

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 02/13/17 - 03/02/17 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 1M1702280075-01-R5.ZNF

FCC ID: ZNFM710H

APPLICANT: LG ELECTRONICS MOBILECOMM U.S.A., INC.

DUT Type: Portable Handset
Application Type: Certification
FCC Rule Part(s): CFR §2.1093
Model: LG-M710H
Additional Model(s): LG-M710H

Additional Model(s): LGM710H, M710H

Equipment	Band & Mode	Tx Frequency	SAR		
Class			1 gm Head (W/kg)	1 gm Body- Worn (W/kg)	1 gm Hotspot (W/kg)
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.34	0.68	0.68
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	0.19	0.99	0.99
PCE	UMTS 850	826.40 - 846.60 MHz	0.28	0.68	0.68
PCE	UMTS 1750	1712.4 - 1752.6 MHz	0.19	1.03	1.03
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.20	1.20	1.20
PCE	LTE Band 12	699.7 - 715.3 MHz	0.21	0.38	0.38
PCE	LTE Band 13	779.5 - 784.5 MHz	0.22	0.42	0.42
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.29	0.62	0.62
PCE	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	0.22	1.03	1.03
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A	N/A	N/A
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	0.28	1.28	1.28
PCE	LTE Band 7	2502.5 - 2567.5 MHz	< 0.1	0.68	0.68
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.64	0.15	0.18
NII	U-NII-1	5180 - 5240 MHz	N/A	N/A	< 0.1
NII	U-NII-2A	5260 - 5320 MHz	0.26	< 0.1	N/A
NII	U-NII-2C	5500 - 5700 MHz	0.43	< 0.1	N/A
NII	U-NII-3	5745 - 5825 MHz	0.61	< 0.1	0.10
DSS/DTS	DSS/DTS Bluetooth 2402 - 2480 MHz			< 0.1	N/A
Simultaneous	SAR per KDB 690783 D01v0	0.98	1.44	1.44	

Note: This revised Test Report (S/N: 1M1702280075-01-R5.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

•	FCC ID: ZNFM710H	PCTEST WORKERS LADICATED, INC.	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 1 of 69
	1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset		Page 1 01 69
201	7 PCTEST Engineering Laboratory Inc.				REV 18 2 M

© 2017 PCTEST Engineering Laboratory, Inc.

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INF	ORMATION	9
3	INTROD	UCTION	. 10
4	DOSIME	TRIC ASSESSMENT	. 11
5	DEFINIT	ION OF REFERENCE POINTS	. 12
6	TEST CO	ONFIGURATION POSITIONS	. 13
7	RF EXP	OSURE LIMITS	. 16
8	FCC ME	ASUREMENT PROCEDURES	. 17
9	RF CON	DUCTED POWERS	. 22
10	SYSTEM	I VERIFICATION	. 41
11	SAR DA	TA SUMMARY	. 44
12	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	. 58
13	SAR ME	ASUREMENT VARIABILITY	. 64
14	EQUIPM	ENT LIST	. 65
15	MEASUF	REMENT UNCERTAINTIES	. 66
16	CONCLU	JSION	. 67
17	REFERE	NCES	. 68
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	
APPEN	IDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
APPE	NDIX G:	WIFI POWER REDUCTION VERIFICATION	

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 2 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 2 of 69

1.1 Device Overview

		1
Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 7	Voice/Data	2502.5 - 2567.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5700 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz

1.2 Power Reduction for SAR

This device uses an independent fixed level power reduction mechanism for WLAN operations during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

A. Maximum Power

Mode / Band		Voice (dBm)	Burst Average GMSK (dBm)		Burst Average 8-PSK (dBm)					
		1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots
GSM/GPRS/EDGE 850	Maximum	33.2	33.2	32.2	30.2	28.7	27.2	27.2	26.7	26.7
GSIVI/GPRS/EDGE 850	Nominal	32.7	32.7	31.7	29.7	28.2	26.7	26.7	26.2	26.2
CSM/CDDS/EDCE 1000	Maximum	30.2	30.2	29.2	27.2	25.7	26.2	26.2	25.7	25.7
GSM/GPRS/EDGE 1900	Nominal	29.7	29.7	28.7	26.7	25.2	25.7	25.7	25.2	25.2

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 2 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 3 of 69

© 2017 PCTEST Engineering Laboratory, Inc.

		Modulated Average (dBm)				
Mode / Band	3GPP	3GPP	3GPP	3GPP		
	WCDMA	HSDPA	HSUPA	DC-HSDPA		
LINATE Donal E (SEO MILE)	Maximum	24.7	24.7	24.7	24.7	
UMTS Band 5 (850 MHz)	Nominal	24.2	24.2	24.2	24.2	
LINATE Dand 4 (1750 NALL)	Maximum	24.2	24.2	24.2	24.2	
UMTS Band 4 (1750 MHz)	Nominal	23.7	23.7	23.7	23.7	
UMTS Band 2 (1900 MHz)	Maximum	24.2	24.2	24.2	24.2	
OIVITS Ballu 2 (1900 IVIT2)	Nominal	23.7	23.7	23.7	23.7	

Mode / Band	Modulated Average (dBm)	
LTE Band 12	Maximum	25.0
LTE Ballu 12	Nominal	24.5
LTE Band 13	Maximum	24.7
LIE Ballu 13	Nominal	24.2
LTE Band 5 (Cell)	Maximum	24.7
	Nominal	24.2
LTE Dond CC (AVAC)	Maximum	24.2
LTE Band 66 (AWS)	Nominal	23.7
LTE Do and 4 (A)A(C)	Maximum	24.2
LTE Band 4 (AWS)	Nominal	23.7
LTE Dand 2 (DCC)	Maximum	24.2
LTE Band 2 (PCS)	Nominal	23.7
LTC Donal 7	Maximum	23.7
LTE Band 7	Nominal	23.2

Mode / Band	Modulated Average (dBm)					
		Ch. 1	Ch. 2-10	Ch. 11		
IEEE 802 11h (2.4 CH-)	Maximum	14.0	17.0	14.0		
IEEE 802.11b (2.4 GHz)	Nominal	13.0	16.0	13.0		
IEEE 003 44 - /3 4 CU-)	Maximum	12.0	14.0	11.0		
IEEE 802.11g (2.4 GHz)	Nominal	11.0	13.0	10.0		
IFFF 902 11 = (2.4 CH-)	Maximum	9.0	11.0	8.0		
IEEE 802.11n (2.4 GHz)	Nominal	8.0	10.0	7.0		
Divisto eth (1 N4has)	Maximum		12.0			
Bluetooth (1 Mbps)	Nominal	11.0				
Divisto eth (2 N4has)	Maximum	11.0				
Bluetooth (2 Mbps)	Nominal		10.0			
Dhista ath (2 NAhaa)	Maximum		11.0			
Bluetooth (3 Mbps)	Nominal		10.0			
Divista eth I C	Maximum		2.0			
Bluetooth LE	Nominal		1.0			

Document S/N: Test Dates: DUT Type:	FCC ID: ZNFM710H	Approved by: Quality Manager
	Document S/N:	Page 4 of 60
1M1702280075-01-R5.ZNF 02/13/17 - 03/02/17 Portable Handset	1M1702280075-01-R5.ZNF	Page 4 of 69

		Modulate (dl			
Mode / Band		1 02	MHz Bandwidth	40 MHz Bandwidth	80 MHz Bandwidth
		Ch. 60, 64,	Ch. 36-56, 100-132, 149-		
		136, 140	165		
IEEE 802.11a (5 GHz)	Maximum	10.0	11.0		
TEEE 802.11a (3 GHZ)	Nominal	9.0	10.0		
IEEE 802.11n (5 GHz)	Maximum	9.0	10.0	10.0	
1EEE 802.1111 (3 GHZ)	Nominal	8.0	9.0	9.0	
IEEE 802.11ac (5 GHz)	Maximum	9.0	10.0	10.0	10.0
TEEE 802.11ac (5 GHZ)	Nominal	8.0	9.0	9.0	9.0

B. Reduced Power

Mode / Band	Modulated Average (dBm)	
IEEE 903 11h (3.4 CH-)	Maximum	14.0
IEEE 802.11b (2.4 GHz)	Nominal	13.0

1.4 DUT Antenna Locations

The overall dimensions of this device are > 9 x 5 cm. The overall diagonal dimension of the device is \leq 160 mm and the diagonal display is \leq 150 mm. A diagram showing the location of the device antennas can be found in Appendix F.

Table 1-1
Device Edges/Sides for SAR Testing

Mode	Back	Front	Тор	Bottom	Right	Left
GPRS 850	Yes	Yes	No	Yes	Yes	Yes
GPRS 1900	Yes	Yes	No	Yes	No	Yes
UMTS 850	Yes	Yes	No	Yes	Yes	Yes
UMTS 1750	Yes	Yes	No	Yes	No	Yes
UMTS 1900	Yes	Yes	No	Yes	No	Yes
LTE Band 12	Yes	Yes	No	Yes	Yes	Yes
LTE Band 13	Yes	Yes	No	Yes	Yes	Yes
LTE Band 5 (Cell)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 66 (AWS)	Yes	Yes	No	Yes	No	Yes
LTE Band 2 (PCS)	Yes	Yes	No	Yes	No	Yes
LTE Band 7	Yes	Yes	No	Yes	Yes	Yes
2.4 GHz WLAN	Yes	Yes	Yes	No	No	Yes
5 GHz WLAN	Yes	Yes	Yes	No	No	Yes

Note: Particular DUT edges were not required to be evaluated for wireless router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled, U-NII-2A and U-NII-2C operations are disabled. Therefore, U-NII-2A and U-NII-2C operations are not considered in this section.

1.5 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix F.

1.6 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with

FCC ID: ZNFM710H		SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dago F of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset		Page 5 of 69
017 PCTEST Engineering Laboratory Inc.				REV/ 18.2 M

© 2017 PCTEST Engineering Laboratory, Inc.

maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Figure 1-1 Simultaneous Transmission Paths

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

> Table 1-2 Simultaneous Transmission Scenarios

	Omitations Transmission Contains							
No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Notes			
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A				
2	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A				
3	GSM voice + 2.4 GHz Bluetooth	N/A	Yes	N/A				
4	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes				
5	UMTS + 5 GHz WI-FI	Yes	Yes	Yes				
6	UMTS + 2.4 GHz Bluetooth	N/A	Yes	N/A				
7	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes				
8	LTE + 5 GHz WI-FI	Yes	Yes	Yes				
9	LTE + 2.4 GHz Bluetooth	N/A	Yes	N/A				
10	GPRS/EDGE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.			
11	GPRS/EDGE + 5 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.			
12	GPRS/EDGE + 2.4 GHz Bluetooth	N/A	Yes*	N/A	*-Pre-installed VOIP applications are considered.			

- 1. 2.4 GHz WLAN, 5 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, the simultaneous transmission scenarios involving WIFI are listed in the above table.
- 5. 5 GHz Wireless Router is only supported for U-NII-1 and U-NII-3 by S/W, therefore U-NII2A, and U-NII2C were not evaluated for wireless router conditions.
- 6. This device supports VOLTE.
- 7. This device supports VOWIFI.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N: Test Dates:		DUT Type:	Page 6 of 69
1M1702280075-01-R5.ZNF 02/13/17 - 03/02/17		Portable Handset	Fage 6 01 09

1.7 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-2A & U-NII-2C WIFI, only 2.4 GHz, U-NII-1 and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02r01.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) TDWR and Band gap channels are not supported

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE Carrier Aggregation (CA) in the downlink only. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

This device supports both LTE B4 and LTE B66. Since the supported frequency span for LTE B66 falls completely within the supported frequency span for LTE B4, both LTE bands have the same target power, and both LTE bands share the same transmission path, SAR was only assessed for LTE B66.

1.8 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)

FCC ID: ZNFM710H		SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 7 of 60
1M1702280075-01-R5.ZNF 02/13/17 - 03/02/17		Portable Handset	Page 7 of 69

additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

1.9 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

	Head Serial Number	Body-Worn Serial Number	Hotspot Serial Number
GSM/GPRS/EDGE 850	11259	11267	11267
GSWGPRS/EDGE 1900	11267	11259	11259
UMTS 850	11259	11267	11267
UMTS 1750	11267	11259	11259
UMTS 1900	11267	11259	11259
LTE Band 12	11234	11242	11242
LTE Band 13	51929	51945	51945
LTE Band 5 (Cell)	11242	11242	11242
LTE Band 66 (AWS)	51929	51937	51937
LTE Band 2 (PCS)	11267	11242	11242
LTE Band 7	11242	11242	11242
2.4 GHz WLAN	11390	11390	11390
5 GHz WLAN	11390	11390	11390
Bluetooth	-	11390	-

FCC ID: ZNFM710H		SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 8 of 69
1M1702280075-01-R5.ZNF 02/13/17 - 03/02/17		Portable Handset	rage o 01 69

LTE INFORMATION

	LTE Information				
FCC ID		ZNFM710H			
Form Factor		Portable Handset			
Frequency Range of each LTE transmission band		Band 12 (699.7 - 715.3 N			
	LTE Band 13 (779.5 - 784.5 MHz)				
	LTE B	and 5 (Cell) (824.7 - 848.3	3 MHz)		
	LTE Ban	d 66 (AWS) (1710.7 - 1779	9.3 MHz)		
	LTE Bar	nd 4 (AWS) (1710.7 - 1754	1.3 MHz)		
		nd 2 (PCS) (1850.7 - 1909			
		Band 7 (2502.5 - 2567.5 M			
Channel Bandwidths		12: 1.4 MHz, 3 MHz, 5 MF	*		
Ondinior Bundwidths		TE Band 13: 5 MHz, 10 MI			
		Cell): 1.4 MHz, 3 MHz, 5 I			
		4 MHz, 3 MHz, 5 MHz, 10			
		4 MHz, 3 MHz, 5 MHz, 10			
		MHz, 3 MHz, 5 MHz, 10			
		7: 5 MHz, 10 MHz, 15 MH			
Channel Numbers and Frequencies (MHz)	Low Low-Mid	Mid	Mid-High High		
LTE Band 12: 1.4 MHz	699.7 (23017)	707.5 (23095)	715.3 (23173)		
LTE Band 12: 3 MHz	700.5 (23025)	707.5 (23095)	714.5 (23165)		
LTE Band 12: 5 MHz	701.5 (23035)	707.5 (23095)	713.5 (23155)		
LTE Band 12: 10 MHz					
LTE Band 13: 5 MHz	704 (23060)	707.5 (23095)	711 (23130)		
	779.5 (23205)	782 (23230)	784.5 (23255)		
LTE Band 13: 10 MHz	N/A	782 (23230)	N/A		
LTE Band 5 (Cell): 1.4 MHz	824.7 (20407)	836.5 (20525)	848.3 (20643)		
LTE Band 5 (Cell): 3 MHz	825.5 (20415)	836.5 (20525)	847.5 (20635)		
LTE Band 5 (Cell): 5 MHz	826.5 (20425)	836.5 (20525)	846.5 (20625)		
LTE Band 5 (Cell): 10 MHz	829 (20450)	836.5 (20525)	844 (20600)		
LTE Band 66 (AWS): 1.4 MHz	1710.7 (131979) 1733.6 (132208)	N/A	1756.4 (132436) 1779.3 (132665)		
LTE Band 66 (AWS): 3 MHz	1711.5 (131987)	1745 (132322)	1778.5 (132657)		
LTE Band 66 (AWS): 5 MHz	1712.5 (131997)	1745 (132322)	1777.5 (132647)		
LTE Band 66 (AWS): 10 MHz		\ /			
LTE Band 66 (AWS): 15 MHz	1715 (132022) 1717.5 (132047)	1745 (132322) 1745 (132322)	1775 (132622) 1772.5 (132597)		
LTE Band 66 (AWS): 13 MHz					
	1720 (132072)	1745 (132322)	1770 (132572)		
LTE Band 4 (AWS): 1.4 MHz	1710.7 (19957)	1732.5 (20175)	1754.3 (20393)		
LTE Band 4 (AWS): 3 MHz	1711.5 (19965)	1732.5 (20175)	1753.5 (20385)		
LTE Band 4 (AWS): 5 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)		
LTE Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)		
LTE Band 4 (AWS): 15 MHz	1717.5 (20025)	1732.5 (20175)	1747.5 (20325)		
LTE Band 4 (AWS): 20 MHz	1720 (20050)	1732.5 (20175)	1745 (20300)		
LTE Band 2 (PCS): 1.4 MHz	1850.7 (18607)	1880 (18900)	1909.3 (19193)		
LTE Band 2 (PCS): 3 MHz	1851.5 (18615)	1880 (18900)	1908.5 (19185)		
LTE Band 2 (PCS): 5 MHz	1852.5 (18625)	1880 (18900)	1907.5 (19175)		
LTE Band 2 (PCS): 10 MHz	1855 (18650)	1880 (18900)	1905 (19150)		
LTE Band 2 (PCS): 15 MHz	1857.5 (18675)	1880 (18900)	1902.5 (19125)		
LTE Band 2 (PCS): 20 MHz	1860 (18700)	1880 (18900)	1900 (19100)		
LTE Band 7: 5 MHz	2502.5 (20775)	2535 (21100)	2567.5 (21425)		
LTE Band 7: 10 MHz	2502.5 (20775) 2505 (20800)	. ,			
	, ,	2535 (21100)	2565 (21400)		
LTE Band 7: 15 MHz LTE Band 7: 20 MHz	2507.5 (20825)	2535 (21100)	2562.5 (21375)		
	2510 (20850)	2535 (21100)	2560 (21350)		
UE Category		6 ODSK 460AM			
Modulations Supported in UL		QPSK, 16QAM			
LTE MPR Permanently implemented per 3GPP TS 36.101		VEC			
section 6.2.3~6.2.5? (manufacturer attestation to be		YES			
provided)		VEO			
A-MPR (Additional MPR) disabled for SAR Testing?		YES			
LTE Carrier Aggregation Possible Combinations	The technical description inc	ludes all the possible carr	ier aggregation combinations		
LTE Release 10 Additional Information	The technical description includes all the possible carrier aggregation combinations This device does not support full CA features on 3GPP Release 10. It supports a maximum of 2 carriers in the downlink. All uplink communications are identical to the Release 8 Specifications. Uplink communications are done on the PCC. The following LTE Release 10 Features are not supported: Relay, HetNet, Enhanced MIMO, elClC, WIFI Offloading, MDH, eMBMS, Cross-Carrier Scheduling, Enhanced SC-FDMA.				

FCC ID: ZNFM710H		SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 0 of 60
1M1702280075-01-R5.ZNF 02/13/17 - 03/02/17		Portable Handset	Page 9 of 69
17 DCTEST Engineering Laboratory Inc.			DEV/ 10.2 M

3

INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 $\sigma \;\;$ = $\;$ conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFM710H		SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 10 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 10 of 69

© 2017 PCTEST Engineering Laboratory, Inc.

DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed was measured and used as a reference value.

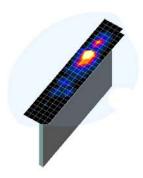


Figure 4-1 Sample SAR Area Scan

point

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

_	Maximum Area Scan Resolution (mm)	Maximum Zoom Scan Resolution (mm)	Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	(Δx _{zoom} , Δy _{zoom})	Uniform Grid Graded Grid		Volume (mm) (x,y,z)	
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤ 15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: ZNFM710H	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 11 of 69
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset		Fage 110109

© 2017 PCTEST Engineering Laboratory, Inc.

5.1 **EAR REFERENCE POINT**

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning

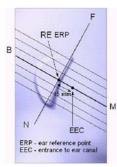


Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

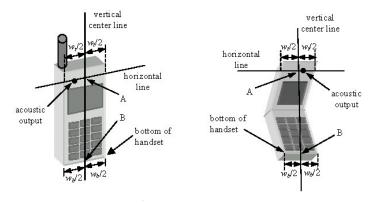


Figure 5-3 **Handset Vertical Center & Horizontal Line Reference Points**

FCC ID: ZNFM710H	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 12 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 12 of 69

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 12 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 13 of 69

© 2017 PCTEST Engineering Laboratory, Inc.

Figure 6-2 Front, Side and Top View of Ear/15°
Tilt Position

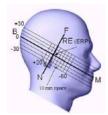


Figure 6-3
Side view w/ relevant markings

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot

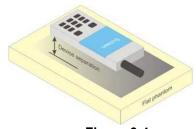


Figure 6-4 Sample Body-Worn Diagram

mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 14 of 69
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset		Fage 14 01 09
17 PCTEST Engineering Laboratory, Inc.				REV 18.2 M

© 2017 PCTEST Engineering Laboratory, Inc

metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 **Extremity Exposure Configurations**

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 **Wireless Router Configurations**

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W ≥ 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

FCC ID: ZNFM710H	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 15 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 15 of 69

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

	·	
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT
	General Population	Occupational
07. 30 01 01 340 340 500000	(W/kg) or (mW/g)	(VV/kg) or (mVV/g)
Peak Spatial Average SAR Head	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

^{1.} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 16 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 16 of 69

© 2017 PCTEST Engineering Laboratory, Inc.

^{3.} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 17 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 17 of 69

© 2017 PCTEST Engineering Laboratory, Inc.

8.4.2 **Head SAR Measurements**

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 **Body SAR Measurements**

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported SAR configuration in 12.2 kbps RMC.

SAR Measurements with Rel 5 HSDPA 8.4.4

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

SAR Measurements with Rel 6 HSUPA 8.4.5

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.4.6 SAR Measurement Conditions for DC-HSDPA

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

8.5 **SAR Measurement Conditions for LTE**

additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.5.1 **Spectrum Plots for RB Configurations**

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 18 of 69
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset		Page 16 01 69

© 2017 PCTEST Engineering Laboratory, Inc.

8.5.2 **MPR**

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg. SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- Per Section 5.2.4 and 5.3. SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

8.5.5 **Downlink Only Carrier Aggregation**

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. For every supported combination of downlink only carrier aggregation, additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

FCC ID: ZNFM710H	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 10 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 19 of 69

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.6.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg.

8.6.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

8.6.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

8.6.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

 When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.

FCC ID: ZNFM710H	PCTEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 20 of 69
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset		Page 20 01 69

© 2017 PCTEST Engineering Laboratory, Inc.

2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg. SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.6.6 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.6.7 **Initial Test Configuration Procedure**

For OFDM, an initial test configuration is determined for each frequency band and aggregated band. according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.6.6).

Subsequent Test Configuration Procedures 8.6.8

For OFDM configurations in each frequency band and aggregated band. SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 21 of 69
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset		Page 21 01 69

9 RF CONDUCTED POWERS

9.1 GSM Conducted Powers

810

Frame Avg.Targets:

GSM 850

GSM 1900

21.17

23.67

20.67

21.14

23.67

20.67

23.15

25.68

22 68

			Max	imum Burst-	Averaged O	utput Powe	r			
		Voice		GPRS/EDGE Data E (GMSK)					GE Data -PSK)	
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	33.13	33.10	32.15	30.06	28.57	27.16	27.00	26.58	26.53
GSM 850	190	33.12	33.05	31.98	30.15	28.70	27.13	27.02	26.44	26.44
	251	33.05	33.00	32.20	29.89	28.52	27.15	26.94	26.47	26.59
	512	30.06	30.09	28.20	26.88	25.70	26.20	26.15	25.64	25.70
GSM 1900	661	30.06	30.20	29.14	27.06	25.67	26.13	26.07	25.54	25.52
	810	30.20	30.17	29.17	27.20	25.50	26.04	25.94	25.64	25.50
			Calculated	Maximum I	-rame-Avera	iged Output	Power			
		Voice			OGE Data MSK)		EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	24.10	24.07	26.13	25.80	25.56	18.13	20.98	22.32	23.52
GSM 850	190	24.09	24.02	25.96	25.89	25.69	18.10	21.00	22.18	23.43
	251	24.02	23.97	26.18	25.63	25.51	18.12	20.92	22.21	23.58
	512	21.03	21.06	22.18	22.62	22.69	17.17	20.13	21.38	22.69
GSM 1900	661	21.03	21.17	23.12	22.80	22.66	17.10	20.05	21.28	22.51

Note:

 Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.

22.94

25.44

22.44

22.49

25.19

22 19

17.01

17.67

16 67

19.92

20.68

19 68

21.38

21.94

20 94

22.49

23.19

22.19

- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

GSM Class: B
GPRS Multislot class: 33 (Max 4 Tx uplink slots)
EDGE Multislot class: 33 (Max 4 Tx uplink slots)
DTM Multislot Class: N/A

Base Station Simulator RF Connector Wireless Device

Figure 9-1
Power Measurement Setup

FCC ID: ZNFM710H	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 22 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 22 of 69

© 2017 PCTEST Engineering Laboratory, Inc.

9.2 UMTS Conducted Powers

3GPP Release	Mode 3GPP 34.121 Subtest		Cellu	lar Band	[dBm]	AW	S Band [d	IBm]	PCS	PCS Band [dBm]		
Version		Subtest	4132	4183	4233	1312	1412	1513	9262	9400	9538	MPR [dB]
99	WCDMA	12.2 kbps RMC	24.51	24.50	24.67	24.20	24.18	24.12	24.13	24.16	24.17	-
99	WCDIVIA	12.2 kbps AMR	24.48	24.53	24.63	23.91	23.81	24.12	24.10	24.20	24.14	-
6		Subtest 1	24.51	24.57	24.61	24.13	24.06	24.15	24.12	24.11	24.06	0
6	HSDPA	Subtest 2	24.45	24.52	24.46	24.18	24.11	24.14	24.09	24.15	24.06	0
6	TIODEA	Subtest 3	23.94	24.06	24.06	23.70	23.66	23.70	23.61	23.57	23.69	0.5
6	1	Subtest 4	23.84	24.09	24.09	23.59	23.49	23.67	23.64	23.55	23.67	0.5
6		Subtest 1	23.76	24.39	24.29	23.42	23.36	23.72	23.37	23.20	23.30	0
6		Subtest 2	22.43	22.66	22.69	22.20	22.15	22.16	22.20	22.14	22.10	2
6	HSUPA	Subtest 3	23.36	23.57	23.44	23.19	23.10	23.16	23.12	23.13	22.83	1
6		Subtest 4	22.50	22.57	22.68	22.13	22.14	22.16	22.16	22.15	22.17	2
6		Subtest 5	23.59	23.72	23.79	24.14	23.72	23.77	23.76	23.41	23.61	0
8		Subtest 1	24.50	24.55	24.47	24.15	24.20	24.20	24.03	24.07	24.03	0
8	DC-HSDPA	Subtest 2	24.43	24.55	24.43	24.20	24.19	24.16	24.03	24.09	24.03	0
8	DO-HODPA	Subtest 3	23.96	24.06	24.06	23.70	23.65	23.66	23.59	23.65	23.69	0.5
8		Subtest 4	23.87	24.00	24.10	23.67	23.70	23.66	23.63	23.56	23.70	0.5

DC-HSDPA considerations

- 3GPP Specification 34.121-1 Release 8 Ver 8.10.0 was used for DC-HSDPA guidance
- H-Set 12 (QPSK) was confirmed to be used during DC-HSDPA measurements
- The DUT supports UE category 24 for HSDPA

Figure 9-2
Power Measurement Setup

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 22 of 60	
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 23 of 69	

9.3 LTE Conducted Powers

9.3.1 LTE Band 12

Table 9-1
LTE Band 12 Conducted Powers - 10 MHz Bandwidth

	LTE Band 12 Conducted Fowers - 10 Miliz Bandwidth								
10 MHz Bandwidth									
			Mid Channel						
Modulation	RB Size	RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power [dBm]						
	1	0	24.83		0				
	1	25	24.72	0	0				
	1	49	24.77		0				
QPSK	25	0	24.00		1				
	25	12	23.91	0-1	1				
	25	25	23.99	0-1	1				
	50	0	23.92		1				
	1	0	23.65		1				
	1	25	23.64	0-1	1				
	1	49	23.57		1				
16QAM	25	0	22.98		2				
	25	12	22.99	0-2	2				
	25	25	22.96	0-2	2				
	50	0	22.93		2				

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-2 LTE Band 12 Conducted Powers - 5 MHz Bandwidth

	LTE Band 12 5 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	23035 (701.5 MHz)	23095 (707.5 MHz)	23155 (713.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			•	Conducted Power [dBm						
	1	0	24.98	25.00	24.94		0			
	1	12	24.85	24.90	24.96	0	0			
	1	24	24.97	24.84	24.96		0			
QPSK	QPSK 12	0	23.92	24.00	24.00		1			
	12	6	24.00	23.99	23.95	0-1	1			
	12	13	23.99	23.98	23.86	0-1	1			
	25	0	23.95	23.97	23.69		1			
	1	0	23.94	23.87	23.36		1			
	1	12	23.91	23.79	23.44	0-1	1			
	1	24	23.80	23.62	23.40		1			
16QAM	12	0	22.66	22.83	22.81		2			
	12	6	22.77	22.80	22.89	0-2	2			
	12	13	22.81	23.00	22.77	J-2	2			
	25	0	23.05	22.99	22.84		2			

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	L G	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dama 24 of 60	
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	03/02/17 Portable Handset		Page 24 of 69	

Table 9-3

				LTE Band 12 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	24.98	24.67	24.94		0
	1	7	25.00	24.87	24.76	0	0
QPSK	1	14	24.79	24.92	24.79		0
	8	0	23.82	23.94	23.94		1
	8	4	23.77	23.93	23.90	1 01	1
	8	7	23.80	23.83	23.99	0-1	1
	15	0	23.88	23.98	23.85		1
	1	0	23.98	23.63	23.85		1
	1	7	23.94	23.72	23.87	0-1	1
	1	14	23.96	23.57	24.00		1
16QAM	8	0	22.71	22.79	22.79		2
	8	4	22.85	22.70	22.77	0-2	2
	8	7	22.81	22.78	22.83	0-2	2
	15	0	22.68	22.93	22.91	1	2

Table 9-4 LTE Band 12 Conducted Powers -1.4 MHz Bandwidth

			L Bana 12 Cone	Jucieu Powers -	1.4 WILL Ballav	Viatri				
				LTE Band 12						
	1.4 MHz Bandwidth									
Modulation RB Size		Low Channel	Mid Channel	High Channel						
	RB Size	RB Offset	23017	23095	23173	MPR Allowed per	MPR [dB]			
			(699.7 MHz)	(707.5 MHz)	(715.3 MHz)	3GPP [dB]	• •			
			C	Conducted Power [dBm	1]					
	1	0	24.79	24.75	24.84		0			
	1	2	24.86	24.81	24.78		0			
QPSK	1	5	24.83	24.86	24.83	0	0			
	3	0	24.89	24.87	24.90]	0			
	3	2	24.83	25.00	24.85		0			
	3	3	24.75	25.00	24.88		0			
	6	0	23.74	23.88	23.77	0-1	1			
	1	0	23.49	24.00	23.59		1			
	1	2	23.58	23.90	23.68		1			
	1	5	23.45	23.82	23.64	0-1	1			
16QAM	3	0	24.00	23.81	24.00]	1			
	3	2	23.88	23.73	24.00		1			
	3	3	23.89	23.87	23.55		1			
	6	0	22.45	22.63	22.50	0-2	2			

Document S/N: Test Dates: DUT Type: Page 25 of 69	FCC ID: ZNFM710H	PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dogo 25 of 60
1M1702280075-01-R5.ZNF 02/13/17 - 03/02/17 Portable Handset	1M1702280075-01-R5.ZNF	- 02/13/17 - 03/02/17 Portable Handset		Fage 23 01 69

9.3.2 LTE Band 13

Table 9-5
LTE Band 13 Conducted Powers - 10 MHz Bandwidth

	LTE Band 13 10 MHzBandwidth								
			Mid Channel						
Modulation	RB Size	RB Offset	23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power [dBm]	0011 [05]					
	1 0 24.43			0					
	1	25	24.51	0	0				
	1	49	24.58		0				
QPSK	25	0	23.62		1				
	25	12	23.42	0-1	1				
	25	25	23.54	0-1	1				
	50	0	23.44		1				
	1	0	23.42		1				
	1	25	23.48	0-1	1				
	1	49	23.49		1				
16QAM	25	0	22.50		2				
	25	12	22.55	0-2	2				
	25	25	22.47	0-2	2				
	50	0	22.50		2				

Table 9-6
LTE Band 13 Conducted Powers - 5 MHz Bandwidth

	LTE Band 13 5 MHzBandwidth									
			Mid Channel							
Modulation	RB Size	RB Offset	23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted Power [dBm]							
	1	0	24.54		0					
	1	12	24.55	0	0					
	1	24	24.46		0					
QPSK	12	0	23.51		1					
	12	6	23.44	0-1	1					
	12	13	23.52	0-1	1					
	25	0	23.53		1					
	1	0	23.44		1					
	1	12	23.50	0-1	1					
	1	24	23.53		1					
16QAM	12	0	22.56		2					
	12	6	22.49	0-2	2					
	12	13	22.56	0-2	2					
	25	0	22.58		2					

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFM710H	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 26 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 26 of 69

9.3.3 LTE Band 5 (Cell)

Table 9-7
LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth

LTE Band 5 (Cell) Conducted Powers - 10 MHZ Bandwidth									
			LTE Band 5 (Cell)						
			10 MHz Bandwidth						
			Mid Channel						
			20525	MPR Allowed per					
Modulation	RB Size	RB Offset	(836.5 MHz)	3GPP [dB]	MPR [dB]				
			Conducted Power						
			[dBm]						
	1	0	24.61		0				
	1	25	24.56	0	0				
	1	49	24.63		0				
QPSK	25	0	23.70		1				
	25	12	23.67	0-1	1				
	25	25	23.65	0-1	1				
	50	0	23.60		1				
	1	0	23.70		1				
	1	25	23.68	0-1	1				
	1	49	23.70		1				
16QAM	25	0	22.52		2				
	25	12	22.63	0-2	2				
	25	25	22.70	J	2				
	50	0	22.70		2				

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-8
LTE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth

