PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name: LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 05/05/14 - 05/21/14 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1405060921.ZNF

FCC ID: ZNFD850

APPLICANT: LG ELECTRONICS MOBILECOMM U.S.A., INC.

DUT Type: Portable Handset

Application Type: Class II Permissive Change

FCC Rule Part(s): CFR §2.1093

Permissive Change(s): See FCC Change Document LG-D850, D850, LGD850

Date of Original Certification: 5/19/2014

Equipment	Band & Mode	Tx Frequency	SAR			
Class	2		1 gm Head (W/kg)	1 gm Body- Worn (W/kg)	1 gm Hotspot (W/kg)	
PCE	GSWGPRS/EDGE 850	824.20 - 848.80 MHz	0.32	0.57	0.76	
PCE	UMTS 850	826.40 - 846.60 MHz	0.39	0.53	0.53	
PCE	UMTS 1750	1712.4 - 1752.5 MHz	0.28	0.68	0.68	
PCE	GSWGPRS/EDGE 1900	1850.20 - 1909.80 MHz	0.19	0.57	0.72	
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.28	0.47	0.75	
PCE	LTE Band 17	706.5 - 713.5 MHz	0.24	0.26	0.38	
PCE	LTE Band 5 (Cell)	826.5 - 846.5 MHz	0.42	0.51	0.60	
PCE	LTE Band 4 (AWS)	1712.5 - 1752.5 MHz	0.16	0.60	0.60	
PCE	LTE Band 2 (PCS)	1852.5 - 1907.5 MHz	0.26	0.63	1.01	
PCE	LTE Band 7	2502.5 - 2567.5 MHz	0.18	1.05	1.05	
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.25	0.15	0.15	
DTS	5.8 GHz WLAN	5745 - 5825 MHz	0.45	0.48	0.48	
NII	5.2 GHz WLAN	5180 - 5240 MHz	0.27	0.16		
NII	5.3 GHz WLAN	5260 - 5320 MHz	0.33	0.20		
NII	5.5 GHz WLAN	5500 - 5700 MHz	0.29	0.37		
DSS/DTS	DSS/DTS Bluetooth 2402 - 2480 MHz			N/A		
Simultaneous	SAR per KDB 690783 D01v0)1r02:	0.79	1.53	1.53	

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.9 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 1 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	rage 10100

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INF	ORMATION	10
3	INTROD	UCTION	11
4	DOSIME	TRIC ASSESSMENT	12
5	DEFINIT	ION OF REFERENCE POINTS	13
6	TEST CO	ONFIGURATION POSITIONS FOR HANDSETS	14
7	RF EXP	OSURE LIMITS	18
8	FCC ME	ASUREMENT PROCEDURES	19
9	RF CON	DUCTED POWERS	24
10	SYSTEM	I VERIFICATION	38
11	SAR DA	TA SUMMARY	41
12	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	55
13	SAR ME	ASUREMENT VARIABILITY	61
14	EQUIPM	ENT LIST	62
15	MEASUF	REMENT UNCERTAINTIES	64
16	CONCLU	JSION	66
17	REFERE	NCES	67
APPEN	NDIX A:	SAR TEST PLOTS	
APPEN	NDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	NDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	NDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	NDIX E:	SAR SYSTEM VALIDATION	
APPEN	NDIX F:	SAR TEST SETUP PHOTOGRAPHS	

FCC ID: ZNFD850	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 2 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	raye 2 01 00

1 DEVICE UNDER TEST

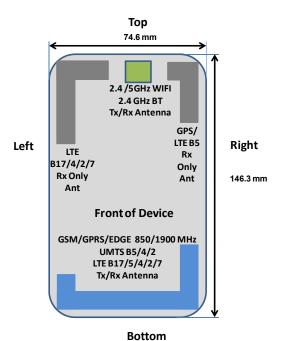
1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.5 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 17	Data	706.5 - 713.5 MHz
LTE Band 5 (Cell)	Data	826.5 - 846.5 MHz
LTE Band 4 (AWS)	Data	1712.5 - 1752.5 MHz
LTE Band 2 (PCS)	Data	1852.5 - 1907.5 MHz
LTE Band 7	Data	2502.5 - 2567.5 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
5.8 GHz WLAN	Data	5745 - 5825 MHz
5.2 GHz WLAN	Data	5180 - 5240 MHz
5.3 GHz WLAN	Data	5260 - 5320 MHz
5.5 GHz WLAN	Data	5500 - 5700 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz

1.2 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05.

Made / Dand		Voice (dBm)	Bur	Burst Average GMSK (dBm)			Burst Average 8-PSK (dBm)			
Mode / Band	Mode / Band		1 TX	2 TX	3 TX	4 TX	1 TX	2 TX	3 TX	4 TX
			Slots	Slots	Slots	Slots	Slots	Slots	Slots	Slots
CSM/CDBS/FDCF 9F0	Maximum	33.2	33.2	31.2	29.2	27.7	27.0	26.0	25.2	24.0
GSM/GPRS/EDGE 850 Nominal		32.7	32.7	30.7	28.7	27.2	26.5	25.5	24.7	23.5
GSM/GPRS/EDGE 1900	Maximum	30.7	30.7	29.7	26.7	25.7	26.5	25.7	24.7	23.75
GSW/GPRS/EDGE 1900	Nominal	30.2	30.2	29.2	26.2	25.2	26.0	25.2	24.2	23.25


		Modulated Average (dBm)				
Mode / Band	3GPP WCDMA	3GPP HSDPA	3GPP HSUPA	3GPP DC-HSDPA		
LINATE David E (OFO NALL-)	Maximum	24.2	24.2	24.2	24.2	
UMTS Band 5 (850 MHz)	Nominal	23.7	23.7	23.7	23.7	
LINATE Daniel 4 (1750 NALIS)	Maximum	24.8	24.8	24.8	24.8	
UMTS Band 4 (1750 MHz)	Nominal	24.3	24.3	24.3	24.3	
LIMTS Band 2 (1000 MHz)	Maximum	23.7	23.7	23.7	23.7	
UMTS Band 2 (1900 MHz)	Nominal	23.2	23.2	23.2	23.2	

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 3 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	rage 3 01 00

Mode / Band	Modulated Average (dBm)	
LTE Band 17	Maximum	24.2
LIE Ballu 17	Nominal	23.7
LTE Band 5 (Cell)	Maximum	23.7
LTE Ballu 5 (Cell)	Nominal	23.2
LTE Donald (ANAIC)	Maximum	24.5
LTE Band 4 (AWS)	Nominal	24.0
LTE D 4.2 (DCC)	Maximum	23.9
LTE Band 2 (PCS)	Nominal	23.4
LTE Band 7	Maximum	23.7
LIE Ballu /	Nominal	23.2

Mode / Band	Modulated Average (dBm)	
IEEE 802.11b (2.4 GHz)	Maximum	16.5
TEEE 802.11B (2.4 GHZ)	Nominal	15.5
IEEE 802.11g (2.4 GHz)	Maximum	14.0
TEEE 802.11g (2.4 GHZ)	Nominal	13.0
IEEE 802.11n (2.4 GHz)	Maximum	13.0
TEEE 802.1111 (2.4 GHZ)	Nominal	12.0
JEEE 002 44- /E CU-)	Maximum	13.0
IEEE 802.11a (5 GHz)	Nominal	12.0
IFFF 902 11 ~ /F CU-)	Maximum	12.0
IEEE 802.11n (5 GHz)	Nominal	11.0
IFFF 802 11cc (F CUs)	Maximum	12.0
IEEE 802.11ac (5 GHz)	Nominal	11.0
Bluetooth	Maximum	8.0
Bluetooth	Nominal	7.0
Bluetooth LE	Maximum	4.0
Bluetootti LE	Nominal	3.0

1.3 **DUT Antenna Locations**

Note: Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC Filing.

Figure 1-1 **DUT Antenna Locations**

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 4 of 60
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 4 of 68
@ 2014 DCTECT Engineering Laborator	u laa			DEV/ 42.0 M

Table 1-1
Mobile Hotspot Sides for SAR Testing

Mode	Back	Front	Тор	Bottom	Right	Left
GPRS 850	Yes	Yes	No	Yes	Yes	Yes
UMTS 850	Yes	Yes	No	Yes	Yes	Yes
UMTS 1750	Yes	Yes	No	Yes	Yes	Yes
GPRS 1900	Yes	Yes	No	Yes	Yes	Yes
UMTS 1900	Yes	Yes	No	Yes	Yes	Yes
LTE Band 17	Yes	Yes	No	Yes	Yes	Yes
LTE Band 5 (Cell)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 4 (AWS)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 2 (PCS)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 7	Yes	Yes	No	Yes	Yes	Yes
2.4 GHz WLAN	Yes	Yes	Yes	No	Yes	No
5 GHz WLAN	Yes	Yes	Yes	No	Yes	No

Note: Particular DUT edges were not required to be evaluated for Wireless Router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v01 guidance, page 2. When the wireless router mode is enabled, all 5 GHz bands are disabled except the 5.8 GHz band. Therefore only 5.8 GHz WIFI is considered in this section.

1.4 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the back cover. The SAR tests were performed with the back cover with NFC antenna already incorporated.

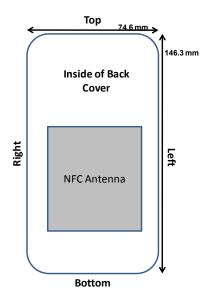
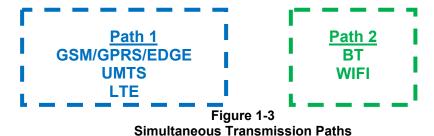



Figure 1-2 NFC Antenna Locations

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 5 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 5 01 00

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D05v01, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-3 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v05 3) procedures.

Table 1-2
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Notes
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	
2	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A	
3	GSM voice + 2.4 GHz Bluetooth	N/A	Yes	N/A	
4	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	
5	UMTS + 5 GHz WI-FI	Yes	Yes	Yes	
6	UMTS + 2.4 GHz Bluetooth	N/A	Yes	N/A	
7	LTE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.
8	LTE + 5 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.
9	LTE + 2.4 GHz Bluetooth	N/A	Yes*	N/A	*-Pre-installed VOIP applications are considered.
10	GPRS/EDGE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.
11	GPRS/EDGE + 5 GHz WI-FI	Yes*	Yes*	Yes	*-Pre-installed VOIP applications are considered.
12	GPRS/EDGE + 2.4 GHz Bluetooth	N/A	Yes*	N/A	*-Pre-installed VOIP applications are considered.

Notes:

- When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 2. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo C of CO
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 6 of 68

1.6 Wireless Charging Cover

This DUT may be used with a standard battery cover or with an optional wireless charging battery cover which features an extension to wrap around and protect the front side of the device. Per FCC KDB Publication 648474 D04, SAR was measured using the standard battery cover and then repeated with the wireless charging battery cover for the highest reported SAR for each wireless technology, frequency band, operating mode, and exposure condition. Additional head tests using the wireless charging cover were performed with the cover extension both opened and closed. Additional body-worn and hotspot tests were performed with the cover extension closed because operations near the body with the cover extension open are not expected. No additional evaluations with wireless charging cover were required since all reported SAR values were less than 1.2 W/kg.

1.7 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.8 **SAR Test Exclusions Applied**

(A) WIFI/BT

Since Wireless Router operations are not allowed by the chipset firmware using 5 GHz WIFI except in the 5.8 GHz band, only 2.4 GHz and 5.8 GHz WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v01.

Per FCC KDB 447498 D01v05, the SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth SAR was not required; $[(6/10)^* \sqrt{2.441}] = 0.9 < 3.0$. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

This device supports 20 MHz and 40 MHz Bandwidths for IEEE 802.11n for 5 GHz WIFI only. IEEE 802.11n was not evaluated for SAR since the average output power of 20 MHz and 40 MHz bandwidths was not more than 0.25 dB higher than the average output power of IEEE 802.11a.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) No new 5 GHz channels

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 7 of 60
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 7 of 68

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v02.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02.

This device supports inter-band LTE Carrier Aggregation (CA) in the downlink only. All uplink communications are identical to Release 8 specifications. Per FCC Guidance, LTE CA SAR was not needed for testing since the data sent by uplink on uplink physical channels does not change between Rel 8 and Rel 10.

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 8 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	rage o oi oo

1.9 Guidance Applied

- IEEE 1528-2003
- FCC KDB Publication 941225 D01-D06 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v01r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v05 (General SAR Guidance)
- FCC KDB Publication 865664 D01-D02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D03-D04 (Wireless Charging Cover)
- April 2013 TCB Workshop Notes (IEEE 802.11ac)
- October 2013 TCB Workshop Notes (GPRS SAR Considerations)

1.10 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

.

	Head Serial Number	Body-Worn Serial Number	Hotspot Serial Number
GSM/GPRS/EDGE 850	605-5	605-5	605-5
UMTS 850	1505-1	605-1	605-1
UMTS 1750	605-1	605-1	605-1
GSM/GPRS/EDGE 1900	605-5	605-5	605-5
UMTS 1900	605-1	605-1	605-1
LTE Band 17	605-12	605-12	605-12
LTE Band 5 (Cell)	605-15	605-12	605-12
LTE Band 4 (AWS)	605-12	605-1	605-1
LTE Band 2 (PCS)	605-15	605-12	605-12
LTE Band 7	605-12	605-12	605-12
2.4 GHz WLAN	605-18	605-18	605-18
5 GHz WLAN	605-18	605-18	605-18

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 9 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	rage 9 01 00

2 LTE INFORMATION

Total		LTE In	formation			
LTE Band 17 (706.5 - 713.5 MHz)	FCC ID		ZNFD850			
LTE Band 5 (Cell) (826.5 - 846.5 MHz)	Form Factor		Portable Handse	t		
LTE Band 5 (Cell) (826.5 - 846.5 MHz)	Frequency Range of each		LTE Band 17 (706.5 - 713	3.5 MHz)		
LTE Band 4 (AWS) (1712.5 - 1752.5 MHz)		L	TE Band 5 (Cell) (826.5 - 8	346.5 MHz	z)	
LTE Band 7 (290.5) 1 (582.5 + 1907.5 MHz)						
Channel Bandwidths						
LTE Band 17: 5 MHz, 10 MHz						
LTE Band 4 (AWS): 5 MHz, 10 MHz	Channel Bandwidths					
LTE Band 2 (PCS): 5 MHz, 10 MHz, 15 MHz, 20 MHz						
LTE Band 2 (PCS): 5 MHz, 10 MHz, 15 MHz, 20 MHz		I TF Ban			20 MHz	
LTE Band 7: 5 MHz, 10 MHz, 15 MHz, 20 MHz						
Channel Numbers and Frequencies (MHz)						
Low Mid High	Channel Numbers and	2.2.2	3414 7: 0 1111 12, 10 1111 12, 10	J 1411 12, 20		
LTE Band 17: 5 MHz		Low	Mid			High
LTE Band 17: 10 MHz					71	
LTE Band 5 (Cell): 5 MHz		\ /				
LTE Band 5 (Cell): 10 MHz						
LTE Band 4 (AWS): 5 MHz			(/			
TEBand 4 (AWS): 10 MHz		,	(/			
LTE Band 4 (AWS): 15 MHz	` ′	` /	` '			` /
LTE Band 4 (AWS): 20 MHz	` ,	()	(/			
LTE Band 2 (PCS): 5 MHz			(/			, ,
LTE Band 2 (PCS): 10 MHz						
LTE Band 2 (PCS): 15 MHz				,		
TEB and 2 (PCS): 20 MHz						
LTE Band 7: 5 MHz		,	,			
LTE Band 7: 10 MHz		` '				
LTE Band 7: 15 MHz						
LTE Band 7: 20 MHz		. ,	, ,			
UE Category						
Modulations Supported in UL LTE Carrier Aggregation Possible Considerations B2 (PCC) + B17(SCC) SMHz (B2)+5MHz (B2) SMHz (B17)+5MHz (B17) SMHz (B17)-5MHz (B17) SMHz		2310 (20030)	2555 (21100)			000 (21330)
LTE Carrier Aggregation			OPSK 16OAM			
Possible Considerations SMHz (B2)+SMHz (B17) SMHz (B2)+SMHz (B29) SMHz (B17) SMHz (B2)+SMHz (B2) SMHz (B17) SMHz SMHz (B17)	LTE Carrier Aggregation	B2 (PCC) + B17(SCC) B2 (PCC) + B29(B4 (PCC)	+ B29(SCC)	B17 (PCC) + B2 (SCC)
Similar (82)+ 10MHz (817) 50MHz (82)+ 10MHz (829) 50MHz (84)+ 10MHz (829) 50MHz		5MHz (B2)+5MHz (B17) 5MHz (B2)+5MHz	(B29) 5MHz (B4)+5MHz (B17)	5MHz (B4)+5MHz (B29)	5MHz (B17)+5MHz (B2)
Information Information This device does not support full CA features on 3GPP Release 10. The following LTE Release 10 features are not supported: Relay, HetNet, Enhanced MIMO, eICIC, WIFI offloading, MDT, eMBMA and Cross-Carrier Scheduling. It supports a maximum of 2 carriers in the downlink with a total maximum bandwidth of 10 MHz of the spectrum. All uplink communications are identical to the Release 8 Specifications. Uplink communications are done on the PCC. Due to carrier capability, only B2 (PCC) + B17(SCC), B2 (PCC) + B29(SCC), B4 (PCC) + B17(SCC), B4 (PCC) + B29(SCC), and B17 (PCC) + B2 (SCC) are supported. LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided) A-MPR (Additional MPR)	1 033ibic Obrisiderations					
LTE Aggregation Additional Information This device does not support full CA features on 3GPP Release 10. The following LTE Release 10 features are not supported: Relay, HetNet, Enhanced MIMO, eICIC, WIFI offloading, MDT, eMBMA and Cross-Carrier Scheduling. It supports a maximum of 2 carriers in the downlink with a total maximum bandwidth of 10 MHz of the spectrum. All uplink communications are identical to the Release 8 Specifications. Uplink communications are done on the PCC. Due to carrier capability, only B2 (PCC) + B17(SCC), B2 (PCC) + B29(SCC), B4 (PCC) + B17(SCC), B4 (PCC) + B29(SCC), and B17 (PCC) + B2 (SCC) are supported. LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided) A-MPR (Additional MPR)		10MHz (B2)+3MHz (B17) 10MHz (B2)+3MHz 10MHz (B2)+10MHz (B17) 10MHz (B2)+10MH;	z (B29) 10MHz (B4)+10MHz (B17)	10MHz (B4	+)+10MHz (B29)	10MHz (B17)+10MHz (B2)
and Cross-Carrier Scheduling. It supports a maximum of 2 carriers in the downlink with a total maximum bandwidth of 10 MHz of the spectrum. All uplink communications are identical to the Release 8 Specifications. Uplink communications are done on the PCC. Due to carrier capability, only B2 (PCC) + B17(SCC), B2 (PCC) + B29(SCC), B4 (PCC) + B17(SCC), B4 (PCC) + B29(SCC), and B17 (PCC) + B2 (SCC) are supported. LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided) A-MPR (Additional MPR)	LTE Aggregation Additional	This device does not support ful	I CA features on 3GPP Re	lease 10.	The following	g LTE Release 10
It supports a maximum of 2 carriers in the downlink with a total maximum bandwidth of 10 MHz of the spectrum. All uplink communications are identical to the Release 8 Specifications. Uplink communications are done on the PCC. Due to carrier capability, only B2 (PCC) + B17(SCC), B2 (PCC) + B29(SCC), B4 (PCC) + B17(SCC), B4 (PCC) + B29(SCC), and B17 (PCC) + B2 (SCC) are supported. LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided) A-MPR (Additional MPR)	Information	features are not supported: Rela	y, HetNet, Enhanced MIM	O, elClC, '	WIFI offloadi	ing, MDT, eMBMA
spectrum. All uplink communications are identical to the Release 8 Specifications. Uplink communications are done on the PCC. Due to carrier capability, only B2 (PCC) + B17(SCC), B2 (PCC) + B29(SCC), B4 (PCC) + B17(SCC), B4 (PCC) + B29(SCC), and B17 (PCC) + B2 (SCC) are supported. LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided) A-MPR (Additional MPR)			and Cross-Carrier Scheo	duling.		
spectrum. All uplink communications are identical to the Release 8 Specifications. Uplink communications are done on the PCC. Due to carrier capability, only B2 (PCC) + B17(SCC), B2 (PCC) + B29(SCC), B4 (PCC) + B17(SCC), B4 (PCC) + B29(SCC), and B17 (PCC) + B2 (SCC) are supported. LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided) A-MPR (Additional MPR)						
communications are done on the PCC. Due to carrier capability, only B2 (PCC) + B17(SCC), B2 (PCC) + B29(SCC), B4 (PCC) + B17(SCC), B4 (PCC) + B29(SCC), and B17 (PCC) + B2 (SCC) are supported. LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided) A-MPR (Additional MPR) Communications are done on the PCC. Due to carrier capability, only B2 (PCC) + B17(SCC), B2 (PCC) + B29(SCC), B4 (PCC) + B17(SCC), B4 (PCC) + B17(SCC), B2 (PCC) + B29(SCC), B4 (PCC) + B17(SCC), B4 (PC						
Due to carrier capability, only B2 (PCC) + B17(SCC), B2 (PCC) + B29(SCC), B4 (PCC) + B17(SCC), B4 (PCC) + B29(SCC), and B17 (PCC) + B2 (SCC) are supported. LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided) A-MPR (Additional MPR) LTE MPR Permanently implemented per 3GPP TS YES						ations. Uplink
B4 (PCC) + B29(SCC), and B17 (PCC) + B2 (SCC) are supported. LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided) A-MPR (Additional MPR)		Co	mmunications are done or	the PCC.	-	
B4 (PCC) + B29(SCC), and B17 (PCC) + B2 (SCC) are supported. LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided) A-MPR (Additional MPR)		Due to carrier canability, only B2	(DCC) + B17(SCC) B2 (D	CC) + B2C	0(CCC) B4 (DCC) + D17(CCC)
LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? YES (manufacturer attestation to be provided) A-MPR (Additional MPR)						
implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided) A-MPR (Additional MPR) YES	I TE MPR Permanently	D4 (1 CC) + B29	(1000), and bir (1 00) + E) <u> (</u> 000) (arc supporte	·u.
36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided) A-MPR (Additional MPR) YES						
(manufacturer attestation to be provided) A-MPR (Additional MPR) VES			YES			
be provided) A-MPR (Additional MPR) VES			120			
A-MPR (Additional MPR)						
YES			\/50			
	,		YES			

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 10 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		rage 10 01 00

3 INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	L G	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 11 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		raye 110100

4 DOSIMETRIC ASSESSMENT

4.1 **Measurement Procedure**

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

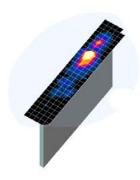


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01*

	Maximum Area Scan	Maximum Zoom Scan	Maximum Zoom Scan Spatial Resolution (mm) Uniform Grid Graded Grid		Minimum Zoom Scan	
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})				Volume (mm) (x,y,z)	
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤ 15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30
2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30
3-4 GHz	≤ 12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 12 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 12 01 00

5 DEFINITION OF REFERENCE POINTS

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

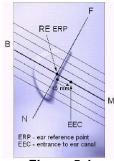


Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

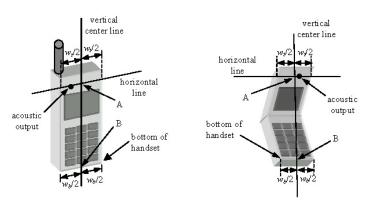


Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 13 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		

6 TEST CONFIGURATION POSITIONS FOR HANDSETS

6.1 **Device Holder**

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 **Positioning for Cheek**

The test device was positioned with the device close to the surface of the phantom such that 1. point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 14 of 68	
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Fage 14 01 00	

Figure 6-2 Front, Side and Top View of Ear/15° Tilt **Position**

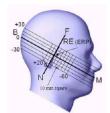


Figure 6-3 Side view w/ relevant markings

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04_v01. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

Figure 6-4 Twin SAM Chin20

FCC ID: ZNFD850	PETEST INCIDENTAL LADIATOR, INC.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 15 of 60
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 15 of 68

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-5). Per FCC KDB Publication 648474 D04v01, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v05 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater

Figure 6-5
Sample Body-Worn Diagram

than or equal to that required for hotspot mode, when applicable. When the reported SAR for a bodyworn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that bodyworn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 44798 D01v05 should be applied to determine SAR test requirements.

Per KDB Publication 44798 D01v05, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 16 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		rage 10 01 00

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v01 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 17 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Faye 17 01 00

RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS							
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)					
Peak Spatial Average SAR Head	1.6	8.0					
Whole Body SAR	0.08	0.4					
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20					

^{1.} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFD850	PCTEST INCIDENTAL LADOLATORY, INC.	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 18 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		rage 10 01 00

^{2.} The Spatial Average value of the SAR averaged over the whole body.

^{3.} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

8 FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v05, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r02.

8.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

8.3 SAR Measurement Conditions for UMTS

8.3.1 Output Power Verification

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

8.3.2 Head SAR Measurements for Handsets

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 19 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		rage 19 01 00

8.3.3 **Body SAR Measurements**

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

8.3.4 SAR Measurements for Handsets with Rel 5 HSDPA

Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75% of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration measured in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that resulted in the highest SAR in 12.2 kbps RMC mode for that RF channel.

The H-set used in FRC for HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of βc=9 and βd=15, and power offset parameters of ΔACK= ΔNACK =5 and ΔCQI=2 is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

Sub- Test	βς	β_d			β _{HS} (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)	
1	2/15	15/15	64	2/15	4/15	0.0	0.0	
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0	
3	15/15	8/15	64	15/8	30/15	1.5	0.5	
4	15/15	4/15	64	15/4	30/15	1.5	0.5	
Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$. Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and $\Delta_{NACK} = 8$ ($A_{hs} = 30/15$) with $\beta_{hs} = 30/15 * \beta_c$, and $\Delta_{CQI} = 7$ ($A_{hs} = 24/15$) with $\beta_{hs} = 24/15 * \beta_c$.								
Note 3:	$CM = 1$ for $\beta_c/\beta_d = 12/15$, $\beta_{hg}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.							

