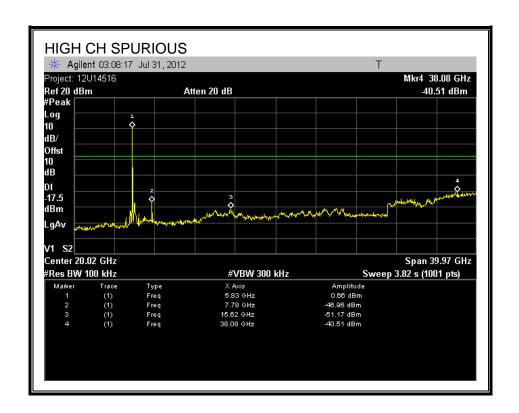

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

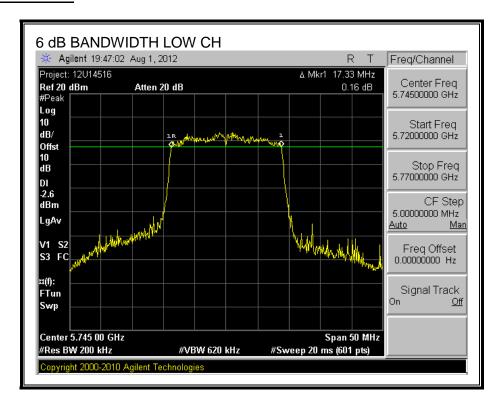
7.5. 802.11n HT20 MODE IN THE 5.8 GHz BAND

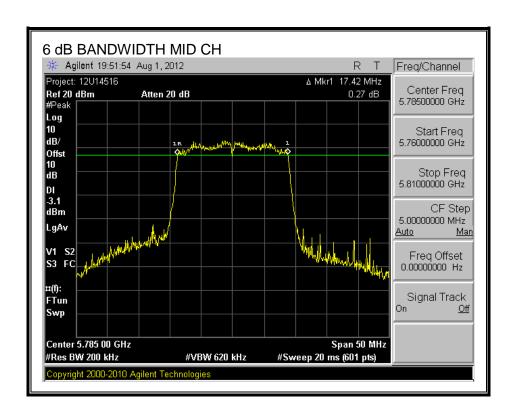
7.5.1. 6 dB BANDWIDTH

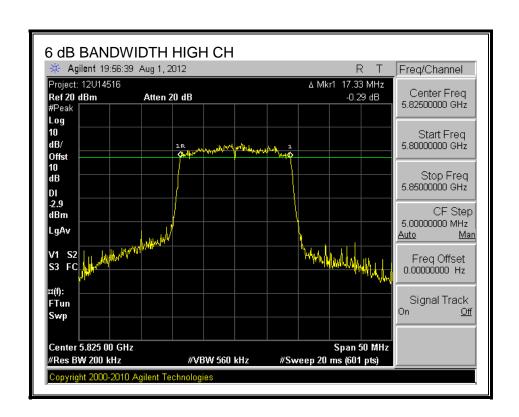
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 1-5% of the 6dB BW and the VBW is set to \geq 3 times the RBW. The sweep time is coupled.

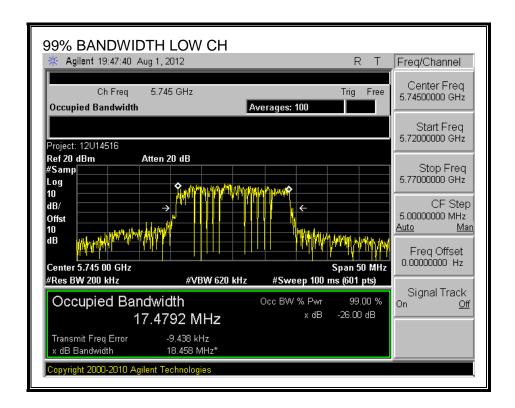
Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	5745	17.33	0.5
Middle	5785	17.42	0.5
High	5825	17.33	0.5

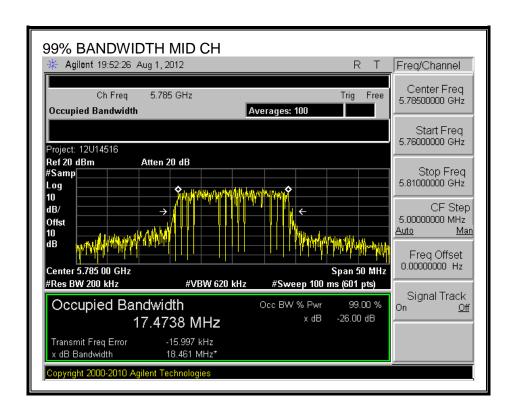
6 dB BANDWIDTH

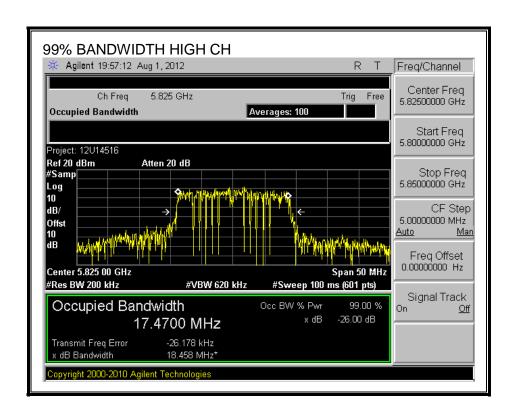
7.5.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5745	17.4792
Middle	5785	17.4738
High	5825	17.47