			Bana o (Gon) G	LTE Band 5 (Cell)	io o miniz Bank	awiatii	
				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	24.57	24.52	24.64		0
	1	12	24.42	24.53	24.54	0	0
	1	24	24.42	24.46	24.58		0
QPSK	12	0	23.41	23.58	23.70		1
	12	6	23.39	23.58	23.70	0-1	1
	12	13	23.34	23.44	23.55] 0-1	1
	25	0	23.45	23.37	23.70		1
	1	0	22.92	23.56	23.37		1
	1	12	22.95	23.70	23.24	0-1	1
	1	24	22.84	23.67	23.18]	1
16QAM	12	0	22.32	22.24	22.52		2
	12	6	22.22	22.31	22.39	0-2	2
	12	13	22.43	22.25	22.53	0-2	2
	25	0	22.55	22.40	22.67	1	2

FCC ID: ZNFM710H	PCTEST:	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 27 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 27 of 69

Table 9-9 LTE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

				LTE Band 5 (Cell)			
		1		3 MHz Bandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20415 (825.5 MHz)	20525 (836.5 MHz)	20635 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	n]		
	1	0	24.36	24.34	24.36		0
	1	7	24.47	24.09	24.42	0	0
	1	14	24.51	24.19	24.43	0-1	0
QPSK	8	0	23.17	23.09	23.62		1
	8	4	23.34	23.23	23.52		1
	8	7	23.28	23.26	23.59] 0-1	1
	15	0	23.35	23.11	23.54	1	1
	1	0	23.68	23.69	23.54		1
	1	7	23.68	23.65	23.44	0-1	1
	1	14	23.66	23.68	23.33		1
16QAM	8	0	22.40	22.49	22.32		2
	8	4	22.45	22.53	22.45	0-2	2
	8	7	22.53	22.56	22.44	0-2	2
	15	0	22.28	22.54	22.46	1	2

Table 9-10 LTE Band 5 (Cell) Conducted Powers -1.4 MHz Bandwidth

			Jana J (Jen) Je	LTE Pand 5 (Call)	3 -1.7 WILL Dall	awiatii	
				LTE Band 5 (Cell) 1.4 MHz Bandwidth			
		1	Low Channel	Mid Channel	High Channel		
					•	l	
Modulation	RB Size	RB Offset	20407	20525	20643	MPR Allowed per	MPR [dB]
			(824.7 MHz)	(836.5 MHz)	(848.3 MHz)	3GPP [dB]	
			C	Conducted Power [dBm	1]		
	1	0	24.53	24.63	24.33		0
	1	2	24.50	24.62	24.56		0
	1	5	24.64	24.70	24.20	0	0
QPSK	3	0	24.61	24.39	24.35	l o	0
	3	2	24.55	24.44	24.43		0
	3	3	24.57	24.51	24.46		0
	6	0	23.50	23.36	23.39	0-1	1
	1	0	23.62	23.42	23.64		1
	1	2	23.51	23.48	23.55		1
	1	5	23.09	23.54	23.65	0-1	1
16QAM	3	0	23.64	23.48	23.42		1
	3	2	23.62	23.49	23.45		1
	3	3	23.66	23.27	23.52		1
	6	0	22.26	22.11	22.33	0-2	2

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 29 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 28 of 69

LTE Band 66 (AWS) 9.3.4

Table 9-11 LTE Band 66 (AWS) Conducted Powers - 20 MHz Bandwidth

		LILDO	illa oo (Atto) o	onducted Fowe	13 - 20 Miliz Bai	Idwidtii	
				LTE Band 66 (AWS)			
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132072 (1720.0 MHz)	132322 (1745.0 MHz)	132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	23.96	23.96	23.99		0
	1	50	24.03	24.18	24.06	0	0
	1	99	24.04	23.97	24.03		0
QPSK	50	0	23.09	23.07	22.97		1
	50	25	22.94	23.15	23.01	0-1	1
	50	50	22.94	23.00	22.92	0-1	1
	100	0	23.12	23.00	22.99		1
	1	0	22.91	23.08	23.04		1
	1	50	23.00	23.06	22.98	0-1	1
	1	99	23.08	23.01	23.03		1
16QAM	50	0	21.99	21.94	22.00		2
	50	25	21.89	21.95	22.00	0-2	2
	50	50	21.98	22.00	22.03	0-2	2
1	100	0	22.01	21.98	21.94		2

Table 9-12 LTE Band 66 (AWS) Conducted Powers - 15 MHz Bandwidth

				LTE Band 66 (AWS)	io io iiii iz Bai		
				15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132047 (1717.5 MHz)	132322 (1745.0 MHz)	132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.03	24.07	23.89		0
	1	36	23.89	24.00	24.01	0	0
	1	74	24.00	23.91	23.96		0
QPSK	36	0	22.95	23.04	23.04		1
	36	18	23.01	22.92	22.97	0-1	1
	36	37	23.04	22.96	22.92	0-1	1
	75	0	22.95	23.05	23.09		1
	1	0	23.05	22.92	23.05		1
	1	36	22.95	23.06	23.02	0-1	1
	1	74	22.95	23.07	23.09		1
16QAM	36	0	22.00	22.02	21.98		2
	36	18	22.05	22.02	21.98	0-2	2
	36	37	22.01	22.06	21.98	0-2	2
	75	0	22.04	21.98	22.04		2

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 20 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 29 of 69

Table 9-13 LTE Band 66 (AWS) Conducted Powers - 10 MHz Bandwidth

		LILDO	ilia oo (Avvo) o	onducted Fowe	13 - 10 WILL Dai	Idwidti	
				LTE Band 66 (AWS)			
		1		10 MHz Bandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132022 (1715.0 MHz)	132322 (1745.0 MHz)	132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	24.00	24.03	24.06		0
	1	25	23.90	23.95	23.89	0	0
	1	49	24.02	23.97	24.00		0
QPSK	25	0	22.99	23.03	23.08		1
	25	12	23.02	22.97	22.94	0-1	1
	25	25	22.93	23.08	23.04	0-1	1
	50	0	22.94	23.00	23.06		1
	1	0	22.91	22.96	22.95		1
	1	25	23.04	22.99	23.04	0-1	1
	1	49	23.10	23.01	23.07		1
16QAM	25	0	22.06	21.99	21.95		2
	25	12	21.96	21.94	22.04	0-2	2
	25	25	22.01	22.09	22.07	0-2	2
	50	0	21.97	22.01	21.93		2

Table 9-14 LTE Band 66 (AWS) Conducted Powers - 5 MHz Bandwidth

	LTE Band 66 (AWS)									
				5 MHz Bandwidth						
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]					
	1	0	23.98	24.00	23.98		0			
	1	12	23.96	24.03	24.10	0	0			
	1	24	24.00	23.94	23.97		0			
QPSK	12	0	23.01	23.00	22.96		1			
	12	6	22.91	22.96	23.04		1			
	12	13	23.02	22.97	23.08	0-1	1			
	25	0	23.02	22.94	23.04		1			
	1	0	23.01	22.96	22.99		1			
	1	12	23.05	22.98	23.01	0-1	1			
	1	24	22.97	22.96	23.02		1			
16QAM	12	0	21.97	22.02	22.02		2			
	12	6	21.98	21.92	21.92	0-2	2			
	12	13	22.00	22.00	22.01	0-2	2			
	25	0	21.96	22.03	21.94		2			

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 30 of 69
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Fage 30 01 09

Table 9-15 LTE Band 66 (AWS) Conducted Powers - 3 MHz Bandwidth

		LILDO	and 66 (AVVS) C	onducted Powe	ers - 3 Winz Dai	lawiatii	
				LTE Band 66 (AWS)			
		T	Ob	3 MHz Bandwidth	Ulah Ohamad		
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131987 (1711.5 MHz)	132322 (1745.0 MHz)	132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	n]		
	1	0	24.07	24.08	24.01		0
	1	7	23.94	24.10	23.97	0	0
1	1	14	23.91	23.96	24.07	1	0
QPSK	8	0	22.94	22.93	22.99		1
	8	4	22.91	23.05	22.99	0-1	1
	8	7	22.95	22.88	22.98	0-1	1
	15	0	23.01	23.11	22.94	1	1
	1	0	22.96	23.09	23.06		1
	1	7	23.01	22.93	23.05	0-1	1
	1	14	23.11	23.03	22.95	Ţ	1
16QAM	8	0	21.99	22.00	22.03		2
	8	4	22.02	21.93	21.99	1 02	2
	8	7	22.02	22.03	22.05	0-2	2
	15	0	21.96	22.09	21.99		2

Table 9-16 LTE Band 66 (AWS) Conducted Powers -1.4 MHz Bandwidth

			<u> </u>	LTE Band 66			-	
				1.4 MHz Band	lwidth			
			Low Channel	Low-Mid Channel	Mid-High	High Channel		
Modulation	RB Size	RB Offset	131979 (1710.7 MHz)	132208 (1733.6 MHz)	132436 (1756.4 MHz)	132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted I	Power [dBm]			
	1	0	23.97	23.98	23.98	24.02		0
ĺ	1	2	24.01	24.01	24.02	24.00	0	0
	1	5	23.95	23.99	24.02	23.98		0
QPSK	3	0	23.92	24.01	23.95	24.05		0
ĺ	3	2	24.00	24.05	23.98	23.99		0
[3	3	23.98	24.05	23.91	23.96		0
	6	0	22.93	23.04	22.97	23.02	0-1	1
	1	0	23.05	22.95	22.94	22.98		1
ĺ	1	2	22.98	23.01	22.94	23.04		1
	1	5	22.97	22.92	22.96	23.07	0-1	1
16QAM	3	0	23.01	23.05	22.90	23.02	0-1	1
	3	2	22.96	22.95	22.98	22.92	1	1
	3	3	22.99	23.07	23.01	23.05		1
	6	0	22.00	21.97	21.89	21.99	0-2	2

Per FCC KDB Publication 447498 D01v06 Section 4.1g), 4 channels are required for LTE Band 66 with 1.4 MHz Bandwidth.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 24 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 31 of 69

LTE Band 2 (PCS) 9.3.5

Table 9-17 LTE Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth

				LTE Band 2 (PCS) 20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm			
	1	0	24.10	23.91	24.09		0
	1	50	24.20	23.93	23.90	0	0
	1	99	24.03	23.73	23.85]	0
QPSK	50	0	22.91	22.76	22.79	0-1	1
	50	25	22.92	23.15	22.87		1
	50	50	22.96	22.86	22.86		1
	100	0	22.86	22.86	22.91]	1
	1	0	22.77	23.18	23.15		1
	1	50	22.73	23.02	23.04	0-1	1
	1	99	22.71	23.15	22.94] [1
16QAM	50	0	22.17	21.94	22.03		2
	50	25	22.13	21.99	21.99	0-2	2
	50	50	22.05	21.94	22.05	0-2	2
	100	0	22.13	21.99	21.94] [2

Table 9-18 LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth

			· ·	LTE Band 2 (PCS) 15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18675 (1857.5 MHz)	18900 (1880.0 MHz)	19125 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1		
	1	0	23.99	23.89	24.01		0
	1	36	23.95	23.76	23.89	0	0
1	1	74	23.96	23.70	23.80		0
QPSK	36	0	23.08	22.88	22.82	0-1	1
	36	18	23.10	22.96	22.92		1
	36	37	23.05	22.93	22.91		1
	75	0	23.02	22.86	22.70		1
	1	0	23.19	22.85	22.68		1
	1	36	23.10	22.76	22.65	0-1	1
	1	74	23.08	22.63	22.64		1
16QAM	36	0	22.08	22.01	21.66		2
	36	18	22.08	21.98	21.87	1	2
	36	37	22.06	22.10	21.82	0-2	2
	75	0	22.15	21.98	21.78		2

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 32 of 69
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Fage 32 01 69

Table 9-19 LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth

			and 2 (1 00) 00	Huucteu Powers	s - 10 Williz Dalik	awiatii	
				LTE Band 2 (PCS) 10 MHz Bandwidth			
1		1	Low Channel	Mid Channel	High Channel	1	
					,		
Modulation	RB Size	RB Offset	18650 (1855.0 MHz)	18900 (1880.0 MHz)	19150 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.92	24.01	23.98		0
	1	25	23.76	24.01	23.96	0	0
	1	49	23.78	24.04	23.98	0.4	0
QPSK	25	0	22.86	22.91	22.99		1
	25	12	22.91	22.87	22.83		1
	25	25	22.94	22.88	22.92	0-1	1
	50	0	22.87	22.95	22.89		1
	1	0	23.19	22.70	22.79		1
	1	25	23.02	22.82	22.73	0-1	1
	1	49	22.95	22.57	22.91	1	1
16QAM	25	0	22.18	22.03	22.04		2
	25	12	22.08	22.06	21.91	1 00	2
	25	25	22.20	22.08	21.75	0-2	2
ľ	50	0	22.08	21.95	21.89	1	2

Table 9-20 LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth

				LTE Band 2 (PCS) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18625 (1852.5 MHz)	18900 (1880.0 MHz)	19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	23.97	23.98	23.83		0
	1	12	24.01	24.07	23.60	0	0
	1	24	24.05	23.89	23.66		0
QPSK	12	0	23.02	22.85	22.85	0-1	1
	12	6	23.03	22.75	23.02		1
	12	13	22.90	22.86	23.00		1
	25	0	22.90	22.71	22.85		1
	1	0	22.98	22.50	22.73		1
	1	12	22.94	22.51	22.88	0-1	1
	1	24	23.08	22.63	22.60		1
16QAM	12	0	21.86	21.89	21.69		2
	12	6	21.71	21.75	21.74	0-2	2
	12	13	21.74	21.83	21.80	0-2	2
	25	0	21.70	21.84	21.83		2

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 22 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 33 of 69

Table 9-21 LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth

				LTE Band 2 (PCS) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18615 (1851.5 MHz)	18900 (1880.0 MHz)	19185 (1908.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.84	23.75	23.84		0
	1	7	23.84	23.85	23.92	0	0
	1	14	23.71	23.87	23.90	1	0
QPSK	8	0	22.91	22.90	22.77	0-1	1
	8	4	22.88	22.82	22.86		1
	8	7	22.81	22.90	22.81		1
	15	0	22.90	23.00	22.79	1	1
	1	0	23.20	22.79	23.13		1
	1	7	23.20	22.69	23.08	0-1	1
	1	14	23.14	22.45	22.98	1	1
16QAM	8	0	22.13	21.74	22.05		2
	8	4	22.10	21.78	21.96	0-2	2
	8	7	22.17	21.77	22.03		2
ľ	15	0	22.03	22.09	21.97		2

Table 9-22 LTE Band 2 (PCS) Conducted Powers -1.4 MHz Bandwidth

				LTE Band 2 (PCS) 1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18607 (1850.7 MHz)	18900 (1880.0 MHz)	19193 (1909.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	23.79	23.90	23.88		0
	1	2	23.81	23.77	24.08		0
QPSK	1	5	23.71	23.97	24.00	0	0
	3	0	23.77	23.89	23.78		0
	3	2	23.66	23.75	23.79		0
	3	3	23.62	23.85	23.73		0
	6	0	22.89	22.75	22.85	0-1	1
	1	0	23.18	22.82	23.18		1
	1	2	23.01	22.74	23.12	1	1
	1	5	23.08	22.84	23.11	0-1	1
16QAM	3	0	22.82	22.92	22.86	U-1	1
	3	2	22.84	22.88	22.97]	1
	3	3	22.83	22.92	22.88		1
	6	0	21.73	21.91	22.08	0-2	2

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 24 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17 Portable Handset		Page 34 of 69

9.3.6 LTE Band 7

Table 9-23 LTF Band 7 Conducted Powers - 20 MHz Bandwidth

			L Bana 7 Gona	ucted Powers -	20 Miliz Ballaw	idtii	
				LTE Band 7			
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20850	21100	21350	MPR Allowed per	MPR [dB]
Modulation	ND 0120	IND Offset	(2510.0 MHz)	(2535.0 MHz)	(2560.0 MHz)	3GPP [dB]	ini it [ub]
			(Conducted Power [dBm	1]		
	1	0	23.37	23.50	23.45		0
	1	50	23.39	23.54	23.43	0	0
	1	99	23.37	23.42	23.34		0
QPSK	50	0	22.39	22.51	22.31	0-1	1
	50	25	22.38	22.68	22.43		1
	50	50	22.41	22.49	22.34		1
	100	0	22.41	22.62	22.44		1
	1	0	22.20	22.70	22.61	0-1	1
	1	50	22.38	22.58	22.54		1
	1	99	22.36	22.30	22.48		1
16QAM	50	0	21.49	21.35	21.42		2
	50	25	21.57	21.31	21.38	0-2	2
	50	50	21.60	21.30	21.44	0-2	2
	100	0	21.43	21.40	21.38		2

Table 9-24 LTE Band 7 Conducted Powers - 15 MHz Bandwidth

				dotted i owers	TO MITTE BUTTON		
				LTE Band 7			
				15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	MPR Allowed per 3GPP [dB]	MPR [dB]
Modulation	RB Size	RB Offset	20825	21100	21375		
Modulation	ND 0120	IND Offset	(2507.5 MHz)	(2535.0 MHz)	(2562.5 MHz)		
			(Conducted Power [dBm	1]		
	1	0	23.32	23.38	23.61		0
	1	36	23.30	23.27	23.48	0	0
QPSK	1	74	23.48	23.31	23.50		0
	36	0	22.46	22.48	22.35	0-1	1
	36	18	22.47	22.40	22.38		1
	36	37	22.50	22.50	22.39		1
	75	0	22.47	22.41	22.32		1
	1	0	22.64	22.22	22.67	0-1	1
	1	36	22.57	22.36	22.65		1
16QAM	1	74	22.56	22.59	22.58		1
	36	0	21.36	21.46	21.38		2
	36	18	21.22	21.39	21.38	1	2
	36	37	21.24	21.45	21.49	0-2	2
	75	0	21.35	21.49	21.31	1	2

FCC ID: ZNFM710H	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 25 of 60	
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 35 of 69	

Table 9-25 ted Powers - 10 MHz Randwidth

		<u> </u>	E Ballu / Collu	LTE Band 7	10 WINZ Dalluw	iuui	
				10 MHz Bandwidth			
			Low Channel				
Modulation	RB Size	RB Offset	20800 (2505.0 MHz)	21100 (2535.0 MHz)	21400 (2565.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	n]		0 0 0 1 1 1
	1	0	23.40	23.64	23.67		0
	1	25	23.43	23.55	23.45	0	0
QPSK	1	49	23.43	23.30	23.45		0
	25	0	22.38	22.44	22.52	0-1	1
	25	12	22.32	22.50	22.45		1
	25	25	22.39	22.38	22.41		1
	50	0	22.34	22.54	22.39		1
	1	0	22.60	22.39	22.24	0-1	1
	1	25	22.58	22.40	22.27		1
İ	1	49	22.58	22.47	22.23		1
16QAM	25	0	21.47	21.40	21.43		2
	25	12	21.48	21.50	21.23	1 00	2
	25	25	21.49	21.43	21.36	0-2	2
	50	0	21.29	21.40	21.25	1	2

Table 9-26 LTE Band 7 Conducted Powers - 5 MHz Bandwidth

				adolog i owers	O WITTE BUTTOWN	•-•	
				LTE Band 7			
-		1	1 Ob 1	5 MHz Bandwidth	Illiah Ohamad	I I	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20775	21100	21425	MPR Allowed per	MPR [dB]
			(2502.5 MHz)	(2535.0 MHz)	(2567.5 MHz)	3GPP [dB]	
				Conducted Power [dBm			
	1	0	23.34	23.70	23.50	0	0
	1	12	23.15	23.57	23.30		0
QPSK	1	24	23.37	23.47	23.23		0
	12	0	22.29	22.34	22.46	0-1	1
	12	6	22.26	22.33	22.50		1
	12	13	22.17	22.23	22.48		1
	25	0	22.32	22.42	22.43		1
	1	0	22.47	22.20	22.21	0-1	1
	1	12	22.50	22.14	22.29		1
16QAM	1	24	22.50	22.13	22.43		1
	12	0	21.30	21.19	21.17		2
	12	6	21.32	21.17	21.22	0-2	2
	12	13	21.29	21.26	21.44	0-2	2
	25	0	21.22	21.47	21.37		2

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 26 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 36 of 69

9.3.7 **LTE Carrier Aggregation Conducted Powers**

Table 9-27 LTE Carrier Aggregation Conducted Powers

	30 - 30 - 10 - 10 - 10 - 10 - 10 - 10 -													
	PCC								SCC				Power	
PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Frequency [MHz]	SCC Band	Bandwidth	SCC (DL) Channel	Frequency	LTE Rel 10 Tx.Power (dBm)	LTE Rel. 8 Tx.Power (dBm)
LTE B2	20	18700	1860	QPSK	1	50	700	1940	LTE B4	20	2175	2132.5	24.15	24.20
LTE B4	20	20300	1745	QPSK	1	50	2300	2145	LTE B2	20	900	1960	24.20	24.18
LTE B4	20	20300	1745	QPSK	1	50	2300	2145	LTE B5	10	2525	881.5	24.15	24.18
LTE B5	5	20625	846.5	QPSK	1	0	2625	891.5	LTE B4	20	2175	2132.5	24.70	24.64
LTE B66	20	132322	1745	QPSK	1	50	66786	2145	LTE B66	5	67311	2197.5	24.19	24.18

Notes:

- 1. The device only supports downlink Carrier Aggregation. Uplink Carrier Aggregation is not supported. For every supported combination of downlink carrier aggregation, power measurements were performed with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.
- 2. All control and acknowledge data is sent on uplink channels that operate identical to specifications when downlink carrier aggregation is inactive.
- 3. Per FCC guidance LTE Band 66 standalone powers were used to select measurement configurations for LTE Band 4.

Figure 9-3 **Power Measurement Setup**

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 27 of 60	
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 37 of 69	

9.4 **WLAN Conducted Powers**

Table 9-28 2.4 GHz WLAN Average RF Power (Held-to-Ear)

Freq [MHz]	Channel	Transmission Mode 802.11b
2412	1	13.82
2437	6	13.83
2462	11	13.70

Table 9-29 2.4 GHz WLAN Average RF Power

		2.4GHz Conducted Power [dBm] IEEE Transmission Mode				
Freq [MHz]	Channel					
		802.11b	802.11g			
2412	1	13.82	11.45			
2417	2	15.94	12.89			
2437	6	16.46	13.38			
2457	10	15.83	12.67			
2462	11	13.70	10.49			

Table 9-30 5 GHz WLAN Average RF Power

Freq [MHz]	Channel	5GHz (20MHz) Conducted Power [dBm] IEEE Transmission Mode
		802.11a
5180	36	10.03
5200	40	10.16
5220	44	10.14
5240	48	9.97
5260	52	10.02
5280	56	9.99
5300	60	9.39
5320	64	9.02
5500	100	9.93
5580	116	9.91
5660	132	9.89
5700	140	9.18
5745	149	9.77
5785	157	9.95
5825	165	9.74

FCC ID: ZNFM710H	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 39 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 38 of 69

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

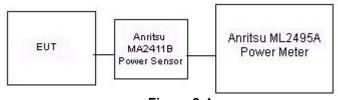


Figure 9-4
Power Measurement Setup

9.5 Bluetooth Conducted Powers

Table 9-31 Bluetooth Average RF Power

_	Data		Avg Cor Pov	nducted wer
Frequency [MHz]	Rate [Mbps]	Channel No.	[dBm]	[mW]
2402	1.0	0	9.41	8.725
2441	1.0	39	10.67	11.666
2480	1.0	78	8.91	7.779
2402	2.0	0	8.78	7.549
2441	2.0	39	10.11	10.257
2480	2.0	78	8.27	6.710
2402	3.0	0	8.96	7.863
2441	3.0	39	10.09	10.209
2480	3.0	78	8.33	6.813

Note: The bolded data rate and channel above were tested for SAR.

additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogo 20 of 60	
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset		Page 39 of 69	

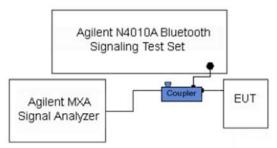


Figure 9-5 **Power Measurement Setup**

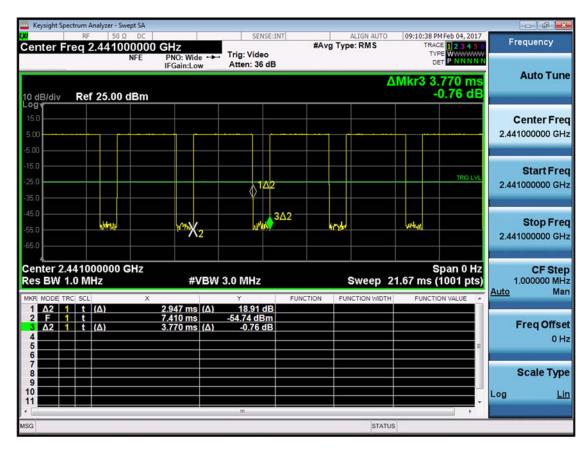


Figure 9-6 **Bluetooth Transmission Plot**

Equation 9-1 **Bluetooth Duty Cycle Calculation**

$$Duty \ Cycle = \frac{PulseWidth}{Period}*100\% = \frac{2.947ms}{3.770ms}*100\% = 78.2\%$$

FCC ID: ZNFM710H	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dago 40 of 60	
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 40 of 69	

10.1 **Tissue Verification**

Table 10-1 Measured Head Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			700	0.868	43.141	0.889	42.201	-2.36%	2.23%
02/21/2017	750H	21.5	710	0.877	42.984	0.890	42.149	-1.46%	1.98%
02/21/2017	73011	21.5	740	0.903	42.636	0.893	41.994	1.12%	1.53%
			755	0.917	42.414	0.894	41.916	2.57%	1.19%
			740	0.892	41.929	0.893	41.994	-0.11%	-0.15%
2/2/2017	750H	21.4	755	0.906	41.738	0.894	41.916	1.34%	-0.42%
3/2/2017	73011	21.4	770	0.920	41.555	0.895	41.838	2.79%	-0.68%
			785	0.932	41.350	0.896	41.760	4.02%	-0.98%
			820	0.887	41.343	0.899	41.578	-1.33%	-0.57%
02/13/2017	835H	20.4	835	0.902	41.153	0.900	41.500	0.22%	-0.84%
			850	0.916	40.959	0.916	41.500	0.00%	-1.30%
			820	0.903	42.667	0.899	41.578	0.44%	2.62%
02/20/2017	835H	20.9	835	0.918	42.490	0.900	41.500	2.00%	2.39%
			850	0.932	42.273	0.916	41.500	1.75%	1.86%
	1750H	21.3	1710	1.356	39.734	1.348	40.142	0.59%	-1.02%
02/13/2017			1750	1.397	39.559	1.371	40.079	1.90%	-1.30%
			1790	1.439	39.383	1.394	40.016	3.23%	-1.58%
	1750H		1710	1.351	39.044	1.348	40.142	0.22%	-2.74%
2/27/2017		23.0	1750	1.394	38.870	1.371	40.079	1.68%	-3.02%
			1790	1.434	38.670	1.394	40.016	2.87%	-3.36%
			1850	1.373	40.090	1.400	40.000	-1.93%	0.23%
02/14/2017	1900H	23.3	1880	1.404	39.955	1.400	40.000	0.29%	-0.11%
			1910	1.436	39.827	1.400	40.000	2.57%	-0.43%
			2400	1.837	38.327	1.756	39.289	4.61%	-2.45%
02/20/2017	2450H	21.4	2450	1.889	38.130	1.800	39.200	4.94%	-2.73%
			2500	1.944	37.912	1.855	39.136	4.80%	-3.13%
			2500	1.944	37.912	1.855	39.136	4.80%	-3.13%
02/20/2017	2600H	21.5	2550	1.999	37.719	1.909	39.073	4.71%	-3.47%
			2600	2.055	37.488	1.964	39.009	4.63%	-3.90%
			5240	4.605	35.277	4.696	35.940	-1.94%	-1.84%
			5260	4.615	35.255	4.717	35.917	-2.16%	-1.84%
			5500	4.864	34.922	4.963	35.643	-1.99%	-2.02%
02/16/2017	5250H-5750H	21.5	5600	4.978	34.787	5.065	35.529	-1.72%	-2.09%
			5745	5.137	34.576	5.214	35.363	-1.48%	-2.23%
			5765	5.152	34.590	5.234	35.340	-1.57%	-2.12%
			5785	5.158	34.587	5.255	35.317	-1.85%	-2.07%

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 41 of 60	
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 41 of 69	

Table 10-2
Measured Body Tissue Properties

Calibrated for Tests Performed on: 02/22/2017	750B 750B	Tissue Temp During Calibration (°C) 21.5	Measured Frequency (MHz) 700 710 740 755 740	Measured Conductivity, σ (S/m) 0.912 0.923 0.954 0.967	Measured Dielectric Constant, ε 56.755 56.679 56.421	TARGET Conductivity, σ (S/m) 0.959 0.960 0.963	TARGET Dielectric Constant, ε 55.726 55.687	% dev σ -4.90% -3.85%	% dev ε 1.85% 1.78%
on: 02/22/2017	750B	21.5	(MHz) 700 710 740 755 740	σ (S/m) 0.912 0.923 0.954 0.967	Constant, ε 56.755 56.679	σ (S/m) 0.959 0.960	Constant, ε 55.726 55.687	-4.90%	1.85%
02/22/2017			700 710 740 755 740	0.912 0.923 0.954 0.967	56.755 56.679	0.959 0.960	55.726 55.687		
			710 740 755 740	0.923 0.954 0.967	56.679	0.960	55.687		
			740 755 740	0.954 0.967				-3.05%	1./0%
2/27/2017	750B	21.3	755 740	0.967	56.421		EE E70	-0.93%	1.53%
2/27/2017	750B	21.3	740		EC 074	0.963	55.570		
2/27/2017	750B	21.3			56.274		55.512	0.31%	1.37%
2/27/2017	750B	21.3		0.955	56.593	0.963	55.570	-0.83%	1.84%
			755	0.970	56.441	0.964	55.512	0.62%	1.67%
		-	770	0.983	56.309	0.965	55.453	1.87%	1.54%
			785	0.997	56.175	0.966	55.395	3.21%	1.41%
			820	0.942	54.051	0.969	55.258	-2.79%	-2.18%
02/15/2017	835B	22.5	835	0.958	53.884	0.970	55.200	-1.24%	-2.38%
			850	0.970	53.736	0.988	55.154	-1.82%	-2.57%
			1710	1.475	51.391	1.463	53.537	0.82%	-4.01%
02/13/2017	1750B	20.6	1750	1.522	51.259	1.488	53.432	2.28%	-4.07%
			1790	1.566	51.118	1.514	53.326	3.43%	-4.14%
			1710	1.452	51.038	1.463	53.537	-0.75%	-4.67%
2/27/2017	1750B	750B 20.5	1750	1.500	50.878	1.488	53.432	0.81%	-4.78%
			1790	1.542	50.705	1.514	53.326	1.85%	-4.92%
			1850	1.499	52.962	1.520	53.300	-1.38%	-0.63%
02/15/2017	1900B	22.0	1880	1.532	52.856	1.520	53.300	0.79%	-0.83%
			1910	1.573	52.810	1.520	53.300	3.49%	-0.92%
			2400	1.976	52.472	1.902	52.767	3.89%	-0.56%
02/20/2017	2450B	22.3	2450	2.041	52.301	1.950	52.700	4.67%	-0.76%
			2500	2.112	52.104	2.021	52.636	4.50%	-1.01%
			2500	2.112	52.104	2.021	52.636	4.50%	-1.01%
02/20/2017	2600B	22.3	2550	2.181	51.932	2.092	52.573	4.25%	-1.22%
			2600	2.255	51.721	2.163	52.509	4.25%	-1.50%
			5200	5.436	48.472	5.299	49.014	2.59%	-1.11%
			5240	5.490	48.428	5.346	48.960	2.69%	-1.09%
	l	ŀ	5260	5.516	48.381	5.369	48.933	2.74%	-1.13%
		24.2	5500	5.839	48.043	5.650	48.607	3.35%	-1.16%
02/13/2017 52	250B-5750B	21.6	5600	5.984	47.840	5.766	48.471	3.78%	-1.30%
	l	ŀ	5745	6.185	47.589	5.936	48.275	4.19%	-1.42%
	l	ŀ	5765	6.219	47.524	5.959	48.248	4.36%	-1.50%
	l	ŀ	5785	6.232	47.538	5.982	48.220	4.18%	-1.41%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 42 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 42 of 69

10.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 10-3 System Verification Results

					ystem	• • • • • • •	ation	itcou	113			
						ystem Ve		_				
					TA	RGET & N	IEASURE	D 				
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
G	750	HEAD	02/21/2017	21.6	21.5	0.200	1003	3287	1.640	8.390	8.200	-2.26%
J	750	HEAD	03/02/2017	22.5	21.4	0.200	1161	3334	1.620	8.170	8.100	-0.86%
К	835	HEAD	02/13/2017	21.7	20.4	0.200	4d133	7409	1.760	9.320	8.800	-5.58%
Н	835	HEAD	02/20/2017	22.0	21.0	0.200	4d047	3319	1.890	9.130	9.450	3.50%
1	1750	HEAD	02/13/2017	21.9	21.3	0.100	1148	3209	3.460	36.200	34.600	-4.42%
E	1750	HEAD	02/27/2017	24.0	23.0	0.100	1008	7406	3.430	36.700	34.300	-6.54%
1	1900	HEAD	02/14/2017	23.5	22.7	0.100	5d149	3209	4.030	40.100	40.300	0.50%
G	2450	HEAD 02/20/2017 22.6 21.4 0.100 797 3287 5.3		5.230	52.100	52.300	0.38%					
G	2600	HEAD	02/20/2017	22.6	21.4	0.100	1126	3287	5.660	56.300	56.600	0.53%
К	5250	HEAD	02/16/2017	22.5	21.5	0.050	1191	7308	3.680	78.900	73.600	-6.72%
К	5600	HEAD	02/16/2017	22.5	21.5	0.050	1191	7308	4.070	83.600	81.400	-2.63%
К	5750	HEAD	02/16/2017	22.5	21.5	0.050	1191	7308	3.750	79.100	75.000	-5.18%
К	750	BODY	02/22/2017	22.7	21.5	0.200	1161	7409	1.830	8.430	9.150	8.54%
D	750	BODY	02/27/2017	22.7	21.5	0.200	1161	3288	1.780	8.430	8.900	5.58%
Н	835	BODY	02/15/2017	23.7	22.5	0.200	4d047	3319	1.980	9.570	9.900	3.45%
E	1750	BODY	02/13/2017	21.4	20.6	0.100	1148	7406	3.620	37.100	36.200	-2.43%
1	1750	BODY	02/27/2017	22.1	20.5	0.100	1148	3209	3.800	37.100	38.000	2.43%
J	1900	BODY	02/15/2017	23.2	21.1	0.100	5d080	3334	4.010	39.100	40.100	2.56%
E	2450	BODY	02/20/2017	22.5	22.0	0.100	981	7406	4.930	50.800	49.300	-2.95%
E	2600	BODY	02/20/2017	22.5	22.0	0.100	1071	7406	5.600	54.200	56.000	3.32%
D	5250	BODY	02/13/2017	21.6	20.5	0.050	1237	3589	3.520	74.800	70.400	-5.88%
D	5600	BODY	02/13/2017	21.6	20.5	0.050	1237	3589	3.780	77.000	75.600	-1.82%
D	5750	BODY	02/13/2017	21.6	20.5	0.050	1237	3589	3.450	75.400	69.000	-8.49%

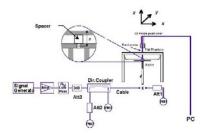


Figure 10-1 **System Verification Setup Diagram**

Figure 10-2 **System Verification Setup Photo**

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 42 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 43 of 69

© 2017 PCTEST Engineering Laboratory, Inc.