Figure 8-1 Table C.10.1.4 of TS 234.121-1

8.3.5 SAR Measurements for Handsets with Rel 6 HSUPA

Body SAR for HSUPA is not required when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25 dB higher than as measured without HSUPA/HSDPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is \leq 75 % of the SAR limit. Otherwise SAR is measured on the maximum output channel for the body exposure configuration produced highest SAR in 12.2 kbps RMC for that RF channel, using the additional procedures under "Release 6 HSPA data devices"

Head SAR for VOIP operations under HSPA is not required when maximum average output of each RF channel with HSPA is less than 0.25 dB higher than as measured using 12.2 kbps RMC. Otherwise SAR is measured using same HSPA configuration as used for body SAR.

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dana 00 of 00	
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 20 of 68	
© 2014 POTEOT Eii				DEV/40	

Sub- test	βε	βa	β _d (SF)	β_c/β_d	${\beta_{hs}}^{(1)}$	β _{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15(3)	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} : 47/15 β _{ed2} : 47/15		2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{COI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$.

Note 2: CM = 1 for β_c/β_d =12/15, β_{he}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPDCH and E-DPDCH are combinations. DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

SAR Measurement Conditions for DC-HSDPA 8.3.6

SAR test exclusion for DC-HSDPA devices is determined by power measurements according to the H-Set 12. Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to qualify for SAR test exclusion. DC-HSDPA uplink maximum output power measurements using the four Rel. 5 HSDPA subtests in Table C.10.1.4 of TS 234.121-1 is required.

When the maximum average output power of each RF channel with DC-HSDPA active is ≤ ¼ dB higher than that measured using 12.2 kbps RMC, or the maximum reported SAR for 12.2 kbps RMC is ≤ 75% of the SAR limit, SAR evaluation for DC-HSDPA is not required.

8.4 **SAR Measurement Conditions for LTE**

LTE modes were tested according to FCC KDB 941225 D05v02 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.4.1 **Spectrum Plots for RB Configurations**

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8,4.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 - 6.2.5 under Table 6.2.3-1.

8.4.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

FCC ID: ZNFD850	PCTEST.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 21 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Fage 21 01 00

8.4.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r01:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 5.2.4 and 5.3. SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

8.4.5 **Carrier Aggregation**

LTE Carrier Aggregation (CA) measurements were made in accordance to 3GPP TS 36.521-1 V10.4.0 (2012-12). The RRC connection is only handled by one cell, the Primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds the Secondary component carrier (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to release 8 specifications on the PCC. Additional output powers were measured using two carriers in the downlink for the release 8 configurations with the highest output power among all channels, RB configurations and bandwidths for each uplink band. Per FCC Guidance, no SAR measurements were required.

8.5 **SAR Testing with 802.11 Transmitters**

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g/n /ac transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v01r02 for more details.

8.5.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 22 of 60
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Page 22 of 68

8.5.2 Frequency Channel Configurations [24]

For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode.

For 5 GHz, the highest average RF output power channel across the default test channels at the lowest data rate was selected for SAR evaluation in 802.11a. When the adjacent channels are higher in power then the default channels, these "required channels" were considered instead of the default channels for SAR testing, 802.11n modes and higher data rates for 802.11a/n were evaluated only if the respective mode was higher than 0.25 dB or more than the 802.11a mode. 802.11ac SAR was evaluated for highest 802.11a configuration in each 5 GHz band and each exposure condition. 802.11ac modes were additionally evaluated for SAR if the output power for the respective mode was more than 0.25 dB higher than powers of 802.11a modes.

If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg and if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band.

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 22 of 69
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 23 of 68

RF CONDUCTED POWERS

9.1 GSM Conducted Powers

				Maxim	um Burst-	Averaged	Output F	ower					
		Voice	GP.	RS/EDGE	Data (GM	SK)		EDGE Da	ta (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot			
	128	33.17	33.20	31.03	28.70	27.24	27.00	25.68	24.88	23.65			
GSM 850	190	33.18	33.15	31.04	28.72	27.28	27.00	25.55	24.91	23.65			
	251	33.12	33.08	31.00	28.70	27.28	26.98	25.50	24.81	23.57			
	512	30.05	30.07	29.56	26.20	25.37	26.07	24.91	24.20	23.25			
GSM 1900	661	30.11	30.12	29.54	26.22	25.34	26.07	24.93	24.20	23.29			
	810	30.12	30.14	29.70	26.30	25.43	26.06	24.89	24.21	23.26			
		Calculated Maximum Frame-Averaged Output Power											
		Voice	GPRS/EDGE Data (GMSK) EDGE Data (8-F						ta (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot			
	128	24.14	24.17	25.01	24.44	24.23	17.97	19.66	20.62	20.64			
GSM 850	190	24.15	24.12	25.02	24.46	24.27	17.97	19.53	20.65	20.64			
	251	24.09	24.05	24.98	24.44	24.27	17.95	19.48	20.55	20.56			
	512	21.02	21.04	23.54	21.94	22.36	17.04	18.89	19.94	20.24			
GSM 1900	661	21.08	21.09	23.52	21.96	22.33	17.04	18.91	19.94	20.28			
	810	21.09	21.11	23.68	22.04	22.42	17.03	18.87	19.95	20.25			
GSM 850	Frame	23.67	23.67	24.68	24.44	24.19	17.47	19.48	20.44	20.49			
GSM 1900	Avg.Targets:	21.17	21.17	23.18	21.94	22.19	16.97	19.18	19.94	20.24			

Note:

9

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- Per October 2013 TCB Workshop Notes, the configuration with the source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for SAR. When the maximum frameaveraged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 4. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

GSM Class: B

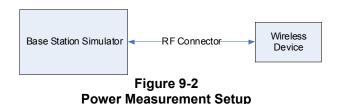
GPRS Multislot class: 12 (Max 4 Tx uplink slots) EDGE Multislot class: 12 (Max 4 Tx uplink slots)

DTM Multislot Class: N/A

Figure 9-1 Power Measurement Setup

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 24 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Fage 24 01 00

9.2 UMTS Conducted Powers


3GPP Release	Mode	3GPP 34.121	Cellu	lar Band [dBm]	AW	S Band [d	Bm]	PC	S Band [d	Bm]	3GPP MPR
Version		Subtest	4132	4183	4233	1312	1412	1862	9262	9400	9538	[dB]
99	WCDMA	12.2 kbps RMC	23.99	23.97	23.92	24.80	24.77	24.78	23.43	23.42	23.46	-
99	WCDIVIA	12.2 kbps AMR	24.07	23.95	23.93	24.79	24.80	24.76	23.46	23.34	23.42	-
6		Subtest 1	23.61	23.94	24.00	24.50	24.60	24.53	23.53	23.47	23.58	0
6	HSDPA	Subtest 2	24.06	23.99	23.83	24.49	24.62	24.62	23.52	23.41	23.48	0
6	TIODEA	Subtest 3	23.48	23.47	23.44	24.10	24.12	24.03	22.90	23.00	23.01	0.5
6		Subtest 4	23.58	23.50	23.48	24.10	24.09	24.02	22.92	23.01	23.05	0.5
6		Subtest 1	22.74	23.04	22.94	23.44	23.36	23.08	22.03	22.20	22.38	0
6		Subtest 2	22.14	22.20	22.18	22.52	22.59	22.42	21.22	21.52	21.39	2
6	HSUPA	Subtest 3	22.52	22.85	22.84	23.18	23.04	22.88	21.92	21.93	22.44	1
6		Subtest 4	22.00	21.87	21.60	22.55	22.40	22.52	21.75	22.00	22.03	2
6		Subtest 5	24.00	23.93	23.79	24.67	24.53	24.57	23.32	23.37	23.57	0
8		Subtest 1	23.85	23.75	23.69	24.59	24.59	24.49	23.30	23.22	23.29	0
8	DC-HSDPA	Subtest 2	23.81	23.77	23.74	24.51	24.50	24.54	23.26	23.32	23.00	0
8	DC-1 ISDFA	Subtest 3	23.39	23.47	23.25	24.03	23.94	24.08	22.87	22.91	22.77	0.5
8		Subtest 4	23.37	23.47	23.31	24.04	23.96	23.98	22.78	22.82	22.76	0.5

UMTS SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v02. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

DC-HSDPA considerations

- 3GPP Specification 34.121-1 Release 8 Ver 8.10.0 was used for DC-HSDPA guidance
- H-Set 12 (QPSK) was confirmed to be used during DC-HSDPA measurements
- Measured maximum output powers for DC-HSDPA were not greater than 1/4 dB higher than the WCDMA 12.2 kbps RMC maximum output, as a result, SAR is not required for DC-HSDPA
- The DUT supports UE category 24 for HSDPA

It is expected by the manufacturer that MPR for some HSUPA subtests may be up to 2 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 25 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Fage 25 01 06

9.3 **LTE Conducted Powers**

9.3.1 LTE Band 17

Table 9-1 LTE Band 17 Conducted Powers - 10 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	710.0	23790	10	QPSK	1	0	24.01	0	0
	710.0	23790	10	QPSK	1	25	24.19	0	0
	710.0	23790	10	QPSK	1	49	24.20	0	0
	710.0	23790	10	QPSK	25	0	22.93	0-1	1
	710.0	23790	10	QPSK	25	12	22.96	0-1	1
	710.0	23790	10	QPSK	25	25	22.97	0-1	1
Mid	710.0	23790	10	QPSK	50	0	22.62	0-1	1
Σ	710.0	23790	10	16QAM	1	0	22.58	0-1	1
	710.0	23790	10	16QAM	1	25	22.69	0-1	1
	710.0	23790	10	16QAM	1	49	22.75	0-1	1
	710.0	23790	10	16QAM	25	0	21.83	0-2	2
	710.0	23790	10	16QAM	25	12	21.81	0-2	2
	710.0	23790	10	16QAM	25	25	21.84	0-2	2
	710.0	23790	10	16QAM	50	0	21.88	0-2	2

Note: LTE Band 17 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-2 LTE Band 17 Conducted Powers - 5 MHz Bandwidth

	_		- u		, otou .	011010	O IIII IE Ballattiatii			
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]	
	710.0	23790	5	QPSK	1	0	24.10	0	0	
	710.0	23790	5	QPSK	1	12	24.18	0	0	
	710.0	23790	5	QPSK	1	24	24.20	0	0	
	710.0	23790	5	QPSK	12	0	22.91	0-1	1	
	710.0	23790	5	QPSK	12	6	22.90	0-1	1	
	710.0	23790	5	QPSK	12	13	22.96	0-1	1	
Mid	710.0	23790	5	QPSK	25	0	22.95	0-1	1	
Σ	710.0	23790	5	16-QAM	1	0	22.67	0-1	1	
	710.0	23790	5	16-QAM	1	12	22.68	0-1	1	
	710.0	23790	5	16-QAM	1	24	22.73	0-1	1	
	710.0	23790	5	16-QAM	12	0	21.80	0-2	2	
	710.0	23790	5	16-QAM	12	6	21.80	0-2	2	
	710.0	23790	5	16-QAM	12	13	21.78	0-2	2	
	710.0	23790	5	16-QAM	25	0	21.84	0-2	2	

Note: LTE Band 17 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

9.3.2 LTE Band 5 (Cell)

Table 9-3 LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	836.5	20525	10	QPSK	1	0	23.63	0	0
	836.5	20525	10	QPSK	1	25	23.64	0	0
	836.5	20525	10	QPSK	1	49	23.65	0	0
	836.5	20525	10	QPSK	25	0	22.40	0-1	1
	836.5	20525	10	QPSK	25	12	22.38	0-1	1
	836.5	20525	10	QPSK	25	25	22.35	0-1	1
Mid	836.5	20525	10	QPSK	50	0	22.39	0-1	1
Σ	836.5	20525	10	16QAM	1	0	22.05	0-1	1
	836.5	20525	10	16QAM	1	25	22.06	0-1	1
	836.5	20525	10	16QAM	1	49	22.07	0-1	1
	836.5	20525	10	16QAM	25	0	21.26	0-2	2
	836.5	20525	10	16QAM	25	12	21.30	0-2	2
	836.5	20525	10	16QAM	25	25	21.29	0-2	2
	836.5	20525	10	16QAM	50	0	21.35	0-2	2

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 26 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Fage 20 01 00

Table 9-4 LTE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth

		L Dank		,	ucteu i		•	anawiath	
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	826.5	20425	5	QPSK	1	0	23.62	0	0
	826.5	20425	5	QPSK	1	12	23.63	0	0
	826.5	20425	5	QPSK	1	24	23.61	0	0
	826.5	20425	5	QPSK	12	0	22.44	0-1	1
	826.5	20425	5	QPSK	12	6	22.47	0-1	1
	826.5	20425	5	QPSK	12	13	22.32	0-1	1
Low	826.5	20425	5	QPSK	25	0	22.31	0-1	1
	826.5	20425	5	16-QAM	1	0	22.10	0-1	1
	826.5	20425	5	16-QAM	1	12	22.05	0-1	1
	826.5	20425	5	16-QAM	1	24	22.06	0-1	1
	826.5	20425	5	16-QAM	12	0	21.36	0-2	2
	826.5	20425	5	16-QAM	12	6	21.22	0-2	2
	826.5	20425	5	16-QAM	12	13	21.26	0-2	2
	826.5	20425	5	16-QAM	25	0	21.32	0-2	2
	836.5	20525	5	QPSK	1	0	23.68	0	0
	836.5	20525	5	QPSK	1	12	23.65	0	0
	836.5	20525	5	QPSK	1	24	23.65	0	0
	836.5	20525	5	QPSK	12	0	22.37	0-1	1
	836.5	20525	5	QPSK	12	6	22.38	0-1	1
	836.5	20525	5	QPSK	12	13	22.34	0-1	1
Mid	836.5	20525	5	QPSK	25	0	22.38	0-1	1
Σ	836.5	20525	5	16-QAM	1	0	22.17	0-1	1
	836.5	20525	5	16-QAM	1	12	22.10	0-1	1
	836.5	20525	5	16-QAM	1	24	22.12	0-1	1
	836.5	20525	5	16-QAM	12	0	21.27	0-2	2
	836.5	20525	5	16-QAM	12	6	21.30	0-2	2
	836.5	20525	5	16-QAM	12	13	21.24	0-2	2
	836.5	20525	5	16-QAM	25	0	21.32	0-2	2
	846.5	20625	5	QPSK	1	0	23.67	0	0
	846.5	20625	5	QPSK	1	12	23.57	0	0
	846.5	20625	5	QPSK	1	24	23.67	0	0
	846.5	20625	5	QPSK	12	0	22.34	0-1	1
	846.5	20625	5	QPSK	12	6	22.35	0-1	1
	846.5	20625	5	QPSK	12	13	22.28	0-1	1
High	846.5	20625	5	QPSK	25	0	22.43	0-1	1
Ī	846.5	20625	5	16-QAM	1	0	22.07	0-1	1
	846.5	20625	5	16-QAM	1	12	22.15	0-1	1
	846.5	20625	5	16-QAM	1	24	22.06	0-1	1
	846.5	20625	5	16-QAM	12	0	21.24	0-2	2
	846.5	20625	5	16-QAM	12	6	21.40	0-2	2
	846.5	20625	5	16-QAM	12	13	21.15	0-2	2
	846.5	20625	5	16-QAM	25	0	21.26	0-2	2
_									

9.3.3 LTE Band 4 (AWS)

Table 9-5 LTE Band 4 (AWS) Conducted Powers - 20 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1732.5	20175	20	QPSK	1	0	24.36	0	0
	1732.5	20175	20	QPSK	1	50	24.40	0	0
	1732.5	20175	20	QPSK	1	99	24.35	0	0
	1732.5	20175	20	QPSK	50	0	23.31	0-1	1
	1732.5	20175	20	QPSK	50	25	23.29	0-1	1
	1732.5	20175	20	QPSK	50	50	23.26	0-1	1
Mid	1732.5	20175	20	QPSK	100	0	23.25	0-1	1
Σ	1732.5	20175	20	16QAM	1	0	22.75	0-1	1
	1732.5	20175	20	16QAM	1	50	22.84	0-1	1
	1732.5	20175	20	16QAM	1	99	22.75	0-1	1
	1732.5	20175	20	16QAM	50	0	22.17	0-2	2
	1732.5	20175	20	16QAM	50	25	22.18	0-2	2
	1732.5	20175	20	16QAM	50	50	22.22	0-2	2
	1732.5	20175	20	16QAM	100	0	22.21	0-2	2

Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 27 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		raye 27 01 00

Table 9-6
LTE Band 4 (AWS) Conducted Powers - 15 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1717.5	20025	15	QPSK	1	0	24.44	0	0
	1717.5	20025	15	QPSK	1	36	24.41	0	0
	1717.5	20025	15	QPSK	1	74	24.26	0	0
	1717.5	20025	15	QPSK	36	0	23.41	0-1	1
	1717.5	20025	15	QPSK	36	18	23.44	0-1	1
	1717.5	20025	15	QPSK	36	37	23.47	0-1	1
× O	1717.5	20025	15	QPSK	75	0	23.47	0-1	1
2	1717.5	20025	15	16QAM	1	0	23.47	0-1	1
	1717.5	20025	15	16QAM	1	36	23.24	0-1	1
	1717.5	20025	15	16QAM	1	74	23.17	0-1	1
	1717.5	20025	15	16QAM	36	0	22.43	0-2	2
	1717.5	20025	15	16QAM	36	18	22.43	0-2	2
	1717.5	20025	15	16QAM	36	37	22.37	0-2	2
	1717.5	20025	15	16QAM	75	0	22.44	0-2	2
	1732.5	20175	15	QPSK	1	0	24.42	0	0
	1732.5	20175	15	QPSK	1	36	24.47	0	0
	1732.5	20175	15	QPSK	1	74	24.39	0	0
	1732.5	20175	15	QPSK	36	0	23.42	0-1	1
	1732.5	20175	15	QPSK	36	18	23.48	0-1	1
	1732.5	20175	15	QPSK	36	37	23.45	0-1	1
D N	1732.5	20175	15	QPSK	75	0	23.48	0-1	1
≥	1732.5	20175	15	16QAM	1	0	23.09	0-1	1
	1732.5	20175	15	16QAM	1	36	23.13	0-1	1
	1732.5	20175	15	16QAM	1	74	23.45	0-1	1
	1732.5	20175	15	16QAM	36	0	22.41	0-2	2
	1732.5	20175	15	16QAM	36	18	22.45	0-2	2
	1732.5	20175	15	16QAM	36	37	22.46	0-2	2
	1732.5	20175	15	16QAM	75	0	22.40	0-2	2
	1747.5	20325	15	QPSK	1	0	24.48	0	0
	1747.5	20325	15	QPSK	1	36	24.48	0	0
	1747.5	20325	15	QPSK	1	74	24.46	0	0
	1747.5	20325	15	QPSK	36	0	23.41	0-1	1
	1747.5	20325	15	QPSK	36	18	23.41	0-1	1
	1747.5	20325	15	QPSK	36	37	23.46	0-1	1
	1747.5	20325	15	QPSK	75	0	23.43	0-1	1
Ē	1747.5	20325	15	16QAM	1	0	23.26	0-1	1
	1747.5	20325	15	16QAM	1	36	23.25	0-1	1
	1747.5	20325	15	16QAM	1	74	23.26	0-1	1
	1747.5	20325	15	16QAM	36	0	22.38	0-2	2
	1747.5	20325	15	16QAM	36	18	22.44	0-2	2
	1747.5	20325	15	16QAM	36	37	22.44	0-2	2
	1747.5	20325	15	16QAM	75	0	22.41	0-2	2

Table 9-7
LTE Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1715	20000	10	QPSK	1	0	24.47	0	0
	1715	20000	10	QPSK	1	25	24.41	0	0
	1715	20000	10	QPSK	1	49	24.47	0	0
	1715	20000	10	QPSK	25	0	23.37	0-1	1
	1715	20000	10	QPSK	25	12	23.27	0-1	1
	1715	20000	10	QPSK	25	25	23.34	0-1	1
Low	1715	20000	10	QPSK	50	0	23.39	0-1	1
۲	1715	20000	10	16QAM	1	0	23.32	0-1	1
	1715	20000	10	16QAM	1	25	23.26	0-1	1
	1715	20000	10	16QAM	1	49	23.35	0-1	1
	1715	20000	10	16QAM	25	0	22.21	0-2	2
	1715	20000	10	16QAM	25	12	22.26	0-2	2
	1715	20000	10	16QAM	25	25	22.13	0-2	2
	1715	20000	10	16QAM	50	0	22.34	0-2	2
	1732.5	20175	10	QPSK	1	0	24.42	0	0
	1732.5	20175	10	QPSK	1	25	24.48	0	0
	1732.5	20175	10	QPSK	1	49	24.41	0	0
	1732.5	20175	10	QPSK	25	0	23.45	0-1	1
	1732.5	20175	10	QPSK	25	12	23.48	0-1	1
	1732.5	20175	10	QPSK	25	25	23.50	0-1	1
Mid	1732.5	20175	10	QPSK	50	0	23.49	0-1	1
Σ	1732.5	20175	10	16QAM	1	0	23.31	0-1	1
	1732.5	20175	10	16QAM	1	25	23.19	0-1	1
	1732.5	20175	10	16QAM	1	49	23.16	0-1	1
	1732.5	20175	10	16QAM	25	0	22.26	0-2	2
	1732.5	20175	10	16QAM	25	12	22.28	0-2	2
	1732.5	20175	10	16QAM	25	25	22.26	0-2	2
	1732.5	20175	10	16QAM	50	0	22.41	0-2	2
	1750	20350	10	QPSK	1	0	24.36	0	0
	1750	20350	10	QPSK	1	25	24.46	0	0
	1750	20350	10	QPSK	1	49	24.47	0	0
	1750	20350	10	QPSK	25	0	23.41	0-1	1
	1750	20350	10	QPSK	25	12	23.38	0-1	1
	1750	20350	10	QPSK	25	25	23.35	0-1	1
High	1750	20350	10	QPSK	50	0	23.41	0-1	1
Ĩ	1750	20350	10	16QAM	1	0	23.16	0-1	1
	1750	20350	10	16QAM	1	25	23.24	0-1	1
[1750	20350	10	16QAM	1	49	23.44	0-1	1
	1750	20350	10	16QAM	25	0	22.26	0-2	2
[1750	20350	10	16QAM	25	12	22.32	0-2	2
[1750	20350	10	16QAM	25	25	22.30	0-2	2
	1750	20350	10	16QAM	50	0	22.38	0-2	2

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 28 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Fage 20 01 00

Table 9-8
LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1712.5	19975	5	QPSK	1	0	24.21	0	0
	1712.5	19975	5	QPSK	1	12	24.22	0	0
	1712.5	19975	5	QPSK	1	24	24.37	0	0
	1712.5	19975	5	QPSK	12	0	23.01	0-1	1
	1712.5	19975	5	QPSK	12	6	23.02	0-1	1
	1712.5	19975	5	QPSK	12	13	23.07	0-1	1
Low	1712.5	19975	5	QPSK	25	0	23.04	0-1	1
2	1712.5	19975	5	16-QAM	1	0	23.16	0-1	1
	1712.5	19975	5	16-QAM	1	12	23.11	0-1	1
	1712.5	19975	5	16-QAM	1	24	23.14	0-1	1
	1712.5	19975	5	16-QAM	12	0	22.11	0-2	2
	1712.5	19975	5	16-QAM	12	6	22.15	0-2	2
	1712.5	19975	5	16-QAM	12	13	22.18	0-2	2
	1712.5	19975	5	16-QAM	25	0	22.17	0-2	2
	1732.5	20175	5	QPSK	1	0	24.43	0	0
	1732.5	20175	5	QPSK	1	12	24.41	0	0
	1732.5	20175	5	QPSK	1	24	24.45	0	0
	1732.5	20175	5	QPSK	12	0	23.14	0-1	1
	1732.5	20175	5	QPSK	12	6	23.16	0-1	1
	1732.5	20175	5	QPSK	12	13	23.14	0-1	1
Mid	1732.5	20175	5	QPSK	25	0	23.13	0-1	1
Σ	1732.5	20175	5	16-QAM	1	0	23.00	0-1	1
	1732.5	20175	5	16-QAM	1	12	23.09	0-1	1
	1732.5	20175	5	16-QAM	1	24	23.11	0-1	1
	1732.5	20175	5	16-QAM	12	0	22.15	0-2	2
	1732.5	20175	5	16-QAM	12	6	22.16	0-2	2
	1732.5	20175	5	16-QAM	12	13	22.11	0-2	2
	1732.5	20175	5	16-QAM	25	0	22.10	0-2	2
	1752.5	20375	5	QPSK	1	0	24.45	0	0
	1752.5	20375	5	QPSK	1	12	24.48	0	0
	1752.5	20375	5	QPSK	1	24	24.42	0	0
	1752.5	20375	5	QPSK	12	0	23.41	0-1	1
	1752.5	20375	5	QPSK	12	6	23.32	0-1	11
	1752.5	20375	5	QPSK	12	13	23.38	0-1	1
High	1752.5	20375	5	QPSK	25	0	23.39	0-1	1
Ξ	1752.5	20375	5	16-QAM	1	0	23.28	0-1	1
	1752.5	20375	5	16-QAM	1	12	23.13	0-1	1
	1752.5	20375	5	16-QAM	1	24	23.22	0-1	1
	1752.5	20375	5	16-QAM	12	0	22.35	0-2	2
	1752.5	20375	5	16-QAM	12	6	22.17	0-2	2
	1752.5	20375	5	16-QAM	12	13	22.24	0-2	2
Ш	1752.5	20375	5	16-QAM	25	0	22.24	0-2	2