99% BANDWIDTH

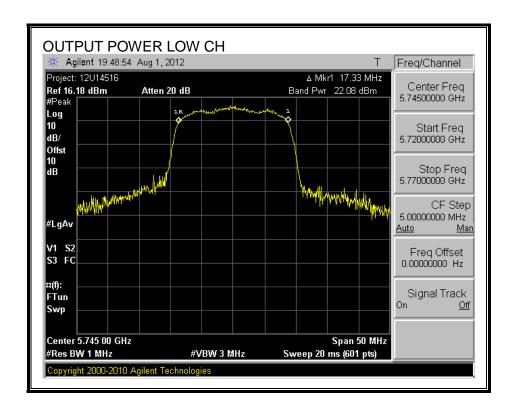
7.5.3. OUTPUT POWER

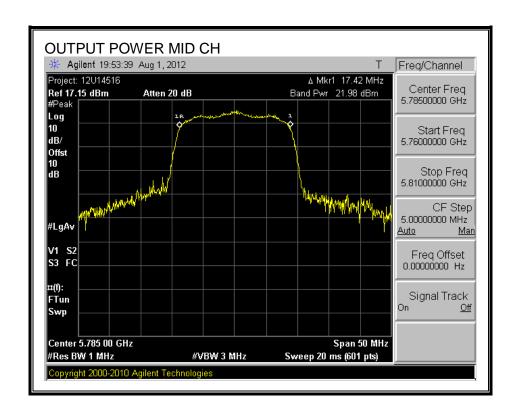
LIMITS

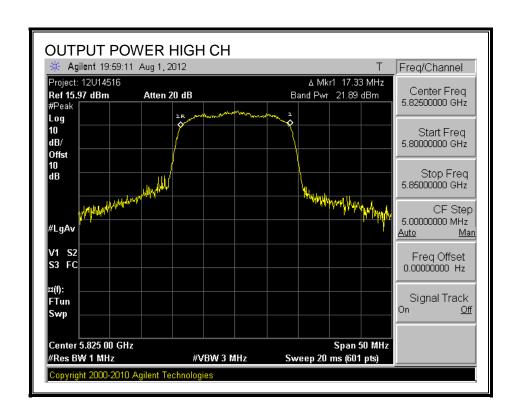
FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.


TEST PROCEDURE


Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.


RESULTS

Channel	Frequency	Output	Limit	Margin
		Power		
	(MHz)	(dBm)	(dBm)	(dB)
Low	5745	22.08	30	-7.92
Middle	5785	21.98	30	-8.02
High	5825	21.89	30	-8.11

OUTPUT POWER

7.5.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10 dB (including 10 dB pad and 0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	5745	13.00
Middle	5785	12.90
High	5825	12.80

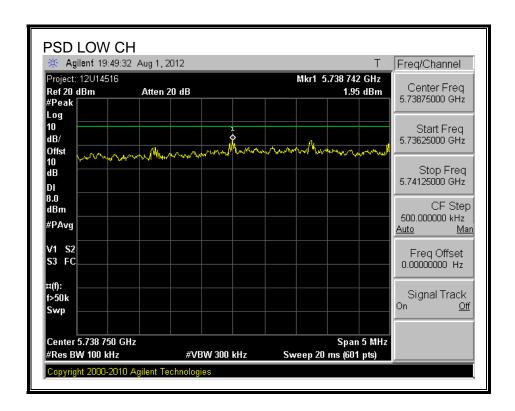
7.5.5. POWER SPECTRAL DENSITY

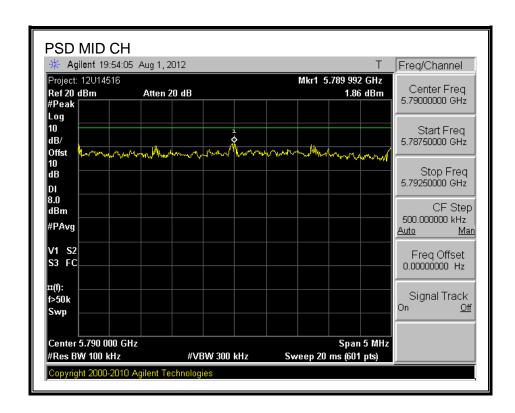
LIMITS

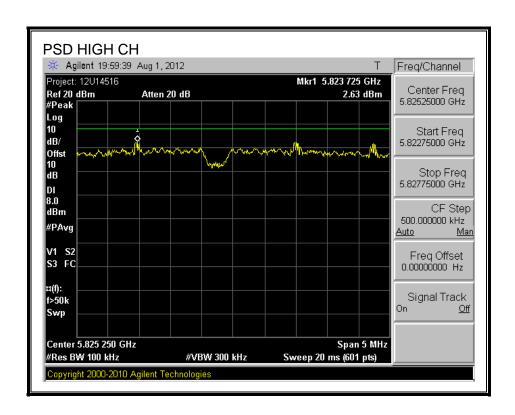
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


KDB 558074 dated 01/18/12.


RESULTS

Channel	Frequency	Marker	10 log(3kHz/100kHz)	PPSD	Limit	Margin
	(MHz)	Reading		(dBm)	(dBm)	(dB)
Low	5745	1.95	15.2	-13.25	8	-21.25
Middle	5785	1.86	15.2	-13.34	8	-21.34
High	5825	2.63	15.2	-12.57	8	-20.57

POWER SPECTRAL DENSITY

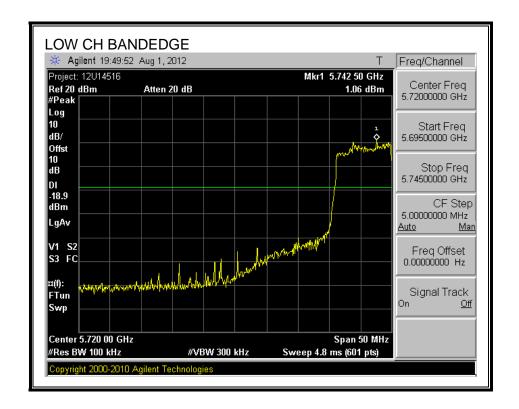
7.5.6. CONDUCTED SPURIOUS EMISSIONS

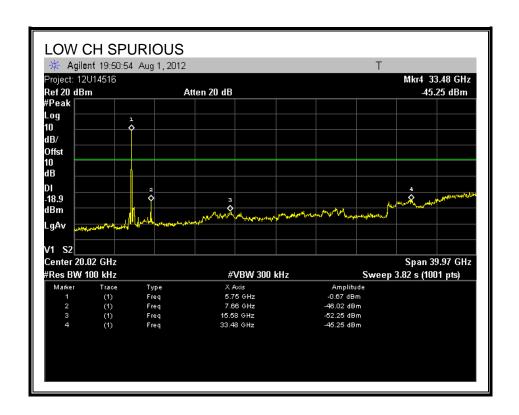
LIMITS

FCC §15.247 (d)