11/28/2016

SAR DATA SUMMARY

Standalone Head SAR Data 11.1

Table 11-1 GSM 850 Head SAR

							000 11											
						MEAS	JREMEN	T RESUL	TS									
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	Device Serial	# of Time	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #			
MHz	Ch.			Power [dBm]	rower [dbiii]	Driit [db]		Position	Number	31015		(W/kg)		(W/kg)				
836.60	190	GSM 850	GSM	33.2	33.12	-0.05	Right	Cheek	11259	1	1:8.3	0.229	1.019	0.233				
836.60	190	GSM 850	GSM	33.2	33.12	0.17	Right	Tilt	11259	1	1:8.3	0.101	1.019	0.103				
836.60	190	GSM 850	GSM	33.2	33.12	0.11	11 Left Cheek 11259 1 1:8.3					0.156	1.019	0.159				
836.60	190	GSM 850	GSM	33.2	33.12	0.14	Left	Tilt	11259	1	1:8.3	0.086	1.019	0.088				
836.60	190	GSM 850	GPRS	30.2	30.15	0.19	Right	Cheek	11259	3	1:2.76	0.337	1.012	0.341	A1			
836.60	190	GSM 850	GPRS	30.2	30.15	0.18	Right	Tilt	11259	3	1:2.76	0.150	1.012	0.152				
836.60	190	GSM 850	GPRS	30.2	30.15	-0.13	Left	Cheek	11259	3	1:2.76	0.221	1.012	0.224				
836.60	190	GSM 850	GPRS	30.2	30.15	0.02	Left	Tilt	11259	3	1:2.76	0.142	1.012	0.144				
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	Т		Head											
			Spatial Pea								1.6 W/kg							
		Uncontrolle	d Exposure/Ge	neral Popula	tion		averaged over 1 gram											

Table 11-2 GSM 1900 Head SAR

						MEAS	JREMEN	T RESUL	.TS								
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	Device Serial	# of Time	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#		
MHz	Ch.			Power [dBm]	rower [dbiii]	Driit [dB]		Position	Number	Siots		(W/kg)		(W/kg)			
1880.00	661	GSM 1900	GSM	30.2	30.06	0.09	Right	Cheek	11267	1	1:8.3	0.072	1.033	0.074			
1880.00	661	GSM 1900	GSM	30.2	30.06	-0.07	Right	Tilt	11267	1	1:8.3	0.075	1.033	0.077			
1880.00	661	GSM 1900	GSM	30.2	30.06	0.13	3 Left Cheek 11267 1 1:8.3						1.033	0.127			
1880.00	661	GSM 1900	GSM	30.2	30.06	0.02	Left	Left Tilt 11267 1				0.030	1.033	0.031			
1880.00							Right	Cheek	11267	3	1:2.76	0.120	1.033	0.124			
1880.00	661	GSM 1900	GPRS	27.2	27.06	-0.05	Right	Tilt	11267	3	1:2.76	0.118	1.033	0.122			
1880.00	661	GSM 1900	GPRS	27.2	27.06	-0.05	Left	Cheek	11267	3	1:2.76	0.183	1.033	0.189	A2		
1880.00	661	GSM 1900	-0.11	Left	Tilt	11267	3	1:2.76	0.041	1.033	0.042						
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							Head 1.6 W/kg (mW/g) averaged over 1 gram									

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 44 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 44 of 69

Table 11-3 UMTS 850 Head SAR

							o ilea	u									
					М	EASURE	MENT RI	ESULTS									
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	De vice Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #			
MHz	Ch.			Power [dBm]	rower [dbill]	Driit [dB]		Position	Number		(W/kg)		(W/kg)				
836.60								Cheek	11259	1:1	0.269	1.047	0.282	A3			
836.60	4183	UMTS 850	RMC	24.7	24.50	0.09	Right	Tilt	11259	1:1	0.118	1.047	0.124				
836.60	4183	UMTS 850	RMC	24.7	24.50	0.09	Left	Cheek	11259	1:1	0.197	1.047	0.206				
836.60	4183	UMTS 850	RMC	24.7	24.50	0.10	Left	Tilt	11259	1:1	0.111	1.047	0.116				
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Head									
	Spatial Peak							1.6 W/kg (mW/g)									
		Uncontrolle	d Exposure/Ge	neral Popula	tion		averaged over 1 gram										

Table 11-4 UMTS 1750 Head SAR

					<u> </u>	110 17	00 1100	u JAN									
					М	EASURE	MENT R	ESULTS									
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	De vice Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #			
MHz	Ch.			Power [dBm]	rower [dbill]	Driit [dB]		Position	Number		(W/kg)		(W/kg)				
1732.40							Right	Cheek	11267	1:1	0.184	1.005	0.185	A4			
1732.40	1412	UMTS 1750	RMC	24.2	24.18	0.10	Right	Tilt	11267	1:1	0.102	1.005	0.103				
1732.40	1412	UMTS 1750	RMC	24.2	24.18	0.01	Left	Cheek	11267	1:1	0.129	1.005	0.130				
1732.40	1412	UMTS 1750	RMC	24.2	24.18	0.05	Left	Tilt	11267	1:1	0.064	1.005	0.064				
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	Т		Head										
	Spatial Peak							1.6 W/kg (mW/g)									
	Uncontrolled Exposure/General Population							averaged over 1 gram									
			•	•													

Table 11-5 UMTS 1900 Head SAR

	MEASUREMENT RESULTS																
FREQUENCY		Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test Position	De vice Se rial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #			
MHz CI	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)		(W/kg)				
1880.00 94							Right	Cheek	11267	1:1	0.173	1.009	0.175				
1880.00 94	400 U	UMTS 1900	RMC	24.2	24.16	0.05	Right	Tilt	11267	1:1	0.115	1.009	0.116				
1880.00 94	400 U	UMTS 1900	RMC	24.2	24.16	0.15	Left	Cheek	11267	1:1	0.200	1.009	0.202	A5			
1880.00 94							Left	Tilt	11267	1:1	0.045	1.009	0.045				
		ANSI / IEE	E C95.1 1992 -	SAFETY LIMI	Т		Head										
			Spatial Pea	ak			1.6 W/kg (mW/g)										
	- 1	Uncontrolled	d Exposure/Ge	neral Populat	tion		averaged over 1 gram										

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 45 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 45 of 69

Table 11-6 LTE Band 12 Head SAR

											uu O/	···							
								MEA	SUREM	ENT RES	BULTS								
FF	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	De vice Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[MTIZ]	Power [dBm]	rower [dbiii]	Drift [db]			Fosition				Number	Cycle	(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.0	24.83	0.15	0	Right Cheek QPSK 1 0						1:1	0.200	1.040	0.208	A6
707.50	23095	Mid	LTE Band 12	10	24.0	24.00	0.01	1	Right	Cheek	QPSK	25	0	11234	1:1	0.183	1.000	0.183	
707.50	23095	Mid	LTE Band 12	10	25.0	24.83	-0.12	0	Right Tilt QPSK 1 0						1:1	0.074	1.040	0.077	
707.50	23095	Mid	LTE Band 12	10	24.0	24.00	0.07	1	Right	Right Tilt QPSK 25 0 1				11234	1:1	0.067	1.000	0.067	
707.50	23095	Mid	LTE Band 12	10	25.0	24.83	0.14	0	Left	Cheek	QPSK	1	0	11234	1:1	0.145	1.040	0.151	
707.50	23095	Mid	LTE Band 12	10	24.0	24.00	0.11	1	Left	Cheek	QPSK	25	0	11234	1:1	0.142	1.000	0.142	
707.50	23095	Mid	LTE Band 12	10	25.0	24.83	0.15	0	Left	Tilt	QPSK	1	0	11234	1:1	0.081	1.040	0.084	
707.50	23095	Mid	LTE Band 12	10	24.0	24.00	0.09	1	Left	Tilt	QPSK	25	0	11234	1:1	0.074	1.000	0.074	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population								Head 1.6 W/kg (mW/g) averaged over 1 gram										

Table 11-7 LTE Band 13 Head SAR

										•	uu or								
								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	De vice Se rial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
782.00	23230	Mid	LTE Band 13	10	24.7	24.58	0.14	0	Right	Cheek	QPSK	1	49	51929	1:1	0.209	1.028	0.215	A7
782.00	23230	Mid	LTE Band 13	10	23.7	23.62	0.20	1	Right	Cheek	QPSK	25	0	51929	1:1	0.179	1.019	0.182	
782.00	23230	Mid	LTE Band 13	10	24.7	24.58	0.02	0	Right Tilt QPSK 1 49						1:1	0.091	1.028	0.094	
782.00	23230	Mid	LTE Band 13	10	23.7	23.62	0.09	1	Right Tilt QPSK 25 0						1:1	0.082	1.019	0.084	
782.00	23230	Mid	LTE Band 13	10	24.7	24.58	0.02	0	Left	Cheek	QPSK	1	49	51929	1:1	0.150	1.028	0.154	
782.00	23230	Mid	LTE Band 13	10	23.7	23.62	0.13	1	Left	Cheek	QPSK	25	0	51929	1:1	0.134	1.019	0.137	
782.00	23230	Mid	LTE Band 13	10	24.7	24.58	0.17	0	Left	Tilt	QPSK	1	49	51929	1:1	0.093	1.028	0.096	
782.00	23230	Mid	LTE Band 13	10	23.7	23.62	0.11	1	Left	Tilt	QPSK	25	0	51929	1:1	0.081	1.019	0.083	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population								Head 1.6 W/kg (mW/g) averaged over 1 gram										

Table 11-8 LTE Band 5 (Cell) Head SAR

								Dunk	<u>, , , , , , , , , , , , , , , , , , , </u>	<i>-</i>	icau	UAIX							
								MEA	SUREM	ENT RES	ULTS								
FI	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	De vice Se rial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[WHZ]	Power [dBm]	Power (abm)	Drift (aB)			Position				Number	Cycle	(W/kg)		(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.63	-0.04	0	Right	Cheek	QPSK	1	49	11242	1:1	0.283	1.016	0.288	A8
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	-0.06	1	Right	Cheek	QPSK	25	0	11242	1:1	0.214	1.000	0.214	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.63	0.05	0											
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	0.20	1	1 Right Tilt QPSK 25 0 11242 1:1 0.088 1.000 0.088										
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.63	0.01	0	Left	Cheek	QPSK	1	49	11242	1:1	0.216	1.016	0.219	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	0.08	1	Left	Cheek	QPSK	25	0	11242	1:1	0.173	1.000	0.173	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.63	0.21	0	Left	Tilt	QPSK	1	49	11242	1:1	0.122	1.016	0.124	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	0.18	1	Left	Tilt	QPSK	25	0	11242	1:1	0.100	1.000	0.100	
				Spatial Pe										Head 1.6 W/kg (m eraged over					

FCC ID: ZNFM710H	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 46 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 46 of 69

Table 11-9 LTE Band 66 (AWS) Head SAR

										ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	De vice Se rial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	١.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	Ĺ
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	0.17	0	Right	Cheek	QPSK	1	50	51929	1:1	0.216	1.005	0.217	A9
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	23.15	0.07	1	Right	Cheek	QPSK	50	25	51929	1:1	0.209	1.012	0.212	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	0.05	0											
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	23.15	0.15	1	1 Right Tilt QPSK 50 25 51929 1:1 0.102 1.012 0.103										
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	0.00	0	Left	Cheek	QPSK	1	50	51929	1:1	0.161	1.005	0.162	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	23.15	0.14	1	Left	Cheek	QPSK	50	25	51929	1:1	0.157	1.012	0.159	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	0.03	0	Left	Tilt	QPSK	1	50	51929	1:1	0.060	1.005	0.060	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	23.15	0.02	1	Left	Tilt	QPSK	50	25	51929	1:1	0.056	1.012	0.057	
				Spatial Pe						•	•	•		Head 1.6 W/kg (m eraged over	ıW/g)	•			

Table 11-10 LTE Band 2 (PCS) Head SAR

									. – /.	<u> </u>	iicuu	<u> </u>							
								MEA	SUREM	ENT RES	ULTS								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	De vice Se rial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)		(W/kg)	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.2	24.20	0.13	0	Right	Cheek	QPSK	1	50	11267	1:1	0.129	1.000	0.129	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.2	23.15	0.06	1	Right	Cheek	QPSK	50	25	11267	1:1	0.128	1.012	0.130	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.2	24.20	0.01	0	0 Right Tilt QPSK 1 50 11267 1:1 0.147 1.000 0.147										
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.2	23.15	0.10	1	1 Right Tilt QPSK 50 25 11267 1:1 0.145 1.012 0.147										
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.2	24.20	0.11	0	Left	Cheek	QPSK	1	50	11267	1:1	0.277	1.000	0.277	A10
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.2	23.15	0.06	1	Left	Cheek	QPSK	50	25	11267	1:1	0.269	1.012	0.272	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.2	24.20	0.10	0	Left	Tilt	QPSK	1	50	11267	1:1	0.067	1.000	0.067	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.2	23.15	0.09	1	Left	Tilt	QPSK	50	25	11267	1:1	0.059	1.012	0.060	
				Spatial Pea							•			Head 1.6 W/kg (m eraged over	ıW/g)				

Table 11-11 LTE Band 7 Head SAR

								MEA	SUREM	ENT RES	BULTS								
FF	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	De vice Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[Power [dBm]	. ower [ubin]	S.m. [u.b.]							Number	0,000	(W/kg)		(W/kg)	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.54	-0.11	0	Right	Cheek	QPSK	1	50	11242	1:1	0.043	1.038	0.045	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	-0.12	1	1 Right Cheek CPSK 50 25 11242 1:1 0.045 1.005 0.045										A11
2535.00	21100	Mid	LTE Band 7	20	23.7	23.54	-0.13	0											
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	-0.12	1	1 Right Tilt QPSK 50 25 11242 1:1 0.020 1.005 0.020										
2535.00	21100	Mid	LTE Band 7	20	23.7	23.54	0.08	0	Left	Cheek	QPSK	1	50	11242	1:1	0.020	1.038	0.021	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	0.17	1	Left	Cheek	QPSK	50	25	11242	1:1	0.020	1.005	0.020	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.54	0.10	0	Left	Tilt	QPSK	1	50	11242	1:1	0.010	1.038	0.010	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	0.10	1	1 Left Tilt QPSK 50 25 11242 1:1 0.011 1.005 0.011										
				Spatial Pea										Head 1.6 W/kg (n	nW/g)		-		
			Uncontrolled E	xposure/Ge	neral Popula	tion							а	veraged over	1 gram				

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 47 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 47 of 69

Table 11-12 DTS Head SAR

								MEASU	REMENT	RESUL	rs							
FREQUE	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power	Side	Test Position	Device Serial	Data Rate (Mbps)	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g)	Plot #
MHz	Ch.			[iiii 2]	Power [dBm]	rower [dbiii]	Di iit [db]		rosition	Number	(MDP3)	(70)	W/kg	(W/kg)	(FOWEI)	(buty cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	14.0	13.83	-0.17	Right	Cheek	11390	1	99.9	0.858	0.613	1.040	1.001	0.638	A12
2437	6	802.11b	DSSS	22	14.0	13.83	-0.15	Right	Tilt	11390	1	99.9	0.485	0.484	1.040	1.001	0.504	
2437									Cheek	11390	1	99.9	0.276	-	1.040	1.001		
2437	6	802.11b	DSSS	22	14.0	13.83	-0.09	Left	Tilt	11390	1	99.9	0.265	-	1.040	1.001		
		ANSI / IEEE	C95.1 1992	- SAFETY LI	MIT								Hea	ıd				
			Spatial Pe	ak									1.6 W/kg	(mW/g)				
		Uncontrolled	Exposure/G	eneral Popu	ılation								averaged ov	er 1 gram				

Table 11-13 NII Head SAR

								MEASU	REMENT	RESUL	гѕ							
FREQUE	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	Device Serial	Data Rate (Mbps)	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g)	Plot #
MHz	Ch.			[MHZ]	Power [dBm]	Fower [dbill]	Driit [dB]		Position	Number	(mbps)	(70)	W/kg	(W/kg)	(FOWEI)	(Duty Cycle)	(W/kg)	
5260	52	802.11a	OFDM	20	11.0	10.02	0.13	Right	Cheek	11390	6	99.2	0.515	0.208	1.253	1.008	0.263	
5260	52	802.11a	OFDM	20	11.0	10.02	0.12	Right	Tilt	11390	6	99.2	0.458	-	1.253	1.008	-	
5260	52	802.11a	OFDM	20	11.0	10.02	0.11	Left	Cheek	11390	6	99.2	0.159	-	1.253	1.008	-	
5260	52	802.11a	OFDM	20	11.0	10.02	0.16	Left	Tilt	11390	6	99.2	0.178	-	1.253	1.008	-	
5500	100	802.11a	OFDM	20	11.0	9.93	0.18	Right	Cheek	11390	6	99.2	0.729	0.323	1.279	1.008	0.416	
5500	100	802.11a	OFDM	20	11.0	9.93	0.19	Right	Tilt	11390	6	99.2	0.818	0.336	1.279	1.008	0.433	
5500	100	802.11a	OFDM	20	11.0	9.93	0.10	Left	Cheek	11390	6	99.2	0.259	-	1.279	1.008	-	
5500	100	802.11a	OFDM	20	11.0	9.93	0.12	Left	Tilt	11390	6	99.2	0.306	-	1.279	1.008	-	
5785	157	802.11a	OFDM	20	11.0	9.95	-0.15	Right	Cheek	11390	6	99.2	0.930	0.386	1.274	1.008	0.496	
5785	157	802.11a	OFDM	20	11.0	9.95	0.18	Right	Tilt	11390	6	99.2	1.354	0.475	1.274	1.008	0.610	A13
5785	157	802.11a	OFDM	20	11.0	9.95	0.13	Left	Cheek	11390	6	99.2	0.410	-	1.274	1.008	-	
5785	157	802.11a	OFDM	20	11.0	9.95	0.12	Left	Tilt	11390	6	99.2	0.484	-	1.274	1.008	-	
			IEEE C95.1 Spati olled Exposu	al Peak									1.6 W/kg averaged or	(mW/g)				

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 49 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 48 of 69

11.2 Standalone Body-Worn SAR Data

Table 11-14 GSM/UMTS Body-Worn SAR Data

					MI	EASURE	MENT F	RESULTS							
FREQUE	NCY Ch.	Mode	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	# of Time Slots	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g) (W/kg)	Plot #
836.60	190	GSM 850	GSM	33.2	33.12	-0.05	10 mm	11267	1	1:8.3	back	0.515	1.019	0.525	
836.60	190	GSM 850	GPRS	30.2	30.15	0.01	10 mm	11267	3	1:2.76	back	0.667	1.012	0.675	A14
1880.00	661	GSM 1900	GSM	30.2	30.06	0.03	10 mm	11259	1	1:8.3	back	0.729	1.033	0.753	
1850.20	512	GSM 1900	GPRS	27.2	26.88	0.02	10 mm	11259	3	1:2.76	back	0.874	1.076	0.940	
1880.00	661	GSM 1900	GPRS	27.2	27.06	-0.11	10 mm	11259	3	1:2.76	back	0.957	1.033	0.989	A15
1909.80	810	GSM 1900	GPRS	27.2	27.20	0.02	10 mm	11259	3	1:2.76	back	0.935	1.000	0.935	
836.60	4183	UMTS 850	RMC	24.7	24.50	0.03	10 mm	11267	N/A	1:1	back	0.647	1.047	0.677	A16
1712.40	1312	UMTS 1750	RMC	24.2	24.20	-0.03	10 mm	11259	N/A	1:1	back	1.030	1.000	1.030	A17
1732.40	1412	UMTS 1750	RMC	24.2	24.18	0.12	10 mm	11259	N/A	1:1	back	0.978	1.005	0.983	
1752.60	1513	UMTS 1750	RMC	24.2	24.12	0.02	10 mm	11259	N/A	1:1	back	0.960	1.019	0.978	
1712.40	1312	UMTS 1750	RMC	24.2	24.20	0.01	10 mm	11259	N/A	1:1	back	0.881	1.000	0.881	
1852.40	9262	UMTS 1900	RMC	24.2	24.13	0.16	10 mm	11259	N/A	1:1	back	1.150	1.016	1.168	
1880.00	9400	UMTS 1900	RMC	24.2	24.16	-0.02	10 mm	11259	N/A	1:1	back	1.150	1.009	1.160	
1907.60	9538	UMTS 1900	RMC	24.2	24.17	-0.05	10 mm	11259	N/A	1:1	back	1.190	1.007	1.198	A18
			E C95.1 1992 - SA Spatial Peak I Exposure/Gener								1.6 W/k	ody g (mW/g) over 1 gram			

Note: Blue entries represent variability measurements.

FCC ID: ZNFM710H	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 40 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 49 of 69
17 DCTEST Engineering Laboratory Inc.			DEV/ 10 2 M

Table 11-15 LTE Body-Worn SAR

									EASUREM		JLTS	_								
FR	REQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Accessory	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Number				.,		Cycle	(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.0	24.83	0.02	0	None	11242	QPSK	1	0	10 mm	back	1:1	0.365	1.040	0.380	A19
707.50	23095	Mid	LTE Band 12	10	24.0	24.00	-0.06	1	None	11242	QPSK	25	0	10 mm	back	1:1	0.300	1.000	0.300	
782.00	23230	Mid	LTE Band 13	10	24.7	24.58	0.03	0	None	51945	QPSK	1	49	10 mm	back	1:1	0.404	1.028	0.415	A20
782.00	23230	Mid	LTE Band 13	10	23.7	23.62	-0.02	1	None	51945	QPSK	25	0	10 mm	back	1:1	0.344	1.019	0.351	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.63	-0.06	0	None	11242	QPSK	1	49	10 mm	back	1:1	0.607	1.016	0.617	A21
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	0.00	1	None	11242	QPSK	25	0	10 mm	back	1:1	0.453	1.000	0.453	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.04	-0.16	0	None	51937	QPSK	1	99	10 mm	back	1:1	0.984	1.038	1.021	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	-0.03	0	None	51937	QPSK	1	50	10 mm	back	1:1	1.010	1.005	1.015	A22
1770.00	132572	High	LTE Band 66 (AWS)	20	24.2	24.06	-0.15	0	None	51937	QPSK	1	50	10 mm	back	1:1	0.992	1.033	1.025	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.09	0.01	1	None	51937	QPSK	50	0	10 mm	back	1:1	0.959	1.026	0.984	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	23.15	0.00	1	None	51937	QPSK	50	25	10 mm	back	1:1	0.920	1.012	0.931	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.01	0.02	1	None	51937	QPSK	50	25	10 mm	back	1:1	0.890	1.045	0.930	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.12	0.01	1	None	51937	QPSK	100	0	10 mm	back	1:1	0.978	1.019	0.997	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.2	24.20	-0.04	0	None	11242	QPSK	1	50	10 mm	back	1:1	1.120	1.000	1.120	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.2	23.93	0.06	0	None	11242	QPSK	1	50	10 mm	back	1:1	1.200	1.064	1.277	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	24.09	-0.16	0	None	11242	QPSK	1	0	10 mm	back	1:1	1.250	1.026	1.283	A23
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	24.09	-0.06	0	Headphones	11242	QPSK	1	0	10 mm	back	1:1	0.454	1.026	0.466	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.2	22.96	-0.07	1	None	11242	QPSK	50	50	10 mm	back	1:1	1.050	1.057	1.110	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.2	23.15	-0.01	1	None	11242	QPSK	50	25	10 mm	back	1:1	1.140	1.012	1.154	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.87	0.03	1	None	11242	QPSK	50	25	10 mm	back	1:1	1.170	1.079	1.262	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.91	0.09	1	None	11242	QPSK	100	0	10 mm	back	1:1	1.090	1.069	1.165	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	24.09	0.16	0	None	11242	QPSK	1	0	10 mm	back	1:1	1.180	1.026	1.211	
2535.00	21100	Mid	LTE Band 7	20	23.7	0	None	11242	QPSK	1	50	10 mm	back	1:1	0.654	1.038	0.679	A24		
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	0.03	1	None	11242	QPSK	50	25	10 mm	back	1:1	0.542	1.005	0.545	
			ANSI / IEEE	Spatial Pea								•	•	1.6 W	Body /kg (mW/ d over 1 g	-	•			

Note: Blue entries represent variability measurements.

Table 11-16 DTS Body-Worn SAR

							N	IEASUR	EMENT	RESUL	TS							
FREQU	IENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	Data Rate (Mbps)	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g)	Plot #
MHz	Ch.			[MHZ]	Power [dBm]	Power [dbm]	[авј		Num be r	(MDPS)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	17.0	16.46	0.02	10 mm	11390	1	back	99.9	0.185	0.135	1.132	1.001	0.153	A25
		ANSI	IEEE C95	.1 1992 - SA	FETY LIMIT				•			•		Body	•			
			Sp	atial Peak									1.6 W	/kg (mW/g)				
		Uncontro	olled Expo	sure/Gener	al Population	1							averaged	d over 1 gram				

Table 11-17 NII Body-Worn SAR

								50	ay ii	0111	,,							
								MEAS	JREMEN	T RESUL	.TS							
FREQU	JENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	Data Rate (Mbps)	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (1g)	Plot #
MHz	Ch.			[WIFIZ]	Power [dBm]	Power [ubili]	[ubj		Number	(MDPS)		(70)	W/kg	(W/kg)	(FOWEI)	(Duty Cycle)	(W/kg)	1
5260	52	802.11a	OFDM	20	11.0	10.02	0.18	10 mm	11390	6	back	99.2	0.085	0.034	1.253	1.008	0.043	A27
5500	100	802.11a	OFDM	20	11.0	9.93	0.16	10 mm	11390	6	back	99.2	0.076	0.033	1.279	1.008	0.043	
5785	157	802.11a	OFDM	20	11.0	9.95	0.11	10 mm	11390	6	back	99.2	0.061	0.023	1.274	1.008	0.030	
		ANSI	/ IEEE C9	5.1 1992 - SA	FETY LIMIT								Body	1		•		
			SI	oatial Peak									1.6 W/kg (r	nW/g)				
		Uncont	rolled Eve	ocuro/Gono	ral Donulation								aupraged our	r 1 aram				

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 50 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 50 of 69

Table 11-18 DSS Body-Worn SAR

					М	EASURE	MENT	RESULT	s						
IENCY	Mode	Service	Maximum Allowed			Spacing	Device Serial		Side	Duty Cycle	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz Ch.			Power [dBm]	Tower [abin]	[GD]		Number	(mbps)		(%)	(W/kg)	(Gona: Fower)	(Buty Gycle)	(W/kg)	
39	Bluetooth	FHSS	12.0	10.67	0.12	10 mm	11390	1	back	78.2	0.035	1.358	1.279	0.061	A29
	ANSI / IEEE	C95.1 199	2 - SAFETY LI	MIT							Body				
		Spatial F	Peak								1.6 W/kg (m)	N /g)			
	Uncontrolled I	Exposure/	General Popu	lation						á	averaged over 1	l gram			
		Mode Ch. 39 Bluetooth ANSI / IEEE	Ch. Mode Service Ch. Bluetooth FHSS ANSI / IEEE C95.1 199 Spatial I	Mode	Mode Service Allowed Power [dBm] 39	Mode	Measure	Maximum	Measurement Result Maximum Allowed Power [dbm] Conducted Power [dbm] Power [dbm] Data Rate (Mbps) Maximum Allowed Power [dbm] Number Data Rate (Mbps) Number Number	Measurement Results	Mode Service Maximum Allowed Power [dBm] Power [dBm] Power [dBm] Spacing Device Serial Number (Mbps) Side Cycle (%)	Mode Service Maximum Allowed Power [dBm] Power	Mode Service Maximum Allowed Power [dBm] Power [dB	JENCY Mode Service Maximum Allowed Power [dBm] Power [dBm] Power [dBm] Spacing Device Serial Number Mumber Side Cond. Power Power Cond. Power Power Cond. Power Power Cond. Power Power	Mode Service Maximum Allowed Power [dBm] FHSS 12.0 10.67 1.00 1

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 51 of 69
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Fage 51 01 09

11.3 Standalone Hotspot SAR Data

Table 11-19 GPRS/UMTS Hotspot SAR Data

					GPR3/C			RESULTS	· Duit						
FREQUE	NCY			Maximum	Conducted	ı	<u> </u>	T .	# -4 OPPO	Post i	Ī	SAR (1g)		Reported SAR	
MHz	Ch.	Mode	Service	Allowed Power [dBm]	Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	# of GPRS Slots	Duty Cycle	Side	(W/kg)	Scaling Factor	(1g) (W/kg)	Plot #
836.60	190	GSM 850	GPRS	30.2	30.15	0.01	10 mm	11267	3	1:2.76	back	0.667	1.012	0.675	A14
836.60	190	GSM 850	GPRS	30.2	30.15	-0.09	10 mm	11267	3	1:2.76	front	0.368	1.012	0.372	
836.60	190	GSM 850	GPRS	30.2	30.15	0.03	10 mm	11267	3	1:2.76	bottom	0.176	1.012	0.178	
836.60	190	GSM 850	GPRS	30.2	30.15	-0.05	10 mm	11267	3	1:2.76	right	0.513	1.012	0.519	
836.60	190	GSM 850	GPRS	30.2	30.15	-0.06	10 mm	11267	3	1:2.76	left	0.262	1.012	0.265	
1850.20	512	GSM 1900	GPRS	27.2	26.88	0.02	10 mm	11259	3	1:2.76	back	0.874	1.076	0.940	
1880.00	661	GSM 1900	GPRS	27.2	27.06	-0.11	10 mm	11259	3	1:2.76	back	0.957	1.033	0.989	A15
1909.80	810	GSM 1900	GPRS	27.2	27.20	0.02	10 mm	11259	3	1:2.76	back	0.935	1.000	0.935	
1850.20	512	GSM 1900	GPRS	27.2	26.88	0.04	10 mm	11259	3	1:2.76	front	0.872	1.076	0.938	
1880.00	661	GSM 1900	GPRS	27.2	27.06	0.05	10 mm	11259	3	1:2.76	front	0.907	1.033	0.937	
1909.80	810	GSM 1900	GPRS	27.2	27.20	-0.04	10 mm	11259	3	1:2.76	front	0.864	1.000	0.864	
1880.00	661	GSM 1900	GPRS	27.2	27.06	-0.05	10 mm	11259	3	1:2.76	bottom	0.545	1.033	0.563	
1880.00	661	GSM 1900	GPRS	27.2	27.06	-0.06	10 mm	11259	3	1:2.76	left	0.382	1.033	0.395	
836.60	4183	UMTS 850	RMC	24.7	24.50	0.03	10 mm	11267	N/A	1:1	back	0.647	1.047	0.677	A16
836.60	4183	UMTS 850	RMC	24.7	24.50	0.14	10 mm	11267	N/A	1:1	front	0.372	1.047	0.389	
836.60	4183	UMTS 850	RMC	24.7	24.50	0.00	10 mm	11267	N/A	1:1	bottom	0.176	1.047	0.184	
836.60	4183	UMTS 850	RMC	24.7	24.50	-0.01	10 mm	11267	N/A	1:1	right	0.441	1.047	0.462	
836.60	4183	UMTS 850	RMC	24.7	24.50	-0.02	10 mm	11267	N/A	1:1	left	0.229	1.047	0.240	
1712.40	1312	UMTS 1750	RMC	24.2	24.20	-0.03	10 mm	11259	N/A	1:1	back	1.030	1.000	1.030	A17
1732.40	1412	UMTS 1750	RMC	24.2	24.18	0.12	10 mm	11259	N/A	1:1	back	0.978	1.005	0.983	
1752.60	1513	UMTS 1750	RMC	24.2	24.12	0.02	10 mm	11259	N/A	1:1	back	0.960	1.019	0.978	
1712.40	1312	UMTS 1750	RMC	24.2	24.20	0.01	10 mm	11259	N/A	1:1	front	0.933	1.000	0.933	
1732.40	1412	UMTS 1750	RMC	24.2	24.18	0.10	10 mm	11259	N/A	1:1	front	0.860	1.005	0.864	
1752.60	1513	UMTS 1750	RMC	24.2	24.12	-0.07	10 mm	11259	N/A	1:1	front	1.010	1.019	1.029	
1732.40	1412	UMTS 1750	RMC	24.2	24.18	0.01	10 mm	11259	N/A	1:1	bottom	0.441	1.005	0.443	
1732.40	1412	UMTS 1750	RMC	24.2	24.18	0.11	10 mm	11259	N/A	1:1	left	0.746	1.005	0.750	
1712.40	1312	UMTS 1750	RMC	24.2	24.20	0.01	10 mm	11259	N/A	1:1	back	0.881	1.000	0.881	
1852.40	9262	UMTS 1900	RMC	24.2	24.13	0.16	10 mm	11259	N/A	1:1	back	1.150	1.016	1.168	
1880.00	9400	UMTS 1900	RMC	24.2	24.16	-0.02	10 mm	11259	N/A	1:1	back	1.150	1.009	1.160	
1907.60	9538	UMTS 1900	RMC	24.2	24.17	-0.05	10 mm	11259	N/A	1:1	back	1.190	1.007	1.198	A18
1852.40	9262	UMTS 1900	RMC	24.2	24.13	0.03	10 mm	11259	N/A	1:1	front	1.080	1.016	1.097	
1880.00	9400	UMTS 1900	RMC	24.2	24.16	0.04	10 mm	11259	N/A	1:1	front	1.080	1.009	1.090	
1907.60	9538	UMTS 1900	RMC	24.2	24.17	0.12	10 mm	11259	N/A	1:1	front	1.060	1.007	1.067	
1880.00	9400	UMTS 1900	RMC	24.2	24.16	0.00	10 mm	11259	N/A	1:1	bottom	0.640	1.009	0.646	
1880.00	9400	UMTS 1900	RMC	24.2	24.16	-0.07	10 mm	11259	N/A	1:1	left	0.428	1.009	0.432	
_		ANSI / IEE	E C95.1 1992 - SA Spatial Peak	FETY LIMIT								ody g (mW/g)			
		Uncontrolled	Exposure/Gene	ral Population	ı						averaged	over 1 gram			

Note: Blue entry represents variability measurement.