9.3.4 LTE Band 2 (PCS)

Table 9-9 LTE Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1860	18700	20	QPSK	1	0	23.69	0	0
ı	1860	18700	20	QPSK	1	50	23.70	0	0
ı	1860	18700	20	QPSK	1	99	23.69	0	0
ı	1860	18700	20	QPSK	50	0	22.62	0-1	1
ı	1860	18700	20	QPSK	50	25	22.62	0-1	1
ı	1860	18700	20	QPSK	50	50	22.59	0-1	1
3	1860	18700	20	QPSK	100	0	22.58	0-1	1
Low	1860	18700	20	16QAM	1	0	22.25	0-1	1
Γ	1860	18700	20	16QAM	1	50	22.31	0-1	1
ı	1860	18700	20	16QAM	1	99	22.30	0-1	1
Γ	1860	18700	20	16QAM	50	0	21.60	0-2	2
ı	1860	18700	20	16QAM	50	25	21.52	0-2	2
Γ	1860	18700	20	16QAM	50	50	21.53	0-2	2
ı	1860	18700	20	16QAM	100	0	21.54	0-2	2
	1880.0	18900	20	QPSK	1	0	23.70	0	0
ı	1880.0	18900	20	QPSK	1	50	23.64	0	0
ı	1880.0	18900	20	QPSK	1	99	23.59	0	0
ı	1880.0	18900	20	QPSK	50	0	22.58	0-1	1
ı	1880.0	18900	20	QPSK	50	25	22.53	0-1	1
Ī	1880.0	18900	20	QPSK	50	50	22.46	0-1	1
σ	1880.0	18900	20	QPSK	100	0	22.52	0-1	1
ž	1880.0	18900	20	16QAM	1	0	22.41	0-1	1
ı	1880.0	18900	20	16QAM	1	50	22.28	0-1	1
Ī	1880.0	18900	20	16QAM	1	99	22.13	0-1	1
ı	1880.0	18900	20	16QAM	50	0	21.47	0-2	2
Ī	1880.0	18900	20	16QAM	50	25	21.51	0-2	2
ı	1880.0	18900	20	16QAM	50	50	21.42	0-2	2
Ī	1880.0	18900	20	16QAM	100	0	21.51	0-2	2
T	1900	19100	20	QPSK	1	0	23.64	0	0
ı	1900	19100	20	QPSK	1	50	23.70	0	0
ı	1900	19100	20	QPSK	1	99	23.64	0	0
ı	1900	19100	20	QPSK	50	0	22.63	0-1	1
ı	1900	19100	20	QPSK	50	25	22.69	0-1	1
ı	1900	19100	20	QPSK	50	50	22.66	0-1	1
ء ا	1900	19100	20	QPSK	100	0	22.63	0-1	1
High	1900	19100	20	16QAM	1	0	22.17	0-1	1
ı	1900	19100	20	16QAM	1	50	22.43	0-1	1
ı	1900	19100	20	16QAM	1	99	22.22	0-1	1
ı	1900	19100	20	16QAM	50	0	21.55	0-2	2
ı	1900	19100	20	16QAM	50	25	21.64	0-2	2
ı	1900	19100	20	16QAM	50	50	21.56	0-2	2
ı	1900	19100	20	16QAM	100	0	21.56	0-2	2

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 29 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Fage 29 01 00

Table 9-10 LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth

	u	/	· 00)	001141	acteu	POWEIS - 13 WINZ Balluv			viatii
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1857.5	18675	15	QPSK	1	0	23.63	0	0
	1857.5	18675	15	QPSK	1	36	23.65	0	0
	1857.5	18675	15	QPSK	1	74	23.70	0	0
	1857.5	18675	15	QPSK	36	0	22.62	0-1	1
	1857.5	18675	15	QPSK	36	18	22.64	0-1	1
	1857.5	18675	15	QPSK	36	37	22.60	0-1	1
	1857.5	18675	15	QPSK	75	0	22.60	0-1	1
1	1857.5	18675	15	16QAM	1	0	22.33	0-1	1
	1857.5	18675	15	16QAM	1	36	22.37	0-1	1
	1857.5	18675	15	16QAM	1	74	22.54	0-1	1
	1857.5	18675	15	16QAM	36	0	21.60	0-2	2
	1857.5	18675	15	16QAM	36	18	21.55	0-2	2
	1857.5	18675	15	16QAM	36	37	21.47	0-2	2
	1857.5	18675	15	16QAM	75	0	21.52	0-2	2
	1880.0	18900	15	QPSK	1	0	23.17	0	0
	1880.0	18900	15	QPSK	1	36	23.68	0	0
	1880.0	18900	15	QPSK	1	74	23.70	0	0
	1880.0	18900	15	QPSK	36	0	22.66	0-1	1
	1880.0	18900	15	QPSK	36	18	22.49	0-1	1
	1880.0	18900	15	QPSK	36	37	22.48	0-1	1
2	1880.0	18900	15	QPSK	75	0	22.46	0-1	1
2	1880.0	18900	15	16QAM	1	0	22.52	0-1	1
	1880.0	18900	15	16QAM	1	36	22.47	0-1	1
	1880.0	18900	15	16QAM	1	74	22.43	0-1	1
	1880.0	18900	15	16QAM	36	0	21.64	0-2	2
	1880.0	18900	15	16QAM	36	18	21.38	0-2	2
	1880.0	18900	15	16QAM	36	37	21.36	0-2	2
	1880.0	18900	15	16QAM	75	0	21.57	0-2	2
	1902.5	19125	15	QPSK	1	0	23.57	0	0
	1902.5	19125	15	QPSK	1	36	23.70	0	0
	1902.5	19125	15	QPSK	1	74	23.58	0	0
	1902.5	19125	15	QPSK	36	0	22.59	0-1	1
	1902.5	19125	15	QPSK	36	18	22.59	0-1	1
	1902.5	19125	15	QPSK	36	37	22.61	0-1	1
11811	1902.5	19125	15	QPSK	75	0	22.70	0-1	1
Ē	1902.5	19125	15	16QAM	1	0	22.67	0-1	1
	1902.5	19125	15	16QAM	1	36	22.70	0-1	1
	1902.5	19125	15	16QAM	1	74	22.69	0-1	1
	1902.5	19125	15	16QAM	36	0	21.57	0-2	2
	1902.5	19125	15	16QAM	36	18	21.55	0-2	2
	1902.5	19125	15	16QAM	36	37	21.52	0-2	2
	1902.5	19125	15	16QAM	75	0	21.60	0-2	2

Table 9-11 LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1855	18650	10	QPSK	1	0	23.52	0	0
	1855	18650	10	QPSK	1	25	23.68	0	0
[1855	18650	10	QPSK	1	49	23.63	0	0
	1855	18650	10	QPSK	25	0	22.46	0-1	1
[1855	18650	10	QPSK	25	12	22.51	0-1	1
	1855	18650	10	QPSK	25	25	22.58	0-1	1
Low	1855	18650	10	QPSK	50	0	22.66	0-1	1
12	1855	18650	10	16QAM	1	0	22.26	0-1	1
	1855	18650	10	16QAM	1	25	22.37	0-1	1
	1855	18650	10	16QAM	1	49	22.39	0-1	1
	1855	18650	10	16QAM	25	0	21.43	0-2	2
	1855	18650	10	16QAM	25	12	21.52	0-2	2
	1855	18650	10	16QAM	25	25	21.59	0-2	2
	1855	18650	10	16QAM	50	0	21.53	0-2	2
	1880.0	18900	10	QPSK	1	0	23.22	0	0
[1880.0	18900	10	QPSK	1	25	23.29	0	0
[1880.0	18900	10	QPSK	1	49	23.41	0	0
[1880.0	18900	10	QPSK	25	0	22.52	0-1	1
[1880.0	18900	10	QPSK	25	12	22.41	0-1	1
[1880.0	18900	10	QPSK	25	25	22.39	0-1	1
Ρį	1880.0	18900	10	QPSK	50	0	22.42	0-1	1
Σ	1880.0	18900	10	16QAM	1	0	22.37	0-1	1
[1880.0	18900	10	16QAM	1	25	22.41	0-1	1
[1880.0	18900	10	16QAM	1	49	22.37	0-1	1
[1880.0	18900	10	16QAM	25	0	21.35	0-2	2
[1880.0	18900	10	16QAM	25	12	21.34	0-2	2
[1880.0	18900	10	16QAM	25	25	21.35	0-2	2
	1880.0	18900	10	16QAM	50	0	21.43	0-2	2
	1905	19150	10	QPSK	1	0	23.70	0	0
[1905	19150	10	QPSK	1	25	23.61	0	0
	1905	19150	10	QPSK	1	49	23.45	0	0
	1905	19150	10	QPSK	25	0	22.58	0-1	1
[1905	19150	10	QPSK	25	12	22.54	0-1	1
[1905	19150	10	QPSK	25	25	22.61	0-1	1
High	1905	19150	10	QPSK	50	0	22.62	0-1	1
王	1905	19150	10	16QAM	1	0	22.63	0-1	1
	1905	19150	10	16QAM	1	25	22.70	0-1	1
[1905	19150	10	16QAM	1	49	22.67	0-1	1
	1905	19150	10	16QAM	25	0	21.48	0-2	2
[1905	19150	10	16QAM	25	12	21.52	0-2	2
	1905	19150	10	16QAM	25	25	21.62	0-2	2
	1905	19150	10	16QAM	50	0	21.64	0-2	2

FCC ID: ZNFD850	PCTEST INDICATED LADOLATER, INC.	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 30 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		rage 30 01 00

Table 9-12 LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth

			. (1 00	,	ucteu			I IZ Ballawi	w. c
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1852.5	18625	5	QPSK	1	0	23.30	0	0
	1852.5	18625	5	QPSK	1	12	23.46	0	0
	1852.5	18625	5	QPSK	1	24	23.54	0	0
	1852.5	18625	5	QPSK	12	0	22.39	0-1	1
	1852.5	18625	5	QPSK	12	6	22.45	0-1	1
	1852.5	18625	5	QPSK	12	13	22.51	0-1	1
Low	1852.5	18625	5	QPSK	25	0	22.53	0-1	1
으	1852.5	18625	5	16-QAM	1	0	22.20	0-1	1
	1852.5	18625	5	16-QAM	1	12	22.23	0-1	1
	1852.5	18625	5	16-QAM	1	24	22.30	0-1	1
	1852.5	18625	5	16-QAM	12	0	21.20	0-2	2
	1852.5	18625	5	16-QAM	12	6	21.35	0-2	2
	1852.5	18625	5	16-QAM	12	13	21.38	0-2	2
	1852.5	18625	5	16-QAM	25	0	21.43	0-2	2
	1880.0	18900	5	QPSK	1	0	23.31	0	0
	1880.0	18900	5	QPSK	1	12	23.20	0	0
	1880.0	18900	5	QPSK	1	24	23.20	0	0
	1880.0	18900	5	QPSK	12	0	22.39	0-1	1
	1880.0	18900	5	QPSK	12	6	22.23	0-1	1
	1880.0	18900	5	QPSK	12	13	22.21	0-1	1
Mid	1880.0	18900	5	QPSK	25	0	22.21	0-1	1
Σ	1880.0	18900	5	16-QAM	1	0	22.25	0-1	1
	1880.0	18900	5	16-QAM	1	12	22.28	0-1	1
	1880.0	18900	5	16-QAM	1	24	22.30	0-1	1
	1880.0	18900	5	16-QAM	12	0	21.45	0-2	2
	1880.0	18900	5	16-QAM	12	6	21.38	0-2	2
	1880.0	18900	5	16-QAM	12	13	21.40	0-2	2
	1880.0	18900	5	16-QAM	25	0	21.35	0-2	2
	1907.5	19175	5	QPSK	1	0	23.47	0	0
	1907.5	19175	5	QPSK	1	12	23.49	0	0
	1907.5	19175	5	QPSK	1	24	23.50	0	0
	1907.5	19175	5	QPSK	12	0	22.49	0-1	1
	1907.5	19175	5	QPSK	12	6	22.56	0-1	1
	1907.5	19175	5	QPSK	12	13	22.56	0-1	1
High	1907.5	19175	5	QPSK	25	0	22.55	0-1	1
Ĩ	1907.5	19175	5	16-QAM	1	0	22.60	0-1	1
	1907.5	19175	5	16-QAM	1	12	22.35	0-1	1
	1907.5	19175	5	16-QAM	1	24	22.28	0-1	1
	1907.5	19175	5	16-QAM	12	0	21.30	0-2	2
	1907.5	19175	5	16-QAM	12	6	21.38	0-2	2
	1907.5	19175	5	16-QAM	12	13	21.52	0-2	2
	1907.5	19175	5	16-QAM	25	0	21.49	0-2	2

9.3.5 LTE Band 7

Table 9-13 LTE Band 7 Conducted Powers - 20 MHz Bandwidth

١	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	2510	20850	20	QPSK	1	0	23.29	0	0
	2510	20850	20	QPSK	1	49	23.37	0	0
	2510	20850	20	QPSK	1	99	23.40	0	0
ſ	2510	20850	20	QPSK	50	0	22.06	0-1	1
ſ	2510	20850	20	QPSK	50	25	22.13	0-1	1
ı	2510	20850	20	QPSK	50	50	22.09	0-1	1
NO.	2510	20850	20	QPSK	100	0	22.01	0-1	1
೨	2510	20850	20	16QAM	1	0	21.81	0-1	1
ı	2510	20850	20	16QAM	1	49	22.01	0-1	1
	2510	20850	20	16QAM	1	99	22.00	0-1	1
ſ	2510	20850	20	16QAM	50	0	21.08	0-2	2
ſ	2510	20850	20	16QAM	50	25	21.17	0-2	2
ı	2510	20850	20	16QAM	50	50	21.12	0-2	2
ı	2510	20850	20	16QAM	100	0	21.09	0-2	2
	2535.0	21100	20	QPSK	1	0	23.42	0	0
ı	2535.0	21100	20	QPSK	1	49	23.54	0	0
ı	2535.0	21100	20	QPSK	1	99	23.65	0	0
ı	2535.0	21100	20	QPSK	50	0	22.18	0-1	1
ı	2535.0	21100	20	QPSK	50	25	22.24	0-1	1
ı	2535.0	21100	20	QPSK	50	50	22.31	0-1	1
σ,	2535.0	21100	20	QPSK	100	0	22.22	0-1	1
β	2535.0	21100	20	16QAM	1	0	21.81	0-1	1
ı	2535.0	21100	20	16QAM	1	49	21.93	0-1	1
ı	2535.0	21100	20	16QAM	1	99	22.06	0-1	1
ı	2535.0	21100	20	16QAM	50	0	21.08	0-2	2
ı	2535.0	21100	20	16QAM	50	25	21.17	0-2	2
ı	2535.0	21100	20	16QAM	50	50	21.16	0-2	2
ı	2535.0	21100	20	16QAM	100	0	21.09	0-2	2
7	2560	21350	20	QPSK	1	0	23.55	0	0
ŀ	2560	21350	20	QPSK	1	49	23.61	0	0
ŀ	2560	21350	20	QPSK	1	99	23.70	0	0
ŀ	2560	21350	20	QPSK	50	0	22.43	0-1	1
ŀ	2560	21350	20	QPSK	50	25	22.49	0-1	1
ŀ	2560	21350	20	QPSK	50	50	22.47	0-1	1
ے	2560	21350	20	QPSK	100	0	22.35	0-1	1
High	2560	21350	20	16QAM	1	0	22.01	0-1	1
ŀ	2560	21350	20	16QAM	1	49	22.12	0-1	1
ŀ	2560	21350	20	16QAM	1	99	22.16	0-1	1
ŀ	2560	21350	20	16QAM	50	0	21.27	0-1	2
ŀ	2560	21350	20	16QAM	50	25	21.33	0-2	2
ŀ	2560	21350	20	16QAM	50	50	21.28	0-2	2
ŀ	2560	21350	20	16QAM	100	0	21.23	0-2	2

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	L G	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 31 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		rage 31 01 00

Table 9-14
LTE Band 7 Conducted Powers - 15 MHz Bandwidth

		_ Duii	u i o	maucu	ca i oi	W CI 3 -	10 111112	Danuwiu	LI I
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
T	2507.5	20825	15	QPSK	1	0	23.35	0	0
ı	2507.5	20825	15	QPSK	1	36	23.40	0	0
Ī	2507.5	20825	15	QPSK	1	74	23.49	0	0
ı	2507.5	20825	15	QPSK	36	0	22.06	0-1	1
Ī	2507.5	20825	15	QPSK	36	18	22.21	0-1	1
ı	2507.5	20825	15	QPSK	36	37	22.10	0-1	1
: [2507.5	20825	15	QPSK	75	0	22.07	0-1	1
3	2507.5	20825	15	16QAM	1	0	21.83	0-1	1
Γ	2507.5	20825	15	16QAM	1	36	22.04	0-1	1
ſ	2507.5	20825	15	16QAM	1	74	22.03	0-1	1
Γ	2507.5	20825	15	16QAM	36	0	21.06	0-2	2
Ī	2507.5	20825	15	16QAM	36	18	21.25	0-2	2
Γ	2507.5	20825	15	16QAM	36	37	21.21	0-2	2
Ī	2507.5	20825	15	16QAM	75	0	21.14	0-2	2
T	2535.0	21100	15	QPSK	1	0	23.46	0	0
ľ	2535.0	21100	15	QPSK	1	36	23.49	0	0
Ī	2535.0	21100	15	QPSK	1	74	23.57	0	0
ľ	2535.0	21100	15	QPSK	36	0	22.20	0-1	1
Ī	2535.0	21100	15	QPSK	36	18	22.24	0-1	1
ľ	2535.0	21100	15	QPSK	36	37	22.29	0-1	1
ľ	2535.0	21100	15	QPSK	75	0	22.20	0-1	1
ŀ	2535.0	21100	15	16QAM	1	0	21.90	0-1	1
Ī	2535.0	21100	15	16QAM	1	36	21.95	0-1	1
İ	2535.0	21100	15	16QAM	1	74	21.99	0-1	1
Ī	2535.0	21100	15	16QAM	36	0	21.08	0-2	2
Ī	2535.0	21100	15	16QAM	36	18	21.21	0-2	2
Ī	2535.0	21100	15	16QAM	36	37	21.24	0-2	2
Ī	2535.0	21100	15	16QAM	75	0	21.21	0-2	2
T	2562.5	21375	15	QPSK	1	0	23.51	0	0
t	2562.5	21375	15	QPSK	1	36	23.63	0	0
ľ	2562.5	21375	15	QPSK	1	74	23.65	0	0
ľ	2562.5	21375	15	QPSK	36	0	22.46	0-1	1
ľ	2562.5	21375	15	QPSK	36	18	22.52	0-1	1
İ	2562.5	21375	15	QPSK	36	37	22.42	0-1	1
ŀ	2562.5	21375	15	QPSK	75	0	22.37	0-1	1
Ť	2562.5	21375	15	16QAM	1	0	22.02	0-1	1
ľ	2562.5	21375	15	16QAM	1	36	22.09	0-1	1
ľ	2562.5	21375	15	16QAM	1	74	22.15	0-1	1
İ	2562.5	21375	15	16QAM	36	0	21.32	0-2	2
ľ	2562.5	21375	15	16QAM	36	18	21.33	0-2	2
ľ	2562.5	21375	15	16QAM	36	37	21.26	0-2	2
t	2562.5	21375	15	16QAM	75	0	21.19	0-2	2

Table 9-15 LTE Band 7 Conducted Powers - 10 MHz Bandwidth

	Frequency	Channel	Bandwidth	Modulation	RB Size	RB Offset	Conducted	MPR Allowed per	MPR [dB]
_	[MHz]		[MHz]				Power [dBm]	3GPP [dB]	
ŀ	2505	20800	10	QPSK	1	0	23.39	0	0
L	2505	20800	10	QPSK	1	25	23.50	0	0
ŀ	2505	20800	10	QPSK	1	49	23.52	0	0
L	2505	20800	10	QPSK	25	0	21.96	0-1	1
L	2505	20800	10	QPSK	25	12	22.13	0-1	1
L	2505	20800	10	QPSK	25	25	22.01	0-1	1
8	2505	20800	10	QPSK	50	0	22.17	0-1	1
3 L	2505	20800	10	16QAM	1	0	21.73	0-1	1
L	2505	20800	10	16QAM	1	25	21.95	0-1	1
L	2505	20800	10	16QAM	1	49	21.96	0-1	11
L	2505	20800	10	16QAM	25	0	21.14	0-2	2
L	2505	20800	10	16QAM	25	12	21.15	0-2	2
	2505	20800	10	16QAM	25	25	21.16	0-2	2
Г	2505	20800	10	16QAM	50	0	21.07	0-2	2
П	2535.0	21100	10	QPSK	1	0	23.24	0	0
Ī	2535.0	21100	10	QPSK	1	25	23.47	0	0
ı	2535.0	21100	10	QPSK	1	49	23.51	0	0
Ī	2535.0	21100	10	QPSK	25	0	22.15	0-1	1
ı	2535.0	21100	10	QPSK	25	12	22.17	0-1	1
ı	2535.0	21100	10	QPSK	25	25	22.24	0-1	1
. 1	2535.0	21100	10	QPSK	50	0	22.19	0-1	1
2	2535.0	21100	10	16QAM	1	0	21.81	0-1	1
ı	2535.0	21100	10	16QAM	1	25	21.82	0-1	1
ı	2535.0	21100	10	16QAM	1	49	21.87	0-1	1
ı	2535.0	21100	10	16QAM	25	0	21.10	0-2	2
ı	2535.0	21100	10	16QAM	25	12	21.13	0-2	2
ı	2535.0	21100	10	16QAM	25	25	21.16	0-2	2
ı	2535.0	21100	10	16QAM	50	0	21.09	0-2	2
7	2565	21400	10	QPSK	1	0	23.59	0	0
ŀ	2565	21400	10	QPSK	1	25	23.55	0	0
ŀ	2565	21400	10	QPSK	1	49	23.61	0	0
ŀ	2565	21400	10	QPSK	25	0	22.54	0-1	1
ŀ	2565	21400	10	QPSK	25	12	22.47	0-1	1
ŀ	2565	21400	10	QPSK	25	25	22.47	0-1	1
- F	2565	21400	10	QPSK	50	0	22.33	0-1 0-1	1
L .	2565	21400	10	16QAM	1	0	22.34	0-1	1
- -			_						
ŀ	2565	21400	10	16QAM	1	25	22.12	0-1	
ŀ	2565	21400	10	16QAM	1 0 0 0 0 0	49	22.07	0-1	11
ŀ	2565	21400	10	16QAM	25	0	21.37	0-2	2
ŀ	2565	21400	10	16QAM	25	12	21.23	0-2	2
ŀ	2565	21400	10	16QAM	25	25	21.21	0-2	2
┙	2565	21400	10	16QAM	50	0	21.16	0-2	2

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 22 of 60
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Page 32 of 68

Table 9-16
LTE Band 7 Conducted Powers - 5 MHz Bandwidth

			<u> 10 7 0 </u>	onauci	.cu i c	WCIS	O MITTE	Danuwiui	• •
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	2502.5	20775	5	QPSK	1	0	23.37	0	0
	2502.5	20775	5	QPSK	1	12	23.52	0	0
	2502.5	20775	5	QPSK	1	24	23.47	0	0
	2502.5	20775	5	QPSK	12	0	22.30	0-1	1
	2502.5	20775	5	QPSK	12	6	22.12	0-1	1
	2502.5	20775	5	QPSK	12	13	22.09	0-1	1
Low	2502.5	20775	5	QPSK	25	0	22.25	0-1	1
2	2502.5	20775	5	16-QAM	1	0	21.82	0-1	1
	2502.5	20775	5	16-QAM	1	12	21.86	0-1	1
	2502.5	20775	5	16-QAM	1	24	22.00	0-1	1
	2502.5	20775	5	16-QAM	12	0	20.85	0-2	2
	2502.5	20775	5	16-QAM	12	6	21.01	0-2	2
	2502.5	20775	5	16-QAM	12	13	21.08	0-2	2
	2502.5	20775	5	16-QAM	25	0	21.04	0-2	2
	2535.0	21100	5	QPSK	1	0	23.47	0	0
	2535.0	21100	5	QPSK	1	12	23.48	0	0
	2535.0	21100	5	QPSK	1	24	23.51	0	0
	2535.0	21100	5	QPSK	12	0	22.20	0-1	1
	2535.0	21100	5	QPSK	12	6	22.13	0-1	1
	2535.0	21100	5	QPSK	12	13	22.16	0-1	1
ъ	2535.0	21100	5	QPSK	25	0	22.19	0-1	1
Mid	2535.0	21100	5	16-QAM	1	0	21.87	0-1	1
	2535.0	21100	5	16-QAM	1	12	21.85	0-1	1
	2535.0	21100	5	16-QAM	1	24	21.95	0-1	1
	2535.0	21100	5	16-QAM	12	0	20.93	0-2	2
	2535.0	21100	5	16-QAM	12	6	21.05	0-2	2
	2535.0	21100	5	16-QAM	12	13	21.11	0-2	2
	2535.0	21100	5	16-QAM	25	0	21.12	0-2	2
П	2567.5	21425	5	QPSK	1	0	23.54	0	0
	2567.5	21425	5	QPSK	1	12	23.56	0	0
	2567.5	21425	5	QPSK	1	24	23.48	0	0
	2567.5	21425	5	QPSK	12	0	22.11	0-1	1
	2567.5	21425	5	QPSK	12	6	22.07	0-1	1
	2567.5	21425	5	QPSK	12	13	22.26	0-1	1
듄	2567.5	21425	5	QPSK	25	0	22.21	0-1	1
High	2567.5	21425	5	16-QAM	1	0	21.83	0-1	1
	2567.5	21425	5	16-QAM	1	12	21.86	0-1	1
	2567.5	21425	5	16-QAM	1	24	21.86	0-1	1
	2567.5	21425	5	16-QAM	12	0	20.91	0-2	2
	2567.5	21425	5	16-QAM	12	6	21.13	0-2	2
	2567.5	21425	5	16-QAM	12	13	21.07	0-2	2
	2567.5	21425	5	16-QAM	25	0	21.19	0-2	2

FCC ID: ZNFD850	PCTEST.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 33 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	rage 33 01 00

LTE Carrier Aggregation Conducted Powers

LTE Carrier Aggregation Conducted Powers - Band 2 (PCC) + Band 17 (SCC) 10 MHz BW

	Rel. 10 Band 2 (PCC	Rel. 8 Band 2, 10 MHz			
HBH	1905 MHz / ch.19150 + 740.0 MHz /ch.5790	PCC UL# RB	PCC UL RB Offset	Tx. Power (dBm)	Tx. Power (dBm)
PCC	1903 IVINZ / CIT. 19130 + 740.0 IVINZ / CIT. 3790	1	0	23.64	23.70

Table 9-18

LTE Carrier Aggregation Conducted Powers - Band 2 (PCC) + Band 29 (SCC) 10 MHz BW

	Rel. 10 Band 2 (PCC	Rel. 8 Band 2 , 10 MHz			
HSH	1905 MHz /ch.19150 + 722.0 MHz / ch. 9710	PCC UL# RB	PCC UL RB Offset	Tx. Power (dBm)	Tx. Power (dBm)
PCC	1905 MINZ / CN. 19150 + 722.0 MINZ / CN. 9710	1	0	23.68	23.70

Table 9-19

LTE Carrier Aggregation Conducted Powers - Band 4 (PCC) + Band 17 (SCC) 10 MHz BW

	Rel. 10 Band 4 (PC	Rel. 8 Band 4 , 10 MHz			
Mid	≥ 1722 E MHz / ch 2017E + 740 0 MHz /ch E700	PCC UL# RB	PCC UL RB Offset	Tx. Power (dBm)	Tx. Power (dBm)
PCC		1	25	24.49	24.48

Table 9-20

LTE Carrier Aggregation Conducted Powers - Band 4 (PCC) + Band 29 (SCC) 10 MHz BW

	Rel. 10 Band 4 (PCC	Rel. 8 Band 4 , 10 MHz			
Mid	1723 F Mills / ch 2017F + 722 O Mills / ch 0740	PCC UL# RB	PCC UL RB Offset	Tx. Power (dBm)	Tx. Power (dBm)
PCC	1732.5 MHz / ch.20175 + 722.0 MHz / ch. 9710	1	25	24.50	24.48

Table 9-21

LTE Carrier Aggregation Conducted Powers - Band 17 (PCC) + Band 2 (SCC) 10 MHz RW

	LIL Carrier Aggregation Conduct	led Fowers	Ballu II (FC	C) + Dallu 2 (300) IO WILL DAY
	Rel. 10 Band 17 (PC	Rel. 8 Band 17, 10 MHz			
MID	710.0 MHz /ch.23790 + 1960 MHz / ch.900	PCC UL# RB	PCC UL RB Offset	Tx. Power (dBm)	Tx. Power (dBm)
PCC	/10.0 MHz / CH.25/90 + 1900 MHz / CH.900	1	49	24.09	24.20

Notes:

- 1. The device does not support all Rel. 10 Carrier Aggregation features due to modem chipset limitation.
- 2. The device only supports downlink Carrier Aggregation. Uplink Carrier Aggregation is not supported. Power measurements were performed with two DL carriers for the Release 8 configuration that had the highest output power (across all bandwidths, channels and RB Configurations) for each band
- 3. This device only supports inter-band CA with 2 carriers (B2+B17, B2+B29, B4+B17, B4+B29, B17+B2) with a maximum of 10 MHz of spectrum.
- 4. All control and acknowledge data is sent on uplink channels that operate identical to release 8 specifications.