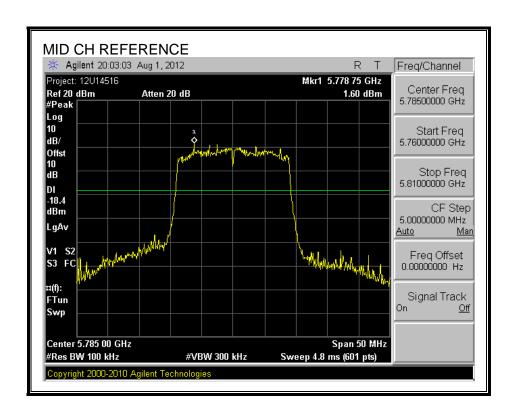
IC RSS-210 A8.5

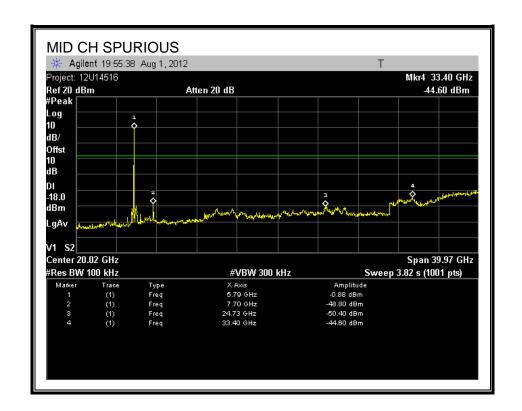
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

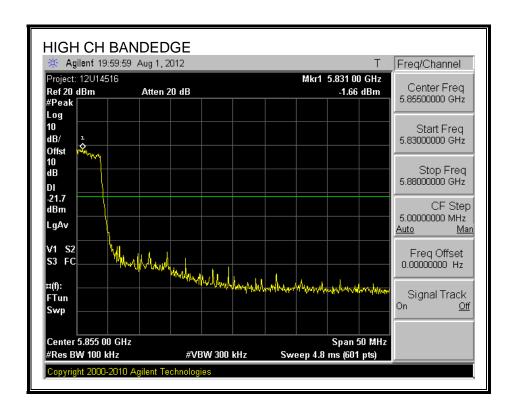

TEST PROCEDURE

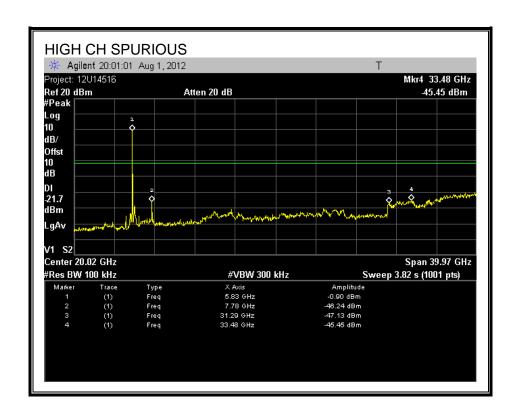

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

REPORT NO: 12U14516 FCC ID: ZNFP769 DATE: 2012-08-07

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m			
30 - 88	100	40			
88 - 216	150	43.5			
216 - 960	200	46			
Above 960	500	54			

TEST PROCEDURE

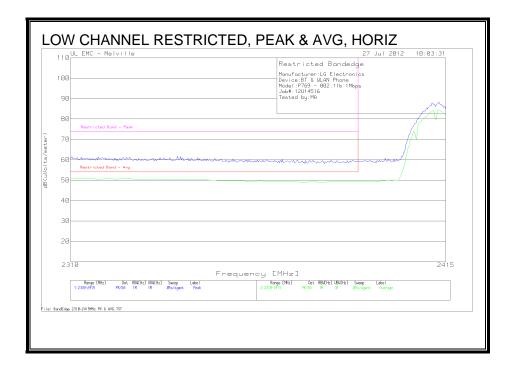
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

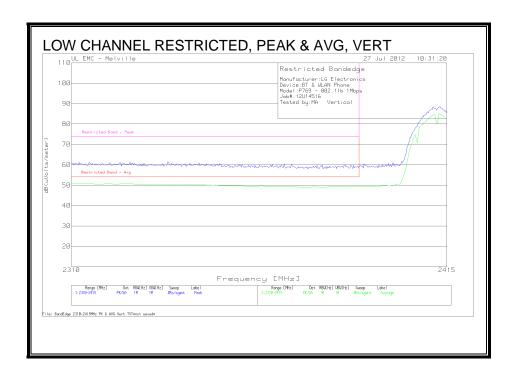
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

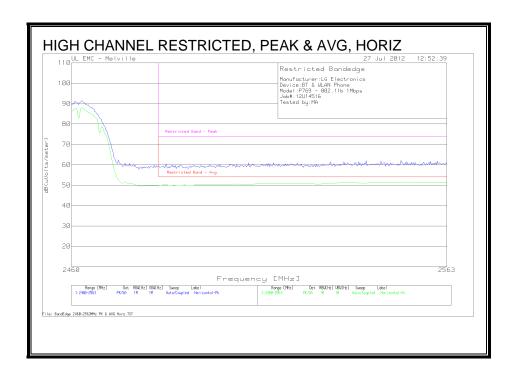
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each appplicable band.