FCC ID: ZNFM710H	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo F2 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset		Page 52 of 69

© 2017 PCTEST Engineering Laboratory, Inc.

Table 11-20 LTE Band 12 Hotspot SAR

									otopo									
							MEAS	UREMENT	RESULTS	3								
QUENCY		Mode	Bandwidth	Maximum Allowed	Conducted Power [dBm]	Power Drift (dB)	MPR [dB]		Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
Ch		•	[MTE]	Power [dBm]	rower [dbiii]	Drift [db]		Number							(W/kg)		(W/kg)	<u> </u>
23095	Mid	LTE Band 12	10	25.0	24.83	0.02	0	11242	QPSK	1	0	10 mm	back	1:1	0.365	1.040	0.380	A19
23095	Mid	LTE Band 12	10	24.0	24.00	-0.06	1	11242	QPSK	25	0	10 mm	back	1:1	0.300	1.000	0.300	
23095	Mid	LTE Band 12	10	25.0	24.83	-0.05	0	11242	QPSK	1	0	10 mm	front	1:1	0.221	1.040	0.230	
23095	Mid	LTE Band 12	10	24.0	24.00	0.01	1	11242	QPSK	25	0	10 mm	front	1:1	0.178	1.000	0.178	
23095	Mid	LTE Band 12	10	25.0	24.83	-0.11	0	11242	QPSK	1	0	10 mm	bottom	1:1	0.090	1.040	0.094	
23095	Mid	LTE Band 12	10	24.0	24.00	-0.19	1	11242	QPSK	25	0	10 mm	bottom	1:1	0.058	1.000	0.058	
23095	Mid	LTE Band 12	10	25.0	24.83	0.06	0	11242	QPSK	1	0	10 mm	right	1:1	0.164	1.040	0.171	
23095	Mid	LTE Band 12	10	24.0	24.00	-0.14	1	11242	QPSK	25	0	10 mm	right	1:1	0.101	1.000	0.101	
23095	Mid	LTE Band 12	10	25.0	24.83	-0.09	0	11242	QPSK	1	0	10 mm	left	1:1	0.149	1.040	0.155	
23095	Mid	LTE Band 12	10	24.0	24.00	0.05	1	11242	QPSK	25	0	10 mm	left	1:1	0.090	1.000	0.090	
		ANSI / IEEE C95.	1 1992 - SAF	ETY LIMIT									Body					
		Spa	tial Peak									1.6 V	//kg (mW	//g)				
	ι	Jncontrolled Expo	sure/Genera	I Population								average	ed over 1	gram				
	23095 23095 23095 23095 23095 23095 23095 23095 23095	Ch. 23095 Mid	Mode Ch. 23095 Md LTE Band 12	Mode (MHz) Ch. (MHz) 23095 Md LTE Band 12 10 ANSI / IEEE C95.1 1992 - SAF Spatial Peak	Mode Mode Melan Melan	Mode	Mode	Note	Note Bandwidth Maximum Allowed Power [dBm] Device Serial Number	Device Serial Number Device Serial Power Device Serial Number Device Serial Number	Mode	Conducted Power Power Conducted Power Conducted Power Power Conducted Power Power Conducted Power Powe	COURDICY Mode Bandwidth Maximum Allowed Power [dBm] Power [dBm] Device Serial Modulation RB Size RB Offset Spacing	COURDICY Mode Bandwidth Maximum Allowed Power [dBm] Power	COURDING Mode Bandwidth Maximum Allowed Power [dBm] Power [d	Column C	Columb C	Columbia C

Table 11-21 LTE Band 13 Hotspot SAR

								MEAS	UREMENT	RESULTS	3								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[a]	Power [dBm]											(W/kg)		(W/kg)	
782.00	23230	Mid	LTE Band 13	10	24.7	24.58	0.03	0	51945	QPSK	1	49	10 mm	back	1:1	0.404	1.028	0.415	A20
782.00	23230	Mid	LTE Band 13	10	23.7	23.62	-0.02	1	51945	QPSK	25	0	10 mm	back	1:1	0.344	1.019	0.351	
782.00	23230	Mid	LTE Band 13	10	24.7	24.58	0.12	0	51945	QPSK	1	49	10 mm	front	1:1	0.237	1.028	0.244	
782.00	23230	Mid	LTE Band 13	10	23.7	23.62	-0.11	1	51945	QPSK	25	0	10 mm	front	1:1	0.201	1.019	0.205	
782.00	23230	Mid	LTE Band 13	10	24.7	24.58	-0.13	0	51945	QPSK	1	49	10 mm	bottom	1:1	0.113	1.028	0.116	
782.00	23230	Mid	LTE Band 13	10	23.7	23.62	-0.02	1	51945	QPSK	25	0	10 mm	bottom	1:1	0.101	1.019	0.103	
782.00	23230	Mid	LTE Band 13	10	24.7	24.58	-0.18	0	51945	QPSK	1	49	10 mm	right	1:1	0.213	1.028	0.219	
782.00	23230	Mid	LTE Band 13	10	23.7	23.62	0.03	1	51945	QPSK	25	0	10 mm	right	1:1	0.184	1.019	0.187	
782.00	23230	Mid	LTE Band 13	10	24.7	24.58	-0.16	0	51945	QPSK	1	49	10 mm	left	1:1	0.155	1.028	0.159	
782.00	82.00 23230 Mid LTE Band 13 10 23.7 23.62								51945	QPSK	25	0	10 mm	left	1:1	0.133	1.019	0.136	
			ANSI / IEEE C95.	1 1992 - SAF	ETY LIMIT								•	Body	•				
			Spa	atial Peak									1.6 V	V/kg (mW	I/g)				
		ι	Incontrolled Expo	sure/Genera	I Population								average	ed over 1	gram				

Table 11-22 LTE Band 5 (Cell) Hotspot SAR

								una c	(00:	<i>,</i> 110t3	pot .	<u> </u>							
								MEAS	UREMENT	RESULTS	3								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)		(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.63	-0.06	0	11242	QPSK	1	49	10 mm	back	1:1	0.607	1.016	0.617	A21
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	0.00	1	11242	QPSK	25	0	10 mm	back	1:1	0.453	1.000	0.453	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.63	0.03	0	11242	QPSK	1	1:1	0.362	1.016	0.368				
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	-0.14	14 1 11242 QPSK 25 0 10 mm front 1:1 0.2									1.000	0.260	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.63	-0.01										1.016	0.189	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	-0.05	1	11242	QPSK	25	0	10 mm	bottom	1:1	0.138	1.000	0.138	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.63	-0.11	0	11242	QPSK	1	49	10 mm	right	1:1	0.331	1.016	0.336	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	-0.05	1	11242	QPSK	25	0	10 mm	right	1:1	0.263	1.000	0.263	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.63	0.07	0	11242	QPSK	1	49	10 mm	left	1:1	0.186	1.016	0.189	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.70	0.07	1	11242	QPSK	25	0	10 mm	left	1:1	0.169	1.000	0.169	
			ANSI / IEEE C95.	1 1992 - SAF	ETY LIMIT									Body					
			Spa	itial Peak									1.6 V	V/kg (mW	//g)				
			Uncontrolled Expo	sure/Genera	I Population			ĺ					average	ed over 1	gram				

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 53 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 53 of 69

Table 11-23 LTE Band 66 (AWS) Hotspot SAR

									<u> </u>	RESULTS			_						
FRE	EQUENCY	h.	Mode	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g) (W/kg)	Scaling Factor	Reported SAR (1g) (W/kg)	Plot #
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.04	-0.16	0	51937	QPSK	1	99	10 mm	back	1:1	0.984	1.038	1.021	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	-0.03	0	51937	QPSK	1	50	10 mm	back	1:1	1.010	1.005	1.015	A22
1770.00	132572	High	LTE Band 66 (AWS)	20	24.2	24.06	-0.15	0	51937	QPSK	1	50	10 mm	back	1:1	0.992	1.033	1.025	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.09	0.01	1	51937	QPSK	50	0	10 mm	back	1:1	0.959	1.026	0.984	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	23.15	0.00	1	51937	QPSK	50	25	10 mm	back	1:1	0.920	1.012	0.931	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.01	0.02	1	51937	QPSK	50	25	10 mm	back	1:1	0.890	1.045	0.930	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.12	0.01	1	51937	QPSK	100	0	10 mm	back	1:1	0.978	1.019	0.997	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.04	0.13	0	51937	QPSK	1	99	10 mm	front	1:1	0.938	1.038	0.974	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	0.13	0	51937	QPSK	1	50	10 mm	front	1:1	0.944	1.005	0.949	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.2	24.06	0.14	0	51937	QPSK	1	50	10 mm	front	1:1	0.920	1.033	0.950	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.09	0.03	1	51937	QPSK	50	0	10 mm	front	1:1	0.861	1.026	0.883	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	23.15	0.03	1	51937	QPSK	50	25	10 mm	front	1:1	0.855	1.012	0.865	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.01	-0.03	1	51937	QPSK	50	25	10 mm	front	1:1	0.800	1.045	0.836	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	23.12	0.04	1	51937	QPSK	100	0	10 mm	front	1:1	0.874	1.019	0.891	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	-0.04	0	51937	QPSK	1	50	10 mm	bottom	1:1	0.479	1.005	0.481	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	23.15	-0.03	1	51937	QPSK	50	25	10 mm	bottom	1:1	0.460	1.012	0.466	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	-0.19	0	51937	QPSK	1	50	10 mm	left	1:1	0.657	1.005	0.660	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	23.15	-0.13	1	51937	QPSK	50	25	10 mm	left	1:1	0.572	1.012	0.579	
		ı	ANSI / IEEE C95. Spa Uncontrolled Expo	itial Peak										Body V/kg (mW ed over 1	•				

Table 11-24 LTE Band 2 (PCS) Hotspot SAR

							I L D	anu Z	(FC3) HOIS	por	<u>JAN</u>							
	MEASUREMENT RESULTS																		
FRI	EQUENCY		Mode	Bandw idth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.	mode	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	MIT IX [UD]	Number	modulation	ND SIZE	ND OHSEL	opacing	Side	Duty Cycle	(W/kg)	ocaling ractor	(W/kg)	1100 #
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.2	24.20	-0.04	0	11242	QPSK	1	50	10 mm	back	1:1	1.120	1.000	1.120	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.2	23.93	0.06	0	11242	QPSK	1	50	10 mm	back	1:1	1.200	1.064	1.277	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	24.09	-0.16	0	11242	QPSK	1	0	10 mm	back	1:1	1.250	1.026	1.283	A23
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.2	22.96	-0.07	1	11242	QPSK	50	50	10 mm	back	1:1	1.050	1.057	1.110	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.2	23.15	-0.01	1	11242	QPSK	50	25	10 mm	back	1:1	1.140	1.012	1.154	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.87	0.03	1	11242	QPSK	50	25	10 mm	back	1:1	1.170	1.079	1.262	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.91	0.09	1	11242	QPSK	100	0	10 mm	back	1:1	1.090	1.069	1.165	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.2	24.20	0.07	0	11242	QPSK	1	50	10 mm	front	1:1	0.926	1.000	0.926	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.2	23.93	-0.06	0	11242	QPSK	1	50	10 mm	front	1:1	0.897	1.064	0.954	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	24.09	0.09	0	11242	QPSK	1	0	10 mm	front	1:1	0.975	1.026	1.000	
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.2	22.96	0.03	1	11242	QPSK	50	50	10 mm	front	1:1	0.860	1.057	0.909	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.2	23.15	0.01	1	11242	QPSK	50	25	10 mm	front	1:1	0.891	1.012	0.902	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.87	0.09	1	11242	QPSK	50	25	10 mm	front	1:1	0.891	1.079	0.961	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.2	22.91	0.04	1	11242	QPSK	100	0	10 mm	front	1:1	0.887	1.069	0.948	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.2	24.20	-0.01	0	11242	QPSK	1	50	10 mm	bottom	1:1	0.725	1.000	0.725	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.2	23.15	0.00	1	11242	QPSK	50	25	10 mm	bottom	1:1	0.690	1.012	0.698	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.2	24.20	-0.11	0	11242	QPSK	1	50	10 mm	left	1:1	0.518	1.000	0.518	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.2	23.15	0.07	1	11242	QPSK	50	25	10 mm	left	1:1	0.483	1.012	0.489	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.2	24.09	0.16	0	11242	QPSK	1	0	10 mm	back	1:1	1.180	1.026	1.211	
			ANSI / IEEE C95.	1 1992 - SAF	ETY LIMIT			Body											
				itial Peak				1.6 W/kg (mW/g)											
	Uncontrolled Exposure/General Population					averaged over 1 gram													

Note: Blue entry represents variability measurement.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 54 of 69
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset		Page 54 01 69

© 2017 PCTEST Engineering Laboratory, Inc.

Table 11-25 LTE Band 7 Hotspot SAR

	ETE Band / Hotspot OAK																		
	MEASUREMENT RESULTS																		
FR	FREQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[MILE]	Power [dBm]	rower [dbin]	Drift [db]		Number							(W/kg)		(W/kg)	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.54	-0.17	0	11242	QPSK	1	50	10 mm	back	1:1	0.654	1.038	0.679	A24
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	0.03	1	11242	QPSK	50	25	10 mm	back	1:1	0.542	1.005	0.545	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.54	0.15	0	11242	QPSK	1	50	10 mm	front	1:1	0.359	1.038	0.373	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	0.12	1	11242	QPSK	50	25	10 mm	front	1:1	0.314	1.005	0.316	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.54	-0.05	0	11242	QPSK	1	50	10 mm	bottom	1:1	0.575	1.038	0.597	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	0.02	1	11242	QPSK	50	25	10 mm	bottom	1:1	0.471	1.005	0.473	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.54	0.09	0	11242	QPSK	1	50	10 mm	right	1:1	0.106	1.038	0.110	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.68	0.16	1	11242	QPSK	50	25	10 mm	right	1:1	0.087	1.005	0.087	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.54	0.18	0	11242	QPSK	1	50	10 mm	left	1:1	0.046	1.038	0.048	
2535.00	2535.00 21100 Mid LTE Band 7 20 22.7 22.68 0.10					0.10	1	11242	QPSK	50	25	10 mm	left	1:1	0.037	1.005	0.037		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population					Body 1.6 W/kg (mW/g) averaged over 1 gram													

Table 11-26 WLAN Hotspot SAR

	MEASUREMENT RESULTS																	
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	Data Rate (Mbps)	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty Cycle)	Reported SAR (1g)	Plot #
MHz	Ch.			[MILE]	Power [dBm]	rower [dbiii]	[GB]		Number	(MIDPS)		(%)	W/kg	(W/kg)	(rower)	(buty cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	17.0	16.46	0.02	10 mm	11390	1	back	99.9	0.185	0.135	1.132	1.001	0.153	
2437	6	802.11b	DSSS	22	17.0	16.46	0.18	10 mm	11390	1	front	99.9	0.249	0.155	1.132	1.001	0.176	A26
2437	6	802.11b	DSSS	22	17.0	16.46	0.21	10 mm	11390	1	top	99.9	0.220	-	1.132	1.001	-	
2437	6	802.11b	DSSS	22	17.0	16.46	-0.04	10 mm	11390	1	left	99.9	0.194	-	1.132	1.001	-	
5200	40	802.11a	OFDM	20	11.0	10.16	0.14	10 mm	11390	6	back	99.2	0.082	-	1.213	1.008	-	
5200	40	802.11a	OFDM	20	11.0	10.16	-0.13	10 mm	11390	6	front	99.2	0.054	-	1.213	1.008	-	
5200	40	802.11a	OFDM	20	11.0	10.16	0.13	10 mm	11390	6	top	99.2	0.092	0.032	1.213	1.008	0.039	
5200	40	802.11a	OFDM	20	11.0	10.16	-0.05	10 mm	11390	6	left	99.2	0.053	-	1.213	1.008	-	
5785	157	802.11a	OFDM	20	11.0	9.95	0.11	10 mm	11390	6	back	99.2	0.061	-	1.274	1.008	-	
5785	157	802.11a	OFDM	20	11.0	9.95	0.19	10 mm	11390	6	front	99.2	0.114	-	1.274	1.008	-	
5785	157	802.11a	OFDM	20	11.0	9.95	0.10	10 mm	11390	6	top	99.2	0.193	0.078	1.274	1.008	0.100	A28
5785	157	802.11a	OFDM	20	11.0	9.95	0.15	10 mm	11390	6	left	99.2	0.068	-	1.274	1.008	-	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									1.6 W	Body kg (mW/g) d over 1 gram							

11.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga EE of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 55 of 69

© 2017 PCTEST Engineering Laboratory, Inc.

11/28/2016

- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. When the standalone reported body-worn SAR was ≥ 1.2 W/kg, additional bodyworn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 10. Per October 2016 TCB Workshop Notes, DUT holder perturbation verification is required when the highest reported SAR is > 1.2 W/kg. DUT holder perturbation verification was not performed since the DUT was positioned on a foam block to prevent holder perturbation. Test setup photos can be found in Appendix F.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.
- 4. GPRS was additionally evaluated for head and body-worn exposure conditions to address VoIP scenarios.

UMTS Notes:

- 1. UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per KDB Publication 941225 D05Av01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga EG of GO
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 56 of 69

WLAN Notes:

- For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.5 for more information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg. See Section 8.6.6 for more information.
- 4. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 57 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 57 of 69

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g or 10-g SAR.

Note: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 59 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 58 of 69

12.3 Head SAR Simultaneous Transmission Analysis

Table 12-1
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

	oud municimiodidii oddiium			ora to Lary
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GSM/GPRS 850	0.341	0.638	0.979
	GSM/GPRS 1900	0.189	0.638	0.827
	UMTS 850	0.282	0.638	0.920
	UMTS 1750	0.185	0.638	0.823
	UMTS 1900	0.202	0.638	0.840
Head SAR	LTE Band 12	0.208	0.638	0.846
	LTE Band 13	0.215	0.638	0.853
	LTE Band 5 (Cell)	0.288	0.638	0.926
	LTE Band 66 (AWS)	0.217	0.638	0.855
	LTE Band 2 (PCS)	0.277	0.638	0.915
	LTE Band 7	0.045	0.638	0.683

Table 12-2
Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GSM/GPRS 850	0.341	0.610	0.951
	GSM/GPRS 1900	0.189	0.610	0.799
	UMTS 850	0.282	0.610	0.892
	UMTS 1750	0.185	0.610	0.795
	UMTS 1900	0.202	0.610	0.812
Head SAR	LTE Band 12	0.208	0.610	0.818
	LTE Band 13	0.215	0.610	0.825
	LTE Band 5 (Cell)	0.288	0.610	0.898
	LTE Band 66 (AWS)	0.217	0.610	0.827
	LTE Band 2 (PCS)	0.277	0.610	0.887
	LTE Band 7	0.045	0.610	0.655

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 50 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 59 of 69

12.4 Body-Worn Simultaneous Transmission Analysis

Table 12-3
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
GSM/GPRS 850	0.675	0.153	0.828
GSM/GPRS 1900	0.989	0.153	1.142
UMTS 850	0.677	0.153	0.830
UMTS 1750	1.030	0.153	1.183
UMTS 1900	1.198	0.153	1.351
LTE Band 12	0.380	0.153	0.533
LTE Band 13	0.415	0.153	0.568
LTE Band 5 (Cell)	0.617	0.153	0.770
LTE Band 66 (AWS)	1.025	0.153	1.178
LTE Band 2 (PCS)	1.283	0.153	1.436
LTE Band 7	0.679	0.153	0.832
	GSM/GPRS 850 GSM/GPRS 1900 UMTS 850 UMTS 1750 UMTS 1900 LTE Band 12 LTE Band 13 LTE Band 5 (Cell) LTE Band 66 (AWS) LTE Band 2 (PCS)	GSM/GPRS 850 0.675 GSM/GPRS 1900 0.989 UMTS 850 0.677 UMTS 1750 1.030 UMTS 1900 1.198 LTE Band 12 0.380 LTE Band 13 0.415 LTE Band 5 (Cell) 0.617 LTE Band 66 (AWS) 1.025 LTE Band 2 (PCS) 1.283	Mode 2G/3G/4G SAR (W/kg) WLAN SAR (W/kg) GSM/GPRS 850 0.675 0.153 GSM/GPRS 1900 0.989 0.153 UMTS 850 0.677 0.153 UMTS 1750 1.030 0.153 UMTS 1900 1.198 0.153 LTE Band 12 0.380 0.153 LTE Band 13 0.415 0.153 LTE Band 5 (Cell) 0.617 0.153 LTE Band 66 (AWS) 1.025 0.153 LTE Band 2 (PCS) 1.283 0.153

Table 12-4
Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.0 cm)

Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
GSM/GPRS 850	0.675	0.043	0.718
GSM/GPRS 1900	0.989	0.043	1.032
UMTS 850	0.677	0.043	0.720
UMTS 1750	1.030	0.043	1.073
UMTS 1900	1.198	0.043	1.241
LTE Band 12	0.380	0.043	0.423
LTE Band 13	0.415	0.043	0.458
LTE Band 5 (Cell)	0.617	0.043	0.660
LTE Band 66 (AWS)	1.025	0.043	1.068
LTE Band 2 (PCS)	1.283	0.043	1.326
LTE Band 7	0.679	0.043	0.722
	GSM/GPRS 850 GSM/GPRS 1900 UMTS 850 UMTS 1750 UMTS 1900 LTE Band 12 LTE Band 13 LTE Band 5 (Cell) LTE Band 66 (AWS) LTE Band 2 (PCS)	GSM/GPRS 850 0.675 GSM/GPRS 1900 0.989 UMTS 850 0.677 UMTS 1750 1.030 UMTS 1900 1.198 LTE Band 12 0.380 LTE Band 13 0.415 LTE Band 5 (Cell) 0.617 LTE Band 66 (AWS) 1.025 LTE Band 2 (PCS) 1.283	Mode SAR (W/kg) SAR (W/kg) GSM/GPRS 850 0.675 0.043 GSM/GPRS 1900 0.989 0.043 UMTS 850 0.677 0.043 UMTS 1750 1.030 0.043 UMTS 1900 1.198 0.043 LTE Band 12 0.380 0.043 LTE Band 3 0.415 0.043 LTE Band 5 (Cell) 0.617 0.043 LTE Band 66 (AWS) 1.025 0.043 LTE Band 2 (PCS) 1.283 0.043

FCC ID: ZNFM710H	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 60 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 60 of 69

Table 12-5 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
	GSM/GPRS 850	0.675	0.061	0.736
	GSM/GPRS 1900	0.989	0.061	1.050
	UMTS 850	0.677	0.061	0.738
	UMTS 1750	1.030	0.061	1.091
	UMTS 1900	1.198	0.061	1.259
Body-Worn	LTE Band 12	0.380	0.061	0.441
	LTE Band 13	0.415	0.061	0.476
	LTE Band 5 (Cell)	0.617	0.061	0.678
	LTE Band 66 (AWS)	1.025	0.061	1.086
	LTE Band 2 (PCS)	1.283	0.061	1.344
	LTE Band 7	0.679	0.061	0.740

FCC ID: ZNFM710H	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: Test Dates:		DUT Type:	Dogo 61 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 61 of 69

Hotspot SAR Simultaneous Transmission Analysis

Note: (*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for applicable exposure conditions was used for simultaneous transmission analysis.

Note: Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

> **Table 12-6** Simultaneous Transmission Scenario (2.4 GHz Hotspot at 1.0 cm)

Simultaneous Transmission Scenario (2.4 GHz Hotspot at 1.0 cm)						
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)		
		1	2	1+2		
	GPRS 850	0.675	0.176	0.851		
	GPRS 1900	0.989	0.176	1.165		
	UMTS 850	0.677	0.176	0.853		
	UMTS 1750	1.030	0.176	1.206		
	UMTS 1900	1.198	0.176	1.374		
Hotspot SAR	LTE Band 12	0.380	0.176	0.556		
	LTE Band 13	0.415	0.176	0.591		
	LTE Band 5 (Cell)	0.617	0.176	0.793		
	LTE Band 66 (AWS)	1.025	0.176	1.201		
	LTE Band 2 (PCS)	1.283	0.176	See Table Below		
	LTE Band 7	0.679	0.176	0.855		

Table 12-7 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	
		1	2	1+2	
	Back	1.283	0.153	1.436	
	Front	1.000	0.176	1.176	
Hotspot SAR	Тор	-	0.176*	0.176	
1 lotapot OAIX	Bottom	0.725	-	0.725	
	Right	-	-	0.000	
	Left	0.518	0.176*	0.694	

FCC ID: ZNFM710H	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N: Test Dates:		DUT Type:	Dogo 62 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 62 of 69

Table 12-8
Simultaneous Transmission Scenario with 5 GHz WLAN (Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	GPRS 850	0.675	0.100	0.775
	GPRS 1900	0.989	0.100	1.089
	UMTS 850	0.677	0.100	0.777
	UMTS 1750	1.030	0.100	1.130
	UMTS 1900	1.198	0.100	1.298
Hotspot SAR	LTE Band 12	0.380	0.100	0.480
	LTE Band 13	0.415	0.100	0.515
	LTE Band 5 (Cell)	0.617	0.100	0.717
	LTE Band 66 (AWS)	1.025	0.100	1.125
	LTE Band 2 (PCS)	1.283	0.100	1.383
	LTE Band 7	0.679	0.100	0.779

12.6 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID: ZNFM710H	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 62 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 63 of 69

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 13-1
Body SAR Measurement Variability Results

	BODY VARIABILITY RESULTS														
Band	FREQUE	NCY	Mode	Service Side		Service Side Spa				Measured 1st Repeated SAR (1g) SAR (1g)		2nd		3rd Repeated SAR (1g)	Ratio
	MHz	Ch.					(W/kg)	(W/kg)		(W/kg)		(W/kg)			
1750	1712.40	1312	UMTS 1750	RMC	back	10 mm	1.030	0.881	1.17	N/A	N/A	N/A	N/A		
1900	1900.00	19100	LTE Band 2 (PCS), 20 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	back	10 mm	1.250	1.180	1.06	N/A	N/A	N/A	N/A		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT			Body											
	Spatial Peak						1.6 W/kg	(mW/g)							
		Uncor	trolled Exposure/General Populat	ion		averaged over 1 gram									

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 64 of 69
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset		Page 64 01 69