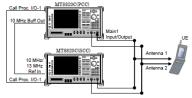


Figure 9-3 **Power Measurement Setup**

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 34 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Fage 34 01 00

9.4 WLAN Conducted Powers

Table 9-22 IEEE 802.11b Average RF Power

:=== 002:::18										
	F		802.11b Conducted Power [dBm]							
Mode	Freq [MHz]	Channel	Data Rate [Mbps]							
	[WIT12]		1	2	5.5	11				
802.11b	2412	1*	16.09	16.15	16.18	16.05				
802.11b	2437	6*	16.22	16.21	16.29	16.21				
802.11b	2462	11*	16.24	16.17	16.25	16.18				

Table 9-23 IEEE 802.11g Average RF Power

	:=== 00=:::g / (10:ago : (1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :												
Mode Freq [MHz]	-		802.11g Conducted Power [dBm]										
	Channel		Data Rate [Mbps]										
	[1411 12]		6	9	12	18	24	36	48	54			
802.11g	2412	1	13.42	13.47	13.41	13.45	13.46	13.41	13.47	13.49			
802.11g	2437	6	13.35	13.40	13.31	13.34	13.30	13.22	13.32	13.35			
802.11g	2462	11	13.14	13.23	13.19	13.27	13.28	13.20	13.29	13.25			

Table 9-24 IEEE 802.11n Average RF Power

Mode Freq	F		802.11n (2.4GHz) Conducted Power [dBm]										
	Channel		Data Rate [Mbps]										
	[WIT12]		6.5	13	19.5	26	39	52	58.5	65			
802.11n	2412	1	12.44	12.41	12.45	12.36	12.45	12.42	12.45	12.48			
802.11n	2437	6	12.48	12.38	12.43	12.34	12.39	12.35	12.42	12.46			
802.11n	2462	11	12.41	12.39	12.36	12.29	12.31	12.27	12.33	12.37			

Table 9-25 IEEE 802.11a Average RF Power

				JUZ. 11a			ted Power	[dBm]		
Mode	Freq [MHz]	Channel				Data Rat	e [Mbps]			
	[IVITIZ]		6	9	12	18	24	36	48	54
802.11a	5180	36*	12.98	12.90	12.95	12.92	12.99	12.91	12.88	12.85
802.11a	5200	40	12.99	12.87	12.89	12.90	12.93	12.98	12.99	12.79
802.11a	5220	44	12.88	12.82	12.84	12.87	12.86	12.86	12.86	12.73
802.11a	5240	48*	12.94	12.84	12.83	12.92	12.96	12.90	12.92	12.74
802.11a	5260	52*	12.95	12.89	12.85	12.88	12.92	12.90	12.80	12.83
802.11a	5280	56	12.81	12.59	12.65	12.71	12.72	12.74	12.54	12.63
802.11a	5300	60	12.87	12.69	12.68	12.85	12.80	12.75	12.65	12.58
802.11a	5320	64*	12.84	12.66	12.64	12.73	12.76	12.65	12.54	12.61
802.11a	5500	100	12.63	12.64	12.60	12.58	12.52	12.60	12.57	12.60
802.11a	5520	104*	12.59	12.58	12.61	12.54	12.56	12.54	12.48	12.59
802.11a	5540	108	12.69	12.70	12.70	12.67	12.61	12.63	12.62	12.69
802.11a	5560	112	12.49	12.53	12.47	12.51	12.35	12.45	12.44	12.52
802.11a	5580	116*	12.55	12.52	12.53	12.43	12.49	12.54	12.52	12.51
802.11a	5600	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5620	124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5640	128	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5660	132	12.45	12.49	12.49	12.48	12.34	12.42	12.39	12.43
802.11a	5680	136*	12.42	12.48	12.45	12.36	12.27	12.47	12.30	12.36
802.11a	5700	140	12.50	12.53	12.41	12.47	12.33	12.45	12.46	12.50
802.11a	5745	149*	12.57	12.52	12.52	12.56	12.49	12.48	12.48	12.52
802.11a	5765	153	12.44	12.34	12.45	12.35	12.40	12.34	12.39	12.37
802.11a	5785	157*	12.49	12.42	12.42	12.44	12.37	12.43	12.44	12.39
802.11a	5805	161	12.57	12.52	12.58	12.56	12.53	12.48	12.47	12.51
802.11a	5825	165*	12.60	12.55	12.53	12.60	12.54	12.54	12.49	12.54

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 35 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Fage 35 01 66

Per FCC KDB Publication 443999 and RSS-210 A9.2(3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Band.

(*) – indicates default channels per KDB Publication 248227 D01v01r02. When the adjacent channels are higher in power then the default channels, these "required channels" are considered for SAR testing instead of the default channels.

Table 9-26
IEEE 802.11n Average RF Power – 20 MHz Bandwidth

		IEEE 8	02.11n A									
	Freq			20M	Hz BW 802	.11n (5GHz) Conducte	ed Power [c	dBm]			
MODA	[MHz]	Channel	Data Rate [Mbps]									
	[2]		6.5	13	19.5	26	39	52	58.5	65		
802.11n	5180	36	11.98	11.92	11.97	11.92	11.83	11.80	11.78	11.97		
802.11n	5200	40	11.87	11.86	11.84	11.72	11.74	11.65	11.61	11.78		
802.11n	5220	44	11.92	11.80	11.85	11.81	11.79	11.74	11.72	11.89		
802.11n	5240	48	11.77	11.61	11.82	11.71	11.63	11.58	11.63	11.68		
802.11n	5260	52	11.88	11.83	11.91	11.90	11.94	11.82	11.88	11.90		
802.11n	5280	56	11.86	11.88	11.92	11.94	11.93	11.74	11.79	11.93		
802.11n	5300	60	11.82	11.72	11.91	11.87	11.89	11.79	11.76	11.85		
802.11n	5320	64	11.76	11.74	11.81	11.77	11.80	11.67	11.82	11.78		
802.11n	5500	100	11.78	11.82	11.78	11.78	11.80	11.77	11.74	11.62		
802.11n	5520	104	11.84	11.89	11.80	11.79	11.85	11.79	11.76	11.64		
802.11n	5540	108	11.82	11.88	11.95	11.83	11.83	11.81	11.75	11.65		
802.11n	5560	112	11.66	11.74	11.75	11.67	11.63	11.62	11.69	11.50		
802.11n	5580	116	11.71	11.65	11.73	11.73	11.74	11.67	11.71	11.55		
802.11n	5600	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
802.11n	5620	124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
802.11n	5640	128	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
802.11n	5660	132	11.57	11.50	11.52	11.50	11.64	11.53	11.49	11.44		
802.11n	5680	136	11.60	11.55	11.64	11.56	11.61	11.54	11.60	11.37		
802.11n	5700	140	11.66	11.68	11.74	11.67	11.70	11.64	11.60	11.56		
802.11n	5745	149	11.66	11.67	11.69	11.62	11.61	11.57	11.58	11.54		
802.11n	5765	153	11.64	11.71	11.66	11.63	11.62	11.59	11.57	11.49		
802.11n	5785	157	11.65	11.68	11.70	11.62	11.55	11.51	11.51	11.53		
802.11n	5805	161	11.62	11.60	11.59	11.54	11.56	11.55	11.54	11.57		
802.11n	5825	165	11.02	11.09	11.05	10.95	10.97	10.91	10.96	10.87		

Table 9-27
IEEE 802.11n Average RF Power – 40 MHz Bandwidth

F	Freq			40MF	Iz BW 802.	11n (5GHz) Conducte	d Power [[dBm]			
Mode	[MHz]	Channel	Data Rate [Mbps]									
			13.5	27	40.5	54	81	108	121.5	135		
802.11n	5190	38	11.92	11.89	11.91	11.97	11.95	11.98	11.95	11.94		
802.11n	5230	46	11.90	11.86	11.95	11.90	11.94	11.88	11.93	11.85		
802.11n	5270	54	11.92	11.91	11.87	11.89	11.91	11.85	11.82	11.88		
802.11n	5310	62	11.87	11.97	11.95	11.87	11.95	11.92	11.88	11.94		
802.11n	5510	102	11.96	11.72	11.08	11.21	11.17	11.22	11.25	11.40		
802.11n	5550	110	11.95	11.71	11.04	11.24	11.13	11.22	11.22	11.38		
802.11n	5590	118	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
802.11n	5630	126	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
802.11n	5670	134	11.78	11.59	10.99	11.07	10.99	11.09	11.12	11.26		
802.11n	5755	151	11.63	11.70	11.83	11.70	11.72	11.72	11.66	11.73		
802.11n	5795	159	11.84	11.93	11.99	11.82	11.99	11.84	11.86	11.90		

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 36 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	rage 30 01 00

Table 9-28 IEEE 802.11ac Average RF Power - 80 MHz Bandwidth

			<u> </u>	i iuo Ai	reruge i		,, 00 11	III IZ Dai	amiatii			
_	F				80MI	Hz BW 802.	11ac (5GHz	z) Conduct	ed Power [dBm]		
Mode	Freq [MHz]	Channel					Data Rat	e [Mbps]				
	[IVIT12]		29.3	58.5	87.8	117	175.5	234	263.3	292.5	351	390
802.11ac	5210	42	11.96	11.85	11.91	11.79	11.91	11.85	11.75	11.77	11.78	11.74
802.11ac	5290	58	11.84	11.74	11.88	11.95	11.84	11.93	11.90	11.87	11.81	11.79
802.11ac	5530	106	11.72	11.76	11.60	11.49	11.46	11.70	11.51	11.65	11.74	11.73
802.11ac	5775	155	11.85	11.83	11.94	11.92	11.91	11.94	11.84	11.79	11.92	11.76

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012/April 2013 FCC/TCB Meeting Notes:

- For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11q/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- For 5 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11a were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11n 20 MHz and 40 MHz) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE
- Full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.
- When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- The bolded data rate and channel above were tested for SAR.

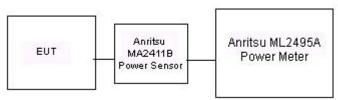


Figure 9-4 Power Measurement Setup for Bandwidths < 50 MHz

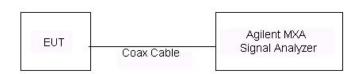


Figure 9-5 Power Measurement Setup for Bandwidths > 50 MHz

FCC ID: ZNFD850	PCTEST INCIDENT AND ADDRAGET, INC.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 37 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Fage 37 01 00

10 SYSTEM VERIFICATION

10.1 Tissue Verification

Table 10-1 Measured Head Tissue Properties

				<u>ua 1133uc 1</u>					
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (C°)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	%devε
			710	0.857	41.218	0.890	42.149	-3.71%	-2.21%
5/16/2014	750H	21.9	725	0.869	41.015	0.891	42.071	-2.47%	-2.51%
3/10/2014	73011	21.9	740	0.882	40.799	0.893	41.994	-1.23%	-2.85%
			755	0.896	40.606	0.894	41.916	0.22%	-3.13%
			820	0.890	41.136	0.899	41.578	-1.00%	-1.06%
5/14/2014	835H	21.9	835	0.905	40.853	0.900	41.500	0.56%	-1.56%
			850	0.919	40.724	0.916	41.500	0.33%	-1.87%
			820	0.922	43.130	0.899	41.578	2.56%	3.73%
5/21/2014	835H	22.4	835	0.940	42.984	0.900	41.500	4.44%	3.58%
			850	0.955	42.821	0.916	41.500	4.26%	3.18%
			1710	1.369	40.722	1.348	40.142	1.56%	1.44%
5/14/2014	1750H	22.2	1750	1.413	40.514	1.371	40.079	3.06%	1.09%
			1790	1.456	40.321	1.394	40.016	4.45%	0.76%
			1850	1.397	40.270	1.400	40.000	-0.21%	0.68%
5/19/2014	1900H	22.8	1880	1.427	40.125	1.400	40.000	1.93%	0.31%
			1910	1.462	40.036	1.400	40.000	4.43%	0.09%
			2401	1.763	38.663	1.756	39.287	0.40%	-1.59%
5/5/2014	2450H	21.9	2450	1.818	38.487	1.800	39.200	1.00%	-1.82%
			2499	1.871	38.296	1.853	39.138	0.97%	-2.15%
			2401	1.771	39.180	1.756	39.287	0.85%	-0.27%
			2450	1.824	38.997	1.800	39.200	1.33%	-0.52%
			2499	1.883	38.682	1.853	39.138	1.62%	-1.17%
5/20/2014	2450H - 2600H	21.9	2500	1.884	38.687	1.855	39.136	1.56%	-1.15%
			2550	1.943	38.698	1.909	39.073	1.78%	-0.96%
			2600	1.997	38.348	1.964	39.009	1.68%	-1.69%
			5200	4.563	36.659	4.655	35.986	-1.98%	1.87%
			5220	4.596	36.629	4.676	35.963	-1.71%	1.85%
			5260	4.638	36.641	4.717	35.917	-1.67%	2.02%
			5280	4.645	36.617	4.737	35.894	-1.94%	2.01%
			5300	4.649	36.515	4.758	35.871	-2.29%	1.80%
			5500	4.861	36.288	4.963	35.643	-2.06%	1.81%
			5520	4.878	36.257	4.983	35.620	-2.11%	1.79%
05/14/2014	5200H-5800H	23.9	5540	4.888	36.251	5.004	35.597	-2.32%	1.84%
00/14/2014	3200H-3000H	20.0	5580	4.920	36.166	5.045	35.551	-2.48%	1.73%
			5600 5700	4.952 5.037	36.142 36.002	5.065 5.168	35.529 35.414	-2.23% -2.53%	1.73% 1.66%
			5700	5.109	35.952	5.100	35.363	-2.01%	1.67%
			5765	5.113	35.944	5.234	35.340	-2.31%	1.71%
			5785	5.121	35.971	5.255	35.317	-2.55%	1.85%
			5800	5.130	35.894	5.270	35.300	-2.66%	1.68%
			5805	5.133	35.894	5.275	35.294	-2.69%	1.70%
			5825	5.157	35.852	5.296	35.271	-2.62%	1.65%

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 38 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	rage 36 01 06

Table 10-2
Measured Body Tissue Properties

Measured Body Tissue Properties Calibrated for Measured Measured TARCET TARCET TARCET												
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (C°)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	%dev σ	% dev ε			
			710	0.946	56.654	0.960	55.687	-1.46%	1.74%			
5/13/2014	750B	23.0	725	0.960	56.500	0.961	55.629	-0.10%	1.57%			
3/13/2014	7300	20.0	740	0.972	56.312	0.963	55.570	0.93%	1.34%			
			755	0.986	56.218	0.964	55.512	2.28%	1.27%			
			820	0.954	53.698	0.969	55.258	-1.55%	-2.82%			
5/12/2014	835B	20.6	835	0.969	53.523	0.970	55.200	-0.10%	-3.04%			
			850	0.986	53.419	0.988	55.154	-0.20%	-3.15%			
			1710	1.430	52.767	1.463	53.537	-2.26%	-1.44%			
5/14/2014	1750B	23.1	1750	1.473	52.582	1.488	53.432	-1.01%	-1.59%			
			1790	1.515	52.463	1.514	53.326	0.07%	-1.62%			
			1850	1.482	55.234	1.520	53.300	-2.50%	3.63%			
5/8/2014	1900B	22.7	1880	1.530	55.093	1.520	53.300	0.66%	3.36%			
			1910	1.575	54.890	1.520	53.300	3.62%	2.98%			
			1850	1.481	55.209	1.520	53.300	-2.57%	3.58%			
5/12/2014	1900B	22.7	1880	1.529	55.030	1.520	53.300	0.59%	3.25%			
			1910	1.566	54.825	1.520	53.300	3.03%	2.86%			
			1850	1.513	51.993	1.520	53.300	-0.46%	-2.45%			
5/19/2014	1900B	22.0	1880	1.549	51.889	1.520	53.300	1.91%	-2.65%			
			1910	1.583	51.772	1.520	53.300	4.14%	-2.87%			
			2401	1.975	51.293	1.903	52.765	3.78%	-2.79%			
5/5/2014	2450B	23.1	2450	2.045	51.139	1.950	52.700	4.87%	-2.96%			
			2499	2.111	50.936	2.019	52.638	4.56%	-3.23%			
			2401	1.953	51.769	1.903	52.765	2.63%	-1.89%			
			2450	2.027	51.641	1.950	52.700	3.95%	-2.01%			
5/21/2014	2450B - 2600B	23.3	2499	2.108	51.460	2.019	52.638	4.41%	-2.24%			
	24000 20000	20.0	2500	2.109	51.474	2.021	52.636	4.35%	-2.21%			
			2550	2.179	51.296	2.092	52.573	4.16%	-2.43%			
			2600	2.263	51.154	2.163	52.509	4.62%	-2.58%			
			5200	5.155	47.532	5.299	49.014	-2.72%	-3.02%			
			5220	5.196	47.475	5.323	48.987	-2.39%	-3.09%			
			5260	5.248	47.248	5.369	48.933	-2.25%	-3.44%			
			5280	5.287	47.108	5.393	48.906	-1.97%	-3.68%			
			5300	5.340	46.950	5.416	48.879	-1.40%	-3.95%			
			5500	5.788	46.207	5.650	48.607	2.44%	-4.94%			
05/06/2014	5200B-5800B	22.8	5520	5.831	46.183	5.673	48.580	2.79%	-4.93%			
30/00/2017	22002-0000	22.0	5540	5.869	46.142	5.696	48.553	3.04%	-4.97%			
			5745	6.206	46.366	5.936	48.275	4.55%	-3.95%			
			5765	6.224	46.405	5.959	48.248	4.45%	-3.82%			
			5785	6.230	46.482	5.982	48.220	4.15%	-3.60%			
			5800	6.248	46.492	6.000	48.200	4.13%	-3.54%			
			5805	6.255	46.497	6.006	48.193	4.15%	-3.52%			
			5825	6.263	46.485	6.029	48.166	3.88%	-3.49%			

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software

FCC ID: ZNFD850	PCTEST INDICATED LADOLATORY, INC.	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 39 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Fage 39 01 00

10.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 10-3
System Verification Results

						system Ve		D				
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
К	750	HEAD	05/16/2014	23.8	21.9	0.100	1003	3287	0.796	8.370	7.960	-4.90%
С	835	HEAD	05/14/2014	22.5	21.9	0.100	4d133	3213	0.964	9.620	9.640	0.21%
G	835	HEAD	05/21/2014	20.5	21.9	0.100	4d119	3258	0.934	9.220	9.340	1.30%
G	1750	HEAD	05/14/2014	23.0	22.4	0.100	1051	3258	3.460	36.200	34.600	-4.42%
G	1900	HEAD	05/19/2014	24.0	22.5	0.100	5d149	3258	3.910	40.400	39.100	-3.22%
Н	2450	HEAD	05/05/2014	23.3	22.5	0.100	797	3589	5.080	51.800	50.800	-1.93%
К	2450	HEAD	05/20/2014	24.1	22.2	0.100	797	3287	5.530	51.800	55.300	6.76%
К	2600	HEAD	05/20/2014	24.1	22.2	0.100	1004	3287	5.590	57.300	55.900	-2.44%
E	5200	HEAD	05/14/2014	24.5	24.2	0.100	1057	3914	7.270	78.000	72.700	-6.79%
Е	5300	HEAD	05/14/2014	24.5	24.3	0.100	1057	3914	7.680	83.000	76.800	-7.47%
E	5500	HEAD	05/14/2014	24.4	24.0	0.100	1057	3914	7.670	84.300	76.700	-9.02%
E	5600	HEAD	05/14/2014	24.5	24.0	0.100	1057	3914	7.830	83.500	78.300	-6.23%
E	5800	HEAD	05/14/2014	24.5	24.1	0.100	1057	3914	7.640	79.300	76.400	-3.66%
К	750	BODY	05/13/2014	23.9	23.0	0.100	1003	3333	0.823	8.770	8.230	-6.16%
В	835	BODY	05/12/2014	23.0	21.9	0.100	4d133	3288	0.937	9.610	9.370	-2.50%
J	1750	BODY	05/14/2014	21.5	23.1	0.100	1051	3332	3.890	37.400	38.900	4.01%
В	1900	BODY	05/08/2014	23.3	22.7	0.100	5d148	3288	4.120	39.300	41.200	4.83%
В	1900	BODY	05/12/2014	23.4	22.7	0.100	5d148	3288	3.860	39.300	38.600	-1.78%
Е	1900	BODY	05/19/2014	24.5	22.1	0.100	5d080	3914	4.190	40.300	41.900	3.97%
G	2450	BODY	05/05/2014	24.0	23.1	0.100	797	3258	5.090	49.400	50.900	3.04%
С	2450	BODY	05/21/2014	21.4	23.3	0.100	719	3213	5.210	51.700	52.100	0.77%
С	2600	BODY	05/21/2014	21.4	23.3	0.100	1071	3213	5.410	55.700	54.100	-2.87%
Α	5200	BODY	05/06/2014	23.9	22.5	0.100	1007	3920	7.310	72.600	73.100	0.69%
Α	5300	BODY	05/06/2014	23.9	22.5	0.100	1007	3920	7.450	74.700	74.500	-0.27%
Α	5500	BODY	05/06/2014	23.9	22.5	0.100	1007	3920	7.680	75.900	76.800	1.19%
Α	5800	BODY	05/06/2014	23.9	22.5	0.100	1007	3920	7.320	72.900	73.200	0.41%

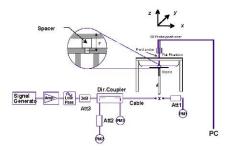


Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 40 of 60
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 40 of 68

11 SAR DATA SUMMARY

11.1 Standalone Head SAR Data

Table 11-1 GSM/GPRS 850 Head SAR

						ME	ASURE	MENT RE	SULTS							
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Cover Type	Device Serial	# of Time	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Number	Slots	Cycle	(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GSM	33.2	33.18	-0.09	Right	Cheek	Standard	605-5	1	1:8.3	0.286	1.005	0.287	
836.60	190	GSM 850	GSM	33.2	33.18	-0.16	Right	Cheek	WCC Open	605-5	1	1:8.3	0.271	1.005	0.272	
836.60	190	GSM 850	GSM	33.2	33.18	-0.13	Right	Cheek	WCC Closed	605-5	1	1:8.3	0.272	1.005	0.273	
836.60	190	GSM 850	GSM	33.2	33.18	0.02	Right	Tilt	Standard	605-5	1	1:8.3	0.168	1.005	0.169	
836.60	190	GSM 850	GSM	33.2	33.18	0.03	Left	Cheek	Standard	605-5	1	1:8.3	0.236	1.005	0.237	
836.60	190	GSM 850	GSM	33.2	33.18	0.02	Left	Tilt	Standard	605-5	1	1:8.3	0.162	1.005	0.163	
836.60	190	GSM 850	GPRS	29.2	28.72	-0.17	Right	Cheek	Standard	605-5	3	1:2.76	0.287	1.117	0.321	A1
836.60	190	GSM 850	GPRS	29.2	28.72	-0.09	Right	Cheek	WCC Open	605-5	3	1:2.76	0.264	1.117	0.295	
836.60	190	GSM 850	GPRS	29.2	28.72	-0.10	Right	Cheek	WCC Closed	605-5	3	1:2.76	0.265	1.117	0.296	
836.60	190	GSM 850	GPRS	29.2	28.72	0.04	Right	Tilt	Standard	605-5	3	1:2.76	0.167	1.117	0.187	
836.60	190	GSM 850	GPRS	29.2	28.72	0.03	Left	Cheek	Standard	605-5	3	1:2.76	0.212	1.117	0.237	
836.60	190	GSM 850	GPRS	29.2	28.72	0.00	Left	Tilt	Standard	605-5	3	1:2.76	0.140	1.117	0.156	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Head W/kg (m) aged over					