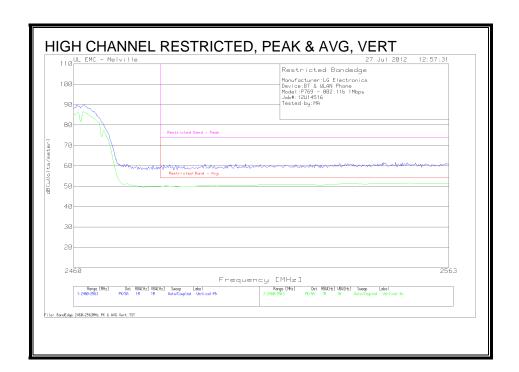

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

8.2. TRANSMITTER ABOVE 1 GHz


8.2.1. TX ABOVE 1 GHz FOR 802.11b 1TX MODE IN THE 2.4 GHz BAND

DATE: 2012-08-07

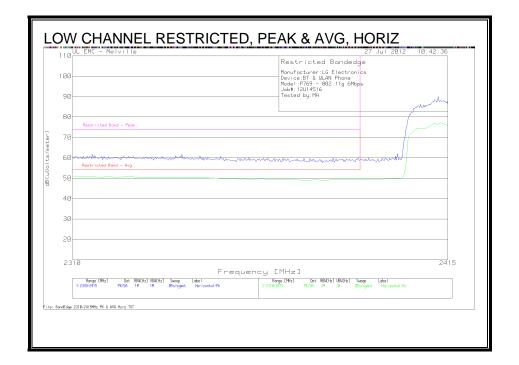

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

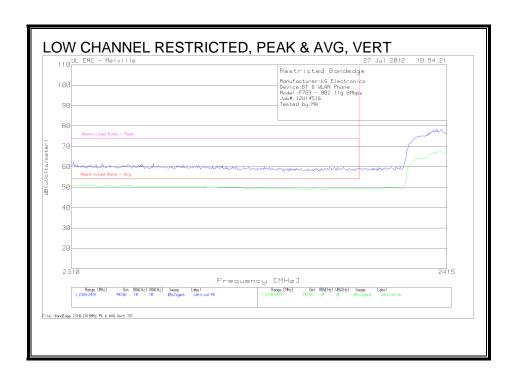
RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

DATE: 2012-08-07

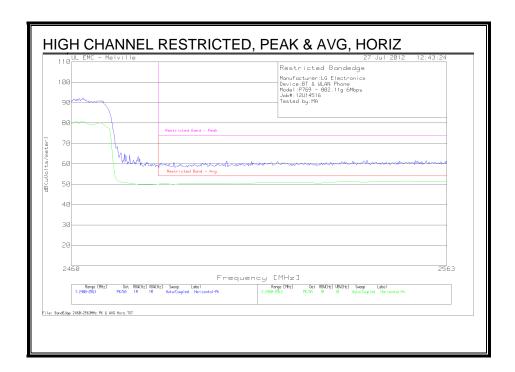
DATE: 2012-08-07

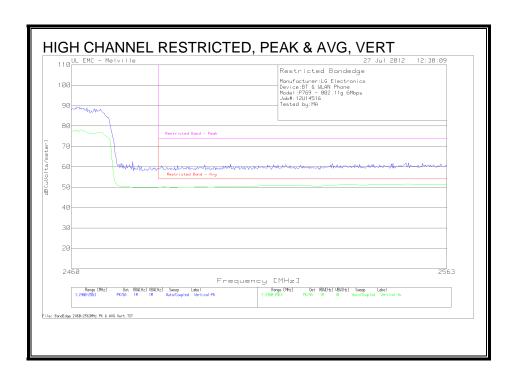

HARMONICS AND SPURIOUS EMISSIONS

	G Electronics											
Device:BT & WL	AN Phone											
Model:P769 - 80	02.11b 1Mbps											
Job#:12U14516												
Tested by:DC												
Low Channel - 24	412MHz											
Test Frequency	Meter Reading	Detector	AF-48106		dB(uVolts/meter)	FCC Part 15 Subpart C 15.209		FCC Part 15 Subpart C Peak	Margin	Azimuth	_	
4823.9422			27.1				-9.57		-29.57			Horz
4823.9422				-52.45			-14.27		-34.27			Horz
4823.9583	72.31	PK	27.1	-52.45	46.96	54	-7.04	74	-27.04	138	291	Vert
4823.9583	68.38	Av	27.1	-52.45	43.03		-10.97		-30.97		291	Vert
Mid Channel - 24	437MHz											
Tost Fraguency	Meter Reading	Datactor	AF-48106		dB(uVolts/meter)	FCC Part 15 Subpart C	Margin	FCC Part 15 Subpart C	Margin	Azimuth	Height	
4873.978	_		27.2				-11.13		-31.13			Horz
4873.978			27.2				-17.26		-37.26			Horz
4873.978			27.2				-9.24		-29.24			Vert
4873.978			27.2				-14.35		-34.35			Vert
High Channel - 2	462MHz											
Test Frequency	Meter Reading	Detector	AF-48106 [dB]		dB(uVolts/meter)	FCC Part 15 Subpart C 15.209	Margin	FCC Part 15 Subpart C Peak	Margin	Azimuth [Degs]	Height	Polari
4923.9689	68.95	PK	27.2	-52.52	43.63	54	-10.37	74	-30.37	9	196	Horz
4923.9689			27.2				-15.93		-35.93	_	150	Horz
4923.9689	70.26	PK	27.2	-52.52	44.94	54	-9.06	74	-29.06	134	241	Vert
4923 9689	65.5	Av	27.2	-52.52	40.18	54	-13.82	74	-33.82	134	241	Vert


Note: No other emissions were detected above the system noise floor.

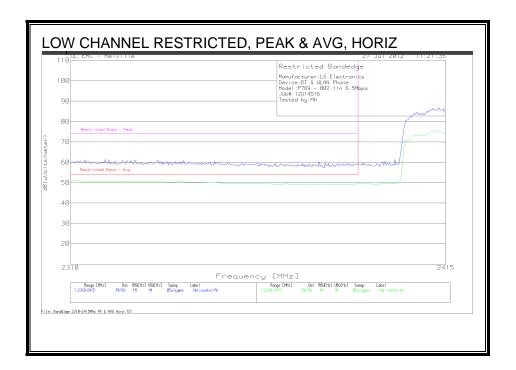
8.2.2. TX ABOVE 1 GHz FOR 802.11g 1TX MODE IN THE 2.4 GHz BAND


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

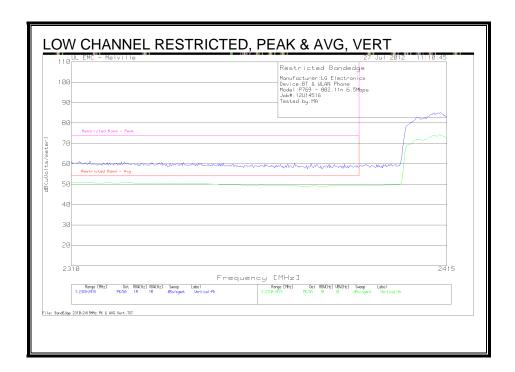

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

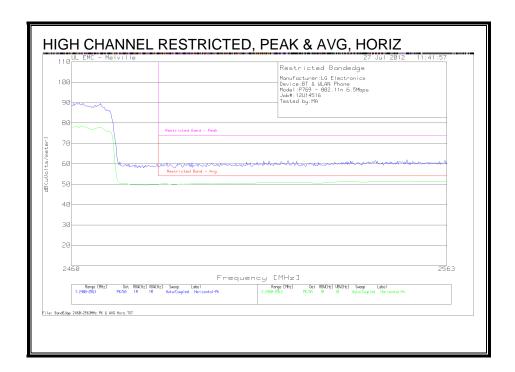
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