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	E5515C	8960 Series 10 Wireless Communications Test Set	10/5/2016	Annual	10/5/2017	GB42230325
Agilent	E4438C	ESG Vector Signal Generator	3/12/2015	Biennial	3/12/2017	MY45090700
Agilent	E4438C	ESG Vector Signal Generator	3/13/2015	Biennial	3/13/2017	MY42082385
Agilent	E4432B N9020A	ESG-D Series Signal Generator MXA Signal Analyzer	3/5/2016 10/28/2016	Annual	3/5/2017 10/28/2017	US40053896 US46470561
Agilent Agilent	N5182A	MXG Vector Signal Generator	3/5/2016	Annual Annual	3/5/2017	MY47420800
Agilent	N5182A	MXG Vector Signal Generator	10/27/2016	Annual	10/27/2017	MY47420603
Agilent	8753ES	S-Parameter Network Analyzer	6/28/2016	Annual	6/28/2017	MY40000670
Agilent	8753ES	S-Parameter Network Analyzer	10/26/2016	Annual	10/26/2017	US39170118
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/19/2016	Annual	8/19/2017	MY40003841
Agilent	E5515C	Wireless Communications Test Set	1/8/2015	Triennial	1/8/2018	GB43163447
Agilent	E5515C	Wireless Communications Test Set	1/29/2016	Biennial	1/29/2018	GB46310798
Agilent	N4010A N4010A	Wireless Connectivity Test Set	N/A N/A	N/A N/A	N/A N/A	GB46170464 GB44450273
Agilent	N4010A 15S1G6	Wireless Connectivity Test Set	N/A CBT	N/A N/A	N/A CBT	GB44450273 433971
Amplifier Research Amplifier Research	1551G6 1551G6	Amplifier Amplifier	CBT	N/A	CBT	433971
Anritsu	ML2496A	Power Meter	3/5/2016	Annual	3/5/2017	1351001
Anritsu	ML2495A	Power Meter	10/16/2015	Biennial	10/16/2017	941001
Anritsu	MA2411B	Pulse Power Sensor	8/18/2016	Annual	8/18/2017	1126066
Anritsu	MA2411B	Pulse Power Sensor	8/18/2016	Annual	8/18/2017	1207470
Anritsu	MT8820C	Radio Communication Analyzer	4/14/2016	Annual	4/14/2017	6201240328
Anritsu	MT8820C	Radio Communication Analyzer	9/13/2016	Annual	9/13/2017	6201144419
Anritsu	MA24106A	USB Power Sensor	3/4/2016	Annual	3/4/2017	1344555
Anritsu	MA24106A	USB Power Sensor	3/4/2016	Annual	3/4/2017	1344556
COMTECH	AR85729-5/5759B AR85729-5	Solid State Amplifier Solid State Amplifier	CBT	N/A N/A	CBT	M3W1A00-1002 M1S5A00-009
Control Company	4040	Digital Thermometer	3/15/2015	N/A Biennial	3/15/2017	150194897
Control Company	4040	Digital Thermometer	3/15/2015	Biennial	3/15/2017	150194897
Control Company	4353	Long Stem Thermometer	3/5/2015	Biennial	3/5/2017	150149565
Control Company	4352	Ultra Long Stem Thermometer	3/8/2016	Biennial	3/8/2018	160261701
Control Company	4352	Ultra Long Stem Thermometer	3/8/2016	Biennial	3/8/2018	160261729
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits Mini-Circuits	NLP-1200+ NLP-2950+	Low Pass Filter DC to 1000 MHz Low Pass Filter DC to 2700 MHz	CBT	N/A N/A	CBT	N/A N/A
Mini-Circuits Mini-Circuits	NLP-2950+ BW-N20W5	Power Attenuator	CBT	N/A N/A	CBT	N/A 1226
Mitutoyo	CD-6"CSX	Digital Caliper	3/2/2016	Biennial	3/2/2018	13264162
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/21/2015	Biennial	5/21/2017	N/A
Rohde & Schwarz Rohde & Schwarz	CMU200 CMU200	Base Station Simulator Base Station Simulator	3/29/2016	Annual Annual	3/29/2017	836371/0079 833855/0010
Ronde & Schwarz	CMU200	Radio Communication Tester	3/25/2016	Annual	3/25/2017	128633
Rohde & Schwarz	CMW500	Radio Communication Tester	4/26/2016	Annual	4/26/2017	112347
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	7/20/2016	Annual	7/20/2017	132885
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	2/10/2017	Annual	2/10/2018	162125
Seekonk	NC-100	Torque Wrench	11/6/2015	Biennial	11/6/2017	N/A
Seekonk	NC-100	Torque Wrench (8" lb)	8/30/2016	Biennial	8/30/2018	N/A
Seekonk	NC-100	Torque Wrench 5/16", 8" lbs	3/2/2016	Biennial	3/2/2018	N/A
SPEAG	D1750V2	1750 MHz SAR Dipole	5/9/2016	Annual	5/9/2017	1148
SPEAG	D1765V2	1765 MHz SAR Dipole	5/11/2016	Annual	5/11/2017	1008 5d080
SPEAG SPEAG	D1900V2 D1900V2	1900 MHz SAR Dipole	7/8/2016 7/15/2016	Annual Annual	7/8/2017	5d080 5d149
SPEAG SPEAG	D1900V2 D2450V2	1900 MHz SAR Dipole 2450 MHz SAR Dipole	7/15/2016	Annual	7/15/2017 7/25/2017	5d149 981
SPEAG	D2450V2	2450 MHz SAR Dipole 2450 MHz SAR Dipole	9/13/2016	Annual	9/13/2017	981 797
SPEAG	D5GHzV2	5 GHz SAR Dipole	9/21/2016	Annual	9/21/2017	1191
SPEAG	D2600V2	2600 MHz SAR Dipole	7/25/2016	Annual	7/25/2017	1126
SPEAG	D2600V2	2600 MHz SAR Dipole	9/13/2016	Annual	9/13/2017	1071
SPEAG	D5GHzV2	5 GHz SAR Dipole	8/2/2016	Annual	8/2/2017	1237
SPEAG	D750V3	750 MHz SAR Dipole	7/13/2016	Annual	7/13/2017	1161
SPEAG	D750V3	750 MHz SAR Dipole	1/11/2017	Annual	1/11/2018	1003
SPEAG						
SPEAG	D835V2	835 MHz SAR Dipole	7/13/2016	Annual	7/13/2017	4d047
	D835V2 D835V2	835 MHz SAR Dipole 835 MHz SAR Dipole	7/13/2016 7/14/2016	Annual Annual	7/14/2017	4d133
SPEAG	D835V2 D835V2 DAE4	835 MHz SAR Dipole 835 MHz SAR Dipole Dasy Data Acquisition Electronics	7/13/2016 7/14/2016 3/14/2016	Annual Annual Annual	7/14/2017 3/14/2017	4d133 1368
SPEAG SPEAG	D835V2 D835V2 DAE4 DAE4	835 MHz SAR Dipole 835 MHz SAR Dipole Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	7/13/2016 7/14/2016 3/14/2016 4/14/2016	Annual Annual Annual Annual	7/14/2017 3/14/2017 4/14/2017	4d133 1368 1407
SPEAG SPEAG SPEAG	D835V2 D835V2 DAE4 DAE4 DAE4	835 MHz SAR Dipole 835 MHz SAR Dipole Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	7/13/2016 7/14/2016 3/14/2016 4/14/2016 1/16/2017	Annual Annual Annual Annual Annual	7/14/2017 3/14/2017 4/14/2017 1/16/2018	4d133 1368 1407 1466
SPEAG SPEAG	D835V2 D835V2 DAE4 DAE4	835 MHz SAR Dipole 835 MHz SAR Dipole Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	7/13/2016 7/14/2016 3/14/2016 4/14/2016	Annual Annual Annual Annual	7/14/2017 3/14/2017 4/14/2017	4d133 1368 1407
SPEAG SPEAG SPEAG SPEAG	D835V2 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4	835 MHz SAR Dipole 835 MHz SAR Dipole Dasy Data Acquisition Electronics	7/13/2016 7/14/2016 3/14/2016 4/14/2016 1/16/2017 5/11/2016	Annual Annual Annual Annual Annual Annual	7/14/2017 3/14/2017 4/14/2017 1/16/2018 5/11/2017	4d133 1368 1407 1466 859
SPEAG SPEAG SPEAG SPEAG SPEAG	D835V2 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	835 MHr SAR Dipole 835 MHr SAR Dipole Dasy Data Acquisition Electronics	7/13/2016 7/14/2016 3/14/2016 4/14/2016 1/16/2017 5/11/2016 8/22/2016 9/14/2016	Annual Annual Annual Annual Annual Annual Annual Annual	7/14/2017 3/14/2017 4/14/2017 1/16/2018 5/11/2017 8/22/2017	4d133 1368 1407 1466 859 1364
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D835V2 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	835 MHz SAR Dipole 835 MHz SAR Dipole Dasy Data Acquisition Electronics	7/13/2016 7/14/2016 3/14/2016 4/14/2016 1/16/2017 5/11/2016 8/22/2016	Annual	7/14/2017 3/14/2017 4/14/2017 1/16/2018 5/11/2017 8/22/2017 9/14/2017	4d133 1368 1407 1466 859 1364 1408
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D835V2 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	835 MH: SAR Dipole 835 MH: SAR Dipole 835 MH: SAR Dipole Dary Data Acquisition Electronics	7/13/2016 7/14/2016 3/14/2016 4/14/2016 1/16/2017 5/11/2016 8/22/2016 9/14/2016 11/11/2016	Annual	7/14/2017 3/14/2017 4/14/2017 1/16/2018 5/11/2017 8/22/2017 9/14/2017 11/11/2017	4d133 1368 1407 1466 859 1364 1408
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D835V2 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	835 MH: SAR Dipole 835 MH: SAR Dipole Dssy Data Acquisition Electronics Displace Transparent Kit	7/13/2016 7/14/2016 3/14/2016 4/14/2016 1/16/2017 5/11/2016 8/22/2016 9/14/2016 11/11/2016 5/10/2016	Annual	7/14/2017 3/14/2017 4/14/2017 1/16/2018 5/11/2017 8/22/2017 9/14/2017 11/11/2017 5/10/2017	4d133 1368 1407 1466 859 1364 1408 1334 1070
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D835V2 D835V2 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	835 MH: SAR Dipole 835 MH: SAR Dipole 935 MH: SAR Dipole 035 V Data Acquisition Electronics Dasy Data Acquisition Electronics Dividentic Assessment Kit Portable Dielectric Assessment Kit Portable Dielectric Assessment Kit	7/13/2016 7/14/2016 3/14/2016 4/14/2016 1/16/2017 5/11/2016 8/22/2016 11/11/2016 5/10/2016 9/13/2016 7/19/2016 8/25/2016	Annual	7/14/2017 3/14/2017 4/14/2017 1/16/2018 5/11/2017 8/22/2017 9/14/2017 5/10/2017 9/13/2017 9/13/2017 7/19/2017 8/25/2017	4d133 1368 1407 1466 859 1364 1408 1334 1070 1091 1039
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D835V2 D835V2 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4	835 MH: SAR Dipole 835 MH: SAR Dipole Dasy Data Acquisition Electronics Delectric Assessment Kit Dielectric Assessment Kit Portable Delectric Assessment Kit Portable Delectric Assessment Kit	7/13/2016 7/14/2016 3/14/2016 4/14/2016 4/14/2016 5/11/2016 8/22/2016 9/14/2016 11/11/2016 5/10/2016 7/19/2016 8/25/2016 3/18/2016	Annual	7/14/2017 3/14/2017 4/14/2017 1/16/2018 5/11/2017 8/22/2017 9/14/2017 5/10/2017 5/10/2017 9/13/2017 7/19/2017 8/25/2017 3/18/2017	4d133 1368 1368 1407 1466 859 1364 1408 1334 1070 1091 1039 1041 3209
SPEAG	D835V2 D835V2 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE6 DAE6 DAE6 DAE6 DAE6 DAE6 DAE6 DAE6	835 MH: SAR Dipole 835 MH: SAR Dipole Day Data Acquisition Electronics Delectric Assessment Kit Dielectric Assessment Kit Portable Dielectric Assessment Kit Portable Dielectric Assessment Kit SAR Probe SAR Probe	7/13/2016 7/14/2016 3/14/2016 4/14/2016 1/16/2017 5/11/2016 8/22/2016 9/14/2016 11/11/2016 5/10/2016 9/13/2016 3/18/2016 3/18/2016 3/18/2016	Annual	7/14/2017 3/14/2017 4/14/2017 1/16/2018 8/22/2017 9/14/2017 11/11/2017 5/10/2017 9/13/2017 9/13/2017 7/19/2017 8/25/2017 3/18/2017 3/18/2017	4d133 1368 1407 1466 859 1364 1408 1334 1070 1091 1039 1041 3209 3319
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D835V2 D835V2 D835V2 DA64 DA64 DA64 DA64 DA64 DA64 DA64 DA64	835 MH: SAR Dipole 835 MH: SAR Dipole 935 MH: SAR Dipole Dasy Data Acquisition Electronics Dielectric Assessment Kit Portable Dielectric Assessment Kit	7/13/2016 7/14/2016 3/14/2016 4/14/2016 1/16/2017 5/11/2016 8/22/2016 9/14/2016 1/11/12/2016 5/10/2016 9/13/2016 8/25/2016 3/18/2016 3/18/2016 7/21/2016	Annual	7/14/2017 3/14/2017 4/14/2017 1/16/2018 5/11/2017 5/11/2017 9/14/2017 11/11/2017 5/10/2017 9/13/2017 7/19/2017 3/18/2017 3/18/2017 7/21/2017	4d133 1368 1407 1466 859 1364 1408 1334 1070 1091 1039 1041 3209 3319 7308
SPEAG	D835V2 D835V2 D835V2 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE5 DAK-3.5	835 MH: SAR Dipole 835 MH: SAR Dipole Dasy Data Acquisition Electronics Divident'ic Assessment Kit Dielectric Assessment Kit Portable Dielectric Assessment Kit Portable Dielectric Assessment Kit SAR Probe SAR Probe SAR Probe	7/13/2016 7/14/2016 3/14/2016 4/14/2016 1/16/2017 5/11/2016 8/22/2016 9/14/2016 11/11/2016 5/10/2016 9/13/2016 8/25/2016 3/18/2016 3/18/2016 3/18/2016 4/19/2016	Annual	7/14/2017 3/14/2017 4/14/2017 4/14/2017 4/14/2018 5/11/2018 5/11/2018 5/12/2017 9/14/2017 11/11/2017 5/10/2017 7/19/2017 8/25/2017 3/18/2017 3/18/2017 7/21/2017 4/19/2017	4d133 1368 1407 1466 859 1364 1408 1334 1070 1091 1039 1041 3209 3319 7406
SPEAG	D835V2 D835V2 D835V2 DA54 DA64 DA64 DA64 DA64 DA64 DA64 DA64 DA6	835 MH: SAR Dipole 835 MH: SAR Dipole 935 MH: SAR Dipole Dasy Data Acquisition Electronics Dielectric Assessment XII Portable Delectric Assessment XII Portable Dielectric Assessment XII SAR Probe SAR Probe SAR Probe SAR Probe	7/13/2016 7/14/2016 3/14/2016 4/14/2016 1/16/2017 5/11/2016 8/22/2016 9/14/2016 5/10/2016 9/13/2016 8/25/2016 8/25/2016 3/18/2016 3/18/2016 4/19/2016 4/19/2016 5/17/2016	Annual	7/14/2017 3/14/2017 4/14/2017 4/14/2017 4/14/2017 8/22/2017 9/14/2017 11/11/2017 5/10/2017 7/19/2017 8/25/2017 3/18/2017 3/18/2017 3/18/2017 4/19/2017 4/19/2017 5/17/2017	4d133 1368 1407 1466 859 1364 1408 1334 1070 1091 1039 1041 3209 3319 7308 7406
SPEAG	D835V2 D835V2 D8464 DA64 DA64 DA64 DA64 DA64 DA64 DA64 D	835 MHz SAR Dipole 835 MHz SAR Dipole Dasy Data Acquisition Electronics Diedectric Assessment Kit Diedectric Assessment Kit Portable Diedectric Assessment Kit Porta	7/13/2016 7/14/2016 3/14/2016 4/14/2016 1/16/2017 5/11/2016 8/22/2016 11/11/2016 8/22/2016 11/11/2016 8/22/2016 3/13/2016 3/13/2016 3/18/2016 3/18/2016 4/19/2016 5/17/2016 9/19/2016	Annual	7/14/2017 3/14/2017 4/14/2017 4/14/2017 4/14/2017 4/16/2018 5/11/2017 8/22/2017 9/14/2017 1/11/2017 5/10/2017 9/13/2017 7/19/2017 3/18/2017 3/18/2017 7/21/2017 4/19/2017 5/17/2017 9/19/2017	4d133 1368 1407 1466 859 1364 1408 1334 1070 1091 1039 1041 3209 3209 7406 7409
SPEAG	D835V2 D835V2 D835V2 DA54 DA64 DA64 DA64 DA64 DA64 DA64 DA64 DA6	835 MH: SAR Dipole 835 MH: SAR Dipole 935 MH: SAR Dipole Dasy Data Acquisition Electronics Dielectric Assessment XII Portable Delectric Assessment XII Portable Dielectric Assessment XII SAR Probe SAR Probe SAR Probe SAR Probe	7/13/2016 7/14/2016 3/14/2016 4/14/2016 1/16/2017 5/11/2016 8/22/2016 9/14/2016 5/10/2016 9/13/2016 8/25/2016 8/25/2016 3/18/2016 3/18/2016 4/19/2016 4/19/2016 5/17/2016	Annual	7/14/2017 3/14/2017 4/14/2017 4/14/2017 4/14/2017 8/22/2017 9/14/2017 11/11/2017 5/10/2017 7/19/2017 8/25/2017 3/18/2017 3/18/2017 3/18/2017 4/19/2017 4/19/2017 5/17/2017	4d133 1368 1407 1466 859 1364 1408 1334 1070 1091 1039 1041 3209 3319 7308 7406

Note:

- 1. CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.
- 2. Each equipment item was used solely within its respective calibration period.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogo 65 of 60	
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset		Page 65 of 69	

© 2017 PCTEST Engineering Laboratory, Inc.

11/28/2016

a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	V _i
	(= /0/	2.50				(± %)	(± %)	''
Measurement System				•	•			
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	œ
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	× ×
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	œ
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	oc
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	×
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	oc
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	oc
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	oc
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	œ
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	œ
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	× ×
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	×
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	œ
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	× ×
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	8
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	œ
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	× ×
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	oc
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	oc
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)		RSS	L 3	0.00	1 0	11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)						_5.0		

Document S/N: Test Dates: DUT Type:	Manager
	6 of 60
1M1702280075-01-R5.ZNF 02/13/17 - 03/02/17 Portable Handset	Page 66 of 69

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 67 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset		Page 67 of 69

17 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 60 of 60
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 68 of 69

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: ZNFM710H	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 60 of 60	
1M1702280075-01-R5.ZNF	02/13/17 - 03/02/17	Portable Handset	Page 69 of 69	

additional rights to this report or assembly of contents thereof, please contact INFO@PCTESTLAB.COM.

APPENDIX A: SAR TEST DATA

PCTEST ENGINEERING LABORATORY, INC.

DUT: ZNFM710H; Type: Portable Handset; Serial: 11259

Communication System: UID 0, GSM GPRS; 3 Tx Slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.76 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.903 \text{ S/m}; \ \epsilon_r = 41.132; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

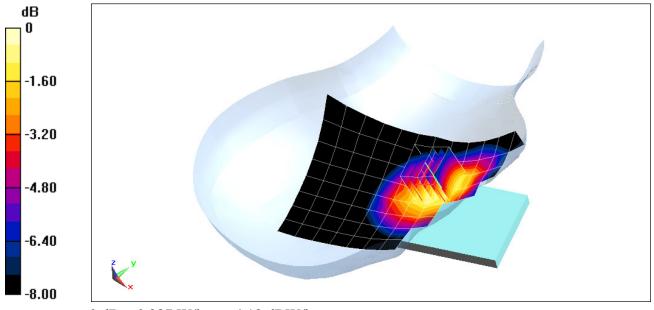
Test Date: 02-13-2017; Ambient Temp: 21.7°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN7409; ConvF(10.04, 10.04, 10.04); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/11/2016 Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 850, Right Head, Cheek, Mid.ch, 3 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.40 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.426 W/kg

SAR(1 g) = 0.337 W/kg

0 dB = 0.387 W/kg = -4.12 dBW/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: ZNFM710H; Type: Portable Handset; Serial: 11267

Communication System: UID 0, GSM GPRS; 3 Tx Slots; Frequency: 1880 MHz; Duty Cycle: 1:2.76 Medium: 1900 Head; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.404 \text{ S/m}; \ \epsilon_r = 39.955; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

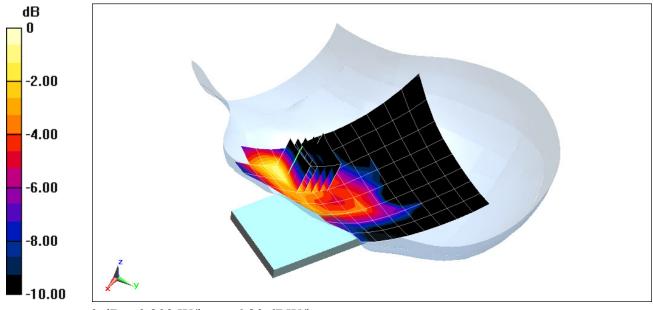
Test Date: 02-14-2017; Ambient Temp: 23.5°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3209; ConvF(5.14, 5.14, 5.14); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1364; Calibrated: 8/22/2016 Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Left Head, Cheek, Mid.ch, 3 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.06 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.281 W/kg

SAR(1 g) = 0.183 W/kg

0 dB = 0.209 W/kg = -6.80 dBW/kg

DUT: ZNFM710H; Type: Portable Handset; Serial: 11259

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.903 \text{ S/m}; \ \epsilon_r = 41.132; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02-13-2017; Ambient Temp: 21.7°C; Tissue Temp: 20.4°C

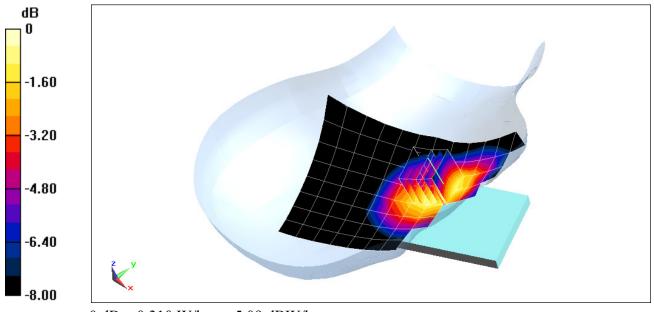
Probe: EX3DV4 - SN7409; ConvF(10.04, 10.04, 10.04); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 5/11/2016

Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.80 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.341 W/kg

SAR(1 g) = 0.269 W/kg

0 dB = 0.310 W/kg = -5.09 dBW/kg

DUT: ZNFM710H; Type: Portable Handset; Serial: 11267

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.379 \text{ S/m}; \ \epsilon_r = 39.636; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

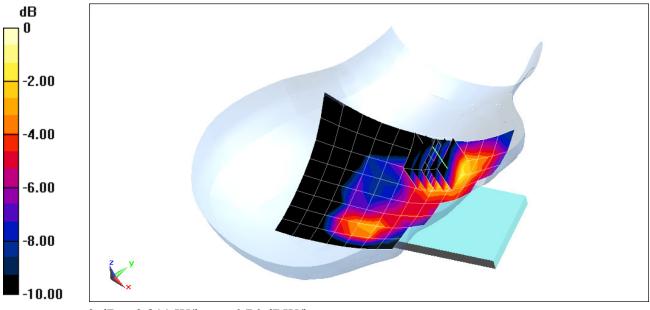
Test Date: 02-13-2017; Ambient Temp: 21.9°C; Tissue Temp: 21.3°C

Probe: ES3DV3 - SN3209; ConvF(5.28, 5.28, 5.28); Calibrated: 3/18/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 8/22/2016 Phantom: SAM Right; Type: SAM; Serial: 1757

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1750, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.74 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.300 W/kg

SAR(1 g) = 0.184 W/kg

0 dB = 0.211 W/kg = -6.76 dBW/kg

DUT: ZNFM710H; Type: Portable Handset; Serial: 11267

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.404 \text{ S/m}; \ \epsilon_r = 39.955; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 02-14-2017; Ambient Temp: 23.5°C; Tissue Temp: 22.7°C

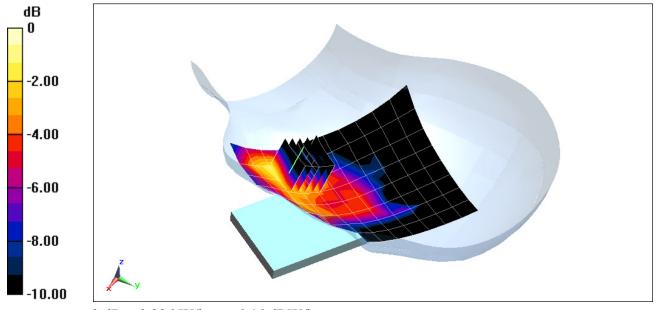
Probe: ES3DV3 - SN3209; ConvF(5.14, 5.14, 5.14); Calibrated: 3/18/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 8/22/2016

Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.27 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.308 W/kg

SAR(1 g) = 0.200 W/kg

0 dB = 0.226 W/kg = -6.46 dBW/kg

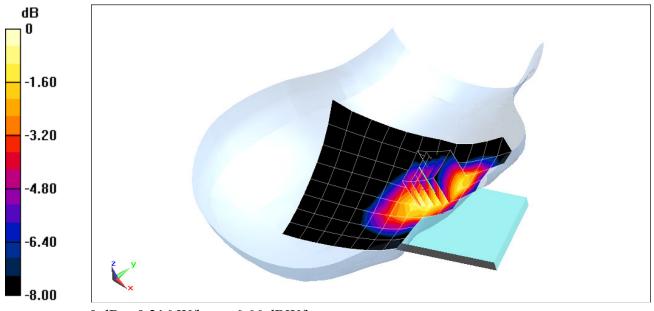
DUT: ZNFM710H; Type: Portable Handset; Serial: 11234

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Head; Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.875 \text{ S/m}; \ \epsilon_r = 43.023; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02-21-2017; Ambient Temp: 21.6°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3287; ConvF(6.96, 6.96, 6.96); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 9/14/2016
Phantom: SAM Left; Type: QD000P40CA; Serial: TP:82355
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.92 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.251 W/kg

SAR(1 g) = 0.200 W/kg

0 dB = 0.216 W/kg = -6.66 dBW/kg

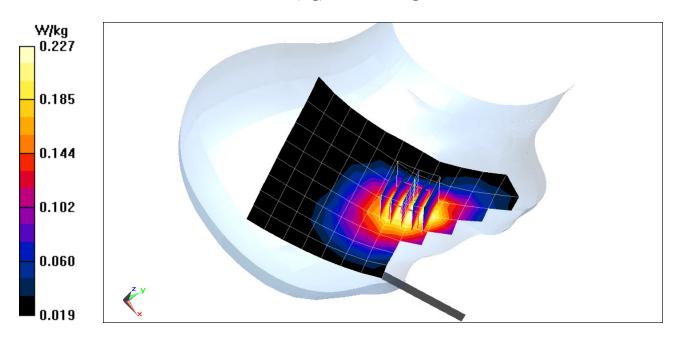
DUT: ZNFM710H; Type: Portable Handset; Serial: 51929

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 0.93 \text{ S/m}; \ \epsilon_r = 41.391; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 03-02-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.4°C

Probe: ES3DV3 - SN3334; ConvF(6.76, 6.76, 6.76); Calibrated: 11/15/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 11/11/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 13, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.18 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.270 W/kg

SAR(1 g) = 0.209 W/kg

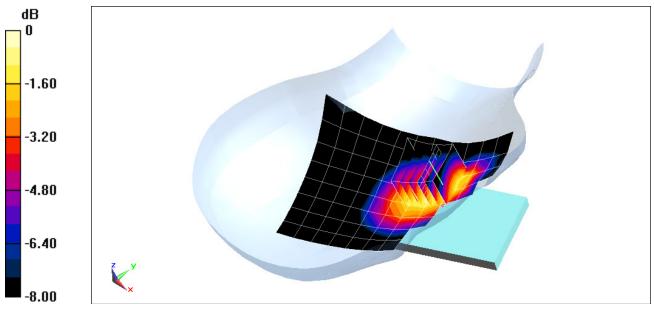
DUT: ZNFM710H; Type: Portable Handset; Serial: 11242

Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.919 \text{ S/m}; \ \epsilon_r = 42.468; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02-20-2017; Ambient Temp: 22.0°C; Tissue Temp: 21.0°C

Probe: ES3DV3 - SN3319; ConvF(6.16, 6.16, 6.16); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 5 (Cell.), Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.10 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.351 W/kg

SAR(1 g) = 0.283 W/kg

0 dB = 0.305 W/kg = -5.16 dBW/kg

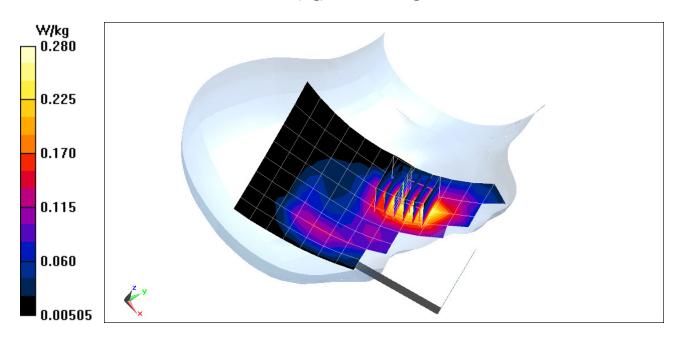
DUT: ZNFM710H; Type: Portable Handset; Serial: 51929

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1745 \text{ MHz}; \ \sigma = 1.389 \text{ S/m}; \ \epsilon_r = 38.892; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02-27-2017; Ambient Temp: 24.0°C; Tissue Temp: 23.0°C

Probe: EX3DV4 - SN7406; ConvF(8.85, 8.85, 8.85); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/14/2016
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 66 (AWS), Right Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.53 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.313 W/kg

SAR(1 g) = 0.216 W/kg

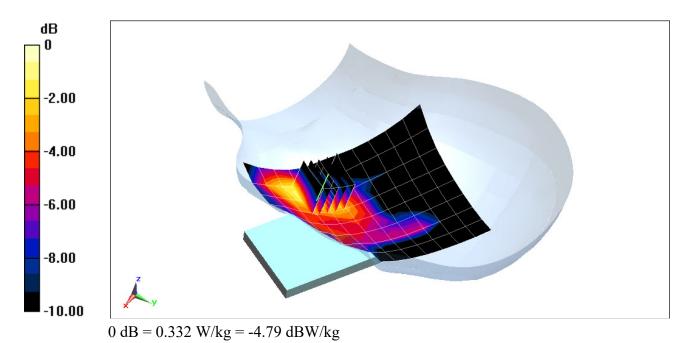
DUT: ZNFM710H; Type: Portable Handset; Serial: 11267

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used (interpolated): $f = 1860 \text{ MHz}; \ \sigma = 1.383 \text{ S/m}; \ \epsilon_r = 40.045; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 02-14-2017; Ambient Temp: 23.5°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3209; ConvF(5.14, 5.14, 5.14); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 8/22/2016
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Left Head, Cheek, Low.ch, 20 MHz Bandwidth, OPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.53 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.433 W/kg

SAR(1 g) = 0.277 W/kg

DUT: ZNFM710H; Type: Portable Handset; Serial: 11242

Communication System: UID 0, LTE Band 7; Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: 2600 Head; Medium parameters used (interpolated): $f = 2535 \text{ MHz}; \ \sigma = 1.982 \text{ S/m}; \ \epsilon_r = 37.777; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

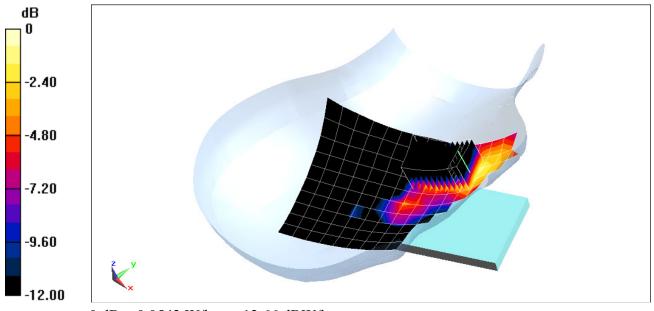
Test Date: 02-20-2017; Ambient Temp: 22.6°C; Tissue Temp: 21.4°C

Probe: ES3DV3 - SN3287; ConvF(4.41, 4.41, 4.41); Calibrated: 9/19/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 9/14/2016 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 7, Right Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 50 RB, 25 RB Offset


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x12x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.717 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.120 W/kg

SAR(1 g) = 0.045 W/kg

0 dB = 0.0542 W/kg = -12.66 dBW/kg

DUT: ZNFM710H; Type: Portable Handset; Serial: 11390

Communication System: UID 0, IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 1.875 \text{ S/m}; \ \epsilon_r = 38.181; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

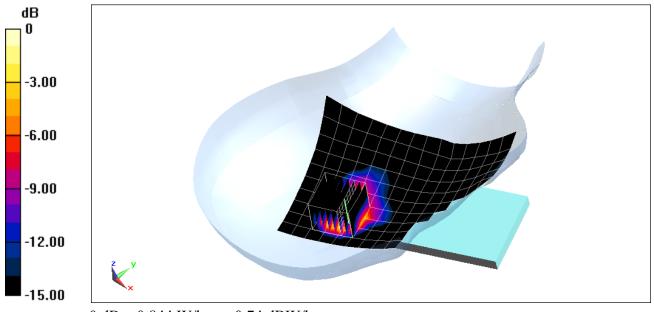
Test Date: 02-20-2017; Ambient Temp: 22.6°C; Tissue Temp: 21.4°C

Probe: ES3DV3 - SN3287; ConvF(4.54, 4.54, 4.54); Calibrated: 9/19/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 9/14/2016 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Right Head, Cheek, Ch 6, 1 Mbps


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.02 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 1.71 W/kg

SAR(1 g) = 0.613 W/kg

0 dB = 0.844 W/kg = -0.74 dBW/kg

DUT: ZNFM710H; Type: Portable Handset; Serial: 11390

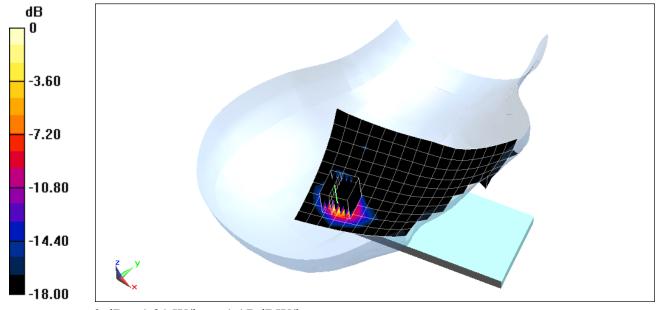
Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5785 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: $f = 5785 \text{ MHz}; \ \sigma = 5.158 \text{ S/m}; \ \epsilon_r = 34.587; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02-16-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7308; ConvF(4.86, 4.86, 4.86); Calibrated: 7/21/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, U-NII-3, 20 MHz Bandwidth, Right Head, Tilt, Ch 157, 6 Mbps


Area Scan (11x19x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 1.499 V/m; Power Drift = 0.18

Peak SAR (extrapolated) = 2.23 W/kg

SAR(1 g) = 0.475 W/kg

0 dB = 1.31 W/kg = 1.17 dBW/kg

DUT: ZNFM710H; Type: Portable Handset; Serial: 11267

Communication System: UID 0, GSM GPRS; 3 Tx Slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.76 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.959 \text{ S/m}; \ \epsilon_r = 53.868; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-15-2017; Ambient Temp: 23.7°C; Tissue Temp: 22.5°C

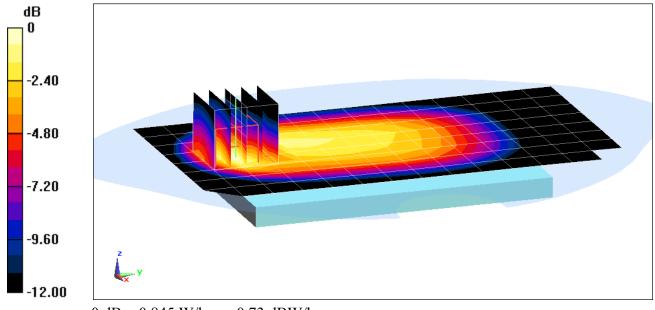
Probe: ES3DV3 - SN3319; ConvF(6.04, 6.04, 6.04); Calibrated: 3/18/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/14/2016

Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 850, Body SAR, Back Side, Mid.ch, 3 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.11 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.667 W/kg

0 dB = 0.845 W/kg = -0.73 dBW/kg

DUT: ZNFM710H; Type: Portable Handset; Serial: 11259

Communication System: UID 0, GSM GPRS; 3 Tx Slots; Frequency: 1880 MHz; Duty Cycle: 1:2.76 Medium: 1900 Body; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.532 \text{ S/m}; \ \epsilon_r = 52.856; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

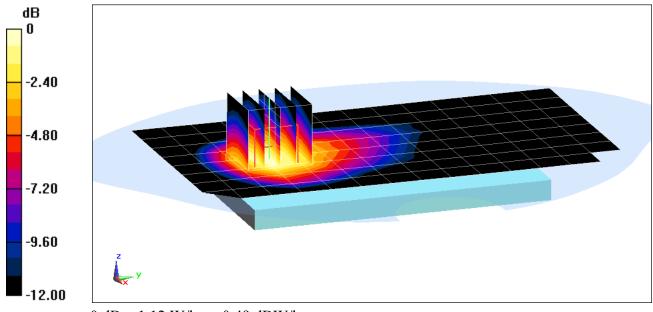
Test Date: 02-15-2017; Ambient Temp: 23.2°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3334; ConvF(4.91, 4.91, 4.91); Calibrated: 11/15/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 11/11/2016

Phantom: SAM with CRP v4.0 Left; Type: QD000P40CD; Serial: TP:1692 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: GPRS 1900, Body SAR, Back Side, Mid.ch, 3 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.60 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.49 W/kg

SAR(1 g) = 0.957 W/kg

0 dB = 1.12 W/kg = 0.49 dBW/kg

DUT: ZNFM710H; Type: Portable Handset; Serial: 11267

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.959 \text{ S/m}; \ \epsilon_r = 53.868; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-15-2017; Ambient Temp: 23.7°C; Tissue Temp: 22.5°C

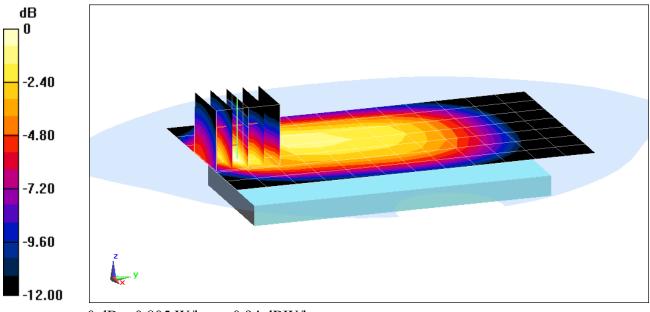
Probe: ES3DV3 - SN3319; ConvF(6.04, 6.04, 6.04); Calibrated: 3/18/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/14/2016

Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 850, Body SAR, Back Side, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.79 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.647 W/kg

0 dB = 0.805 W/kg = -0.94 dBW/kg

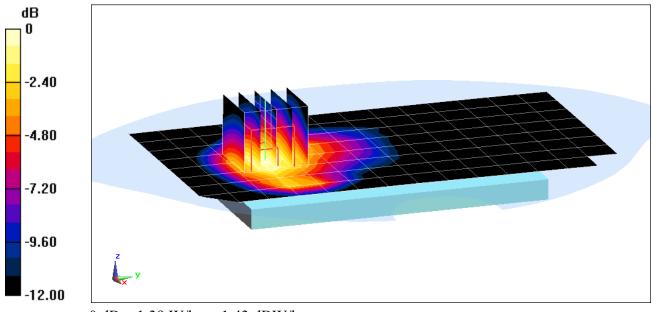
DUT: ZNFM710H; Type: Portable Handset; Serial: 11259

Communication System: UID 0, UMTS; Frequency: 1712.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): $f = 1712.4 \text{ MHz}; \ \sigma = 1.478 \text{ S/m}; \ \epsilon_r = 51.383; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-13-2017; Ambient Temp: 21.4°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7406; ConvF(7.78, 7.78, 7.78); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/14/2016
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1750, Body SAR, Back Side, Low.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.02 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 1.03 W/kg

0 dB = 1.39 W/kg = 1.43 dBW/kg

DUT: ZNFM710H; Type: Portable Handset; Serial: 11259

Communication System: UID 0, UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1907.6 \text{ MHz}; \ \sigma = 1.57 \text{ S/m}; \ \epsilon_r = 52.814; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

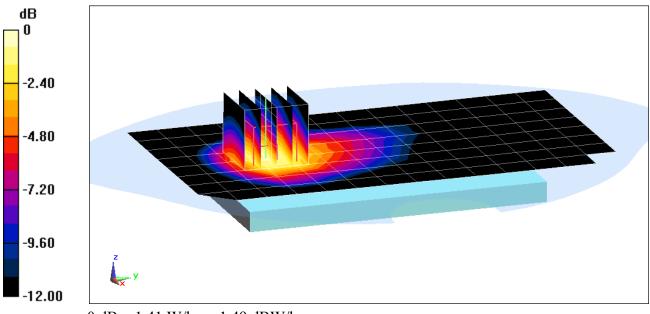
Test Date: 02-15-2017; Ambient Temp: 23.2°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3334; ConvF(4.91, 4.91, 4.91); Calibrated: 11/15/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 11/11/2016

Phantom: SAM with CRP v4.0 Left; Type: QD000P40CD; Serial: TP:1692 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: UMTS 1900, Body SAR, Back Side, High.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.30 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.89 W/kg

SAR(1 g) = 1.19 W/kg

0 dB = 1.41 W/kg = 1.49 dBW/kg

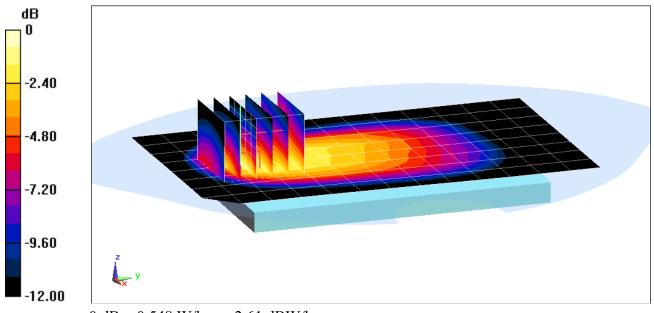
DUT: ZNFM710H; Type: Portable Handset; Serial: 11242

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.92 \text{ S/m}; \ \epsilon_r = 56.698; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-22-2017; Ambient Temp: 22.7°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7409; ConvF(9.46, 9.46, 9.46); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 12, Body SAR, Back Side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.64 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.673 W/kg

SAR(1 g) = 0.365 W/kg

0 dB = 0.548 W/kg = -2.61 dBW/kg

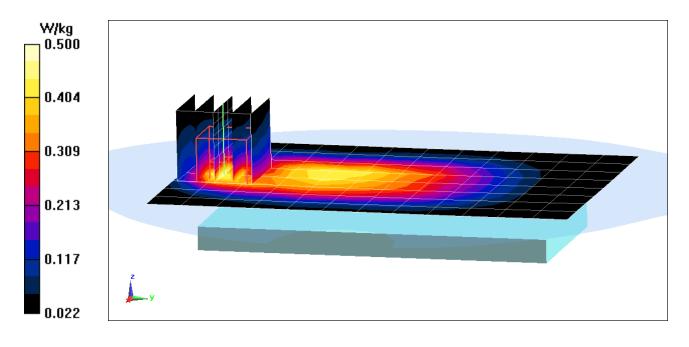
DUT: ZNFM710H; Type: Portable Handset; Serial: 51945

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 0.994 \text{ S/m}; \ \epsilon_r = 56.202; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-27-2017; Ambient Temp: 22.7°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3288; ConvF(6.32, 6.32, 6.32); Calibrated: 1/13/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 1/16/2017
Phantom: SAM with CRP v5.0 Left; Type: QD000P40CD; Serial: 1687
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 13, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.91 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.720 W/kg

SAR(1 g) = 0.404 W/kg

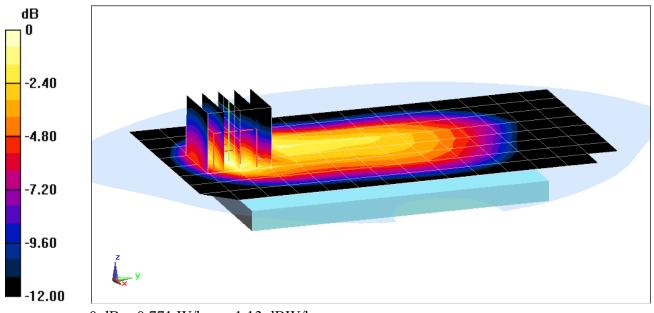
DUT: ZNFM710H; Type: Portable Handset; Serial: 11242

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.959 \text{ S/m}; \ \epsilon_r = 53.869; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-15-2017; Ambient Temp: 23.7°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3319; ConvF(6.04, 6.04, 6.04); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/14/2016
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 5 (Cell.), Body SAR, Back Side, Mid.ch, 10 MHz Bandwidth, OPSK, 1 RB, 49 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.37 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.607 W/kg

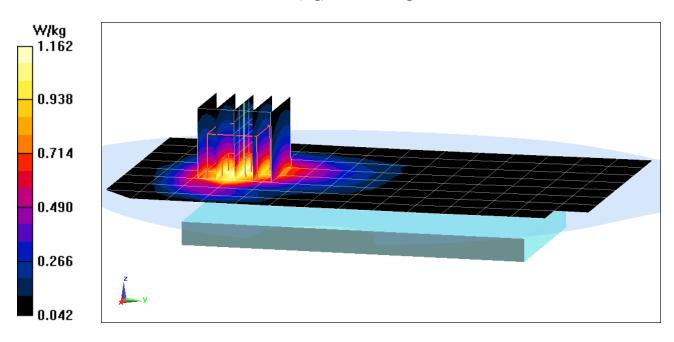
DUT: ZNFM710H; Type: Portable Handset; Serial: 51937

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1745 \text{ MHz}; \ \sigma = 1.494 \text{ S/m}; \ \epsilon_r = 50.898; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-27-2017; Ambient Temp: 22.1°C; Tissue Temp: 20.5°C

Probe: ES3DV3 - SN3209; ConvF(4.99, 4.99, 4.99); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 8/22/2016
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 66 (AWS), Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.36 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 1.01 W/kg

DUT: ZNFM710H; Type: Portable Handset; Serial: 11242

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.559 \text{ S/m}; \ \epsilon_r = 52.825; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

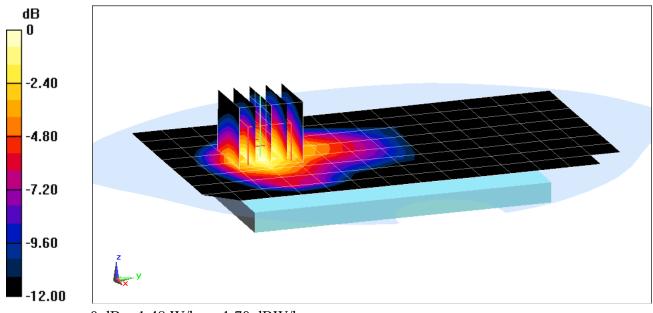
Test Date: 02-15-2017; Ambient Temp: 23.2°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3334; ConvF(4.91, 4.91, 4.91); Calibrated: 11/15/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 11/11/2016

Phantom: SAM with CRP v4.0 Left; Type: QD000P40CD; Serial: TP:1692 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 2 (PCS), Body SAR, Back Side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.33 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.97 W/kg

SAR(1 g) = 1.25 W/kg

0 dB = 1.48 W/kg = 1.70 dBW/kg

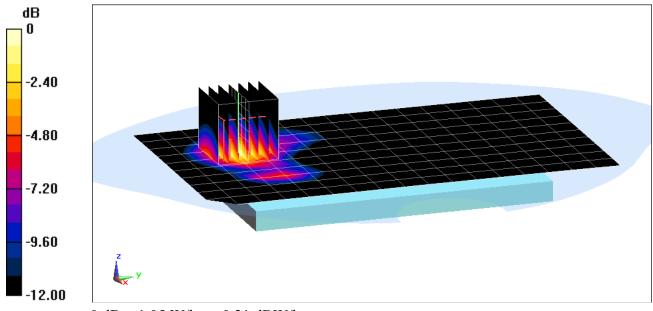
DUT: ZNFM710H; Type: Portable Handset; Serial: 11242

Communication System: UID 0, LTE Band 7; Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: 2600 Body; Medium parameters used (interpolated): $f = 2535 \text{ MHz}; \ \sigma = 2.16 \text{ S/m}; \ \epsilon_r = 51.984; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-20-2017; Ambient Temp: 22.5°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7406; ConvF(6.94, 6.94, 6.94); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/14/2016
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: LTE Band 7, Body SAR, Back Side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.47 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.654 W/kg

0 dB = 1.05 W/kg = 0.21 dBW/kg

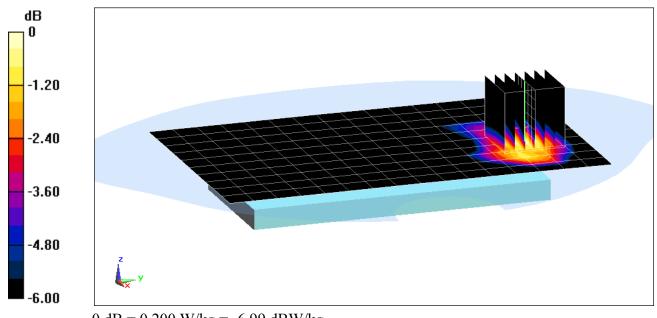
DUT: ZNFM710H; Type: Portable Handset; Serial: 11390

Communication System: UID 0, IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 2.024 \text{ S/m}; \ \epsilon_r = 52.345; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-20-2017; Ambient Temp: 22.5°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7406; ConvF(7.24, 7.24, 7.24); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/14/2016
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Back Side, Ch 06, 1 Mbps


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.931 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.240 W/kg

SAR(1 g) = 0.135 W/kg

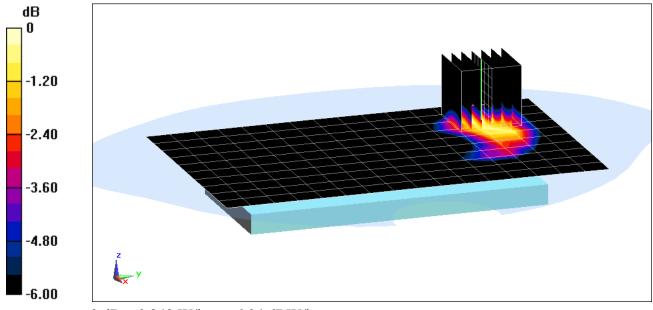
DUT: ZNFM710H; Type: Portable Handset; Serial: 11390

Communication System: UID 0, IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 2.024 \text{ S/m}; \ \epsilon_r = 52.345; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-20-2017; Ambient Temp: 22.5°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7406; ConvF(7.24, 7.24, 7.24); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/14/2016
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Front Side, Ch 06, 1 Mbps


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.093 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.321 W/kg

SAR(1 g) = 0.155 W/kg

0 dB = 0.249 W/kg = -6.04 dBW/kg

DUT: ZNFM710H; Type: Portable Handset; Serial: 11390

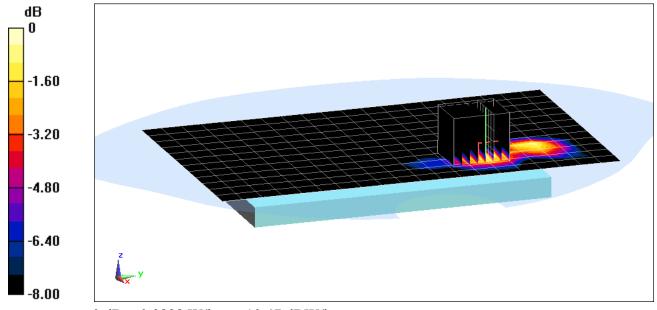
Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used: $f = 5260 \text{ MHz}; \ \sigma = 5.516 \text{ S/m}; \ \epsilon_r = 48.381; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-13-2017; Ambient Temp: 21.6°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN3589; ConvF(4.19, 4.19, 4.19); Calibrated: 1/13/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 1/16/2017
Phantom: SAM with CRP v5 0 Front: Type: OD000P40CD: Serial: 1646

Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, UNII-2A, 20 MHz Bandwidth, Body SAR, Back Side, Ch 52, 6 Mbps


Area Scan (13x21x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 2.309 V/m; Power Drift = 0.18 dB

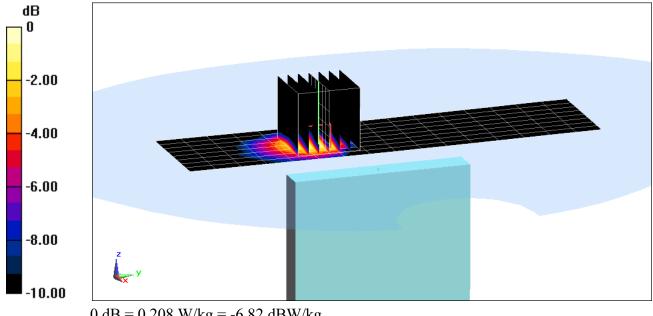
Peak SAR (extrapolated) = 0.152 W/kg

SAR(1 g) = 0.034 W/kg

0 dB = 0.0898 W/kg = -10.47 dBW/kg

DUT: ZNFM710H; Type: Portable Handset; Serial: 11390

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5785 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used: $f = 5785 \text{ MHz}; \ \sigma = 6.232 \text{ S/m}; \ \varepsilon_r = 47.538; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 02-13-2017; Ambient Temp: 21.6°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN3589; ConvF(3.83, 3.83, 3.83); Calibrated: 1/13/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1466; Calibrated: 1/16/2017

Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: IEEE 802.11a, U-NII-3, 20 MHz Bandwidth, Body SAR, Top Edge, Ch 157, 6 Mbps

Area Scan (9x17x1): Measurement grid: dx=5mm, dy=10mm **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 1.160 V/m: Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.338 W/kg SAR(1 g) = 0.078 W/kg

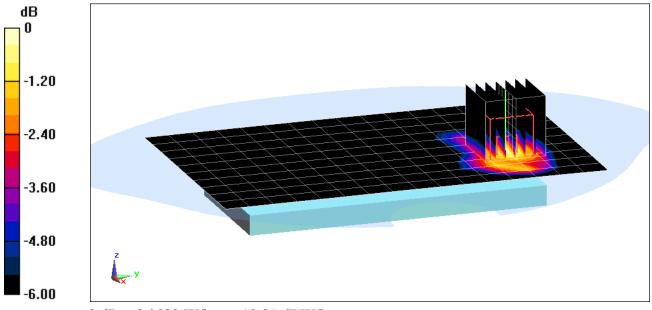
DUT: ZNFM710H; Type: Portable Handset; Serial: 11390

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.279 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2441 \text{ MHz}; \ \sigma = 2.029 \text{ S/m}; \ \epsilon_r = 52.332; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-20-2017; Ambient Temp: 22.5°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7406; ConvF(7.24, 7.24, 7.24); Calibrated: 4/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/14/2016
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Mode: Bluetooth, Body SAR, Back Side, Ch 39, 1 Mbps


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.305 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.0630 W/kg

SAR(1 g) = 0.035 W/kg

APPENDIX B: SYSTEM VERIFICATION

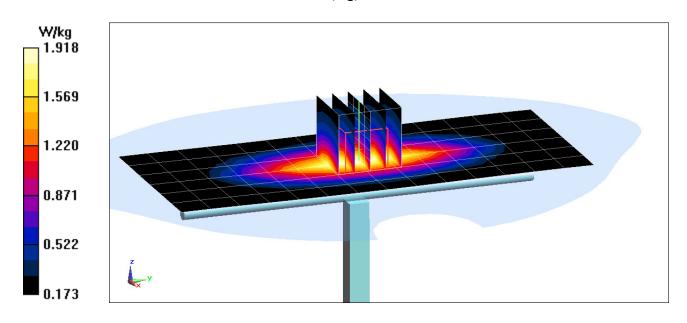
DUT: Dipole 750 MHz; Type: D750V3; Serial: 1003

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head; Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.912 \text{ S/m}; \ \epsilon_r = 42.488; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02-21-2017; Ambient Temp: 21.6°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3287; ConvF(6.96, 6.96, 6.96); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 9/14/2016
Phantom: SAM Left; Type: QD000P40CA; Serial: TP:82355
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.43 W/kg

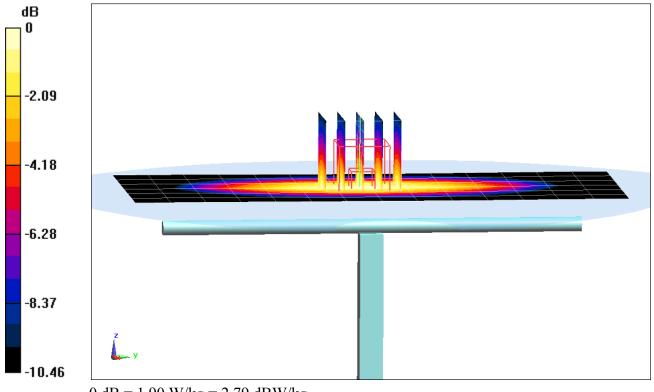
SAR(1 g) = 1.64 W/kg

Deviation(1 g) = -2.26%

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.901 \text{ S/m}; \ \epsilon_r = 41.802; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 03-02-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.4°C


Probe: ES3DV3 - SN3334; ConvF(6.76, 6.76, 6.76); Calibrated: 11/15/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 11/11/2016
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1800
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.41 W/kgSAR(1 g) = 1.62 W/kgDeviation(1 g) = -0.86%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133

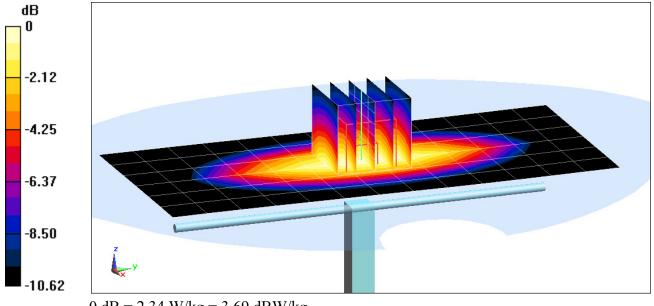
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.902 \text{ S/m}; \ \epsilon_r = 41.153; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02-13-2017; Ambient Temp: 21.7°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN7409; ConvF(10.04, 10.04, 10.04); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.62 W/kg

SAR(1 g) = 1.76 W/kg

Deviation(1 g) = -5.58 %

0 dB = 2.34 W/kg = 3.69 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.918 \text{ S/m}; \ \epsilon_r = 42.49; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

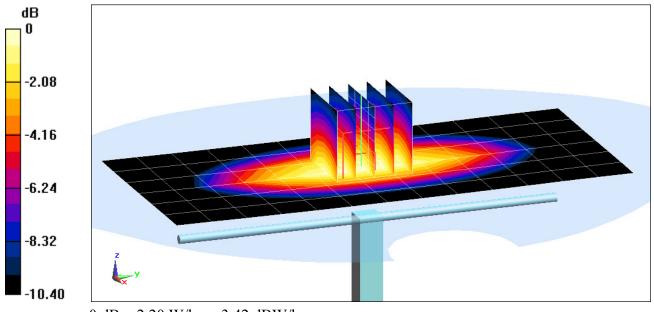
Test Date: 02-20-2017; Ambient Temp: 22.0°C; Tissue Temp: 21.0°C

Probe: ES3DV3 - SN3319; ConvF(6.16, 6.16, 6.16); Calibrated: 3/18/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/14/2016

Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.69 W/kg

SAR(1 g) = 1.89 W/kg

Deviation(1 g) = 3.50%

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.397 \text{ S/m}; \ \epsilon_r = 39.559; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-13-2017; Ambient Temp: 21.9°C; Tissue Temp: 21.3°C

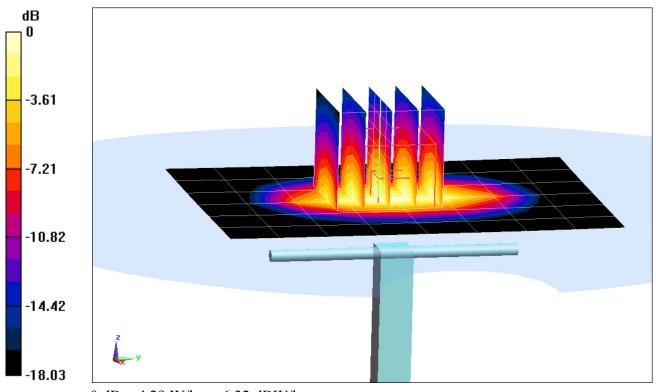
Probe: ES3DV3 - SN3209; ConvF(5.28, 5.28, 5.28); Calibrated: 3/18/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 8/22/2016
Phantom SAM Bight: Type SAM: Social: 1757

Phantom: SAM Right; Type: SAM; Serial: 1757

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.26 W/kg

SAR(1 g) = 3.46 W/kg

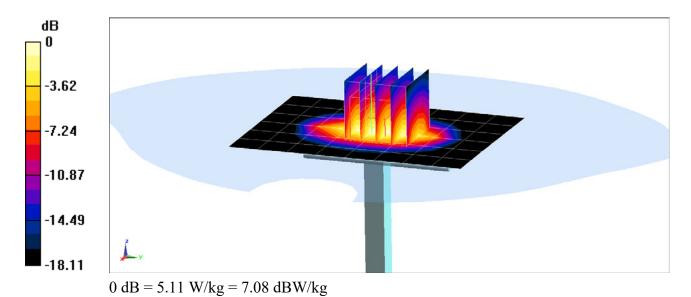
Deviation(1 g) = -4.42%

0 dB = 4.29 W/kg = 6.32 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.394 \text{ S/m}; \ \epsilon_r = 38.87; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-27-2017; Ambient Temp: 24.0°C; Tissue Temp: 23.0°C


Probe: EX3DV4 - SN7406; ConvF(8.85, 8.85, 8.85); Calibrated: 04/19/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 04/14/2016
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.11 W/kgSAR(1 g) = 3.43 W/kgDeviation(1 g) = -6.54%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.425 \text{ S/m}; \ \epsilon_r = 39.87; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

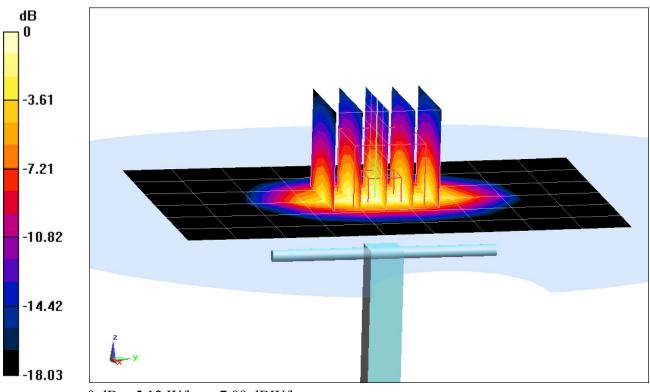
Test Date: 02-14-2017; Ambient Temp: 23.5°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3209; ConvF(5.14, 5.14, 5.14); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 8/22/2016

Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.41 W/kg

SAR(1 g) = 4.03 W/kg

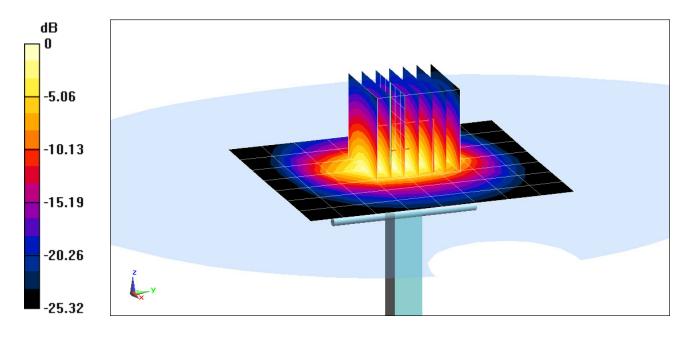
Deviation(1 g) = 0.50%

0 dB = 5.12 W/kg = 7.09 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.889 \text{ S/m}; \ \epsilon_r = 38.13; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-20-2017; Ambient Temp: 22.6°C; Tissue Temp: 21.4°C


Probe: ES3DV3 - SN3287; ConvF(4.54, 4.54, 4.54); Calibrated: 9/19/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 9/14/2016 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)

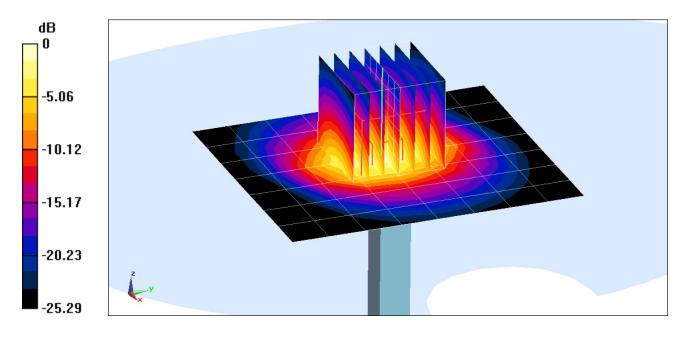
Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.6 W/kg SAR(1 g) = 5.23 W/kg Deviation(1 g) = 0.38%

0 dB = 6.95 W/kg = 8.42 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1126

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Head; Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.055 \text{ S/m}; \ \epsilon_r = 37.488; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-20-2017; Ambient Temp: 22.6°C; Tissue Temp: 21.4°C


Probe: ES3DV3 - SN3287; ConvF(4.41, 4.41, 4.41); Calibrated: 9/19/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1408; Calibrated: 9/14/2016

Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.8 W/kg SAR(1 g) = 5.66 W/kg Deviation(1 g) = 0.53%

0 dB = 7.63 W/kg = 8.83 dBW/kg

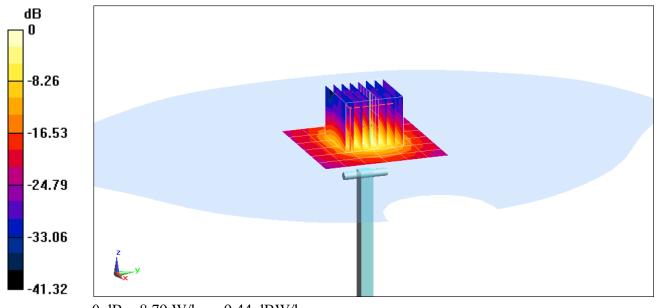
DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used (interpolated): $f = 5250 \text{ MHz}; \ \sigma = 4.61 \text{ S/m}; \ \epsilon_r = 35.266; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-16-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7308; ConvF(5.21, 5.21, 5.21); Calibrated: 7/21/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 15.6 W/kg

SAR(1 g) = 3.68 W/kg Deviation(1 g) = -6.72%

0 dB = 8.79 W/kg = 9.44 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: $f = 5600 \text{ MHz}; \ \sigma = 4.978 \text{ S/m}; \ \epsilon_r = 34.787; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-16-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7308; ConvF(4.63, 4.63, 4.63); Calibrated: 7/21/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.5 W/kgSAR(1 g) = 4.07 W/kgDeviation(1 g) = -2.63%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

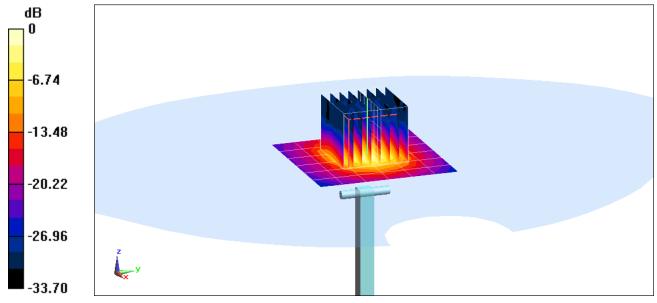
Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used (interpolated): $f = 5750 \text{ MHz}; \ \sigma = 5.141 \text{ S/m}; \ \epsilon_r = 34.58; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-16-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7308; ConvF(4.86, 4.86, 4.86); Calibrated: 7/21/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.6 W/kg

SAR(1 g) = 3.75 W/kg Deviation(1 g) = -5.18%

0 dB = 9.09 W/kg = 9.59 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161

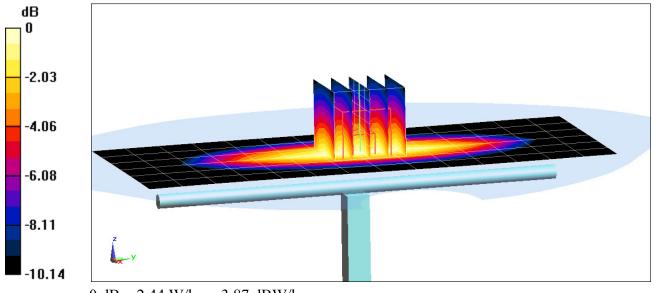
Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.963 \text{ S/m}; \ \epsilon_r = 56.323; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02-22-2017; Ambient Temp: 22.7°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7409; ConvF(9.46, 9.46, 9.46); Calibrated: 5/17/2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/11/2016
Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.76 W/kg

SAR(1 g) = 1.83 W/kg

Deviation(1 g) = 8.54%

0 dB = 2.44 W/kg = 3.87 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.965 \text{ S/m}; \ \epsilon_r = 56.492; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

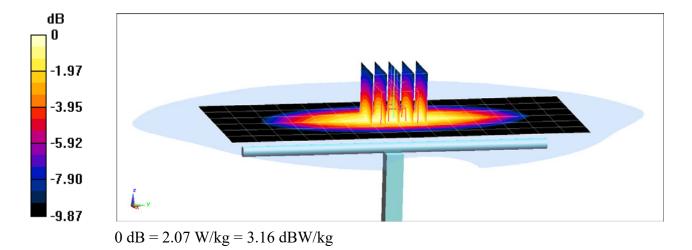
Test Date: 02-27-2017; Ambient Temp: 22.7°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3288; ConvF(6.32, 6.32, 6.32); Calibrated: 1/13/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1466; Calibrated: 1/16/2017

Phantom: SAM with CRP v5.0 Left; Type: QD000P40CD; Serial: 1687 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.58 W/kg

SAR(1 g) = 1.78 W/kg

Deviation(1 g) = 5.58%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.958 \text{ S/m}; \ \epsilon_r = 53.884; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02-15-2017; Ambient Temp: 23.7°C; Tissue Temp: 22.5°C

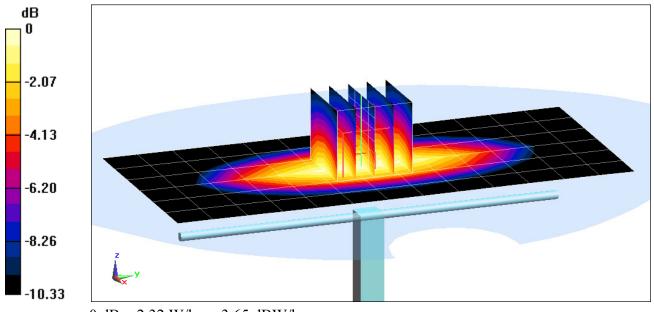
Probe: ES3DV3 - SN3319; ConvF(6.04, 6.04, 6.04); Calibrated: 3/18/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/14/2016

Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.92 W/kg

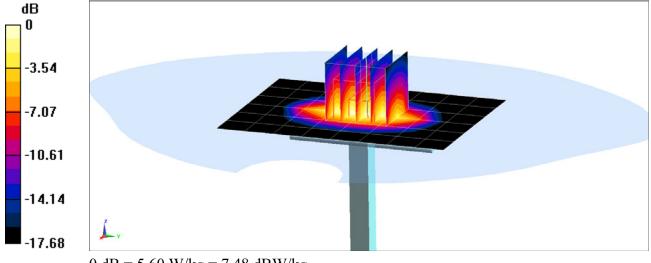
SAR(1 g) = 1.98 W/kg

Deviation(1 g) = 3.45%

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.522 \text{ S/m}; \ \epsilon_r = 51.259; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-13-2017; Ambient Temp: 21.4°C; Tissue Temp: 20.6°C


Probe: EX3DV4 - SN7406; ConvF(7.78, 7.78, 7.78); Calibrated: 19.04.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 14.04.2016
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