Table 11-2 UMTS 850 Head SAR

						МЕ	ASUREM	ENT RES	BULTS						
FREQUI	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power Drift	Side	Test	Cover Type	Device Serial	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Position		Num ber	Cycle	(W/kg)	Factor	(W/kg)	
836.60	4183	UMTS 850	RMC	24.2	23.97	0.01	Right	Cheek	Standard	1505-1	1:1	0.367	1.054	0.387	A2
836.60	4183	UMTS 850	RMC	24.2	23.97	0.06	Right	Cheek	WCC Open	1505-1	1:1	0.330	1.054	0.348	
836.60	4183	UMTS 850	RMC	24.2	23.97	-0.02	Right	Cheek	WCC Closed	1505-1	1:1	0.301	1.054	0.317	
836.60	4183	UMTS 850	RMC	24.2	23.97	0.06	Right	Tilt	Standard	1505-1	1:1	0.214	1.054	0.226	
836.60	4183	UMTS 850	RMC	24.2	23.97	0.02	Left	Cheek	Standard	1505-1	1:1	0.291	1.054	0.307	
836.60	4183	UMTS 850	RMC	24.2	23.97	-0.02	Left	Tilt	Standard	1505-1	1:1	0.195	1.054	0.206	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT										Head				
	Spatial Peak Uncontrolled Exposure/General Population						1.6 W/kg (mW/g) averaged over 1 gram								

FCC ID: ZNFD850	PCTEST INDICATED LADOLATORY, INC.	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 41 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Fage 41 01 00

Table 11-3 UMTS 1750 Head SAR

						<u> </u>	, ,, 0	<u> </u>	u OAIX						
						MEA	SUREM	ENT RES	SULTS						
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted Power	Power	Side	Test	Cover Type	Device Serial	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	[dBm]	Drift [dB]		Position	,,	Number	Cycle	(W/kg)	Factor	(W/kg)	1
1732.40	1412	UMTS 1750	RMC	24.8	24.77	-0.01	Right	Cheek	Standard	605-1	1:1	0.213	1.007	0.214	
1732.40	1412	UMTS 1750	RMC	24.8	24.77	0.19	Right	Tilt	Standard	605-1	1:1	0.162	1.007	0.163	
1732.40	1412	UMTS 1750	RMC	24.8	24.77	0.00	Left	Cheek	Standard	605-1	1:1	0.274	1.007	0.276	A3
1732.40	1412	UMTS 1750	RMC	24.8	24.77	0.07	Left	Cheek	WCC Open	605-1	1:1	0.233	1.007	0.235	
1732.40	1412	UMTS 1750	RMC	24.8	24.77	0.00	Left	Cheek	WCC Closed	605-1	1:1	0.240	1.007	0.242	
1732.40	2.40 1412 UMTS 1750 RMC 24.8 24.77 0.15							Tilt	Standard	605-1	1:1	0.146	1.007	0.147	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Head								
	Spatial Peak									1.6 W	//kg (mV	V/g)			
	Uncontrolled Exposure/General Population							averaged over 1 gram							

Table 11-4 GSM/GPRS 1900 Head SAR

						O1111/ C	,, ,,,	.000	Tieau 5	7 11 1						
						M	EASUR	EMENT F	RESULTS							
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted Power	Power Drift [dB]	Side	Test Position	Cover Type	Device Serial	# of Time	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	[dBm]	υτιπ (αΒ)		Position	,	Number	Slots		(W/kg)	Factor	(W/kg)	
1880.00	661	GSM 1900	GSM	30.7	30.11	-0.10	Right	Cheek	Standard	605-5	1	1:8.3	0.112	1.146	0.128	
1880.00	661	GSM 1900	GSM	30.7	30.11	0.08	Right	Cheek	WCC Open	605-5	1	1:8.3	0.104	1.146	0.119	
1880.00	661	GSM 1900	GSM	30.7	30.11	0.01	Right	Cheek	WCC Closed	605-5	1	1:8.3	0.095	1.146	0.109	
1880.00	661	GSM 1900	GSM	30.7	30.11	0.04	Right	Tilt	Standard	605-5	1	1:8.3	0.042	1.146	0.048	
1880.00	661	GSM 1900	GSM	30.7	30.11	0.03	Left	Cheek	Standard	605-5	1	1:8.3	0.072	1.146	0.083	
1880.00	661	GSM 1900	GSM	30.7	30.11	0.07	Left	Tilt	Standard	605-5	1	1:8.3	0.050	1.146	0.057	
1880.00	661	GSM 1900	GPRS	29.7	29.54	-0.02	Right	Cheek	Standard	605-5	2	1:4.15	0.179	1.038	0.186	A4
1880.00	661	GSM 1900	GPRS	29.7	29.54	-0.02	Right	Cheek	WCC Open	605-5	2	1:4.15	0.135	1.038	0.140	
1880.00	661	GSM 1900	GPRS	29.7	29.54	0.12	Right	Cheek	WCC Closed	605-5	2	1:4.15	0.134	1.038	0.139	
1880.00	661	GSM 1900	GPRS	29.7	29.54	-0.06	Right	Tilt	Standard	605-5	2	1:4.15	0.063	1.038	0.065	
1880.00	661	GSM 1900	GPRS	29.7	29.54	-0.02	Left	Cheek	Standard	605-5	2	1:4.15	0.129	1.038	0.134	
1880.00	661	GSM 1900	GPRS	29.7	29.54	0.03	Left	Tilt	Standard	605-5	2	1:4.15	0.076	1.038	0.079	
		ANSI / IEEE (Spatial Peal	ζ.							•	ad (mW/g) ver 1 gram				

Table 11-5 UMTS 1900 Head SAR

					U	IVI I 3	1900	пеац	SAK						
						MEAS	UREMEN	NT RESU	LTS						
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Cover Type	Device Serial	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	υτιπ (αΒ)		Position	2.	Number		(W/kg)	Factor	(W/kg)	
1880.00	9400	UMTS 1900	RMC	23.7	23.42	-0.08	Right	Cheek	Standard	605-1	1:1	0.265	1.067	0.283	A5
1880.00	9400	UMTS 1900	RMC	23.7	23.42	0.09	Right	Cheek	WCC Open	605-1	1:1	0.224	1.067	0.239	
1880.00	9400	UMTS 1900	RMC	23.7	23.42	-0.13									
1880.00	9400	UMTS 1900	RMC	23.7	23.42	0.02	Right	Tilt	Standard	605-1	1:1	0.098	1.067	0.105	
1880.00	9400	UMTS 1900	RMC	23.7	23.42	0.11	Left	Cheek	Standard	605-1	1:1	0.172	1.067	0.184	
1880.00	9400	UMTS 1900	RMC	23.7	23.42	0.08	Left	Tilt	Standard	605-1	1:1	0.139	1.067	0.148	
		ANSI / IEEE (C95.1 1992 -	SAFETY L	IMIT						Head				
			Spatial Peal	(1.6 W	/kg (mW/g	1)			
	Ur	ncontrolled E	xposure/Ge	neral Popu	lation					average	d over 1 gr	am			

POTEST SEGMENTS LADRAGET, INC.	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:		Dogg 40 of 60
05/05/14 - 05/21/14	Portable Handset		Page 42 of 68
	Test Dates: 05/05/14 - 05/21/14	Test Dates: DUT Type: 05/05/14 - 05/21/14 Portable Handset	Test Dates: DUT Type:

Table 11-6 LTE Band 17 Head SAR

								MEAS	UREMEN	IT RESI	JLTS									
FF	EQUENCY		Mode	Bandwidth [MHz]	Cover Type	Maximum Allowed	Conducted Power	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot#
MHz	С	h.		[Mriz]		Power [dBm]	[dBm]	Drift (db)			Position				Number		(W/kg)	ractor	(W/kg)	
710.00	23790	Mid	LTE Band 17	10	Standard	24.2	24.20	-0.04	0	Right	Cheek	QPSK	1	49	605-12	1:1	0.156	1.000	0.156	
710.00	23790	Mid	LTE Band 17	10	Standard	23.2	22.97	0.07	1	Right	Cheek	QPSK	25	25	605-12	1:1	0.111	1.054	0.117	
710.00	23790	Mid	LTE Band 17	10	Standard	24.2	24.20	0.03	0	Right	Tilt	QPSK	1	49	605-12	1:1	0.112	1.000	0.112	
710.00	23790	Mid	LTE Band 17	10	Standard	23.2	22.97	0.06	1	Right	Tilt	QPSK	25	25	605-12	1:1	0.077	1.054	0.081	
710.00	23790	Mid	LTE Band 17	10	Standard	24.2	24.20	0.03	0	Left	Cheek	QPSK	1	49	605-12	1:1	0.178	1.000	0.178	
710.00	23790	Mid	LTE Band 17	10	WCC Open	24.2	24.20	0.04	0	Left	Cheek	QPSK	1	49	605-12	1:1	0.235	1.000	0.235	A6
710.00	23790	Mid	LTE Band 17	10	WCC Closed	24.2	24.20	0.00	0	Left	Cheek	QPSK	1	49	605-12	1:1	0.219	1.000	0.219	
710.00	23790	Mid	LTE Band 17	10	Standard	23.2	22.97	0.12	1	Left	Cheek	QPSK	25	25	605-12	1:1	0.149	1.054	0.157	
710.00	23790	Mid	LTE Band 17	10	Standard	24.2	24.20	-0.03	0	Left	Tilt	QPSK	1	49	605-12	1:1	0.100	1.000	0.100	
710.00	23790	Mid	LTE Band 17	10	Standard	23.2	22.97	0.01	1	Left	Tilt	QPSK	25	25	605-12	1:1	0.086	1.054	0.091	
			ANSI / I		992 - SAFETY Il Peak	LIMIT	,				•	•			lead kg (mW/g)	•				
			Uncontrol	led Exposur	re/General Po	pulation								averaged	over 1 gram					

Table 11-7 LTE Band 5 (Cell) Head SAR

									1	·· <i>,</i> · ·		O/tit								
							N	MEASUF	REMENT	RESUL	.TS									
FR	EQUENCY		Mode	Bandwidth IMHz1	Cover Type	Maximum Allowed Power	Conducted Power	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cvcle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot#
MHz	CI	١.		[MHZ]		[dBm]	[dBm]	υτιπ (αΒ)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	23.7	23.65	-0.06	0	Right	Cheek	QPSK	1	49	605-15	1:1	0.382	1.012	0.387	
836.50	20525	Mid	LTE Band 5 (Cell)	10	WCC Open	23.7	23.65	0.03	0	Right	Cheek	QPSK	1	49	605-15	1:1	0.411	1.012	0.416	A7
836.50	20525	Mid	LTE Band 5 (Cell)	10	WCC Closed	23.7	23.65	0.00	0	Right	Cheek	QPSK	1	49	605-15	1:1	0.359	1.012	0.363	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	22.7	22.40	-0.01	1	Right	Cheek	QPSK	25	0	605-15	1:1	0.331	1.072	0.355	
836.50 20525 Mid LTE Band 5 (Cell) 10 Standard 23.7 23.65 0.03 0 Right Tilt QPSK												1	49	605-15	1:1	0.237	1.012	0.240		
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	22.7	22.40	0.08	1	Right	Tilt	QPSK	25	0	605-15	1:1	0.196	1.072	0.210	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	23.7	23.65	0.10	0	Left	Cheek	QPSK	1	49	605-15	1:1	0.321	1.012	0.325	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	22.7	22.40	0.06	1	Left	Cheek	QPSK	25	0	605-15	1:1	0.253	1.072	0.271	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	23.7	23.65	-0.03	0	Left	Tilt	QPSK	1	49	605-15	1:1	0.212	1.012	0.215	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	22.7	22.40	-0.09	1	Left	Tilt	QPSK	25	0	605-15	1:1	0.176	1.072	0.189	
				/ IEEE C95.1 Spati	al Peak									1.6 W/k	ead (g (mW/g) over 1 gran	n				

Table 11-8 LTE Band 4 (AWS) Head SAR

								MEAS	UREME		ULTS									
FF	REQUENCY		Mode	Bandwidth [MHz]	Cover Type	Maximum Allowed	Conducted Power	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	De vice Se rial	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	CI	h.		[MINZ]		Power [dBm]	[dBm]	Drint [db]			Position				Number		(W/kg)	ractor	(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	24.5	24.40	0.08	0	Right	Cheek	QPSK	1	50	605-12	1:1	0.133	1.023	0.136	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	23.5	23.31	0.00	1	Right	Cheek	QPSK	50	0	605-12	1:1	0.125	1.045	0.131	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	24.5	24.40	0.01	0	Right	Tilt	QPSK	1	50	605-12	1:1	0.103	1.023	0.105	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	23.5	23.31	0.08	1	Right	Tilt	QPSK	50	0	605-12	1:1	0.088	1.045	0.092	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	24.5	24.40	0.02	0	Left	Cheek	QPSK	1	50	605-12	1:1	0.156	1.023	0.160	A8
1732.50	20175	Mid	LTE Band 4 (AWS)	20	WCC Open	24.5	24.40	0.02	0	Left	Cheek	QPSK	1	50	605-12	1:1	0.136	1.023	0.139	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	WCC Closed	24.5	24.40	-0.02	0	Left	Cheek	QPSK	1	50	605-12	1:1	0.115	1.023	0.118	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	23.5	23.31	0.04	1	Left	Cheek	QPSK	50	0	605-12	1:1	0.126	1.045	0.132	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	24.5	24.40	-0.10	0	Left	Tilt	QPSK	1	50	605-12	1:1	0.099	1.023	0.101	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	23.5	23.31	0.09	1	Left	Tilt	QPSK	50	0	605-12	1:1	0.084	1.045	0.088	
				Spatia	1992 - SAFETY al Peak			į.						1.6 W/I	ead (g (mW/g)					
			Uncontro	olled Exposu	re/General Po	pulation								averaged	over 1 gram					

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 42 of 60
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 43 of 68

Table 11-9 LTE Band 2 (PCS) Head SAR

							Dan	u Z	<u>(i O</u>	<u> </u>	lcau	SAIN								
							N	IEASUR	EMENT	RESUL	.TS									
FR	EQUENCY	1	Mode	Bandwidth [MHz]	Cover Type	Maximum Allowed Power	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)		Scaled SAR (1g)	Plot#
MHz	С	h.				[dBm]	[dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	23.9	23.70	0.08	0	Right	Cheek	QPSK	1	50	605-15	1:1	0.240	1.047	0.251	
1900.00	19100	High	LTE Band 2 (PCS)	20	WCC Open	23.9	23.70	-0.01	0	Right	Cheek	QPSK	1	50	605-15	1:1	0.248	1.047	0.260	A9
1900.00	19100	High	LTE Band 2 (PCS)	20	WCC Closed	23.9	23.70	0.13	0	Right	Cheek	QPSK	1	50	605-15	1:1	0.200	1.047	0.209	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	22.9	22.69	-0.08	1	Right	Cheek	QPSK	50	25	605-15	1:1	0.188	1.050	0.197	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	23.9	23.70	0.06	0	Right	Tilt	QPSK	1	50	605-15	1:1	0.099	1.047	0.104	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	22.9	22.69	0.19	1	Right	Tilt	QPSK	50	25	605-15	1:1	0.069	1.050	0.072	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	23.9	23.70	-0.10	0	Left	Cheek	QPSK	1	50	605-15	1:1	0.159	1.047	0.166	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	22.9	22.69	0.04	1	Left	Cheek	QPSK	50	25	605-15	1:1	0.113	1.050	0.119	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	23.9	23.70	0.02	0	Left	Tilt	QPSK	1	50	605-15	1:1	0.141	1.047	0.148	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	22.9	22.69	0.10	1	Left	Tilt	QPSK	50	25	605-15	1:1	0.103	1.050	0.108	
			AN	SI / IEEE C95.1		Y LIMIT									ead					
			Unco	Spati ntrolled Exposi	al Peak	nulation									:g (mW/g) over 1 gran	n				

Table 11-10 LTE Band 7 Head SAR

							LIL	. Da	iiu <i>i</i>	116	au 5	AI.								
								MEAS	UREME	NT RES	SULTS									
FR	EQUENCY	,	Mode	Bandwidth [MHz]	Cover Type	Maximum Allowed	Conducted Power	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot#
MHz	С	h.		[2]		Power [dBm]	[dBm]	Dink [dD]							Number	Oyun	(W/kg)	1 40101	(W/kg)	
2560.00	21350	High	LTE Band 7	20	Standard	23.7	23.70	0.15	0	Right	Cheek	QPSK	1	99	605-12	1:1	0.111	1.000	0.111	
2560.00	21350	High	LTE Band 7	20	Standard	22.7	22.49	0.03	1	Right	Cheek	QPSK	50	25	605-12	1:1	0.078	1.050	0.082	
2560.00	21350	High	LTE Band 7	20	Standard	23.7	23.70	0.06	0	Right	Tilt	QPSK	1	99	605-12	1:1	0.134	1.000	0.134	
2560.00	21350	High	LTE Band 7	20	Standard	22.7	22.49	-0.09	1	Right	Tilt	QPSK	50	25	605-12	1:1	0.083	1.050	0.087	
2560.00	21350	High	LTE Band 7	20	Standard	23.7	23.70	-0.02	0	Left	Cheek	QPSK	1	99	605-12	1:1	0.182	1.000	0.182	A10
2560.00	21350	High	LTE Band 7	20	WCC Open	23.7	23.70	0.02	0	Left	Cheek	QPSK	1	99	605-12	1:1	0.066	1.000	0.066	
2560.00	21350	High	LTE Band 7	20	WCC Closed	23.7	23.70	-0.16	0	Left	Cheek	QPSK	1	99	605-12	1:1	0.045	1.000	0.045	
2560.00	21350	High	LTE Band 7	20	Standard	22.7	22.49	-0.04	1	Left	Cheek	QPSK	50	25	605-12	1:1	0.130	1.050	0.137	
2560.00	21350	High	LTE Band 7	20	Standard	23.7	23.70	0.04	0	Left	Tilt	QPSK	1	99	605-12	1:1	0.090	1.000	0.090	
2560.00	21350	High	LTE Band 7	20	Standard	22.7	22.49	0.02	1	Left	Tilt	QPSK	50	25	605-12	1:1	0.064	1.050	0.067	
				Spatia	992 - SAFET Il Peak re/General P									1.6 W/k	ead g (mW/g) over 1 gran	n				

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 44 of 69
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Page 44 of 68

Table 11-11 DTS Head SAR

								NT RES								
FREQU		Mode	Service	Maximum Allowed Power (dBm)	Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	Cover Type	Device Serial Number	Data Rate (Mbps)	Duty Cycle		Scaling Factor	. (3,	Plot#
MHz	Ch.	IEEE 000 441	D000		10.01	0.00	D'I-I	01	Otensiani		1	4.4	(W/kg)	4 000	(W/kg)	
2462	11	IEEE 802.11b	DSSS	16.5	16.24	0.02	Right	Cheek	Standard	605-18	-	1:1	0.175	1.062	0.186	
2462	11	IEEE 802.11b	DSSS	16.5	16.24	0.06	Right	Tilt	Standard	605-18	1	1:1	0.164	1.062	0.174	
2462	11	IEEE 802.11b	DSSS	16.5	16.24	0.16	Left	Cheek	Standard	605-18	1	1:1	0.205	1.062	0.218	
2462	11	IEEE 802.11b	DSSS	16.5	16.24	0.13	Left	Cheek	WCC Open	605-18	1	1:1	0.238	1.062	0.253	A11
2462	11	IEEE 802.11b	DSSS	16.5	16.24	0.11	Left	Cheek	WCC Closed	605-18	1	1:1	0.170	1.062	0.181	
2462	11	IEEE 802.11b	DSSS	16.5	16.24	0.01	Left	Tilt	Standard	605-18	1	1:1	0.205	1.062	0.218	
5825	165	IEEE 802.11a	OFDM	13.0	12.60	-0.09	Right	Cheek	Standard	605-18	6	1:1	0.338	1.096	0.370	
5745	149	IEEE 802.11a	OFDM	13.0	12.57	0.02	Right	Tilt	Standard	605-18	6	1:1	0.405	1.104	0.447	A12
5805	161	IEEE 802.11a	OFDM	13.0	12.57	0.10	Right	Tilt	Standard	605-18	6	1:1	0.403	1.104	0.445	
5825	165	IEEE 802.11a	OFDM	13.0	12.60	0.02	Right	Tilt	Standard	605-18	6	1:1	0.398	1.096	0.436	
5745	149	IEEE 802.11a	OFDM	13.0	12.57	0.04	Right	Tilt	WCC Open	605-18	6	1:1	0.306	1.104	0.338	
5745	149	IEEE 802.11a	OFDM	13.0	12.57	0.06	Right	Tilt	WCC Closed	605-18	6	1:1	0.321	1.104	0.354	
5775	155	IEEE 802.11ac	OFDM	12.0	11.85	0.03	Right	Tilt	Standard	605-18	29.3	1:1	0.255	1.035	0.264	
5825	165	IEEE 802.11a	OFDM	13.0	12.60	-0.07	Left	Cheek	Standard	605-18	6	1:1	0.305	1.096	0.334	
5745	149	IEEE 802.11a	OFDM	13.0	12.57	0.05	Left	Tilt	Standard	605-18	6	1:1	0.307	1.104	0.339	
5805	161	IEEE 802.11a	OFDM	13.0	12.57	0.03	Left	Tilt	Standard	605-18	6	1:1	0.344	1.104	0.380	
5825	165	IEEE 802.11a	OFDM	13.0	12.60	0.02	Left	Tilt	Standard	605-18	6	1:1	0.361	1.096	0.396	
		SI / IEEE C95.1 Spat ntrolled Expos	ial Peak		1						Head W/kg (m) aged over					

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 45 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Faye 45 01 00

Table 11-12 NII Head SAR

Ch. 40 40 42 40 40 52	Mode IEEE 802.11a IEEE 802.11a IEEE 802.11a IEEE 802.11a IEEE 802.11a	Service OFDM OFDM OFDM OFDM OFDM	Maximum Allowed Power [dBm] 13.0 13.0 12.0	Conducted Power [dBm] 12.99 12.99	Power Drift [dB] 0.13 0.03 -0.07	Side Right Right	Test Position Cheek	Cover Type Standard Standard	Device Serial Number 605-18	Data Rate (Mbps)	Duty Cycle	SAR (1g) (W/kg) 0.200	Scaling Factor	Scaled SAR (1g) (W/kg)	Plot #	
Ch. 40 40 42 40 40	IEEE 802.11a IEEE 802.11a IEEE 802.11ac IEEE 802.11a IEEE 802.11a	OFDM OFDM OFDM	Allowed Power [dBm] 13.0 13.0 12.0	Power [dBm] 12.99 12.99 11.96	(dB) 0.13 0.03	Right	Position Cheek	Standard	Serial Number 605-18	(Mbps)		(W/kg)	Factor	(1g) (W/kg)	Plot #	
40 40 42 40 40	IEEE 802.11a IEEE 802.11a IEEE 802.11a IEEE 802.11a	OFDM OFDM	13.0 13.0 12.0	12.99 12.99 11.96	0.13	,	Cheek	Standard	605-18							
40 42 40 40	IEEE 802.11a IEEE 802.11a IEEE 802.11a IEEE 802.11a	OFDM OFDM	13.0	12.99 11.96	0.03	,				6	1:1	0.200	1.002	0.200		
42 40 40	IEEE 802.11a IEEE 802.11a IEEE 802.11a	OFDM OFDM	12.0	11.96		Right	Tilt	Standard								
40 40	IEEE 802.11a	OFDM			-0.07			Otanidald	605-18	6	1:1	0.272	1.002	0.273		
40	IEEE 802.11a		13.0	40.00		Right	Tilt	Standard	605-18	29.3	1:1	0.164	1.009	0.165		
		OFDM		12.99	0.03	Left	Cheek	Standard	605-18	6	1:1	0.225	1.002	0.225		
52			13.0	12.99	0.15	Left	Tilt	Standard	605-18	6	1:1	0.261	1.002	0.262		
	IEEE 802.11a	OFDM	13.0	12.95	-0.13	Right	Cheek	Standard	605-18	6	1:1	0.234	1.012	0.237		
52	IEEE 802.11a	OFDM	13.0	12.95	0.10	Right	Tilt	Standard	605-18	6	1:1	0.328	1.012	0.332	A13	
58	IEEE 802.11ac	OFDM	12.0	11.84	0.18	Right	Tilt	Standard	605-18	29.3	1:1	0.169	1.038	0.175		
52	IEEE 802.11a	OFDM	13.0	12.95	0.02	Left	Cheek	Standard	605-18	6	1:1	0.227	1.012	0.230		
52	IEEE 802.11a	OFDM	13.0	12.95	0.02	Left	Tilt	Standard	605-18	6	1:1	0.289	1.012	0.292		
108	IEEE 802.11a	OFDM	13.0	12.69	0.14	Right	Cheek	Standard	605-18	6	1:1	0.230	1.074	0.247		
108	IEEE 802.11a	OFDM	13.0	12.69	0.02	Right	Tilt	Standard	605-18	6	1:1	0.243	1.074	0.261		
108	IEEE 802.11a	OFDM	13.0	12.69	0.14	Left	Cheek	Standard	605-18	6	1:1	0.209	1.074	0.224		
116	IEEE 802.11a	OFDM	13.0	12.55	0.14	Left	Cheek	Standard	605-18	6	1:1	0.190	1.109	0.211		
140	IEEE 802.11a	OFDM	13.0	12.50	-0.02	Left	Cheek	Standard	605-18	6	1:1	0.258	1.122	0.289		
108	IEEE 802.11a	OFDM	13.0	12.69	0.02	Left	Tilt	Standard	605-18	6	1:1	0.273	1.074	0.293		
106	IEEE 802.11ac	OFDM	12.0	11.72	0.02	Left	Tilt	Standard	605-18	29.3	1:1	0.191	1.067	0.204		
ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Head										
·												1				
1 1 1 1	52 52 52 52 08 08 08 16 40	52 IEEE 802.11a 58 IEEE 802.11a 52 IEEE 802.11a 52 IEEE 802.11a 53 IEEE 802.11a 54 IEEE 802.11a 56 IEEE 802.11a 57 IEEE 802.11a 58 IEEE 802.11a 59 IEEE 802.11a 60 IEEE 802.11a 61 IEEE 802.11a 62 IEEE 802.11a	\$2 IEEE 802.11a OFDM \$58 IEEE 802.11a OFDM \$52 IEEE 802.11a OFDM \$52 IEEE 802.11a OFDM \$53 IEEE 802.11a OFDM \$54 IEEE 802.11a OFDM \$55 IEEE 802.11a OFDM \$55 IEEE 802.11a OFDM \$56 IEEE 802.11a OFDM \$57 OFDM \$57 OFDM \$58 IEEE 802.11a OFDM \$58	\$2 IEEE 802.11a OFDM 13.0 \$58 IEEE 802.11ac OFDM 12.0 \$52 IEEE 802.11a OFDM 13.0 \$52 IEEE 802.11a OFDM 13.0 \$53 IEEE 802.11a OFDM 13.0 \$54 IEEE 802.11a OFDM 13.0 \$55 IEEE 802.11a OFDM 13.0 \$56 IEEE 802.11a OFDM 13.0 \$57 IEEE 802.11a OFDM 13.0 \$58 IEEE 802.11a OFDM 13.0 \$58 IEEE 802.11a OFDM 13.0 \$59 IEEE 802.11a OFDM 13.0 \$50 IEEE 802.11a OFDM 12.0 \$50 IEEE 802.11ac OFDM 12.0 \$50 IEEE 802.11ac OFDM 12.0	S2 IEEE 802.11a OFDM 13.0 12.95	S2 IEEE 802.11a OFDM 13.0 12.95 0.10	\$2 IEEE 802.11a OFDM 13.0 12.95 0.10 Right \$58 IEEE 802.11ac OFDM 12.0 11.84 0.18 Right \$52 IEEE 802.11ac OFDM 13.0 12.95 0.02 Left \$53 IEEE 802.11a OFDM 13.0 12.95 0.02 Left \$54 IEEE 802.11a OFDM 13.0 12.95 0.02 Left \$55 IEEE 802.11a OFDM 13.0 12.69 0.14 Right \$56 IEEE 802.11a OFDM 13.0 12.69 0.02 Right \$57 IEEE 802.11a OFDM 13.0 12.69 0.14 Left \$58 IEEE 802.11a OFDM 13.0 12.55 0.14 Left \$59 IEEE 802.11a OFDM 13.0 12.55 0.14 Left \$50 IEEE 802.11a OFDM 13.0 12.50 0.02 Left \$50 IEEE 802.11ac OFDM 13.0 12.69 0.02 Left \$50 IEEE 802.11ac OFDM 13.0 12.69 0.02 Left \$50 IEEE 802.11ac OFDM 12.0 11.72 0.02 IEEE \$50 IEEE 802.11ac	SEE SEE	SEE 802.11a	Second S	\$2 EEE 802.11a	\$2 EEE 802.11a OFDM 13.0 12.95 0.10 Right Tilt Standard 605-18 6 1:1 \$3 IEEE 802.11ac OFDM 12.0 11.84 0.18 Right Tilt Standard 605-18 29.3 1:1 \$5 IEEE 802.11a OFDM 13.0 12.95 0.02 Left Cheek Standard 605-18 6 1:1 \$5 IEEE 802.11a OFDM 13.0 12.95 0.02 Left Tilt Standard 605-18 6 1:1 \$6 IEEE 802.11a OFDM 13.0 12.69 0.14 Right Cheek Standard 605-18 6 1:1 \$6 IEEE 802.11a OFDM 13.0 12.69 0.02 Right Tilt Standard 605-18 6 1:1 \$6 IEEE 802.11a OFDM 13.0 12.69 0.02 Right Tilt Standard 605-18 6 1:1 \$6 IEEE 802.11a OFDM 13.0 12.69 0.14 Left Cheek Standard 605-18 6 1:1 \$6 IEEE 802.11a OFDM 13.0 12.50 0.14 Left Cheek Standard 605-18 6 1:1 \$6 IEEE 802.11a OFDM 13.0 12.50 0.02 Left Cheek Standard 605-18 6 1:1 \$6 IEEE 802.11a OFDM 13.0 12.69 0.02 Left Tilt Standard 605-18 6 1:1 \$6 IEEE 802.11a OFDM 13.0 12.69 0.02 Left Tilt Standard 605-18 6 1:1 \$6 IEEE 802.11a OFDM 13.0 12.69 0.02 Left Tilt Standard 605-18 29.3 1:1 **ANSI/IEEE 695.1 1992 - SAFETY LIMIT Spatial Peak 1.6 W/kg (mW/g)	SEE 802.11a	SEE 802.11a	SZ EEE 802.11a	