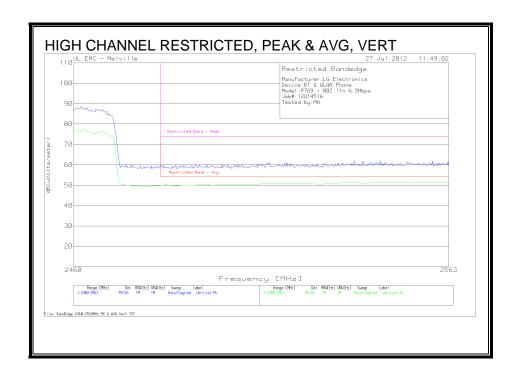

HARMONICS AND SPURIOUS EMISSIONS

4823.2926 4823.2926			27.1 27.1				-9.99 -26.09		-29.99 -46.09			Vert Vert
4823.2926	53.34	Av	27.1	-52.53	27.91	54	-26.09	74	-46.09	34	305	Vert
Mid Channel - 2	437MHz											
						500 B 15		F00 P 4 T				
Tost Frague	Meter Reading	Datasta	AF-48106		dB(uVolts/meter)	FCC Part 15 Subpart C		FCC Part 15 Subpart C Peak		Azimuth	_	Polar
4875.1924				-52.65			-10.73		-30.73			
4875.1924		Av		-52.65					-46.45			Horz
4875.1924			27.2				-26.45 -9.18		-46.45			Vert
4875.1924 4875.1924				-52.65 -52.65			-9.18 -24.84		-29.18 -44.84			Vert
4875.1924	54.61	Av	27.2	-52.65	29.16	54	-24.84	74	-44.84	129	290	Vert
High Channel - 2	462MHz											
						FCC Part 15		FCC Part 15				
Test Frequency	Meter Reading	Detector	AF-48106		dB(uVolts/meter)	Subpart C	Margin	Subpart C		Azimuth	_	Polar
4925.002	_			-52.57			_	74				Horz
4925.002				-52.57			-26.92		-46.92			Horz
4925.002				-52.57			-26.52		-28.87			Vert
4925.002	54.49	Av	27.3	-52.57	29.22	54	-24.78	74	-44.78	130	282	Vert


Note: Not other emissions were detected above the system noise floor.

8.2.3. TX ABOVE 1 GHz FOR 802.11n HT20 1TX MODE IN THE 2.4 GHz BAND

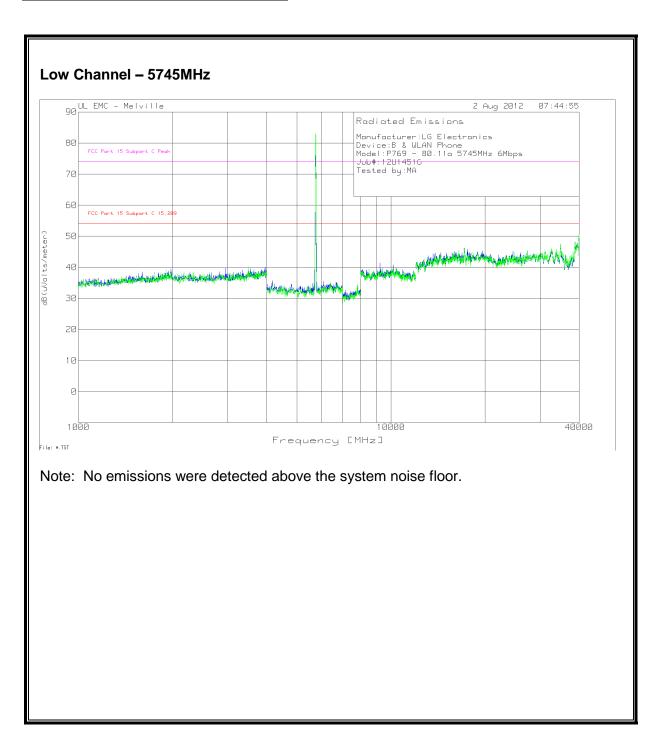

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

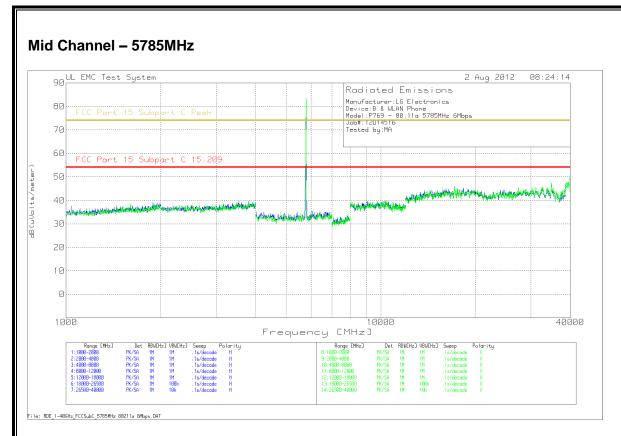

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

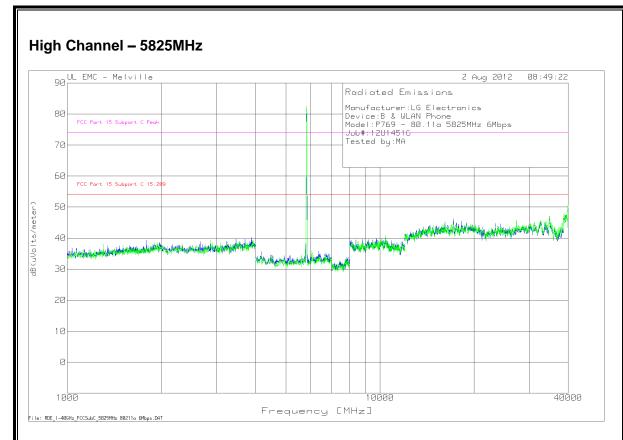
RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATE: 2012-08-07