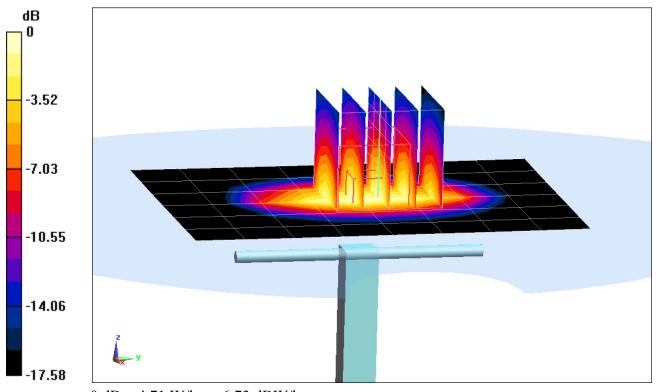
Peak SAR (extrapolated) = 6.75 W/kgSAR(1 g) = 3.62 W/kgDeviation(1 g) = -2.43%

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.5 \text{ S/m}; \ \epsilon_r = 50.878; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-27-2017; Ambient Temp: 22.1°C; Tissue Temp: 20.5°C

Probe: ES3DV3 - SN3209; ConvF(4.99, 4.99, 4.99); Calibrated: 3/18/2016; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 8/22/2016
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758


Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.69 W/kgSAR(1 g) = 3.80 W/kgDeviation(1 g) = 2.43%

0 dB = 4.71 W/kg = 6.73 dBW/kg

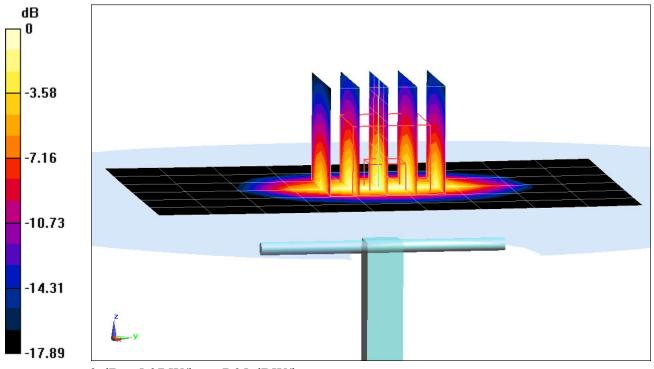
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.559 \text{ S/m}; \ \epsilon_r = 52.825; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-15-2017; Ambient Temp: 23.2°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3334; ConvF(4.91, 4.91, 4.91); Calibrated: 11/15/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 11/11/2016


Phantom: SAM with CRP v4.0 Left; Type: QD000P40CD; Serial: TP:1692 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

1900 MHz System Verification at 20.0 dBm (100 mW)

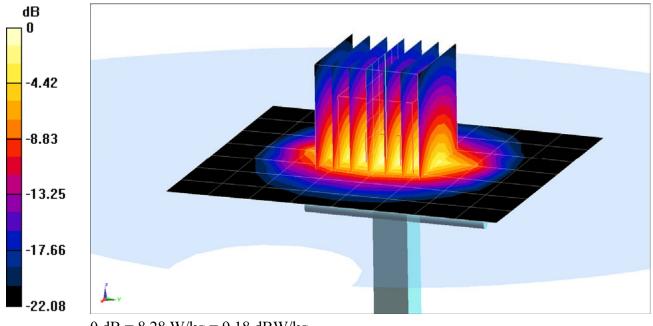
Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.20 W/kgSAR(1 g) = 4.01 W/kgDeviation(1 g) = 2.56%

0 dB = 5.07 W/kg = 7.05 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.041 \text{ S/m}; \ \epsilon_r = 52.301; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

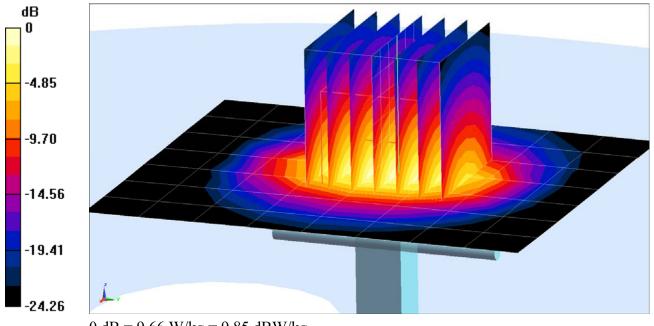
Test Date: 02-20-2017; Ambient Temp: 22.5°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7406; ConvF(7.24, 7.24, 7.24); Calibrated: 19.04.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 14.04.2016
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.2 W/kg SAR(1 g) = 4.93 W/kg Deviation(1 g) = -2.95%

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1071


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Body; Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.255 \text{ S/m}; \ \epsilon_r = 51.721; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

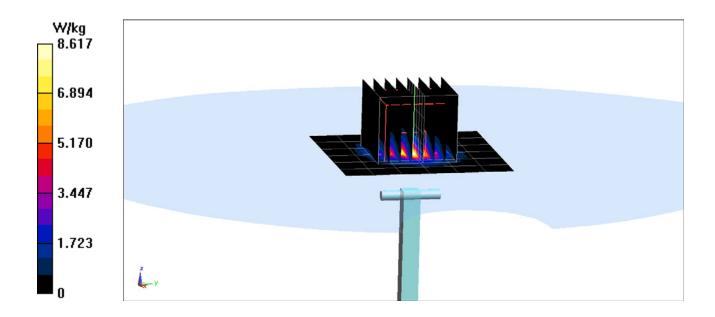
Test Date: 02-20-2017; Ambient Temp: 22.5°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7406; ConvF(6.94, 6.94, 6.94); Calibrated: 19.04.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 14.04.2016
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.4 W/kg SAR(1 g) = 5.60 W/kg Deviation(1 g) = 3.32%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237


Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used (interpolated): $f = 5250 \text{ MHz}; \ \sigma = 5.503 \text{ S/m}; \ \epsilon_r = 48.404; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-13-2017; Ambient Temp: 21.6°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN3589; ConvF(4.19, 4.19, 4.19); Calibrated: 1/13/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 1/16/2017
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

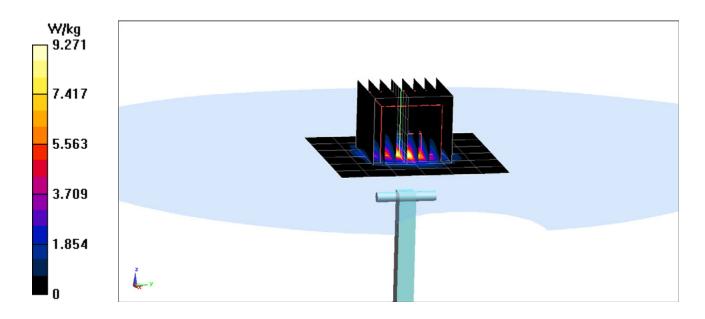
5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 15.4 W/kg SAR(1 g) = 3.52 W/kg Deviation(1 g) = -5.88%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used: f = 5600 MHz; $\sigma = 5.984$ S/m; $\varepsilon_r = 47.84$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-13-2017; Ambient Temp: 21.6°C; Tissue Temp: 20.5°C


Probe: EX3DV4 - SN3589; ConvF(3.82, 3.82, 3.82); Calibrated: 1/13/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 1/16/2017
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.2 W/kg

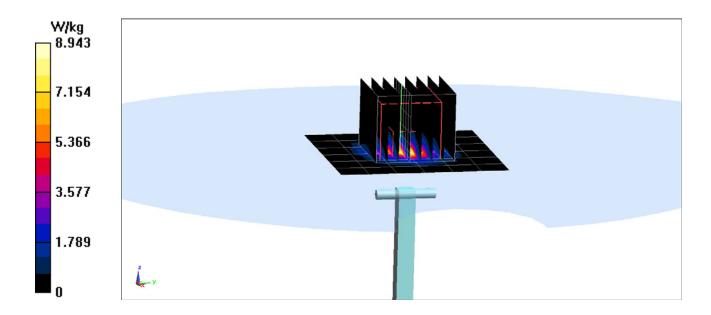
SAR(1 g) = 3.78 W/kg

Deviation(1 g) = -1.82%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 6.193$ S/m; $\varepsilon_r = 47.573$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02-13-2017; Ambient Temp: 21.6°C; Tissue Temp: 20.5°C


Probe: EX3DV4 - SN3589; ConvF(3.83, 3.83, 3.83); Calibrated: 1/13/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 1/16/2017
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.1 W/kgSAR(1 g) = 3.45 W/kgDeviation(1 g) = -8.49%

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: D750V3-1003_Jan17

C

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

CALIBRATION CERTIFICATE

Object

D750V3 - SN:1003

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

BNV 01/26/2017

Calibration date:

January 11, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	31-Dec-16 (No. EX3-7349_Dec16)	Dec-17
DAE4	SN: 601	04-Jan-17 (No. DAE4-601_Jan17)	Jan-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US3739 0 585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	Colle
Approved by:	Katja Pokovic	Technical Manager	LE US

Issued: January 11, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1003_Jan17

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.39 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.43 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.2 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.79 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.78 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1003_Jan17

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.3 Ω - 1.4 jΩ
Return Loss	- 27.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.4 Ω - 6.0 jΩ
Return Loss	- 24.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.034 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 21, 2009

Certificate No: D750V3-1003_Jan17

DASY5 Validation Report for Head TSL

Date: 11.01.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.89 \text{ S/m}$; $\varepsilon_r = 41.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(10.17, 10.17, 10.17); Calibrated: 31.12.2016;

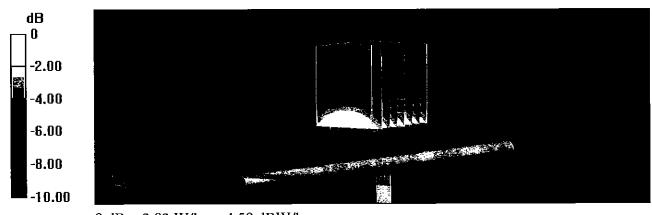
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.01.2017

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

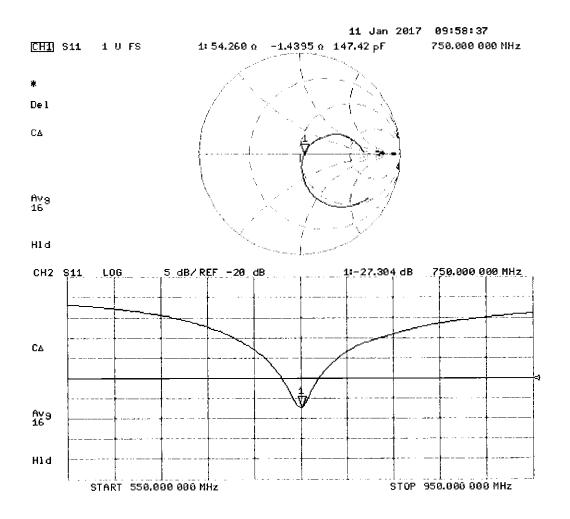
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.38 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.20 W/kg

SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.36 W/kg


Maximum value of SAR (measured) = 2.82 W/kg

0 dB = 2.82 W/kg = 4.50 dBW/kg

Certificate No: D750V3-1003_Jan17

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.01.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.96 \text{ S/m}$; $\varepsilon_r = 54.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 31.12.2016;

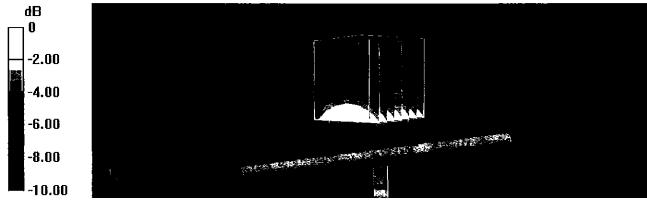
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.01.2017

• Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

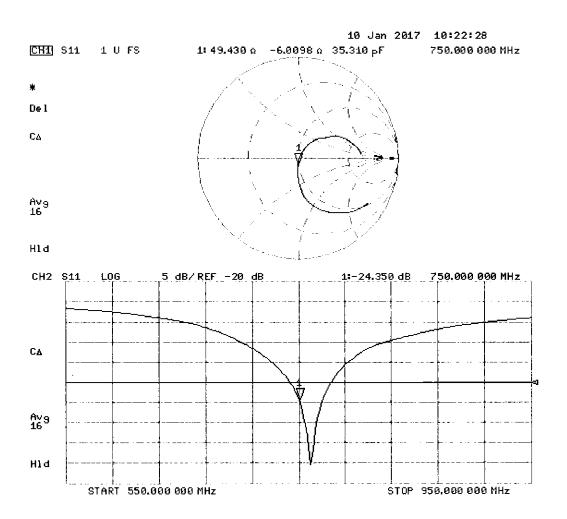
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.22 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.40 W/kg


SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.45 W/kg

Maximum value of SAR (measured) = 2.98 W/kg

0 dB = 2.98 W/kg = 4.74 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D750V3-1161_Jul16

CALIBRATION CERTIFICATE

Object

D750V3 - SN:1161

riy

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

8/9/1

Calibration date:

July 13, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signalu/e /
Calibrated by:	Claudio Leubler	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	Delly

Issued: July 13, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1161_Jul16

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

Certificate No: D750V3-1161_Jul16

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V 52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.17 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.39 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.1 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.43 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.53 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1161_Jul16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.6 Ω - 0.9 jΩ
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω - 4.0 jΩ
Return Loss	- 28.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.033 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 19, 2015

Certificate No: D750V3-1161_Jul16

DASY5 Validation Report for Head TSL

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.07, 10.07, 10.07); Calibrated: 15.06.2016;

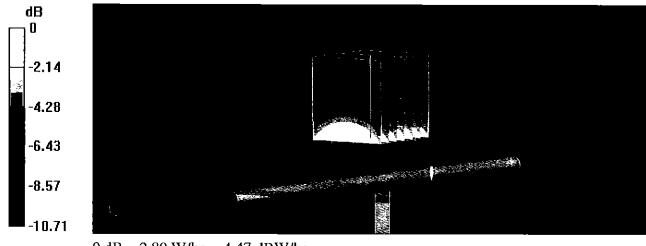
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

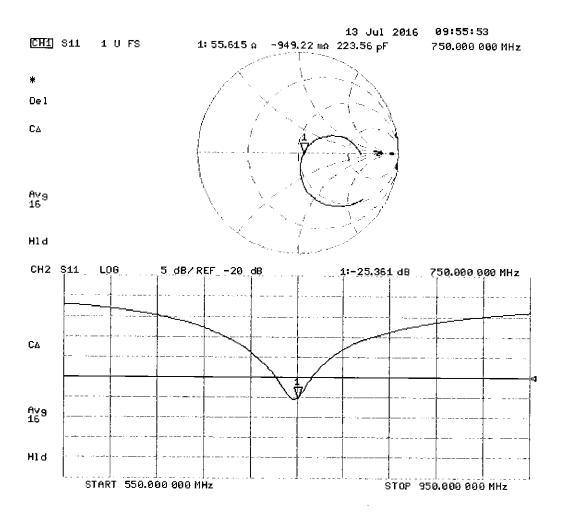
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.07 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.13 W/kg


SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.37 W/kg

Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.99 \text{ S/m}$; $\varepsilon_r = 55.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 15.06.2016;

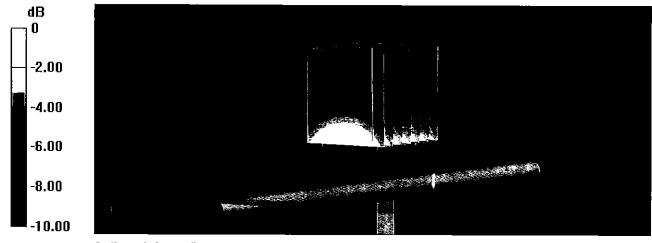
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

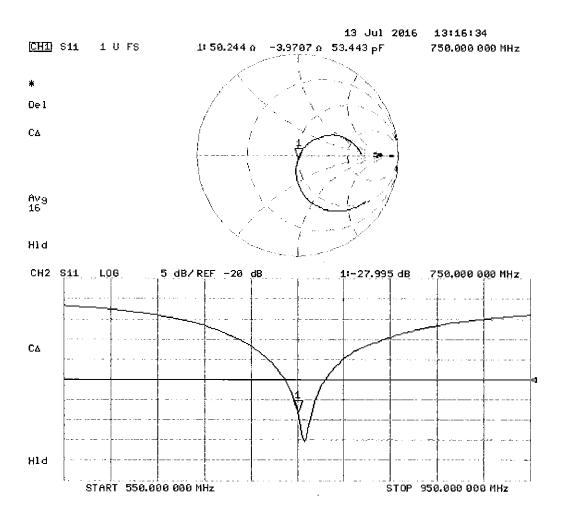
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.33 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.22 W/kg


SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.41 W/kg

Maximum value of SAR (measured) = 2.87 W/kg

0 dB = 2.87 W/kg = 4.58 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D835V2-4d133_Jul16

CALIBRATION CERTIFICATE

Object

D835V2 - SN:4d133

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 14, 2016

07/27/2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signalure
Calibrated by:	Jeton Kastrati	Laboratory Technician	12 M2-
	•		100
Approved by:	Kalja Pokovic	Technical Manager	WK-

Issued: July 14, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d133_Jul16

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d133_Jul16

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.32 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.10 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.50 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.20 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d133_Jul16 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5 Ω - 5.1 jΩ
Return Loss	- 25.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.4 Ω - 7.5 jΩ
Return Loss	- 21.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,395 ns
	1,300 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Certificate No: D835V2-4d133_Jul16

DASY5 Validation Report for Head TSL

Date: 14.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 15.06.2016;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

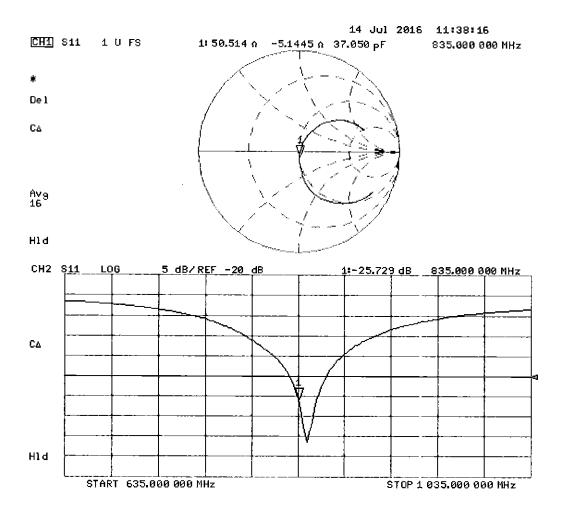
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.36 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.64 W/kg


SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 3.23 W/kg

0 dB = 3.23 W/kg = 5.09 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 15.06.2016;

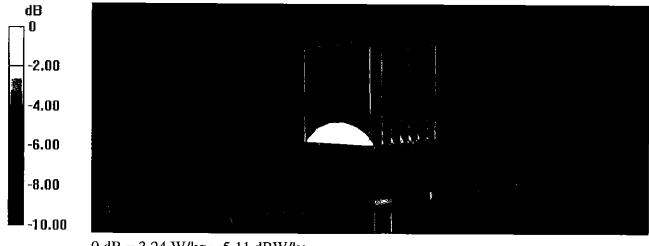
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

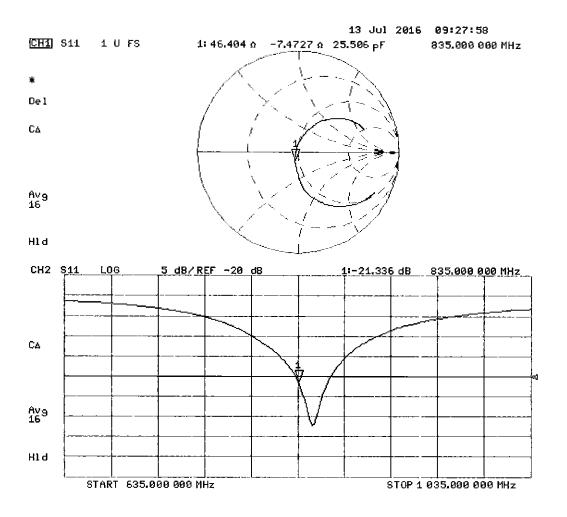
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.93 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.62 W/kg


SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) = 3.24 W/kg

0 dB = 3.24 W/kg = 5.11 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D835V2-4d047_Jul16

CALIBRATION CERTIFICATE

Object

D835V2 - SN:4d047

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

7/16/2016

Calibration date:

July 13, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	in house check: Oct-16
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	of le
Approved by:	Kalja Pokovic	Technical Manager	John My

Issued: July 13, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d047_Jul16

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A not appli

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d047_Jul16

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	·
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.13 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.95 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.57 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	-
SAR measured	250 mW input power	1.60 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.24 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8 Ω - 5.9 jΩ
Return Loss	- 24.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.8 Ω - 8.2 jΩ
Return Loss	- 20.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	lone ns
----------------------------------	---------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 16, 2006

DASY5 Validation Report for Head TSL

Date: 13.07.201

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d047

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 15.06.2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

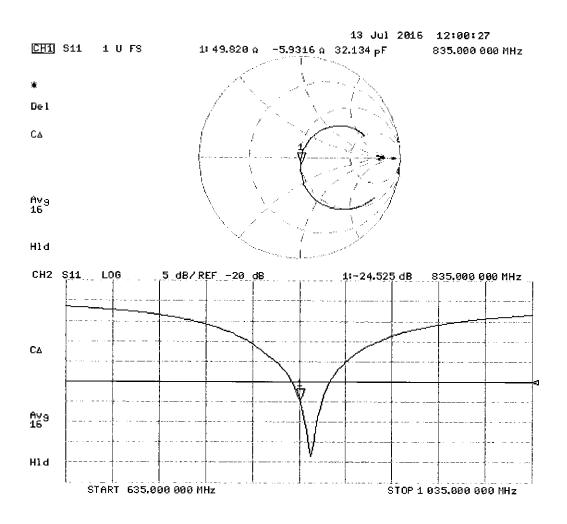
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.98 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.56 W/kg


SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (measured) = 3.17 W/kg

0 dB = 3.17 W/kg = 5.01 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d047

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 15.06.2016;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

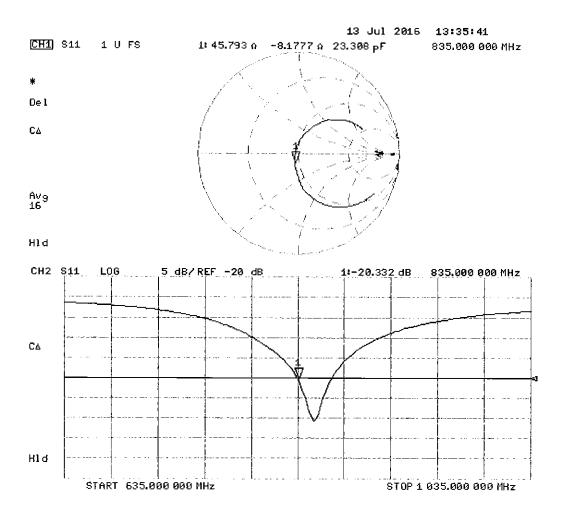
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.88 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.67 W/kg


SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 3.27 W/kg

0 dB = 3.27 W/kg = 5.15 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D1750V2-1148_May16

CALIBRATION CERTIFICATE

Object

D1750V2 - SN: 1148

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

May 09, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	31-Dec-15 (No. EX3-7349_Dec15)	Dec-16
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check; Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M. Welst
Approved by:	Katja Pokovic	Technical Manager	MM

Issued: May 11, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

sensitivity in TSL / NORM x,y,z

ConvF N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

	<u> </u>	
DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.03 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.30 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.93 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.7 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1148_May16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.9 Ω - 0.7 jΩ
Return Loss	- 43.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.2 Ω - 1.4 jΩ
Return Loss	- 27.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.221 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 30, 2014

DASY5 Validation Report for Head TSL

Date: 09.05.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1148

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.36 \text{ S/m}$; $\varepsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.54, 8.54, 8.54); Calibrated: 31.12.2015;

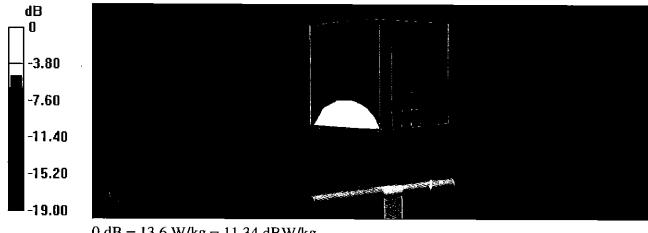
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12,2015

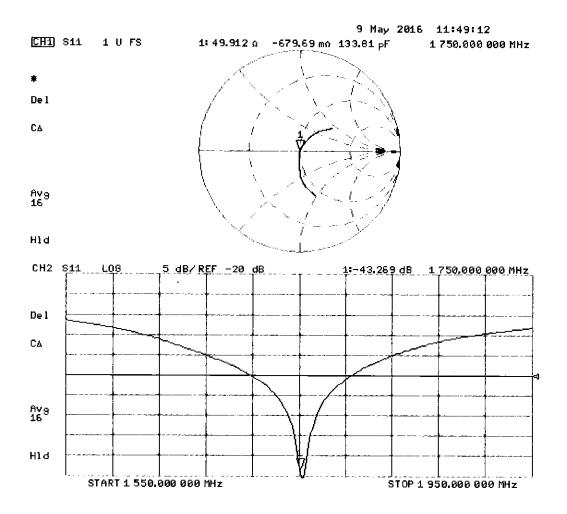
Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.5 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.03 W/kg; SAR(10 g) = 4.78 W/kg

Maximum value of SAR (measured) = 13.6 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.05.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1148

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.5 \text{ S/m}$; $\varepsilon_r = 53.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 31.12.2015;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

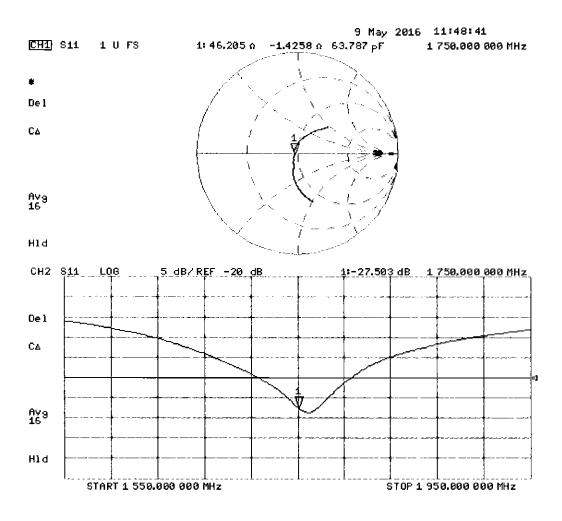
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.0 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 16.6 W/kg


SAR(1 g) = 9.3 W/kg; SAR(10 g) = 4.93 W/kg

Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC Test

Certificate No: D1765V2-1008_May16

CALIBRATION CERTIFICATE

Object D1765V2 - SN:1008

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

BN 23/16

Calibration date:

May 11, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	31-Dec-15 (No. EX3-7349_Dec15)	Dec-16
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M.Weber
Approved by:	Katja Pokovic	Technical Manager	Sly

Issued: May 17, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	_
Phantom	Modular Flat Phantom	.
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	- "
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.50 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.8 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.30 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.94 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.8 W/kg ± 16.5 % (k=2)

Certificate No: D1765V2-1008_May16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.8 Ω - 6.0 jΩ
Return Loss	- 24.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.8 Ω - 6.8 jΩ
Return Loss	- 21.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.211 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 06, 2005

Certificate No: D1765V2-1008_May16 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 11,05.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN: 1008

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.36 \text{ S/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.54, 8.54, 8.54); Calibrated: 31.12.2015;

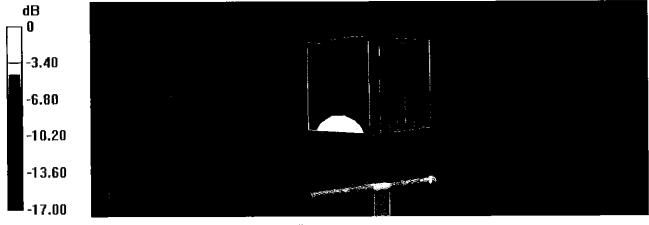
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

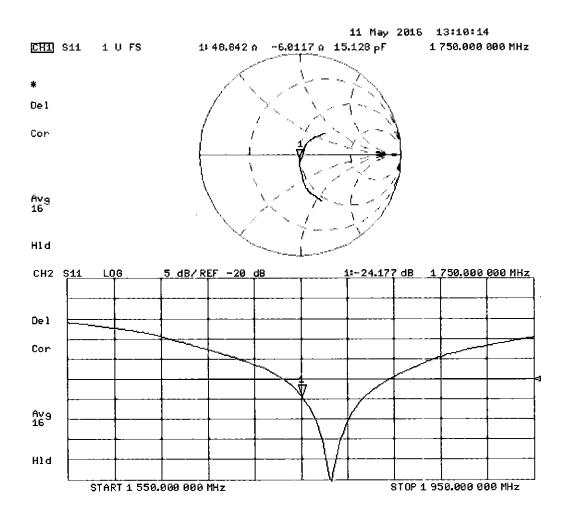
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.4 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 16.7 W/kg


SAR(1 g) = 9.1 W/kg; SAR(10 g) = 4.81 W/kg

Maximum value of SAR (measured) = 13.7 W/kg

0 dB = 13.7 W/kg = 11.37 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.05.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN: 1008

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.5 \text{ S/m}$; $\varepsilon_r = 53.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 31.12.2015;

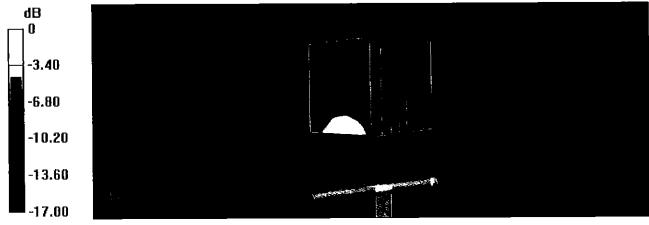
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

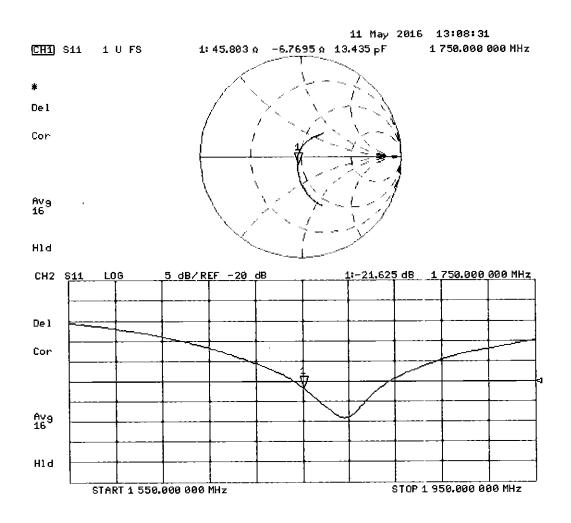
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.9 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 16.4 W/kg


SAR(1 g) = 9.3 W/kg; SAR(10 g) = 4.94 W/kg

Maximum value of SAR (measured) = 14.0 W/kg

0 dB = 14.0 W/kg = 11.46 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service Is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D1900V2-5d149_Jul16

CALIBRATION CERTIFICATE

Object D1900V2 - SN:5d149

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 15, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (în house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
			\wedge
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	1 12/
Approved by:	Katja Pokovic	Technical Manager	10 MI.
			lex let
1			

Issued: July 19, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d149_Jul16

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	_
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.96 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.95 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.28 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d149_Jul16 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.4 \Omega + 5.5 j\Omega$
Return Loss	- 24.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.6 Ω + 7.0 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 15.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.99, 7.99, 7.99); Calibrated: 15.06.2016;

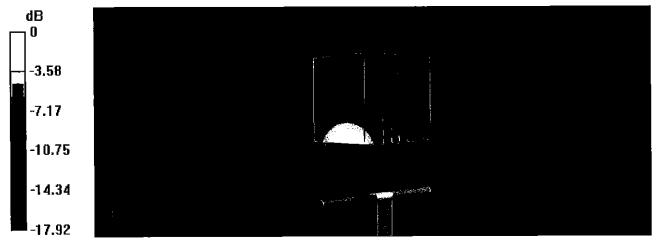
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

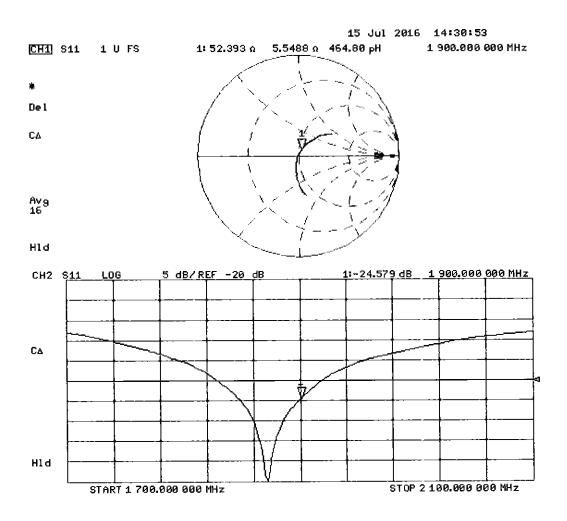
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.5 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 18.7 W/kg


SAR(1 g) = 9.96 W/kg; SAR(10 g) = 5.23 W/kg

Maximum value of SAR (measured) = 15.5 W/kg

0 dB = 15.5 W/kg = 11.90 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ S/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.03, 8.03, 8.03); Calibrated: 15.06.2016;

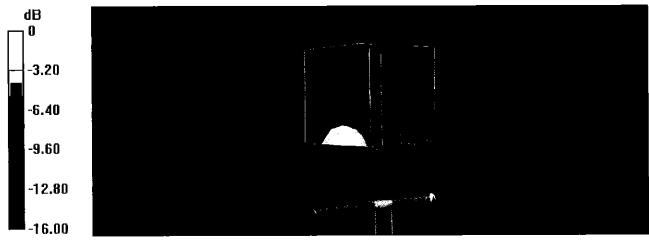
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

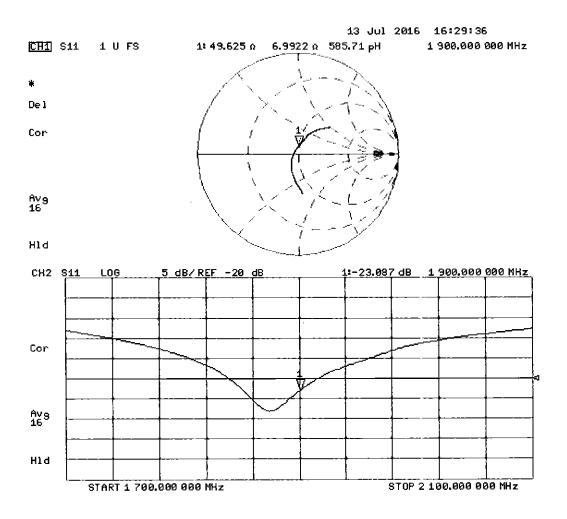
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.9 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 17.4 W/kg


SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.28 W/kg

Maximum value of SAR (measured) = 14.9 W/kg

0 dB = 14.9 W/kg = 11.73 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the slane.