FCC ID: ZNFD850	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 46 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	rage 40 01 00

11.2 Standalone Body-Worn SAR Data

Table 11-13 GSM/GPRS/UMTS Body-Worn SAR Data

				CONT	PRO/U	IVIIO	Dou	y-44011	יו טאוי	Dat	<u>a</u>					
					М	EASURE	MENT F	RESULTS								
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Cover Type	Device Serial	# of Time Slots	Duty Cycle	Side	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power[dbm]	Drift [ab]			Number	Siots	Cycle		(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GSM	33.2	33.18	0.04	10 mm	Standard	605-5	1	1:8.3	back	0.487	1.005	0.489	
836.60	190	GSM 850	GSM	33.2	33.18	0.00	10 mm	WCC Closed	605-5	1	1:8.3	back	0.388	1.005	0.390	
836.60	190	GSM 850	GPRS	29.2	28.72	-0.06	10 mm	Standard	605-5	3	1:2.76	back	0.511	1.117	0.571	A14
836.60	190	GSM 850	GPRS	29.2	28.72	-0.01	10 mm	WCC Closed	605-5	3	1:2.76	back	0.396	1.117	0.442	
836.60	4183	UMTS 850	RMC	24.2	23.97	-0.05	10 mm	Standard	605-1	N/A	1:1	back	0.503	1.054	0.530	A16
836.60	4183	UMTS 850	RMC	24.2	23.97	-0.10	10 mm	WCC Closed	605-1	N/A	1:1	back	0.430	1.054	0.453	
1732.40	1412	UMTS 1750	RMC	24.8	24.77	0.12	10 mm	Standard	605-1	N/A	1:1	back	0.676	1.007	0.681	A17
1732.40	1412	UMTS 1750	RMC	24.8	24.77	0.03	10 mm	WCC Closed	605-1	N/A	1:1	back	0.574	1.007	0.578	
1880.00	661	GSM 1900	GSM	30.7	30.11	0.06	10 mm	Standard	605-5	1	1:8.3	back	0.276	1.146	0.316	
1880.00	661	GSM 1900	GSM	30.7	30.11	0.04	10 mm	WCC Closed	605-5	1	1:8.3	back	0.242	1.146	0.277	
1880.00	661	GSM 1900	GPRS	29.7	29.54	-0.03	10 mm	Standard	605-5	2	1:4.15	back	0.544	1.038	0.565	A18
1880.00	661	GSM 1900	GPRS	29.7	29.54	0.00	10 mm	WCC Closed	605-5	2	1:4.15	back	0.311	1.038	0.323	
1880.00	9400	UMTS 1900	RMC	23.7	23.42	0.09	10 mm	Standard	605-1	N/A	1:1	back	0.431	1.067	0.460	
1880.00	9400	UMTS 1900	RMC	23.7	23.42	0.07	10 mm	WCC Closed	605-1	N/A	1:1	back	0.444	1.067	0.474	A20
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Body 1.6 W/kg (mW/g) averaged over 1 gram									

Table 11-14 LTE Body-Worn SAR

								Juy-	****	11 07										
							MEAS	SUREME	NT RES	JLTS										
FR	EQUENCY		Mode	Bandwidth	Cover Type	Maximum Allowed Power	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	С	h.		[MHz]		[dBm]	Power [dBm]	Drift [dB]		Number						Cycle	(W/kg)	Factor	(W/kg)	
710.00	23790	Mid	LTE Band 17	10	Standard	24.2	24.20	0.00	0	605-12	QPSK	1	49	10 mm	back	1:1	0.216	1.000	0.216	
710.00	23790	Mid	LTE Band 17	10	WCC Closed	24.2	24.20	0.01	0	605-12	QPSK	1	49	10 mm	back	1:1	0.258	1.000	0.258	A22
710.00	23790	Mid	LTE Band 17	10	Standard	23.2	22.97	0.06	1	605-12	QPSK	25	25	10 mm	back	1:1	0.170	1.054	0.179	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	23.7	23.65	-0.03	0	605-12	QPSK	1	49	10 mm	back	1:1	0.507	1.012	0.513	A24
836.50	20525	Mid	LTE Band 5 (Cell)	10	WCC Closed	23.7	23.65	0.02	0	605-12	QPSK	1	49	10 mm	back	1:1	0.431	1.012	0.436	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	22.7	22.40	0.08	1	605-12	QPSK	25	0	10 mm	back	1:1	0.420	1.072	0.450	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	24.5	24.40	0.05	0	605-1	QPSK	1	50	10 mm	back	1:1	0.585	1.023	0.598	A26
1732.50	20175	Mid	LTE Band 4 (AWS)	20	WCC Closed	24.5	24.40	0.07	0	605-1	QPSK	1	50	10 mm	back	1:1	0.530	1.023	0.542	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	23.5	23.31	-0.07	1	605-1	QPSK	50	0	10 mm	back	1:1	0.450	1.045	0.470	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	23.9	23.70	0.00	0	605-12	QPSK	1	50	10 mm	back	1:1	0.606	1.047	0.634	A27
1900.00	19100	High	LTE Band 2 (PCS)	20	WCC Closed	23.9	23.70	-0.02	0	605-12	QPSK	1	50	10 mm	back	1:1	0.605	1.047	0.633	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	22.9	22.69	0.01	1	605-12	QPSK	50	25	10 mm	back	1:1	0.490	1.050	0.515	
2510.00	20850	Low	LTE Band 7	20	Standard	23.7	23.40	-0.04	0	605-12	QPSK	1	99	10 mm	back	1:1	0.915	1.072	0.981	
2535.00	21100	Mid	LTE Band 7	20	Standard	23.7	23.65	-0.02	0	605-12	QPSK	1	99	10 mm	back	1:1	1.010	1.012	1.022	
2535.00	21100	Mid	LTE Band 7	20	WCC Closed	23.7	23.65	0.01	0	605-12	QPSK	1	99	10 mm	back	1:1	0.409	1.012	0.414	
2560.00	21350	High	LTE Band 7	20	Standard	23.7	23.70	0.07	0	605-12	QPSK	1	99	10 mm	back	1:1	0.841	1.000	0.841	
2560.00	21350	High	LTE Band 7	20	Standard	22.7	22.49	0.08	1	605-12	QPSK	50	25	10 mm	back	1:1	0.713	1.050	0.749	
2560.00	21350	High	LTE Band 7	20	Standard	22.7	22.35	0.03	1	605-12	QPSK	100	0	10 mm	back	1:1	0.707	1.084	0.766	
2510.00	20850	Low	LTE Band 7	20	Standard	23.7	23.40	-0.08	0	605-12	QPSK	- 1	99	10 mm	back	1:1	0.953	1.072	1.022	
2535.00	21100	Mid	LTE Band 7	20	Standard	23.7	23.65	-0.03	0	605-12	QPSK	- 1	99	10 mm	back	1:1	1.040	1.012	1.052	A30
			ANSI	/ IEEE C95.1 19		IMIT									Body					
				Spatia											kg (mW/g					
			Uncontr						averaged	d over 1 gr	am									

Note: Blue entries represent variability measurements.

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 47 of 60
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 47 of 68

Table 11-15 DTS Body-Worn SAR

						MEASU	REMENT	RESULTS								
FREQUI	ENCY	Mode	Service	Maximum Allowed	Conducted Power	Power Drift	Spacing	Cover Type	Device Serial	Data Rate	Side	Duty	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	[dBm]	[dB]			Number	(Mbps)		Cycle	(W/kg)	ractor	(W/kg)	
2462	11	IEEE 802.11b	DSSS	16.5	16.24	-0.02	10 mm	Standard	605-18	1	back	1:1	0.138	1.062	0.147	A30
2462	11	IEEE 802.11b	DSSS	16.5	16.24	0.03	10 mm	WCC Closed	605-18	1	back	1:1	0.117	1.062	0.124	
5745							10 mm	Standard	605-18	6	back	1:1	0.407	1.104	0.449	
5805	5805 161 IEEE 802.11a			13.0	12.57	0.02	10 mm	Standard	605-18	6	back	1:1	0.436	1.104	0.481	A31
5805	161	IEEE 802.11a	OFDM	13.0	12.57	0.06	10 mm	WCC Closed	605-18	6	back	1:1	0.374	1.104	0.413	
5825	165	IEEE 802.11a	OFDM	13.0	12.60	0.06	10 mm	Standard	605-18	6	back	1:1	0.429	1.096	0.470	
5775	155 IEEE 802.11ac OFDM 12.0 11.85 -0.02						10 mm	Standard	605-18	29.3	back	1:1	0.259	1.035	0.268	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Body 1.6 W/kg (mW/g) averaged over 1 gram									

Table 11-16 NII Body-Worn SAR

						11111 D	oy i	voi ii 3	<i>/</i> \\\								
						MEAS	SUREMENT RESULTS										
FREQU	ENCY	Mode	Service	Maxim um Allow ed	Conducted Power	Power Drift [dB]	Spacing	Cover Type		Data Rate (Mbps)	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #	
MHz	Ch.			Power [dBm]	[dBm]	[ub]			Number	(MDPS)		Cycle	(W/kg)	Factor	(W/kg)		
5200	40	IEEE 802.11a	OFDM	13.0	12.99	0.04	10 mm	Standard	605-18	6	back	1:1	0.163	1.002	0.163		
5210	42	IEEE 802.11ac	OFDM	12.0	11.96	-0.07	10 mm	Standard	605-18	29.3	back	1:1	0.102	1.009	0.103		
5260	52 IEEE 802.11a OFDM 13.0 12.9					0.08	10 mm	Standard	605-18	6	back	1:1	0.196	1.012	0.198		
5290	58	IEEE 802.11ac	OFDM	12.0	11.84	0.03	10 mm	Standard	605-18	29.3	back	1:1	0.111	1.038	0.115		
5540	108	IEEE 802.11a	OFDM	13.0	12.69	0.08	10 mm	Standard	605-18	6	back	1:1	0.342	1.074	0.367	A32	
5530	106 IEEE 802.11ac OFDM 12.0 11.72 0.01						10 mm	Standard	605-18	29.3	back	1:1	0.234	1.067	0.250		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body										
	Spatial Peak										1.6 W/kg						
		Uncontrolled E					а	veraged o	ver 1 gra	m							

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 48 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Fage 46 01 06

11.3 Standalone Wireless Router SAR Data

Table 11-17 GPRS/UMTS Hotspot SAR Data

								RESULTS	· Duta							
FREQUEN		Mode	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Cover Type	Device Serial Number	# of GPRS Slots	Duty Cycle	Side	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz 836.60	Ch. 190	GSM 850	GPRS	29.2	28.72	-0.06	10 mm	Standard	605-5	3	1:2.76	back	(W/kg) 0.511	1.117	(W/kg) 0.571	
836.60	190	GSM 850	GPRS	29.2	28.72	0.01	10 mm	Standard	605-5	3	1:2.76	front	0.466	1.117	0.521	
836.60	190	GSM 850	GPRS	29.2	28.72	-0.10	10 mm	Standard	605-5	3	1:2.76	bottom	0.421	1.117	0.470	
836.60	190	GSM 850	GPRS	29.2	28.72	-0.06	10 mm	Standard	605-5	3	1:2.76	right	0.680	1.117	0.760	A15
836.60	190	GSM 850	GPRS	29.2	28.72	-0.14	10 mm	WCC Closed	605-5	3	1:2.76	right	0.648	1.117	0.724	
836.60	190	GSM 850	GPRS	29.2	28.72	-0.02	10 mm	Standard	605-5	3	1:2.76	left	0.400	1.117	0.447	
836.60	4183	UMTS 850	RMC	24.2	23.97	-0.05	10 mm	Standard	605-1	N/A	1:1	back	0.503	1.054	0.530	A16
836.60	4183	UMTS 850	RMC	24.2	23.97	-0.10	10 mm	WCC Closed	605-1	N/A	1:1	back	0.430	1.054	0.453	
836.60	4183	UMTS 850	RMC	24.2	23.97	0.01	10 mm	Standard	605-1	N/A	1:1	front	0.247	1.054	0.260	
836.60	4183	UMTS 850	RMC	24.2	23.97	-0.06	10 mm	Standard	605-1	N/A	1:1	bottom	0.125	1.054	0.132	
836.60	4183	UMTS 850	RMC	24.2	23.97	-0.08	10 mm	Standard	605-1	N/A	1:1	right	0.237	1.054	0.250	
836.60	4183	UMTS 850	RMC	24.2	23.97	-0.02	10 mm	Standard	605-1	N/A	1:1	left	0.202	1.054	0.213	
1732.40	1412	UMTS 1750	RMC	24.8	24.77	0.12	10 mm	Standard	605-1	N/A	1:1	back	0.676	1.007	0.681	A17
1732.40	1412	UMTS 1750	RMC	24.8	24.77	0.03	10 mm	WCC Closed	605-1	N/A	1:1	back	0.574	1.007	0.578	
1732.40	1412	UMTS 1750	RMC	24.8	24.77	-0.03	10 mm	Standard	605-1	N/A	1:1	front	0.310	1.007	0.312	
1732.40	1412	UMTS 1750	RMC	24.8	24.77	0.12	10 mm	Standard	605-1	N/A	1:1	bottom	0.519	1.007	0.523	
1732.40	1412	UMTS 1750	RMC	24.8	24.77	-0.03	10 mm	Standard	605-1	N/A	1:1	right	0.059	1.007	0.059	
1732.40	1412	UMTS 1750	RMC	24.8	24.77	0.03	10 mm	Standard	605-1	N/A	1:1	left	0.285	1.007	0.287	
1880.00	661	GSM 1900	GPRS	29.7	29.54	-0.03	10 mm	Standard	605-5	2	1:4.15	back	0.544	1.038	0.565	
1880.00	661	GSM 1900	GPRS	29.7	29.54	-0.02	10 mm	Standard	605-5	2	1:4.15	front	0.305	1.038	0.317	
1880.00	661	GSM 1900	GPRS	29.7	29.54	-0.07	10 mm	Standard	605-5	2	1:4.15	bottom	0.677	1.038	0.703	
1880.00	661	GSM 1900	GPRS	29.7	29.54	-0.08	10 mm	WCC Closed	605-5	2	1:4.15	bottom	0.694	1.038	0.720	A19
1880.00	661	GSM 1900	GPRS	29.7	29.54	-0.05	10 mm	Standard	605-5	2	1:4.15	right	0.106	1.038	0.110	
1880.00	661	GSM 1900	GPRS	29.7	29.54	0.08	10 mm	Standard	605-5	2	1:4.15	left	0.054	1.038	0.056	
1880.00	9400	UMTS 1900	RMC	23.7	23.42	0.09	10 mm	Standard	605-1	N/A	1:1	back	0.431	1.067	0.460	
1880.00	9400	UMTS 1900	RMC	23.7	23.42	-0.03	10 mm	Standard	605-1	N/A	1:1	front	0.345	1.067	0.368	
1880.00	9400	UMTS 1900	RMC	23.7	23.42	0.12	10 mm	Standard	605-1	N/A	1:1	bottom	0.701	1.067	0.748	A21
1880.00	9400	UMTS 1900	RMC	23.7	23.42	0.19	10 mm	WCC Closed	605-1	N/A	1:1	bottom	0.650	1.067	0.694	
1880.00	9400	UMTS 1900	RMC	23.7	23.42	0.02	10 mm	Standard	605-1	N/A	1:1	right	0.155	1.067	0.165	
1880.00	9400	UMTS 1900	RMC	23.7	23.42	0.02	10 mm	Standard	605-1	N/A	1:1	left	0.090	1.067	0.096	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT									4.0	Body W/kg/m	W/a)				
	Spatial Peak Uncontrolled Exposure/General Population										W/kg (m ged over					
	Uncontrolled Exposure/General Population										<u> </u>	J .				

ANSI / IEEE C95.1 1992 - SAFETT LIMIT	воду
Spatial Peak	1.6 W/kg (mW/g)
Uncontrolled Exposure/General Population	averaged over 1 gram

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 49 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Fage 49 01 00

Table 11-18 LTE Band 17 Hotspot SAR

								MEAS	UREMEN	IT RESUL	тѕ									
FRI	EQUENCY		Mode	Bandwidth	Cover Type	Maxim um Allowed	Conducted Power	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	CI	h.		[MHz]		Power [dBm]	[dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
710.00	23790	Mid	LTE Band 17	10	Standard	24.2	24.20	0.00	0	605-12	QPSK	1	49	10 mm	back	1:1	0.216	1.000	0.216	
710.00	23790	Mid	LTE Band 17	10	Standard	23.2	22.97	0.06	1	605-12	QPSK	25	25	10 mm	back	1:1	0.170	1.054	0.179	
710.00	23790	Mid	LTE Band 17	10	Standard	24.2	24.20	-0.02	0	605-12	QPSK	1	49	10 mm	front	1:1	0.170	1.000	0.170	
710.00	23790	Mid	LTE Band 17	10	Standard	23.2	22.97	0.05	1	605-12	QPSK	25	25	10 mm	front	1:1	0.134	1.054	0.141	
710.00	23790	Mid	LTE Band 17	10	Standard	24.2	24.20	0.06	0	605-12	QPSK	1	49	10 mm	bottom	1:1	0.195	1.000	0.195	
710.00	23790	Mid	LTE Band 17	10	Standard	23.2	22.97	0.20	1	605-12	QPSK	25	25	10 mm	bottom	1:1	0.152	1.054	0.160	
710.00	23790	Mid	LTE Band 17	10	Standard	24.2	24.20	0.09	0	605-12	QPSK	1	49	10 mm	right	1:1	0.115	1.000	0.115	
710.00	23790	Mid	LTE Band 17	10	Standard	23.2	22.97	-0.04	1	605-12	QPSK	25	25	10 mm	right	1:1	0.079	1.054	0.083	
710.00	23790	Mid	LTE Band 17	10	Standard	24.2	24.20	0.02	0	605-12	QPSK	1	49	10 mm	left	1:1	0.251	1.000	0.251	
710.00	23790	Mid	LTE Band 17	10	WCC Closed	24.2	24.20	-0.02	0	605-12	QPSK	1	49	10 mm	left	1:1	0.379	1.000	0.379	A23
710.00	23790 Mid LTE Band 17 10 Standard 23.2 22.97 0.						0.10	1	605-12	QPSK	25	25	10 mm	left	1:1	0.180	1.054	0.190		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak							Body 1.6 W/kg (mW/g)												
	Spauai Peak Uncontrolled Exposure/General Population							averaged over 1 gram												

Table 11-19 LTE Band 5 (Cell) Hotspot SAR

							: Dan	us	Cell) HUL	spor	<u>JAI</u>	`							
								MEASU	REMENT	RESULT	S									
FF	REQUENCY		Mode	Bandwidth [MHz]	Cover Type	Maximum Allowed	Conducted Power [dBm]	Power Drift (dB)	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	CI	h.		ţ .		Power [dBm]											(W/kg)		(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	23.7	23.65	-0.03	0	605-12	QPSK	1	49	10 mm	back	1:1	0.507	1.012	0.513	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	22.7	22.40	0.08	1	605-12	QPSK	25	0	10 mm	back	1:1	0.420	1.072	0.450	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	23.7	23.65	-0.03	0	605-12	QPSK	1	49	10 mm	front	1:1	0.432	1.012	0.437	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	22.7	22.40	-0.01	1	605-12	QPSK	25	0	10 mm	front	1:1	0.329	1.072	0.353	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	23.7	23.65	0.06	0	605-12	QPSK	1	49	10 mm	bottom	1:1	0.412	1.012	0.417	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	22.7	22.40	-0.03	1	605-12	QPSK	25	0	10 mm	bottom	1:1	0.279	1.072	0.299	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	23.7	23.65	0.03	0	605-12	QPSK	1	49	10 mm	right	1:1	0.592	1.012	0.599	A25
836.50	20525	Mid	LTE Band 5 (Cell)	10	WCC Closed	23.7	23.65	-0.08	0	605-12	QPSK	1	49	10 mm	right	1:1	0.522	1.012	0.528	
836.50	20525	Mid	LTE Band 5 (Cell)	10	Standard	22.7	22.40	0.01	1	605-12	QPSK	25	0	10 mm	right	1:1	0.451	1.072	0.483	
836.50	836.50 20525 Mid LTE Band 5 (Cell) 10 Standard 23.7 23.65 0.09						0.09	0	605-12	QPSK	1	49	10 mm	left	1:1	0.393	1.012	0.398		
836.50	50 20525 Mid LTE Band 5 (Cell) 10 Standard 22.7 22.40 0.0						0.02	1	605-12	QPSK	25	0	10 mm	left	1:1	0.313	1.072	0.336		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body													
				Spatial P										1.6 W/kg	(mW/g)					
	Uncontrolled Exposure/General Population											av	eraged ov	er 1 gram						

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 50 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Fage 50 01 66

Table 11-20 LTE Band 4 (AWS) Hotspot SAR

		LTE Ballu 4 (AWS) Hotspot SAR																		
								MEASU	REMENT	RESULT	S									
FR	EQUENCY		Mode	Bandwidth [MHz]	Cover Type	Maximum Allowed Power	Conducted Power	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	CI	h.		[Mrt2]		[dBm]	[dBm]	Drift (ab)		Number							(W/kg)	ractor	(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	24.5	24.40	0.05	0	605-1	QPSK	1	50	10 mm	back	1:1	0.585	1.023	0.598	A26
1732.50	20175	Mid	LTE Band 4 (AWS)	20	WCC Closed	24.5	24.40	0.07	0	605-1	QPSK	1	50	10 mm	back	1:1	0.530	1.023	0.542	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	23.5	23.31	-0.07	1	605-1	QPSK	50	0	10 mm	back	1:1	0.450	1.045	0.470	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	24.5	24.40	0.08	0	605-1	QPSK	1	50	10 mm	front	1:1	0.245	1.023	0.251	
1732.50	1732.50 20175 Mid LTE Band 4 (AWS) 20 Standard 23.5 23.31 -								1	605-1	QPSK	50	0	10 mm	front	1:1	0.196	1.045	0.205	
1732.50	1732.50 20175 Mid LTE Band 4 (AWS) 20 Standard 24.5 24.40 0.0							0.04	0	605-1	QPSK	1	50	10 mm	bottom	1:1	0.461	1.023	0.472	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	23.5	23.31	0.08	1	605-1	QPSK	50	0	10 mm	bottom	1:1	0.374	1.045	0.391	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	24.5	24.40	0.02	0	605-1	QPSK	1	50	10 mm	right	1:1	0.056	1.023	0.057	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	Standard	23.5	23.31	0.10	1	605-1	QPSK	50	0	10 mm	right	1:1	0.043	1.045	0.045	
1732.50	1732.50 20175 Mid LTE Band 4 (AWS) 20 Standard 24.5 24.40 -0.0						-0.03	0	605-1	QPSK	1	50	10 mm	left	1:1	0.252	1.023	0.258		
1732.50	50 20175 Mid LTE Band 4 (AWS) 20 Standard 23.5 23.31 0.0						0.03	1	605-1	QPSK	50	0	10 mm	left	1:1	0.208	1.045	0.217		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body													
	Spatial Peak											1.6 W/kg	(mW/g)							
	Uncontrolled Exposure/General Population										а	veraged o	ver 1 gram	1						