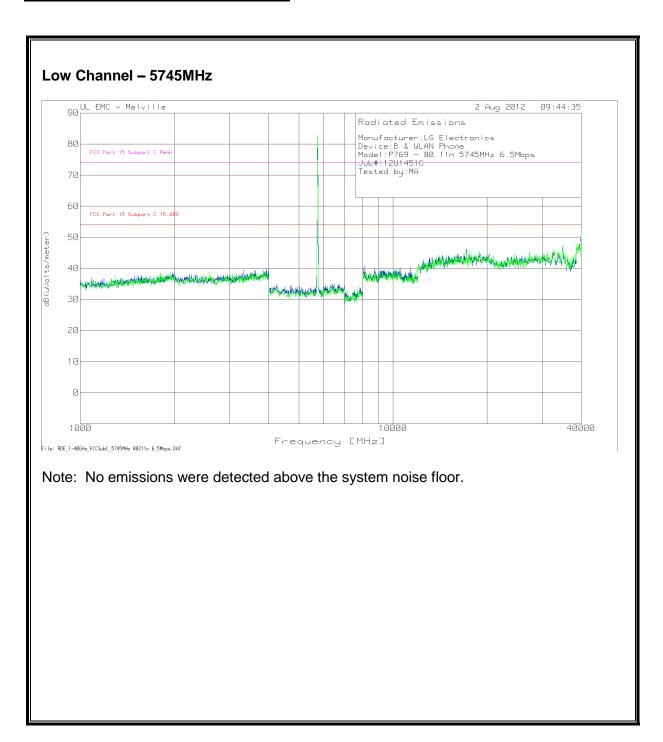

REPORT NO: 12U14516 DATE: 2012-08-07 FCC ID: ZNFP769

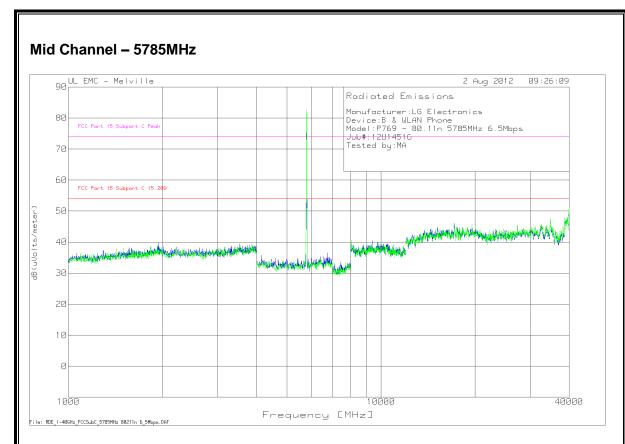

HARMONICS AND SPURIOUS EMISSIONS

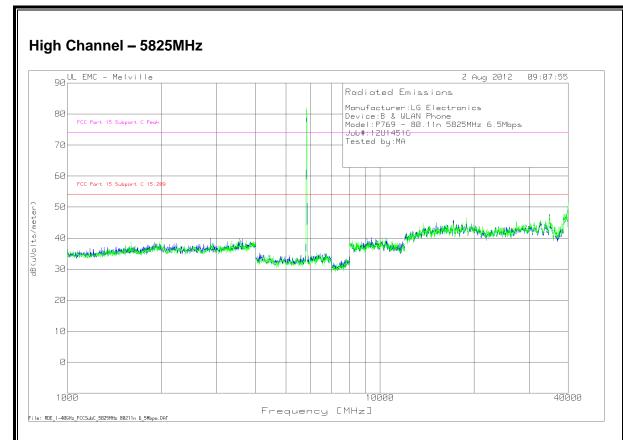

	G Electronics									('		
Device:BT & WL/	AN Phone											
Model:P769 - 80	2.11n 6.5Mbps											
Job#:12U14516												
Tested by:DC												
Low Channel - 24	12MHz											
Tact Frequency	Meter Reading	Detector	AF-8932 [dB]			FCC Part 15 Subpart C 15.209		FCC Part 15 Subpart C Peak		Azimuth	_	Polari
14476.527			37.3				-7.01		-27.01			Horz
14476.527				-49.16			-21.32		-41.32			Horz
14477.451				-49.19			-6.52		-26.52			Vert
14477.451			37.3				-21.35		-41.35			Vert
Mid Channel - 24	37MHz											
Tact Frequency	Meter Reading	Detector	AF-48106 [dB]			FCC Part 15 Subpart C 15.209		FCC Part 15 Subpart C Peak		Azimuth	_	
4874.2605	_		27.2				-12.19		-32.19			Horz
4874.2605				-52.62			-27.99		-47.99			Horz
4874.2605				-52.62			-11.89		-31.89			Vert
4874.2605				-52.62			-27.26		-47.26			Vert
High Channel - 2	462MHz											
Test Frequency	Meter Reading	Detector	AF-48106 [dB]			FCC Part 15 Subpart C 15.209			Margin	Azimuth [Degs]	_	Polar
4926.1944	65.77	PK	27.3	-52.54			-13.47		-33.47		211	Horz
4926.1944	50.84	Av		-52.54			-28.4		-48.4			Horz
4926.1944	68.18	PK		-52.54		54	-11.06		-31.06			Vert
4926.1944	51.92	Av	27.3	-52.54	26.68	54	-27.32	74	-47.32	136	246	Vert