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D2450V2-797 Sep16

CALIBRATION CERTIFICATE

Object D2450V2 - SN:797

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

19-29-2016

Calibration date:

September 13, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Approved by:	Katja Pokovic	Technical Manager	Il lly
Calibrated by:	Jeton Kastrati	Laboratory Technician	1 - 11 -
	Name	Function	Signature
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration

Issued: September 13, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-797_Sep16

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V 52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	· · · · · · · · · · · · · · · · ·

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52. 7	1.95 m ho/m
Measured Body TSL parameters	(22.0 ± 0 .2) °C	51.6 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-797_Sep16 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.8 \Omega + 6.0 j\Omega$	
Return Loss	- 23.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.8~\Omega + 8.0~\mathrm{j}\Omega$
Return Loss	- 22.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.160 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 24, 2006

Certificate No: D2450V2-797_Sep16 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 13.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:797

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ S/m}$; $\varepsilon_r = 37.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.72, 7.72, 7.72); Calibrated: 15.06.2016;

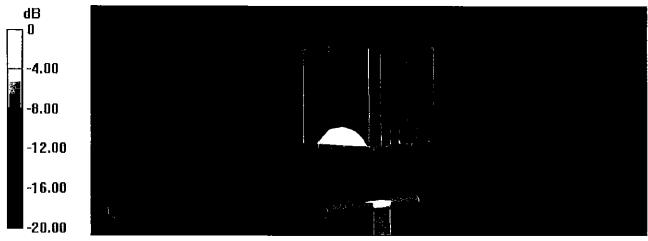
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

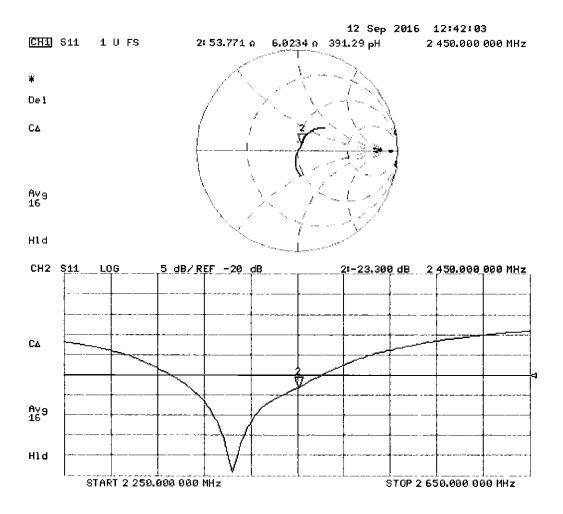
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 113.4 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 26.9 W/kg


SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.26 W/kg

Maximum value of SAR (measured) = 21.9 W/kg

0 dB = 21.9 W/kg = 13.40 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:797

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.04 \text{ S/m}$; $\varepsilon_r = 51.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 15.06.2016;

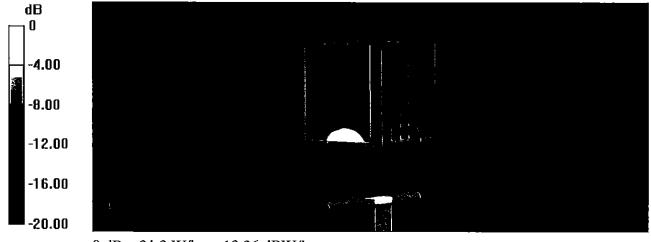
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

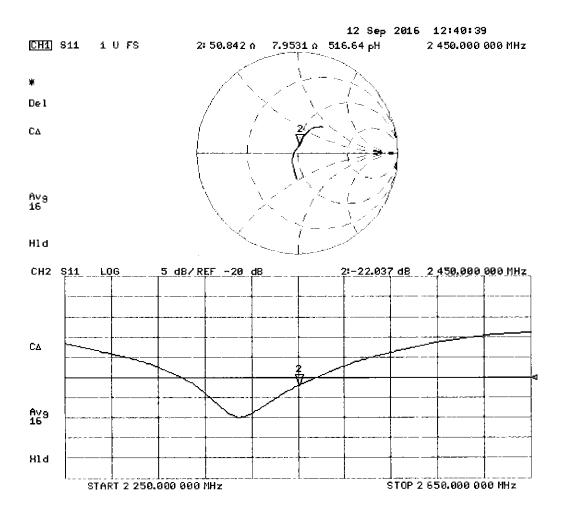
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.5 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 25.6 W/kg


SAR(1 g) = 13 W/kg; SAR(10 g) = 6.13 W/kg

Maximum value of SAR (measured) = 21.2 W/kg

0 dB = 21.2 W/kg = 13.26 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlscher Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D2600V2-1126_Jul16

CALIBRATION CERTIFICATE

Object

D2600V2 - SN: 1126

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

7/9/16

Calibration date:

July 25, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Miller
Approved by:	Katja Pokovic	Technical Manager	JEKK,

Issued: July 26, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Page 1 of 8

Certificate No: D2600V2-1126_Jul16

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.5 ± 6 %	2.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.4 ± 6 %	2.20 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1126_Jul16 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.0 Ω - 7.4 jΩ
Return Loss	- 22.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.4 Ω - 6.2 jΩ
Return Loss	- 21.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 22, 2015

Certificate No: D2600V2-1126_Jul16

DASY5 Validation Report for Head TSL

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1126

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 37.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.56, 7.56, 7.56); Calibrated: 15.06.2016;

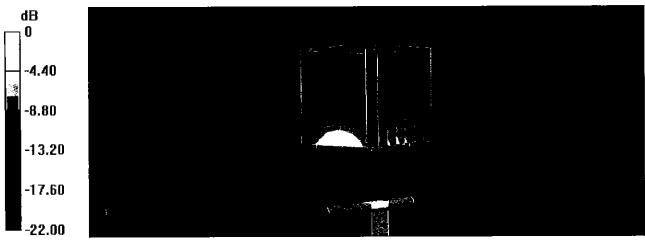
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

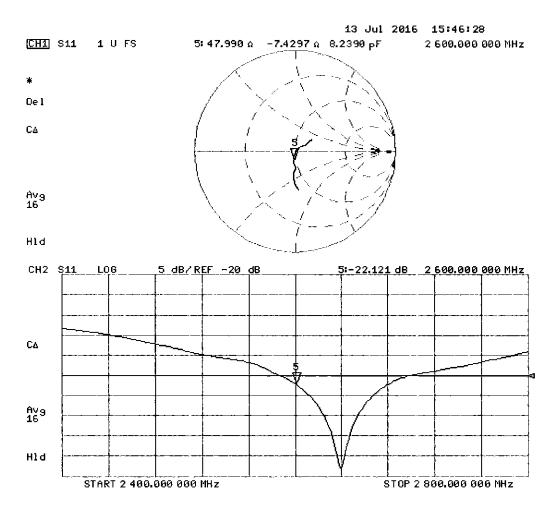
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.2 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 30.6 W/kg


SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.36 W/kg

Maximum value of SAR (measured) = 24.6 W/kg

0 dB = 24.6 W/kg = 13.91 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz D2600V2; Type: D2600V2; Serial: D2600V2 - SN:1126

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.2 \text{ S/m}$; $\varepsilon_r = 51.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.48, 7.48, 7.48); Calibrated: 15.06.2016;

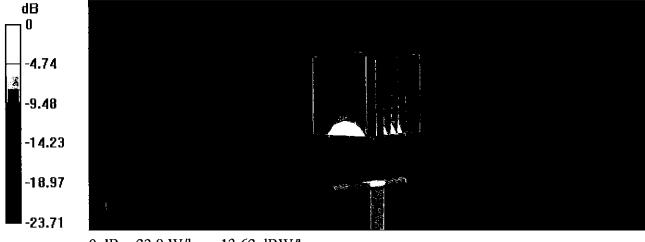
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

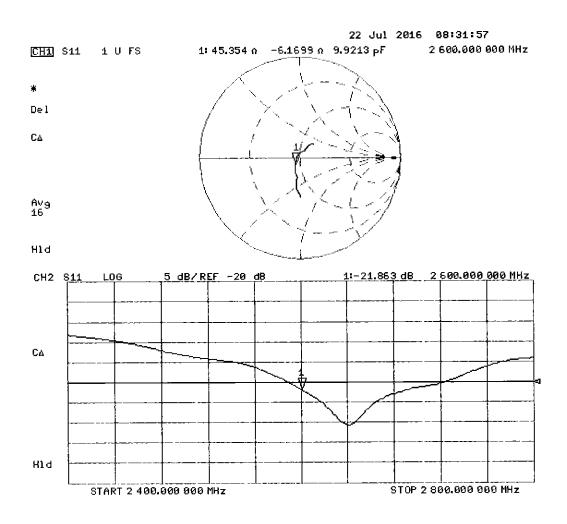
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.5 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 28.5 W/kg


SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.12 W/kg

Maximum value of SAR (measured) = 23.0 W/kg

0 dB = 23.0 W/kg = 13.62 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D5GHzV2-1191_Sep16

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN:1191

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

19-28-20l

Calibration date:

September 21, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 3503	30-Jun-16 (No. EX3-3503_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sef Hem
Approved by:	Kalja Pokovic	Technical Manager	M

Issued: September 22, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1191_Sep16

Page 1 of 13

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.59 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.6 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.8 ± 6 %	5.08 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.4 ± 6 %	5.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.74 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	6.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Conditi o n	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.5 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1191_Sep16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	55.7 Ω - 4.3 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	58.3 Ω - 3.2 jΩ
Return Loss	- 21.8 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	58.1 Ω + 4.8 jΩ
Return Loss	- 21.2 dB

Antenna Parameters with Body TSL at 5250 MHz

ſ	Impedance, transformed to feed point	56.1 Ω - 3.7 jΩ
Ì	Return Loss	- 23.4 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	58.9 Ω - 1.7 jΩ
Return Loss	- 21.7 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	59.5 Ω + 6.9 jΩ
Return Loss	- 19.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.204 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 28, 2003

Certificate No: D5GHzV2-1191_Sep16

DASY5 Validation Report for Head TSL

Date: 21.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.59$ S/m; $\epsilon_r = 34.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.93$ S/m; $\epsilon_r = 34$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.08$ S/m; $\epsilon_r = 33.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.42, 5.42, 5.42); Calibrated: 30.06.2016, ConvF(4.89, 4.89, 4.89); Calibrated: 30.06.2016, ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.49 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 28.6 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.29 W/kg

Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

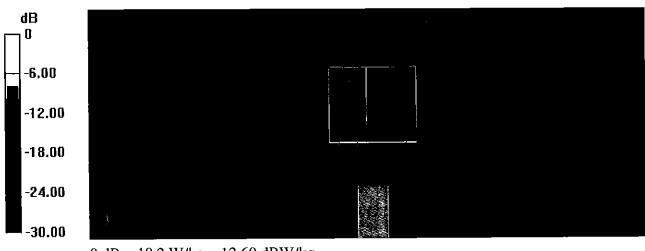
Reference Value = 69.34 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 32.9 W/kg

SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.41 W/kg

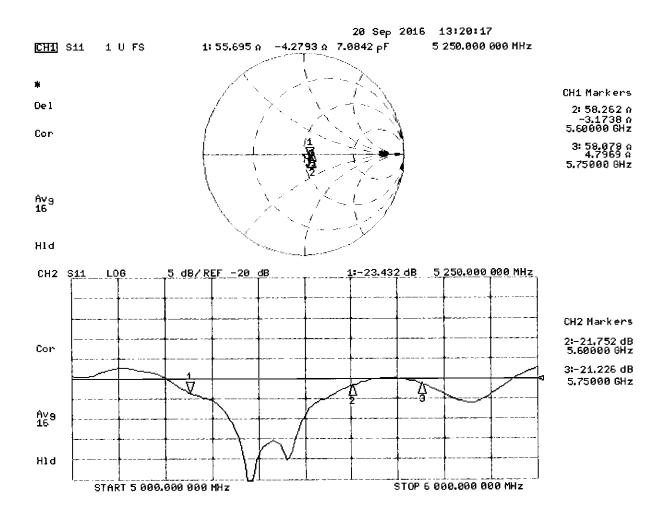
Maximum value of SAR (measured) = 20.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.15 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 32.3 W/kg


SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.27 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

0 dB = 18.2 W/kg = 12.60 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 20.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.52$ S/m; $\varepsilon_r = 47.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 6$ S/m; $\varepsilon_r = 46.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.21$ S/m; $\varepsilon_r = 46.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016, ConvF(4.35, 4.35, 4.35); Calibrated: 30.06.2016, ConvF(4.3, 4.3, 4.3); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.49 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 29.1 W/kg

SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 17.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

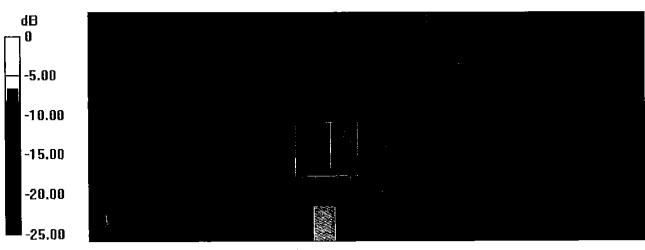
Reference Value = 65.85 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.24 W/kg

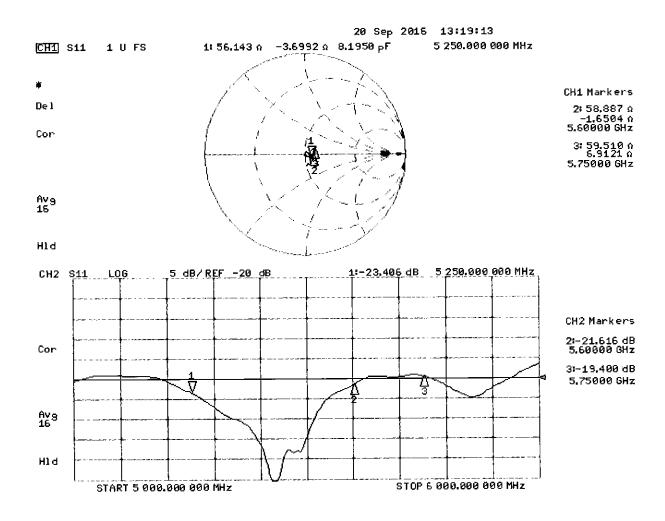
Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.21 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 32.7 W/kg


SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

0 dB = 17.7 W/kg = 12.48 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

| Certificate No: D1900V2-5d080_Jul16

CALIBRATION CERTIFICATE

Object

D1900V2 - SN:5d080

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 08, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	I Ma
Approved by:	Katja Pokovic	Technical Manager	All-
	* *		

Issued: July 13, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.5 W/kg ± 16.5 % (k=2)

Body TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.75 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d080_Jul16 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 5.3 jΩ
Return Loss	- 25.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.4 \Omega + 6.8 j\Omega$
Return Loss	- 22.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.192 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 28, 2006

DASY5 Validation Report for Head TSL

Date: 08.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.99, 7.99, 7.99); Calibrated: 15.06.2016;

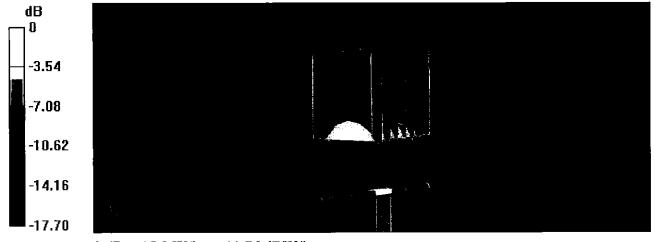
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

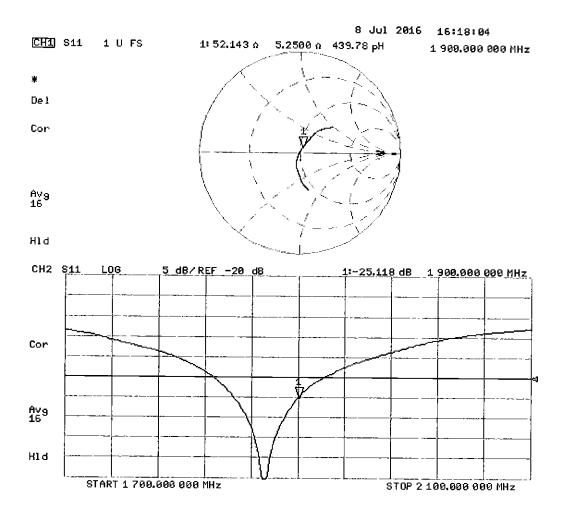
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.6 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 18.4 W/kg


SAR(1 g) = 9.76 W/kg; SAR(10 g) = 5.1 W/kg

Maximum value of SAR (measured) = 15.0 W/kg

0 dB = 15.0 W/kg = 11.76 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ S/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.03, 8.03, 8.03); Calibrated: 15.06.2016;

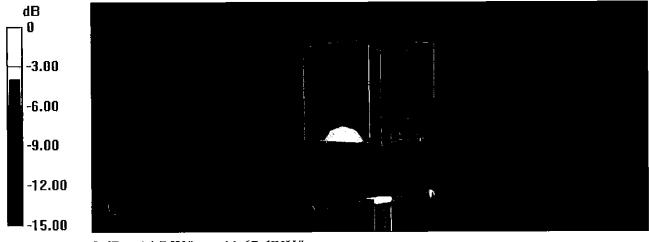
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

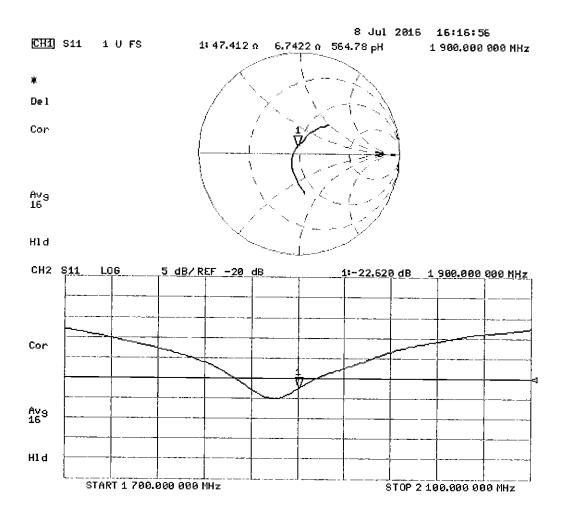
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.1 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 17.1 W/kg


SAR(1 g) = 9.75 W/kg; SAR(10 g) = 5.17 W/kg

Maximum value of SAR (measured) = 14.7 W/kg

0 dB = 14.7 W/kg = 11.67 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service Is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D2450V2-981_Jul16

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:981

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

8/9/16

Calibration date:

July 25, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Dale (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Ocl-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signalure
Calibrated by:	Michael Weber	Laboratory Technician	Miller
Approved by:	Katja Pokovic	Technical Manager	RUL

Issued: July 27, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-981_Jul16

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-981_Jul16 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity_	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-981_Jul16 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.2 \Omega + 3.4 j\Omega$	
Return Loss	- 26.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω + 4.5 jΩ
Return Loss	- 27.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 30, 2014

Certificate No: D2450V2-981_Jul16

DASY5 Validation Report for Head TSL

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 38$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.72, 7.72, 7.72); Calibrated: 15.06.2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

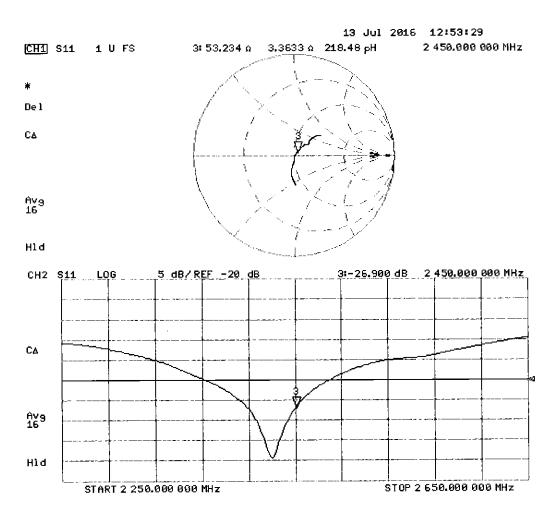
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.8 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 27.4 W/kg


SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.26 W/kg

Maximum value of SAR (measured) = 22.5 W/kg

0 dB = 22.5 W/kg = 13.52 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 25.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 15.06.2016;

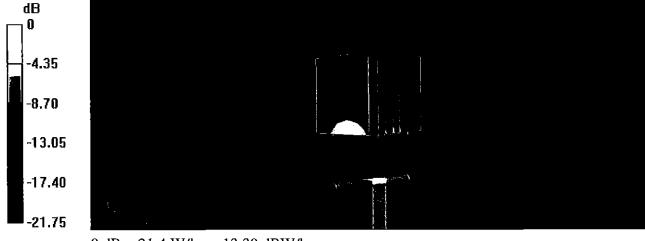
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

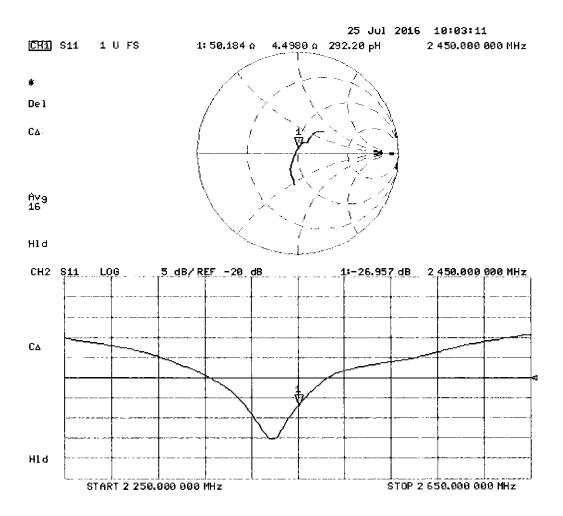
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube θ:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.1 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 26.0 W/kg


SAR(1 g) = 13 W/kg; SAR(10 g) = 6.04 W/kg

Maximum value of SAR (measured) = 21.4 W/kg

0 dB = 21.4 W/kg = 13.30 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service Is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

| Certificate No: D2600V2-1071_Sep16

CALIBRATION CERTIFICATE

Object D2600V2 - SN:1071

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

09-28-201

Calibration date:

September 13, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	1D#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Signature ₄
Calibrated by:	Jeton Kastrati	Laboratory Technician	121/12
	•		1 - 19
Approved by:	Katja Pokovic	Technical Manager	IC IL
	,		

Issued: September 13, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1071_Sep16

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdlenst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Callbration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3 ± 6 %	2.05 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	56.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.1 ± 6 %	2.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1071_Sep16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.9 Ω - 6.7 jΩ
Return Loss	- 23.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.1 Ω - 2.1 jΩ
Return Loss	- 26.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 17, 2013

Certificate No: D2600V2-1071_Sep16 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 13.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1071

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.05 \text{ S/m}$; $\varepsilon_r = 37.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.56, 7.56, 7.56); Calibrated: 15.06.2016;

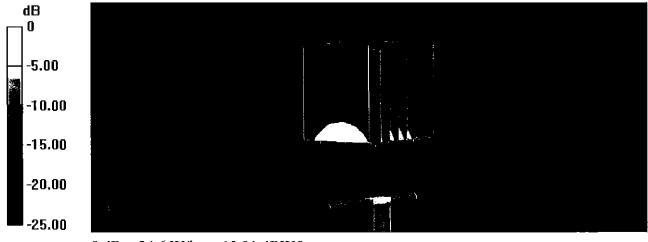
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

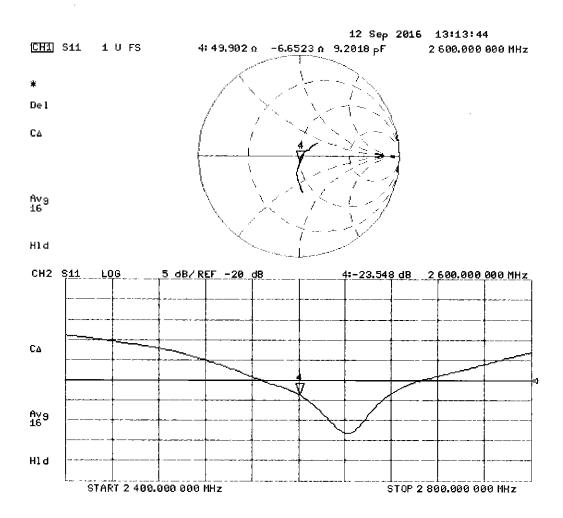
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.1 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 30.4 W/kg


SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.45 W/kg

Maximum value of SAR (measured) = 24.6 W/kg

0 dB = 24.6 W/kg = 13.91 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.09.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1071

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.22 \text{ S/m}$; $\varepsilon_r = 51.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.48, 7.48, 7.48); Calibrated: 15.06.2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

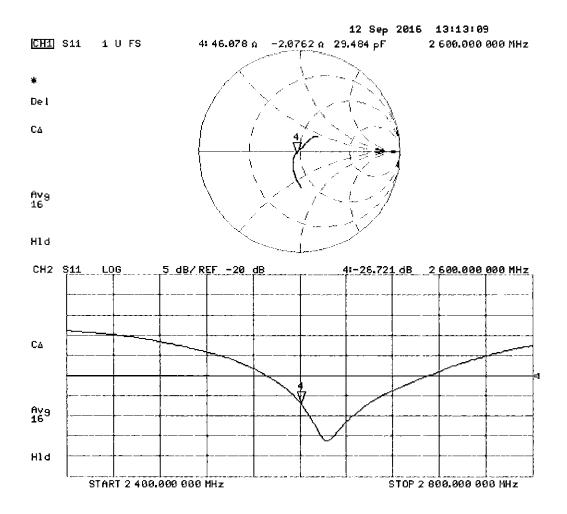
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.7 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 28.3 W/kg


SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 23.3 W/kg

0 dB = 23.3 W/kg = 13.67 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D5GHzV2-1237_Aug16

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN:1237

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

August 02, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 3503	30-Jun-16 (No. EX3-3503_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (No. 217-02223)	In house check: Oct-16
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Jun-15)	In house check: Oct-16
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16
	Name	Function	Sighat l ire [
Calibrated by:	Claudio Leubler	Laboratory Technician	Weh
Approved by:	Kalja Pokovic	Technical Manager	SIM.

Issued: August 4, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Page 1 of 13

Certificate No: D5GHzV2-1237_Aug16

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, $dy = 4.0$ mm, $dz = 1.4$ mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

The following parentees are a second and a second a second and a second a second and a second a second and a second and a second and a	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	4.52 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.00 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1237_Aug16

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.9 ± 6 %	4.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.3 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

The following parameters and earloand note appro	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5,22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.7 ± 6 %	5.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.2 W/kg ± 19.5 % (k=2)

Page 4 of 13 Certificate No: D5GHzV2-1237_Aug16

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

The following parameters and earless in the supply	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.42 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		7

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.54 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.5 ± 6 %	5.88 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.76 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1237_Aug16

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.11 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.60 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1237_Aug16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.6 Ω - 2.5 jΩ
Return Loss	- 30.7 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	50.9 Ω + 1.5 jΩ
Return Loss	- 35.3 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	53,8 Ω + 5.8 jΩ
Return Loss	- 23.5 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	47.0 Ω - 3.9 jΩ
Return Loss	- 25.9 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	51.5 Ω + 3.9 jΩ
Return Loss	- 27.7 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	$53.8 \Omega + 0.3 j\Omega$
Return Loss	- 28.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.193 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 04, 2015

Certificate No: D5GHzV2-1237_Aug16 Page 7 of 13

DASY5 Validation Report for Head TSL

Date: 02.08.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 4.52$ S/m; $\varepsilon_r = 34.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 4.86$ S/m; $\varepsilon_r = 33.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 5.02$ S/m; $\varepsilon_r = 33.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.42, 5.42, 5.42); Calibrated: 30.06.2016; ConvF(4.89, 4.89, 4.89); Calibrated: 30.06.2016, ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 74.10 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 8 W/kg; SAR(10 g) = 2.3 W/kg

Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.55 V/m; Power Drift = -0.01 dB

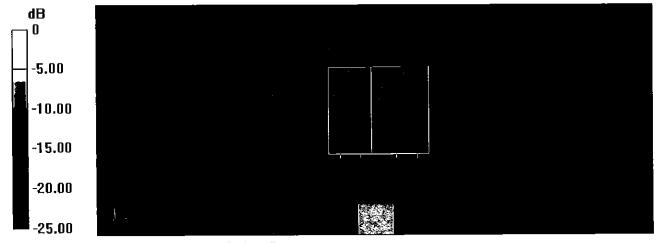
Peak SAR (extrapolated) = 32.9 W/kg

SAR(1 g) = 8.43 W/kg; SAR(10 g) = 2.42 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

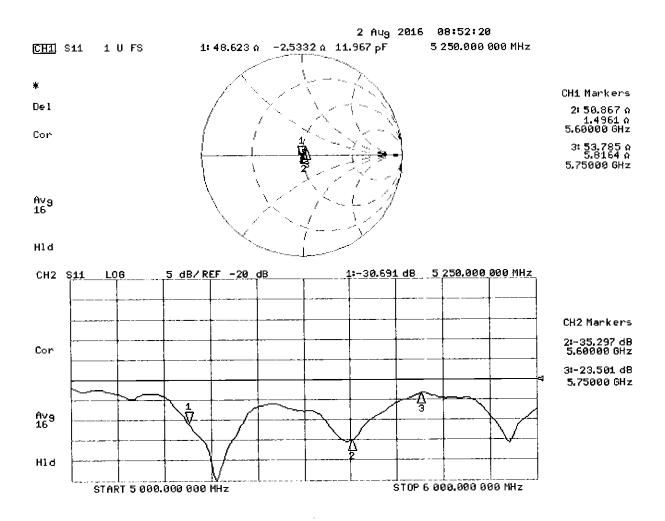
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 72.23 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 8.25 W/kg; SAR(10 g) = 2.35 W/kg


Maximum value of SAR (measured) = 18.3 W/kg

Certificate No: D5GHzV2-1237_Aug16 Page 8 of 13

0 dB = 18.3 W/kg = 12.62 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 02.08.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 5.42$ S/m; $\varepsilon_r = 47.1$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 5.88$ S/m; $\varepsilon_r = 46.5$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 6.11$ S/m; $\varepsilon_r = 46.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.85, 4.85, 4.85); Calibrated: 30.06.2016, ConvF(4.35, 4.35, 4.35); Calibrated: 30.06.2016, ConvF(4.3, 4.3, 4.3); Calibrated: 30.06.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.19 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 28.4 W/kg

SAR(1 g) = 7.54 W/kg; SAR(10 g) = 2.12 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

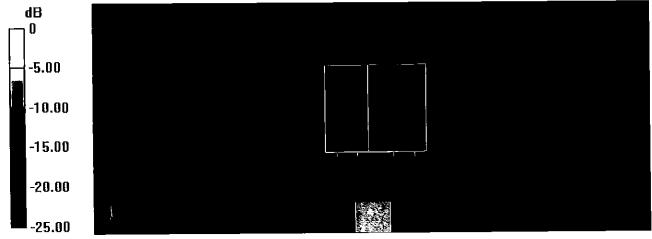
Reference Value = 66.80 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 31.9 W/kg

SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.17 W/kg

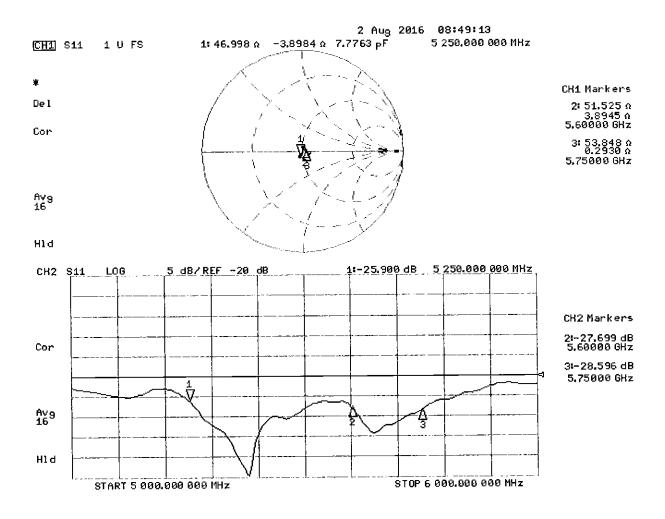
Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.31 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 32.6 W/kg


SAR(1 g) = 7.6 W/kg; SAR(10 g) = 2.11 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

0 dB = 17.3 W/kg = 12.38 dBW/kg

Impedance Measurement Plot for Body TSL