Table 11-21 LTE Band 2 (PCS) Hotspot SAR

		LIL D							<u> </u>		porc	,,								
								MEASU	REMENT	RESULTS	\$									
	EQUENCY		Mode	Bandwidth [MHz]	Cover Type	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz 1900.00	19100	n. High	LTE Band 2 (PCS)	20	Standard	23.9	23.70	0.00	0	605-12	QPSK	1	50	10 mm	back	1:1	(W/kg) 0.606	1.047	(W/kg) 0.634	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	22.9	22.69	0.01	1	605-12	QPSK	50	25	10 mm	back	1:1	0.490	1.050	0.515	
		-										30								
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	23.9	23.70	0.01	0	605-12	QPSK	1	50	10 mm	front	1:1	0.427	1.047	0.447	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	22.9	22.69	0.05	1	605-12	QPSK	50	25	10 mm	front	1:1	0.352	1.050	0.370	
1860.00	18700	Low	LTE Band 2 (PCS)	20	Standard	23.9	23.70	-0.06	0	605-12	QPSK	1	50	10 mm	bottom	1:1	0.812	1.047	0.850	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	Standard	23.9	23.70	-0.02	0	605-12	QPSK	1	0	10 mm	bottom	1:1	0.878	1.047	0.919	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	23.9	23.70	-0.03	0	605-12	QPSK	1	50	10 mm	bottom	1:1	0.965	1.047	1.010	A28
1900.00	19100	High	LTE Band 2 (PCS)	20	WCC Closed	23.9	23.70	0.04	0	605-12	QPSK	1	50	10 mm	bottom	1:1	0.913	1.047	0.956	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	22.9	22.69	-0.02	1	605-12	QPSK	50	25	10 mm	bottom	1:1	0.740	1.050	0.777	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	22.9	22.63	-0.04	1	605-12	QPSK	100	0	10 mm	bottom	1:1	0.715	1.064	0.761	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	23.9	23.70	-0.02	0	605-12	QPSK	1	50	10 mm	right	1:1	0.175	1.047	0.183	
1900.00	19100	High	LTE Band 2 (PCS)	20	Standard	22.9	22.69	0.00	1	605-12	QPSK	50	25	10 mm	right	1:1	0.131	1.050	0.138	
1900.00	1900.00 19100 High LTE Band 2 (PCS) 20 Standard 23.9 23.70 -0.03							-0.03	0	605-12	QPSK	1	50	10 mm	left	1:1	0.098	1.047	0.103	
1900.00	900.00 19100 High LTE Band 2 (PCS) 20 Standard 22.9 22.69 0.02							0.02	1	605-12	QPSK	50	25	10 mm	left	1:1	0.052	1.050	0.055	
1900.00	00 19100 High LTE Band 2 (PCS) 20 Standard 23.9 23.70 -0.03					-0.03	0	605-12	QPSK	1	50	10 mm	bottom	1:1	0.915	1.047	0.958			
	ANSI / IÉEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population								•		Boo 1.6 W/kg eraged ov	(mW/g)			•					

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 51 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Fage 51 01 00

Table 11-22 LTE Band 7 Hotspot SAR

										T RESULT										
FRE	EQUENCY		Mode	Bandwidth [MHz]	Cover Type	Maximum Allowed Power	Conducted Power (dBm1	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot#
MHz	С	h.		[MTZ]		[dBm]											(W/kg)		(W/kg)	
2510.00	20850	Low	LTE Band 7	20	Standard	23.7	23.40	-0.04	0	605-12	QPSK	1	99	10 mm	back	1:1	0.915	1.072	0.981	
2535.00	21100	Mid	LTE Band 7	20	Standard	23.7	23.65	-0.02	0	605-12	QPSK	1	99	10 mm	back	1:1	1.010	1.012	1.022	
2535.00	21100	Mid	LTE Band 7	20	WCC Closed	23.7	23.65	0.01	0	605-12	QPSK	1	99	10 mm	back	1:1	0.409	1.012	0.414	
2560.00	21350	High	LTE Band 7	20	Standard	23.7	23.70	0.07	0	605-12	QPSK	1	99	10 mm	back	1:1	0.841	1.000	0.841	
2560.00	21350	High	LTE Band 7	20	Standard	22.7	22.49	0.08	1	605-12	QPSK	50	25	10 mm	back	1:1	0.713	1.050	0.749	
2560.00	21350	High	LTE Band 7	20	Standard	22.7	22.35	0.03	1	605-12	QPSK	100	0	10 mm	back	1:1	0.707	1.084	0.766	
2560.00	21350	High	LTE Band 7	20	Standard	23.7	23.70	-0.09	0	605-12	QPSK	1	99	10 mm	front	1:1	0.116	1.000	0.116	
2560.00								0.13	1	605-12	QPSK	50	25	10 mm	front	1:1	0.098	1.050	0.103	
2560.00	2560.00 21350 High LTE Band 7 20 Standard 23.7 23.70							0.01	0	605-12	QPSK	1	99	10 mm	bottom	1:1	0.276	1.000	0.276	
2560.00	21350	High	LTE Band 7	20	Standard	22.7	22.49	-0.02	1	605-12	QPSK	50	25	10 mm	bottom	1:1	0.219	1.050	0.230	
2560.00	21350	High	LTE Band 7	20	Standard	23.7	23.70	-0.12	0	605-12	QPSK	1	99	10 mm	right	1:1	0.025	1.000	0.025	
2560.00	21350	High	LTE Band 7	20	Standard	22.7	22.49	0.03	1	605-12	QPSK	50	25	10 mm	right	1:1	0.016	1.050	0.017	
2560.00	21350	High	LTE Band 7	20	Standard	23.7	23.70	-0.09	0	605-12	QPSK	1	99	10 mm	left	1:1	0.348	1.000	0.348	
2560.00 21350 High LTE Band 7 20 Standard 22.7 22.49 0.0						0.02	1	605-12	QPSK	50	25	10 mm	left	1:1	0.288	1.050	0.302			
2510.00	2510.00 20850 Low LTE Band 7 20 Standard 23.7 23.40 -0.0							-0.08	0	605-12	QPSK	1	99	10 mm	back	1:1	0.953	1.072	1.022	
2535.00	00 21100 Mid LTE Band 7 20 Standard 23.7 23.65 -0.0					-0.03	0	605-12	QPSK	1	99	10 mm	back	1:1	1.040	1.012	1.052	A29		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body												
	Spatial Peak Uncontrolled Exposure/General Population											á	1.6 W/kg	-						

Note: Blue entries represent variability measurements.

Table 11-23 WLAN Hotspot SAR

								NT RESULT								
FREQU	ENCY	Mode	Service	Maxim um Allow ed	Conducted Power	Power Drift [dB]	Spacing	Cover Type	Device Serial	Data Rate (Mbps)	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	[dBm]	[авј			Number	(MDPS)		Cycle	(W/kg)	ractor	(W/kg)	
2462	11	IEEE 802.11b	DSSS	16.5	16.24	-0.02	10 mm	Standard	605-18	1	back	1:1	0.138	1.062	0.147	A30
2462	11	IEEE 802.11b	DSSS	16.5	16.24	0.03	10 mm	WCC Closed	605-18	1	back	1:1	0.117	1.062	0.124	
2462	11	IEEE 802.11b	DSSS	16.5	16.24	0.18	10 mm	Standard	605-18	1	front	1:1	0.060	1.062	0.064	
2462	11	IEEE 802.11b	DSSS	16.5	16.24	0.10	10 mm	Standard	605-18	1	top	1:1	0.086	1.062	0.091	
2462	11	IEEE 802.11b	DSSS	16.5	16.24	0.07	10 mm	Standard	605-18	1	right	1:1	0.034	1.062	0.036	
5745	149	IEEE 802.11a	OFDM	13.0	12.57	0.17	10 mm	Standard	605-18	6	back	1:1	0.407	1.104	0.449	
5805	161	IEEE 802.11a	OFDM	13.0	12.57	0.02	10 mm	Standard	605-18	6	back	1:1	0.436	1.104	0.481	A31
5805	161	IEEE 802.11a	OFDM	13.0	12.57	0.06	10 mm	WCC Closed	605-18	6	back	1:1	0.374	1.104	0.413	
5825	165	IEEE 802.11a	OFDM	13.0	12.60	0.06	10 mm	Standard	605-18	6	back	1:1	0.429	1.096	0.470	
5775	155	IEEE 802.11ac	OFDM	12.0	11.85	-0.02	10 mm	Standard	605-18	29.3	back	1:1	0.259	1.035	0.268	
5825	165	IEEE 802.11a	OFDM	13.0	12.60	-0.04	10 mm	Standard	605-18	6	front	1:1	0.048	1.096	0.053	
5825	825 165 IEEE 802.11a OFDM 13.0 12.60 -0.04						10 mm	Standard	605-18	6	top	1:1	0.331	1.096	0.363	
5825	25 165 IEEE 802.11a OFDM 13.0 12.60 0.11					0.11	10 mm	Standard	605-18	6	right	1:1	0.027	1.096	0.030	
		ANSI / IEEE	Spatial P								Bod 6 W/kg (raged over	(mW/g)				

FCC ID: ZNFD850	PCTEST INCIDENT AND ADDRAGET, INC.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 52 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Fage 52 01 00

11.4 SAR Test Notes

General Notes:

- The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, and FCC KDB Publication 447498 D01v05.
- Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01 v01, variability SAR tests were performed when the measured SAR results for a frequency band were greater than 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 10. This DUT may be used with a wireless charging cover (WCC) accessory. The cover fits the back of the handset and features an extension to wrap around and protect the front side of the device. Per FCC KDB Publication 648474 D04, SAR was measured using the standard battery cover and then repeated with the wireless charging battery cover for the highest reported SAR for each wireless technology, frequency band, operating mode, and exposure condition. Additional head tests were performed with the cover extension both opened and closed. Additional body-worn and hotspot tests were performed with the wireless charging cover extension closed because operations near the body with the cover extension opened are not expected. No additional evaluations with wireless charging cover were required since all reported SAR values were less than 1.2 W/kg.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR. GPRS body-worn SAR was additionally evaluated for VoIP considerations.
- Justification for reduced test configurations per KDB Publication 941225 D03v01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.
- 4. GPRS Head SAR was additionally evaluated for VoIP considerations.

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg F2 of 60
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 53 of 68

UMTS Notes:

- 1. UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v02, HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.
- 2. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r01. The general test procedures used for testing can be found in Section 8.4.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per FCC Guidance, LTE CA SAR was not needed for testing since the data sent by uplink on uplink physical channels does not change between Rel 8 and Rel 10.

WLAN Notes:

- Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 FCC/TCB Meeting Notes for 2.4 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 FCC/TCB Meeting Notes for 5 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11a. Other IEEE 802.11 modes (including 802.11n 20 MHz and 40 MHz bandwidths) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.
- 3. Per April 2013 TCB Workshop notes, full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.
- 4. When Hotspot is enabled, all 5 GHz bands are disabled except the 5.8 GHz band. Therefore only 5.8 GHz WIFI Wireless Router SAR Data was required.
- 5. WIFI transmission was verified using an uncalibrated spectrum analyzer.
- 6. When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is >1.6 W/kg or the reported 1g averaged SAR is >0.8 W/kg, SAR testing on other default channels was required.

FCC ID: ZNFD850	PETEST INCIDENTAL LADIATOR, INC.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 54 of 60
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 54 of 68

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v05 are applicable to handsets with built-in unlicensed transmitters such as 802.11a/b/g/n/ac and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1.iii and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05 4.3.2 2), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Table 12-1 Estimated SAR

Mode	Frequency	Maximum Allowed Power	Separation Distance (Body)	Estimated SAR (Body)
	[MHz]	[dBm]	[mm]	[W/kg]
Bluetooth	2441	8.00	10	0.125

Note: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

FCC ID: ZNFD850	INGINITERE LABORATER, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 55 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Fage 55 01 00

12.3 Head SAR Simultaneous Transmission Analysis

Table 12-2 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

			0.4.011					0.4.011		
			2.4 GHz					2.4 GHz		
Circuit Tu	Cambianonatian	GSM 850	WLAN	Σ SAR	Simult Tx	Configuration	GPRS 850	WLAN	ΣSAR	
Simult Tx	Configuration	SAR (W/kg)	SAR	(W/kg)	Simult 1X	Configuration	SAR (W/kg)	SAR	(W/kg)	
		51 11 (11113)	(W/kg)	(*****3)			` "	(W/kg)	\	
	D: 11 OL 1	0.007	` 0,	0.470		Right Cheek	0.321	0.186	0.507	
	Right Cheek	0.287	0.186	0.473						
Head SAR	Right Tilt	0.169	0.174	0.343	Head SAR	Right Tilt	0.187	0.174	0.361	
	Left Cheek	0.237	0.253	0.490		Left Cheek	0.237	0.253	0.490	
	Left Tilt	0.163	0.218	0.381		Left Tilt	0.156	0.218	0.374	
			2.4 GHz					2.4 GHz		
		UMTS 850	WLAN	Σ SAR			UMTS 1750	WLAN	Σ SAR	
Simult Tx	Configuration	SAR (W/kg)	SAR	(W/kg)	Simult Tx	Configuration	SAR (W/kg)	SAR	(W/kg)	
		SAIN (W/kg)		(VV/Kg)			SAR (Wing)	_	(vv/kg)	
			(W/kg)					(W/kg)		
	Right Cheek	0.387	0.186	0.573		Right Cheek	0.214	0.186	0.400	
Head SAR	Right Tilt	0.226	0.174	0.400	Head SAR	Right Tilt	0.163	0.174	0.337	
I lead SAIN	Left Cheek	0.307	0.253	0.560	I lead SAIN	Left Cheek	0.276	0.253	0.529	
	Left Tilt	0.206	0.218	0.424		Left Tilt	0.147	0.218	0.365	
			2.4 GHz					2.4 GHz		
		GSM 1900	WLAN	Σ SAR			GPRS 1900	WLAN	ΣSAR	
Simult Tx	Configuration				Simult Tx	Configuration			_	
		SAR (W/kg)	SAR	(W/kg)		o o	SAR (W/kg)	SAR	(W/kg)	
			(W/kg)					(W/kg)		
	Right Cheek	0.128	0.186	0.314		Right Cheek	0.186	0.186	0.372	
Head SAR	Right Tilt	0.048	0.174	0.222	Head SAR	Right Tilt	0.065	0.174	0.239	
neau SAR	Left Cheek	0.083	0.253	0.336	neau SAR	Left Cheek	0.134	0.253	0.387	
	Left Tilt	0.057	0.218	0.275		Left Tilt	0.079	0.218	0.297	
			2.4 GHz					2.4 GHz		
		LIMTO 1000	WLAN	Σ SAR			LTE Band	WLAN	ΣSAR	
Simult Tx	Configuration	Configuration	ation			Simult Tx	Configuration	17 SAR		_
		SAR (W/kg)	SAR	(W/kg)		J	(W/kg)	SAR	(W/kg)	
			(W/kg)				(W/Ng)	(W/kg)		
	Right Cheek	0.283	0.186	0.469		Right Cheek	0.156	0.186	0.342	
Llaad CAD	Right Tilt	0.105	0.174	0.279	Llaad CAD	Right Tilt	0.112	0.174	0.286	
Head SAR	Left Cheek	0.184	0.253	0.437	Head SAR	Left Cheek	0.235	0.253	0.488	
	Left Tilt	0.148	0.218	0.366		Left Tilt	0.100	0.218	0.318	
	LOIC THE		2.4 GHz	0.000		LOIC THE	0.100	2.4 GHz	0.010	
		LTE Band 5		ΣSAR			LTE Band 4	_	Z C V D	
Simult Tx	Configuration	(Cell) SAR	WLAN		Simult Tx	Configuration	(AWS) SAR	WLAN	ΣSAR	
3111GH 174	o o migaration	(W/kg)	SAR	(W/kg)	0	o o i i i gai a a o i i	(W/kg)	SAR	(W/kg)	
		(VV/Kg)	(W/kg)				(VV/Kg)	(W/kg)		
	Right Cheek	0.416	0.186	0.602		Right Cheek	0.136	0.186	0.322	
11	Right Tilt	0.240	0.174	0.414	11	Right Tilt	0.105	0.174	0.279	
Head SAR	Left Cheek	0.325	0.253	0.578	Head SAR	Left Cheek	0.160	0.253	0.413	
	Left Tilt	0.215	0.218	0.433		Left Tilt	0.101	0.218	0.319	
	20.0 1110		2.4 GHz	000		20.0 1110	0.701	2.4 GHz	0.010	
		LTE Band 2		Z 0 4 D				_	Z C 4 D	
Simult Tx	Configuration	(PCS) SAR	WLAN	ΣSAR	Simult Tx	Configuration	LTE Band 7	WLAN	ΣSAR	
	30guruu011	(W/kg)	SAR	(W/kg)	J		SAR (W/kg)	SAR	(W/kg)	
		(VV/Kg)	(W/kg)					(W/kg)		
	Right Cheek	0.260	0.186	0.446		Right Cheek	0.111	0.186	0.297	
11	Right Tilt	0.104	0.174	0.278	114 045	Right Tilt	0.134	0.174	0.308	
Head SAR	•			0.419	Head SAR	Left Cheek			0.435	
544 5/11	i leπ Cneek	Ulnn	U / 2.3				0 10/	U / 2.3		
	Left Cheek Left Tilt	0.166 0.148	0.253 0.218	0.366		Left Tilt	0.182 0.090	0.253 0.218	0.433	

FCC ID: ZNFD850	PCTEST VISCILIENS LAISTATIST, INC.	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg FC of CO
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 56 of 68

Table 12-3
Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

	Simultane	ous Trans	smissior	1 Scena	irio with 5	GHZ WLAN	i (Heia to i	=ar)	
Simult Tx	Configuration	GSM 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	GPRS 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.287	0.370	0.657		Right Cheek	0.321	0.370	0.691
			0.447			Right Tilt	0.187	0.447	0.634
Head SAR	Right Tilt	0.169		0.616	Head SAR	Left Cheek	0.107	0.334	0.571
	Left Cheek	0.237	0.334	0.571					
	Left Tilt	0.163	0.396	0.559		Left Tilt	0.156	0.396	0.552
Simult Tx	Configuration	UMTS 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.387	0.370	0.757		Right Cheek	0.214	0.370	0.584
	Right Tilt	0.226	0.447	0.673		Right Tilt	0.163	0.447	0.610
Head SAR	Left Cheek	0.307	0.334	0.641	Head SAR	Left Cheek	0.276	0.334	0.610
	Left Tilt	0.206	0.396	0.602		Left Tilt	0.147	0.396	0.543
Simult Tx	Configuration	GSM 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.128	0.370	0.498		Right Cheek	0.186	0.370	0.556
	Right Tilt	0.048	0.447	0.495		Right Tilt	0.065	0.447	0.512
Head SAR	Left Cheek	0.083	0.334	0.417	Head SAR	Left Cheek	0.134	0.334	0.468
	Left Tilt	0.057	0.396	0.453		Left Tilt	0.079	0.396	0.475
Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 17 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.283	0.370	0.653		Right Cheek	0.156	0.370	0.526
	Right Tilt	0.105	0.447	0.552		Right Tilt	0.112	0.447	0.559
Head SAR	Left Cheek	0.184	0.334	0.518	Head SAR	Left Cheek	0.235	0.334	0.569
Simult Tx	Left Tilt Configuration	0.148 LTE Band 5 (Cell) SAR (W/kg)	0.396 5 GHz WLAN SAR (W/kg)	0.544 Σ SAR (W/kg)	Simult Tx	Left Tilt Configuration	0.100 LTE Band 4 (AWS) SAR (W/kg)	0.396 5 GHz WLAN SAR (W/kg)	0.496 Σ SAR (W/kg)
	Right Cheek	0.416	0.370	0.786		Right Cheek	0.136	0.370	0.506
Head SAR	Right Tilt	0.240	0.447	0.687	Hood SAD	Right Tilt	0.105	0.447	0.552
neau SAR	Left Cheek	0.325	0.334	0.659	Head SAR	Left Cheek	0.160	0.334	0.494
	Left Tilt	0.215	0.396	0.611		Left Tilt	0.101	0.396	0.497
	LOIL IIIL		5 GHz			LCIL IIIL		5 GHz	
Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 7 SAR (W/kg)	WLAN SAR (W/kg)	Σ SAR (W/kg)
Simult Tx	Ü	(PCS) SAR (W/kg)	SAR (W/kg)	(W/kg)	Simult Tx		SAR (W/kg)	SAR (W/kg)	(W/kg)
	Right Cheek	(PCS) SAR (W/kg) 0.260	SAR (W/kg) 0.370	(W/kg) 0.630		Right Cheek	SAR (W/kg) 0.111	SAR (W/kg) 0.370	(W/kg) 0.481
Simult Tx Head SAR	Right Cheek Right Tilt	(PCS) SAR (W/kg) 0.260 0.104	SAR (W/kg) 0.370 0.447	(W/kg) 0.630 0.551	Simult Tx Head SAR	Right Cheek Right Tilt	SAR (W/kg) 0.111 0.134	SAR (W/kg) 0.370 0.447	(W/kg) 0.481 0.581
	Right Cheek	(PCS) SAR (W/kg)	SAR (W/kg) 0.370	(W/kg) 0.630		Right Cheek	SAR (W/kg) 0.111	SAR (W/kg) 0.370	(W/kg) 0.481

The worst case 5 GHz WIFI reported SAR for each head configuration was considered for simultaneous SAR exclusion via summation of standalone SAR, regardless of whether the WIFI channel has WIFI Hotspot capability, for simplicity to determine compliance. Please note that the actual simultaneous transmission SAR will not exceed the summed levels indicated.

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 57 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Page 57 01 00

12.4 Body-Worn Simultaneous Transmission Analysis

Table 12-4 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

Configuration	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Back Side	GSM 850	0.489	0.147	0.636
Back Side	GPRS 850	0.571	0.147	0.718
Back Side	UMTS 850	0.530	0.147	0.677
Back Side	UMTS 1750	0.681	0.147	0.828
Back Side	GSM 1900	0.316	0.147	0.463
Back Side	GPRS 1900	0.565	0.147	0.712
Back Side	UMTS 1900	0.474	0.147	0.621
Back Side	LTE Band 17	0.258	0.147	0.405
Back Side	LTE Band 5 (Cell)	0.513	0.147	0.660
Back Side	LTE Band 4 (AWS)	0.598	0.147	0.745
Back Side	LTE Band 2 (PCS)	0.634	0.147	0.781
Back Side	LTE Band 7	1.052	0.147	1.199

Table 12-5 Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.0 cm)

Configuration	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Back Side	GSM 850	0.489	0.481	0.970
Back Side	GPRS 850	0.571	0.481	1.052
Back Side	UMTS 850	0.530	0.481	1.011
Back Side	UMTS 1750	0.681	0.481	1.162
Back Side	GSM 1900	0.316	0.481	0.797
Back Side	GPRS 1900	0.565	0.481	1.046
Back Side	UMTS 1900	0.474	0.481	0.955
Back Side	LTE Band 17	0.258	0.481	0.739
Back Side	LTE Band 5 (Cell)	0.513	0.481	0.994
Back Side	LTE Band 4 (AWS)	0.598	0.481	1.079
Back Side	LTE Band 2 (PCS)	0.634	0.481	1.115
Back Side	LTE Band 7	1.052	0.481	1.533

The worst case 5 GHz WIFI reported SAR for each body-worn configuration was considered for simultaneous SAR exclusion via summation of standalone SAR, regardless of whether the WIFI channel has WIFI Hotspot capability, for simplicity to determine compliance. Please note that the actual simultaneous transmission SAR will not exceed the summed levels indicated.