8.2.4. TRANSMITTER ABOVE 1 GHz FOR 802.11a MODE IN THE 5.8 GHz BAND

HARMONICS AND SPURIOUS EMISSIONS

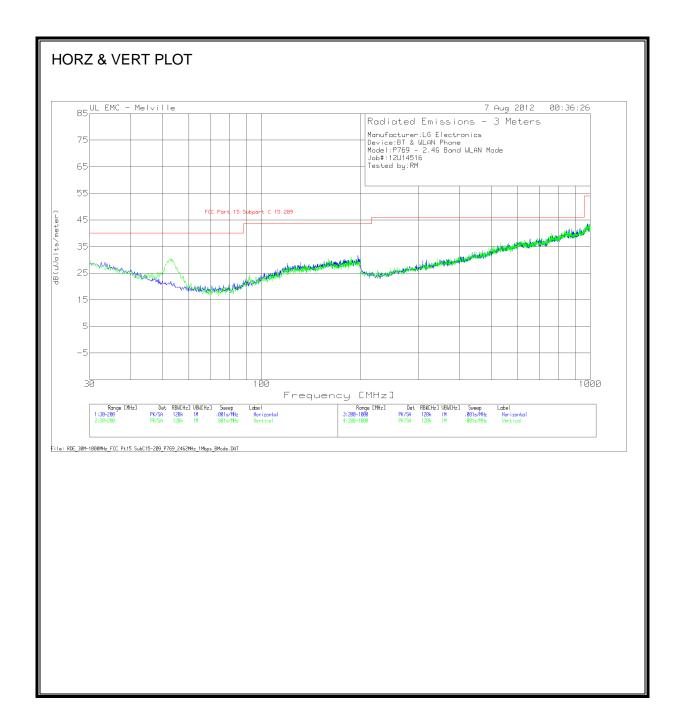




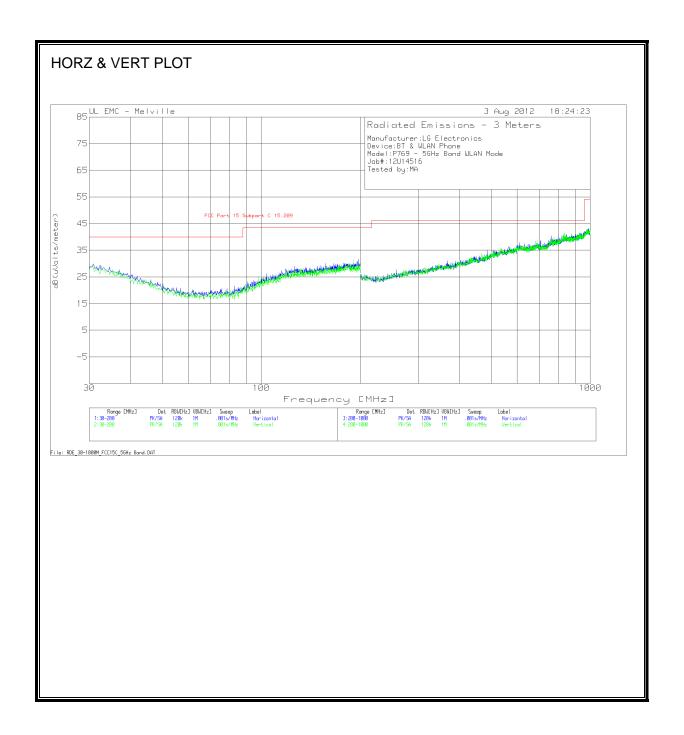


8.2.5. TRANSMITTER ABOVE 1 GHz FOR 802.11n MODE IN THE 5.8 GHz BAND

HARMONICS AND SPURIOUS EMISSIONS



8.3. WORST-CASE BELOW 1 GHz


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE - 2.4GHz BAND, HORZ & VERT)

DATE: 2012-08-07

Manutactur	er:LG Electronic:	5									
Device:BT &	WLAN Phone										
Model:P769	9 - 2.4G Band WL	AN Mode									
Job#:12U14	516										
Tested by:R	М										
Horizontal 3	30 - 200MHz										
				45.54(48)	01.214(48)	dB(uVolts/meter)	FCC Part 15 Subpart C		Azimuth	_	
Marker No.	33.4034	_		16.4				-10.86		[cm]	Polarity Horz
2	120.02			13.4		29.14		-10.86			Horz
3				15.4				-14.73			Horz
	155.7457	14.03	FK	15.5	1.5	31.03	43.3	-11.01	307	333	HOIZ
Vertical 30	200MHz										
		Meter Reading	Detector	AF-54 (dB)	GL-3M (dB)	dB(uVolts/meter)	FCC Part 15 Subpart C 15.209	Margin	Azimuth	Height	Polarity
4	53.3133			8.4		30.57	40				Vert
Horizontal 2	200 - 1000MHz										
Marker No.	Test Frequency	Meter Reading	Detector	AF-44067 (dB)	GL-3M (dB)	dB(uVolts/meter)	FCC Part 15 Subpart C 15.209	Margin	Azimuth [Degs]	_	Polarity
5	564.1821	14.35	PK	19.2	2.7	36.25	46	-9.75	358	200	Horz
6	659.0295	14.93	PK	20	2.9	37.83	46	-8.17	170	100	Horz
	0 - 1000MHz			AF-44067			FCC Part 15 Subpart C		Azimuth	_	
	Test Frequency					dB(uVolts/meter)			[Degs]		Polarity
7	532.5663			18.8				-9.57			Vert
8	987.5938	14.86	PK	24.4	3.7	42.96	54	-11.04	207	400	Vert
PK - Peak de	etector										

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE - 5GHz BAND, HORZ & VERT)

Manufactu	rer:LG Electronic	5									
Device:BT 8	k WLAN Phone										
Model:P76	9 - 5GHz Band WL	AN Mode									
Job#:12U14	1516										
Tested by:N	ИA										
Horizontal :	30 - 200MHz										
Marker No.	Test Frequency	Meter Reading	Detector	AF-54 (dB)	GL-3M (dB)	dB(uVolts/meter)	FCC Part 15 Subpart C 15.209	Margin	Azimuth [Degs]	_	
1	126.3163	14.03	PK	13.8	1.2	29.03	43.5	-14.47	2	400	Horz
2	195.2352	13.66	PK	15.5	1.5	30.66	43.5	-12.84	8	200	Horz
Horizontal :	200 - 1000MHz										
Marker No.	Test Frequency	Meter Reading	Detector	AF-44067 (dB)	GL-3M (dB)	dB(uVolts/meter)	FCC Part 15 Subpart C 15.209	Margin	Azimuth		Polarit
3		_		17.4				-10.9		300	
4	612.2061	13.21	PK	20.2	2.8	36.21	46	-9.79	357	200	Horz
5	707.8539	15.5	PK	20.2	3	38.7	46	-7.3	301	100	Horz
Vertical 20	0 - 1000MHz										
Marker No.	Test Frequency	Meter Reading	Detector	AF-44067 (dB)	GL-3M (dB)	dB(uVolts/meter)	FCC Part 15 Subpart C 15.209		Azimuth	_	Polarit
		14.37		24.8				-11.13			Vert

REPORT NO: 12U14516 DATE: 2012-08-07 FCC ID: ZNFP769

9. AC POWER LINE CONDUCTED EMISSIONS

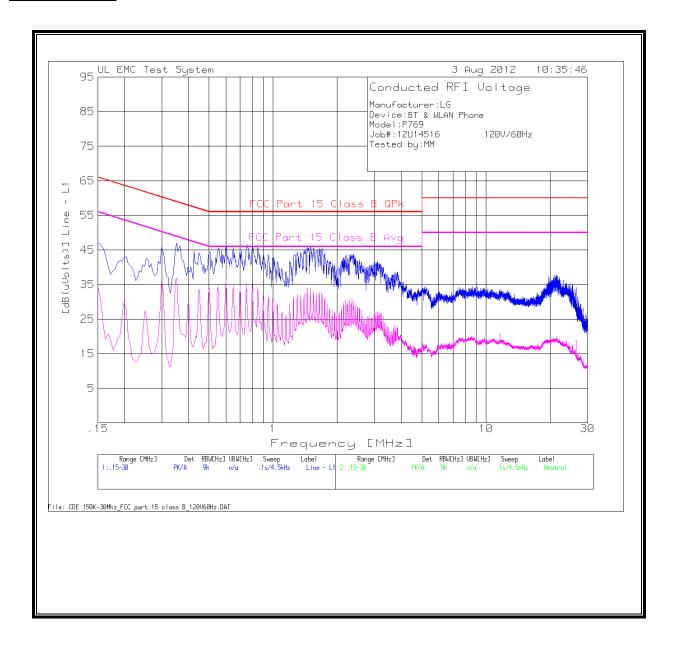
LIMITS

FCC §15.207 (a)

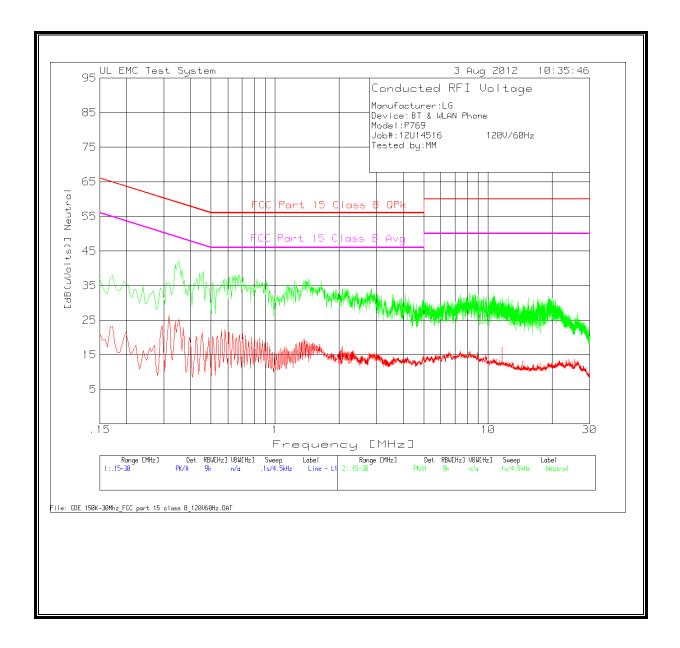
RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted L	imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.


TEST PROCEDURE

ANSI C63.4


RESULTS

6 WORST EMISSIONS

LINE 1 RESULTS

LINE 2 RESULTS

REPORT NO: 12U14516 DATE: 2012-08-07 FCC ID: ZNFP769

NUMERICAL RESULTS

Manufacturer:L0	G							
Device: Phone w	ith BT & WLAN							
Model:P769								
lob#:12U14516	120V/60Hz							
Tested by:MM								
Line - L1 .15 - 30	MHz							
Test Frequency	Meter Reading	Detector	LISN 5A636 L1 [dB]	[dB(uVolts)]	FCC Part 15 Class B QPk	Margin	FCC Part 15 Class B Avg	Margin
0.2985	35.65	PK	10	45.65		-14.65		-4.65
0.2985	25.88	Av	10	35.88	60.3	-24.42	50.3	-14.42
0.3525	36.95	PK	10	46.95	58.9	-11.95	48.9	-1.95
0.3525	26.81	Av	10	36.81	58.9	-22.09	48.9	-12.09
0.555	35.5	PK	10.1	45.6		-10.4		
0.555	19.87	Av	10.1	29.97	56	-26.03	46	-16.03
0.6495	35.51		10.1	45.61		-10.39		
0.6495	24.51		10.1	34.61	56	-21.39	46	-11.39
0.7575	36.3	PK	10.1	46.4	56	-9.6	46	0.4
0.7575	16.4	Av	10.1	26.5	56	-29.5	46	
0.8475	35.78	PK	10.1	45.88	56	-10.12		
0.8475	24.14	Av	10.1	34.24	56	-21.76	46	-11.76
1.446	35.8	PK	10.1	45.9	56	-10.1	46	-0.1
1.446	23.97	Av	10.1	34.07		-21.93		-11.93
1.698	35.35		10.1	45.45		-10.55		
1.698	21.3	Av	10.1	31.4	56	-24.6	46	-14.6
Neutral .15 - 30	ИНz							
Test Frequency	Meter Reading	Detector					FCC Part 15 Class B Avg	Margin
0.3525	32.07		10			-16.83		-6.83
0.3525	15.32		10	25.32		-33.58		-23.58
0.4605	29.06		10.1	39.16		-17.54		
0.4605	7.54		10.1	17.64		-39.06		-29.06
0.6765	28.2		10.1	38.3		-17.7		
0.6765	9.72		10.1	19.82		-36.18		-26.18
0.8205	26.7		10.1	36.8	56		46	
0.8205	7.85		10.1	17.95		-38.05	46	
1.167	24.77		10.1	34.87		-21.13		
1.167	2.8		10.1	12.9	56			
	27.06	PK	10.1	37.16	56	-18.84	46	-8.84
1.4235								
	8.55	Av	10.1	18.65	56	-37.35	46	-27.35