Table 12-6 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Configuration	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Back Side	GSM 850	0.489	0.125	0.614
Back Side	GPRS 850	0.571	0.125	0.696
Back Side	UMTS 850	0.530	0.125	0.655
Back Side	UMTS 1750	0.681	0.125	0.806
Back Side	GSM 1900	0.316	0.125	0.441
Back Side	GPRS 1900	0.565	0.125	0.690
Back Side	UMTS 1900	0.474	0.125	0.599
Back Side	LTE Band 17	0.258	0.125	0.383
Back Side	LTE Band 5 (Cell)	0.513	0.125	0.638
Back Side	LTE Band 4 (AWS)	0.598	0.125	0.723
Back Side	LTE Band 2 (PCS)	0.634	0.125	0.759
Back Side	LTE Band 7	1.052	0.125	1.177

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 58 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	Fage 56 01 66

12.5 Hotspot SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

Table 12-7 Simultaneous Transmission Scenario (2.4 GHz Hotspot at 1.0 cm)

	1					1			
		0000 050	0.4.011.14/1.441	Z C A D			LINATE OF O	0.4.011.14/1.441	Z C A D
Simult Tx	Configuration	GPRS 850	2.4 GHz WLAN	ΣSAR	Simult Tx	Configuration	UMTS 850	2.4 GHz WLAN	ΣSAR
	3	SAR (W/kg)	SAR (W/kg)	(W/kg)		3	SAR (W/kg)	SAR (W/kg)	(W/kg)
	Back	0.571	0.147	0.718		Back	0.530	0.147	0.677
	Front	0.521	0.064	0.585		Front	0.260	0.064	0.324
Body	Top	-	0.091	0.091	Body	Top	-	0.091	0.091
SAR	Bottom	0.470	-	0.470	SAR	Bottom	0.132	-	0.132
	Right	0.760	0.036	0.796		Right	0.250	0.036	0.286
	Left	0.447	-	0.447		Left	0.213	-	0.213
Simult Tx	Configuration	UMTS 1750	2.4 GHz WLAN	Σ SAR	Simult Tx	Configuration	GPRS 1900	2.4 GHz WLAN	Σ SAR
Oirridit 1X	J. 111	SAR (W/kg)	SAR (W/kg)	(W/kg)	Official 1X	ű	SAR (W/kg)	SAR (W/kg)	(W/kg)
	Back	0.681	0.147	0.828		Back	0.565	0.147	0.712
	Front	0.312	0.064	0.376		Front	0.317	0.064	0.381
Body	Top	-	0.091	0.091	Body	Top	-	0.091	0.091
SAR	Bottom	0.523	-	0.523	SAR	Bottom	0.720	-	0.720
	Right	0.059	0.036	0.095		Right	0.110	0.036	0.146
	Left	0.287	-	0.287		Left	0.056	-	0.056
o: " -	0 5 11	UMTS 1900	2.4 GHz WLAN	ΣSAR	O:It T	0	LTE Band 17	2.4 GHz WLAN	ΣSAR
Simult Tx	Configuration	SAR (W/kg)	SAR (W/kg)	(W/kg)	Simult Tx	Configuration	SAR (W/kg)	SAR (W/kg)	(W/kg)
		5 (9)	51 (1111.9)	(vv/ng)			J ((3)	(Tring)
	Back	0.460	0.147	0.607		Back	0.216	0.147	0.363
	Front	0.368	0.064	0.432		Front	0.170	0.064	0.234
	Тор	-	0.091	0.091		Тор	-	0.091	0.091
Body SAR	Bottom	0.748	-	0.748	Body SAR	Bottom	0.195	-	0.195
	Right	0.165	0.036	0.201		Right	0.115	0.036	0.151
	Left	0.096	-	0.096		Left	0.379	-	0.379
Simult Tx	Configuration	LTE Band 5	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 4	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Back	0.513	0.147	0.660		Back	0.598	0.147	0.745
	Front	0.437	0.064	0.501		Front	0.251	0.064	0.315
Body	Тор	-	0.091	0.091	Body	Тор	-	0.091	0.091
SAR	Bottom	0.417	-	0.417	SAR	Bottom	0.472	-	0.472
	Right	0.599	0.036	0.635		Right	0.057	0.036	0.093
	Left	0.398	-	0.398		Left	0.258	-	0.258
		LTE Band 2	2.4 GHz WLAN	Σ SAR			LTE Band 7	2.4 GHz WLAN	ΣSAR
Simult Tx	Configuration	(PCS) SAR			Simult Tx	Configuration	SAR (W/kg)		
		(W/kg)	SAR (W/kg)	(W/kg)			SAR (W/kg)	SAR (W/kg)	(W/kg)
	D. I	0.004	0.447	0.704		D. I	4.050	0.447	4.405
	Back	0.634	0.147	0.781		Back	1.052	0.147	1.199
Dod.	Front	0.447	0.064	0.511	Dod.	Front	0.116	0.064	0.180
Body	Top	-	0.091	0.091	Body	Top	-	0.091	0.091
SAR	Bottom	1.010	-	1.010	SAR	Bottom	0.276	-	0.276
	Right	0.183	0.036	0.219		Right	0.025	0.036	0.061
1	Left	0.103	-	0.103		Left	0.348	-	0.348

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 50 of 60
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 59 of 68

Table 12-8
Simultaneous Transmission Scenario (5 GHz Hotspot at 1.0 cm)

Simult Tx Configuration GPRS 850 S GHz WLAN SAR (W/kg) SAR (W/kg) SAR (W/kg) SImult Tx Configuration SAR (W/kg) SAR		Ollili	uitaneous	11 11 11 11 11 13 3		onano (OTIZ TIOLS	pot at 1.0	Citi	
Front	Simult Tx	Configuration				Simult Tx	Configuration			
Body SAR Top Bottom D. 470 Bottom D. 470 Right − 0.363 D. 0.363 D. 0.363 D. 0.365 Dept D. 0.312 D. 0.312 D. 0.313 D. 0.281 Body SAR Bottom D. 0.322 D. 0.313 D. 0.281 Body SAR Right D. 0.447 D. 0.447 Simult Tx Configuration Configuration SAR (W/kg) Left D. 213 D. 2213 D. 2213 D. 2213 Configuration D. 213 D. 2213 D. 2213 SAR CW/kg) D. 213 D. 2213 D. 2213 SAR CW/kg) D. 213 D. 2213 D. 2213 D. 2213 SAR CW/kg) D. 213 D. 2213 D.		Back	0.571	0.481	1.052		Back	0.530	0.481	1.011
Body SAR Top Bottom D. 470 Bottom D. 470 Right − 0.363 D. 0.363 D. 0.363 D. 0.365 Dept D. 0.312 D. 0.312 D. 0.313 D. 0.281 Body SAR Bottom D. 0.322 D. 0.313 D. 0.281 Body SAR Right D. 0.447 D. 0.447 Simult Tx Configuration Configuration SAR (W/kg) Left D. 213 D. 2213 D. 2213 D. 2213 Configuration D. 213 D. 2213 D. 2213 SAR CW/kg) D. 213 D. 2213 D. 2213 SAR CW/kg) D. 213 D. 2213 D. 2213 D. 2213 SAR CW/kg) D. 213 D. 2213 D.		Front	0.521	0.053	0.574		Front	0.260	0.053	0.313
SAR	Body		-			Body		-		
Right Q.760 Q.031 Q.791 Left Q.447 Q.241 Left Q.250 Q.031 Q.281 Q.213			0.470	-		,		0.132	-	
Left 0.447 - 0.447 - 0.447 Left 0.213 - 0.213 - 0.213	O, t			0.031		0,			0.031	
Simult Tx Configuration UMTS 1750 S GHz WLAN SAR (W/kg) GHz WLAN SAR (W/kg) S GHz S GHz WLAN SAR (W/kg) S GHZ WLAN SAR (W/k				0.001					0.001	
Front	Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	SAR (W/kg)	ΣSAR
Body SAR Bottom 0.523 - 0.363 0.363 Bottom 0.523 - 0.523 0.0523 Right 0.059 0.031 0.090 Right 0.110 0.031 0.141 0.056 - 0.056		Back	0.681	0.481	1.162		Back	0.565	0.481	1.046
SAR		Front	0.312	0.053			Front	0.317	0.053	
SAR Bottom 0.523 - 0.523 0.990 Right 0.110 0.031 0.141 0.156 - 0.0576 - 0.0576 -	Body	Top	-	0.363	0.363	Body	Тор	_	0.363	0.363
Right 0.059 0.031 0.090 0.287	SAR	Bottom	0.523	-		SAR	Bottom	0.720	-	
Left 0.287 - 0.287 Left 0.056 - 0.0566			0.059	0.031	0.090			0.110	0.031	0.141
Simult Tx Configuration				-					-	
Front 0.368 0.053 0.421 Top - 0.363 0.363 0.363 Top - 0.363 0.363 Top - 0.363 0.363 Top - 0.363 0.363 Top - 0.363 0.363 Top - 0.363 0.363 Top - 0.363 0.363 Top - 0.363 0.363 Top - 0.363 0.363 Top - 0.363 0.363 Top - 0.379	Simult Tx	, and the second	SAR (W/kg)	SAR (W/kg)	(W/kg)	Simult Tx	J	SAR (W/kg)	SAR (W/kg)	(W/kg)
Body SAR										
Bottom 0.748 - 0.748 - 0.748 Bottom 0.195 Configuration Right 0.165 0.031 0.196 Cell) SAR (W/kg) SAR (Front	0.368	0.053	0.421		Front	0.170		
Bottom 0.748 -	Body SAR	Тор	-	0.363		Body SAR		-	0.363	
Left 0.096 - 0.096 Left 0.379 - 0.379	Body SAIN		0.748	-		Body Orac	Bottom		-	
Simult Tx Configuration Cell) SAR (W/kg) SAR (W/kg) SAR (W/kg) Simult Tx Configuration Cell) SAR (W/kg) SAR (W/kg)		Right	0.165	0.031	0.196		Right		0.030	0.145
Simult Tx Configuration Cell SAR (W/kg) SAR (W		Left	0.096	-	0.096		Left	0.379	-	0.379
Body Top - 0.363 0.363 0.363 SAR Bottom 0.417 - 0.417 Right 0.599 0.031 0.630 Left 0.398 - 0.398 Left 0.258 - 0.258 Left 0.258 - 0.258 Left 0.258 - 0.258 Left 0.898 - 0.898 Left 0.898 - 0.898 Left 0.898 Left 0.898 - 0.898 Left	Simult Tx	Configuration	(Cell) SAR			Simult Tx	Configuration	LTE Band 4 (AWS) SAR		
Body SAR Bottom 0.417 - 0.417 0.053 0.500 0.500 0.500 0.500 0.630 0				0.481						
SAR Bottom 0.417 - 0.417 SAR Bottom 0.472 - 0.472 Right 0.599 0.031 0.630 - 0.398 - 0.398 Left 0.057 0.031 0.088 Left 0.258 - 0.258 - 0.258 - 0.258 Simult Tx Configuration LTE Band 2 (PCS) SAR (W/kg) SAR (W/kg) SAR (W/kg) LTE Band 7 SAR (W/kg) SAR (W/kg)		Front	0.437	0.053	0.490			0.251	0.053	
Right 0.599 0.031 0.630 Right 0.057 0.031 0.088	Body	Top	-	0.363	0.363	,	Top	-	0.363	0.363
Left 0.398 - 0.398 Left 0.258 - 0.258 Simult Tx Configuration LTE Band 2 (PCS) SAR (W/kg) 5 GHz WLAN SAR (W/kg) Σ SAR (W/kg) LTE Band 7 SAR (W/kg) 5 GHz WLAN SAR (W/kg) Σ SAR (W/kg) Back (W/kg) 0.634 0.481 1.115 Eront 0.447 0.053 0.500 Body SAR Bottom 1.010 - 1.010 Body SAR Eront 0.116 0.053 0.169 Bottom 1.010 - 1.010 SAR Bottom 0.276 - 0.276 Right 0.183 0.031 0.214 Right 0.025 0.031 0.056	SAR	Bottom	0.417	-	0.417	SAR	Bottom	0.472	-	0.472
Simult Tx Configuration LTE Band 2 (PCS) SAR (W/kg) SAR (W/kg) Simult Tx Configuration LTE Band 7 (SAR (W/kg) SAR (W/k		Right	0.599	0.031	0.630		Right	0.057	0.031	0.088
Simult Tx Configuration (PCS) SAR (W/kg) SAR (W/kg) SAR (W/kg) SAR (W/kg) SImult Tx Configuration SAR (W/kg) SAR (W		Left	0.398	-	0.398		Left	0.258	-	0.258
Body SAR Top Bottom Right 1.010 Pight - 0.363 Pight 0.031 Pight 0.031 Pight - 0.276 Pight - 0.276 Pight - 0.276 Pight - 0.053 Pight 0.031 Pight - 0.276 Pight - 0.276 Pight - 0.276 Pight - 0.053 Pight - 0.276 Pight - 0.276 Pight - 0.276 Pight - 0.056 Pight	Simult Tx	Configuration	(PCS) SAR			Simult Tx	Configuration			
Body SAR Top Bottom Right 1.010 Pight - 0.363 Pight 0.031 Pight 0.031 Pight - 0.276 Pight - 0.276 Pight - 0.276 Pight - 0.053 Pight 0.031 Pight - 0.276 Pight - 0.276 Pight - 0.276 Pight - 0.053 Pight - 0.276 Pight - 0.276 Pight - 0.276 Pight - 0.056 Pight		Back	0.634	0.481	1.115		Back	1.052	0.481	1.533
Body SAR Top - 0.363 0.363 Body SAR Top - 0.363 0.363 Right 0.183 0.031 0.214 SAR Bottom 0.276 - 0.276 Right 0.0183 0.031 0.0214 Right 0.025 0.031 0.056		Front	0.447	0.053			Front	0.116	0.053	0.169
SAR Bottom 1.010 - 1.010 SAR Bottom 0.276 - 0.276 Right 0.183 0.031 0.214 Right 0.025 0.031 0.056	Body		-					-		
Right 0.183 0.031 0.214 Right 0.025 0.031 0.056	SAR		1.010	-		SAR		0.276	-	
				0.031					0.031	
			0.103	-					-	

12.6 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05 and IEEE 1528-2003 Section 6.3.4.1.2.

FCC ID: ZNFD850	PCTEST INDICATED LADOLATER, INC.	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 60 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		rage 60 01 66

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 13-1
Body SAR Measurement Variability Results

	Body of it inducation that variability it could												
	BODY VARIABILITY RESULTS												
FREQUENCY Band		NCY	Mode	Service	Side Sp	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.		(W/kg)	(W/kg)		(W/kg)		(W/kg)				
1900	1900.00	19100	LTE Band 2 (PCS)	QPSK, 1 RB, 50 RB Offset	bottom	10 mm	0.965	0.915	1.05	N/A	N/A	N/A	N/A
2450	2510.00	20850	LTE Band 7	QPSK, 1 RB, 99 RB Offset	back	10 mm	0.935	0.953	1.02	N/A	N/A	N/A	N/A
2600	2535.00	21100	LTE Band 7	QPSK, 1 RB, 99 RB Offset	back	10 mm	1.010	1.040	1.03	N/A	N/A	N/A	N/A
	•	ANSI /	IEEE C95.1 1992 - S	SAFETY LIMIT					Во	dy			
	Spatial Peak					1.6 W/kg (mW/g)							
	U	ncontro	lled Exposure/Gen	eral Population				а	veraged c	ver 1 gram			

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01, the extended measurement uncertainty analysis per IEEE 1528-2003 was not required.

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 61 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Faye 01 01 00

14 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	85047A	S-Parameter Test Set	N/A	N/A	N/A	2904A00579
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	8648D	(9kHz-4GHz) Signal Generator	4/15/2014	Annual	4/15/2015	3629U00687
Agilent	8753E	(30kHz-6GHz) Network Analyzer	7/23/2013	Annual	7/23/2014	US37390350
Agilent	8753ES	S-Parameter Network Analyzer	10/29/2013	Annual	10/29/2014	US39170122
Agilent	E4438C	ESG Vector Signal Generator	4/25/2014	Annual	4/25/2015	MY42082385
Agilent	E4438C	ESG Vector Signal Generator	4/15/2014	Annual	4/15/2015	MY45090700
Agilent	E8257D	(250kHz-20GHz) Signal Generator	4/15/2014	Annual	4/15/2015	MY45470194
Agilent	N5182A	MXG Vector Signal Generator	4/15/2014	Annual	4/15/2015	MY47420800
Agilent	N9020A	MXA Signal Analyzer	10/29/2013	Annual	10/29/2014	US46470561
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433972
Anritsu	MA24106A	USB Power Sensor	1/3/2014	Annual	1/3/2015	1344554
Anritsu	MA24106A	USB Power Sensor	1/3/2014	Annual	1/3/2015	1344557
Anritsu	MA2411B	Pulse Power Sensor	3/25/2014	Annual	3/25/2015	1207470
Anritsu	MA2411B	Pulse Power Sensor	2/3/2014	Annual	2/3/2015	1339018
Anritsu	ML2469A	Power Meter	3/14/2014	Annual	3/14/2015	1306009
Anritsu	ML2495A	Power Meter	10/31/2013	Annual	10/31/2014	1039008
Anritsu	MT8820C	Radio Communication Analyzer	12/12/2013	Annual	12/12/2014	6200901190
Anritsu	MT8820C	Radio Communication Analyzer	12/12/2013	Annual	12/12/2014	6201300731
COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
COMTECH	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-1002
Control Company	4052	Long Stem Thermometer	9/27/2013	Biennial	9/27/2015	130567447
Control Company	36934-158	Wall-Mounted Thermometer	4/29/2014	Biennial	4/29/2016	122014488
Control Company	61220-416	Long-Stem Thermometer	4/29/2014	Biennial	4/29/2016	111331323
Fisher Scientific	15-077-960	Digital Thermometer	11/6/2012	Biennial	11/6/2014	122640025
Fisher Scientific	\$407993	Long Stem Thermometer	11/4/2013	Biennial	11/4/2015	130671826
Gigatronics	80701A	(0.05-18GHz) Power Sensor	10/30/2013	Annual	10/30/2014	1833460
Gigatronics	8651A	Universal Power Meter	10/30/2013	Annual	10/30/2014	8650319
MCL	BW-N6W5+	6dB Attenuator	СВТ	N/A	СВТ	1139
MiniCircuits	SLP-2400+	Low Pass Filter	СВТ	N/A	CBT	R8979500903
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	СВТ	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	СВТ	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
. asternack	CMU200	Base Station Simulator	9/23/2013	Annual	9/23/2014	109892

FCC ID: ZNFD850	POTEST INSTITUTE LADSTATUT, INC.	SAR EVALUATION REPORT	€ LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 62 of 69
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 62 of 68

Rohde & Schwarz	CMW500	LTE Radio Communication Tester	10/4/2013	Biennial	10/4/2015	103962
Rohde & Schwarz	CMW500	LTE Radio Communication Tester	10/18/2013	Annual	10/18/2014	100976
Rohde & Schwarz	CMW500	LTE Radio Communication Tester	10/4/2013	Annual	10/4/2014	108798
Rohde & Schwarz	NRVD	Dual Channel Power Meter	10/12/2012	Biennial	10/12/2014	101695
Rohde & Schwarz	NRVS	Single Channel Power Meter	10/31/2013	Annual	10/31/2014	835360/0079
Rohde & Schwarz	NRV-Z32	Peak Power Sensor	10/12/2012	Biennial	10/12/2014	836019/013
Rohde & Schwarz	SME06	Signal Generator	10/30/2013	Annual	10/30/2014	832026
Seekonk	NC-100	Torque Wrench	3/18/2014	Biennial	3/18/2016	22313
Seekonk	NC-100	Torque Wrench	3/18/2014	Biennial	3/18/2016	N/A
SPEAG	D750V3	750 MHz Dipole	1/20/2014	Annual	1/20/2015	1003
SPEAG	D835V2	835 MHz SAR Dipole	4/7/2014	Annual	4/7/2015	4d119
SPEAG	D835V2	835 MHz SAR Dipole	7/17/2013	Annual	7/17/2014	4d133
SPEAG	D1750V2	1750 MHz SAR Dipole	4/10/2014	Annual	4/10/2015	1051
SPEAG	D1900V2	1900 MHz SAR Dipole	2/27/2014	Annual	2/27/2015	5d148
SPEAG	D1900V2	1900 MHz SAR Dipole	7/22/2013	Annual	7/22/2014	5d149
SPEAG	D1900V2	1900 MHz SAR Dipole	7/20/2012	Annual	7/20/2013	5d080
SPEAG	D2450V2	2450 MHz SAR Dipole	8/23/2013	Annual	8/23/2014	719
SPEAG	D2450V2	2450 MHz SAR Dipole	1/21/2014	Annual	1/21/2015	797
SPEAG	D2600V2	2600 MHz SAR Dipole	4/8/2014	Annual	4/8/2015	1004
SPEAG	D2600V2	2600 MHz SAR Dipole	11/15/2013	Annual	11/15/2014	1071
SPEAG	D5GHzV2	5 GHz SAR Dipole	1/27/2014	Annual	1/27/2015	1057
SPEAG	D5GHzV2	5 GHz SAR Dipole	9/23/2013	Annual	9/23/2014	1007
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/17/2014	Annual	3/17/2015	1364
SPEAG	DAE4	Dasy Data Acquisition Electronics	9/17/2013	Annual	9/17/2014	1323
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/26/2014	Annual	2/26/2015	665
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/22/2014	Annual	1/22/2015	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	12/12/2013	Annual	12/12/2014	649
SPEAG	DAE4	Dasy Data Acquisition Electronics	11/19/2013	Annual	11/19/2014	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	11/19/2013	Annual	11/19/2014	1408
SPEAG	DAE4	Dasy Data Acquisition Electronics	11/18/2013	Annual	11/18/2014	1407
SPEAG	DAK-3.5	Dielectric Assessment Kit	11/13/2013	Annual	11/13/2014	1091
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/18/2013	Annual	8/18/2014	1008
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/18/2013	Annual	8/18/2014	1009
SPEAG	ES3DV3	SAR Probe	4/11/2014	Annual	4/11/2015	3213
SPEAG	ES3DV3	SAR Probe	9/23/2013	Annual	9/23/2014	3288
SPEAG	ES3DV3	SAR Probe	2/25/2014	Annual	2/25/2015	3258
SPEAG	ES3DV3	SAR Probe	11/25/2013	Annual	11/25/2014	3332
SPEAG	ES3DV3	SAR Probe	11/22/2013	Annual	11/22/2014	3333
SPEAG	ES3DV3	SAR Probe	11/20/2013	Annual	11/20/2014	3287
SPEAG	EX3DV4	SAR Probe	1/29/2014	Annual	1/29/2015	3589
SPEAG	EX3DV4	SAR Probe	12/18/2013	Annual	12/18/2014	3920
SPEAG	EX3DV4	SAR Probe	10/23/2013	Annual	10/23/2014	3914
Tektronix	RSA6114A	Real Time Spectrum Analyzer	4/16/2014	Annual	4/16/2015	B010177
VWR	23226-658	Long Stem Thermometer	7/11/2012	Biennial	7/11/2014	122389330
VWR	36934-158	Wall-Mounted Thermometer	8/8/2013	Biennial	8/8/2015	130477877

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 62 of 60
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 63 of 68

15 MEASUREMENT UNCERTAINTIES

Applicable for frequencies less than 3000 MHz.

a	b	С	d	e=	f	g	h =	i =	k
						0			
	IEEE	T.	<u> </u>	f(d,k)	_	_	c x f/e	c x g/e	
Uncertainty	1528	Tol.	Prob.		Ci	Ci	1gm	10gms	
Component	Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	ui	v _i
Management Contains							(± %)	(± %)	
Measurement System	E.2.1	(0	N.I.	1	1.0	1.0	(0	(0	
Probe Calibration		6.0	N	1	1.0	1.0	6.0	6.0	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1 72	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	00
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	Ν	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	8
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	-co
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	oc
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	Ν	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)			RSS				12.1	11.7	299
Expanded Uncertainty			k=2				24.2	23.5	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

		0		
FCC ID: ZNFD850	PCTEST INDICATES ALIGNATURE. INC.	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 64 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Fage 04 01 00

Applicable for frequencies up to 6 GHz.

a	b	С	d	e=	f	g	h =	i =	k
u u			u			5			K
				f(d,k)			c x f/e	c x g/e	
Uncertainty	1528	Tol.	Prob.		Ci	c _i	1gm	10gms	
Component	Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v _i
							(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	6.55	N	1	1.0	1.0	6.6	6.6	00
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	Ν	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	Ν	1	1.0	1.0	5.1	5.1	∞
Readout E lectronics	E.2.6	1.0	Ν	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	Ν	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	Z	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	Ν	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)			RSS		_		12.4	12.0	299
Expanded Uncertainty			k=2				24.7	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 65 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	rage 00 01 00

16 CONCLUSION

Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFD850	INDIVIDUAL RADIATION, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 66 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	rage 00 01 00

17 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: ZNFD850	PCTEST*	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:		Dogo 67 of 69		
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset		Page 67 of 68		
© 2014 PCTEST Engineering Laboratory, Inc.						

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v01r02
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D02-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: ZNFD850	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 68 of 68
0Y1405060921.ZNF	05/05/14 - 05/21/14	Portable Handset	

APPENDIX A: SAR TEST DATA

PCTEST ENGINEERING LABORATORY, INC.

DUT: ZNFD850; Type: Portable Handset; Serial: 605-5

Communication System: UID 0, GSM850 GPRS; 3 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.76 Medium: 835 Head, Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.906 \text{ S/m}; \ \epsilon_r = 40.839; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

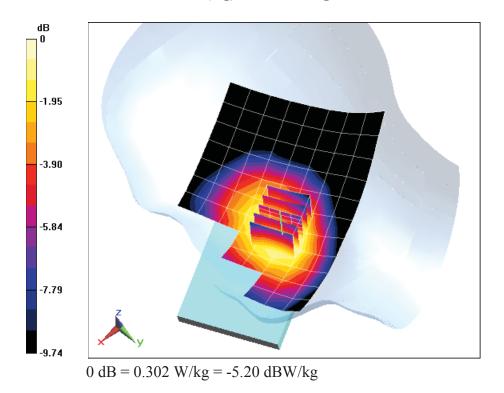
Test Date: 05-14-2014; Ambient Temp: 22.5°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3213; ConvF(6.37, 6.37, 6.37); Calibrated: 4/11/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 3/17/2014 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: GPRS 850, Standard Cover, Right Head, Cheek, Mid.ch, 3 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.160 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.356 W/kg

SAR(1 g) = 0.287 W/kg

PCTEST ENGINEERING LABORATORY, INC.

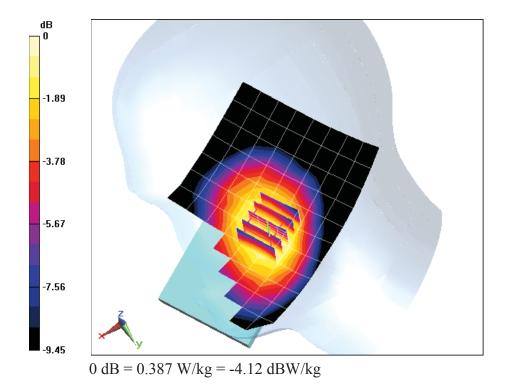
DUT: ZNFD850; Type: Portable Handset; Serial: 1505-1

Communication System: UID 0, UMTS 850; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head, Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.906 \text{ S/m}; \ \epsilon_r = 40.839; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 05-14-2014; Ambient Temp: 22.5°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3213; ConvF(6.37, 6.37, 6.37); Calibrated: 4/11/2014; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 3/17/2014
Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: UMTS 850, Standard Cover, Right Head, Cheek, Mid.ch


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.062 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.453 W/kg

SAR(1 g) = 0.367 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: ZNFD850; Type: Portable Handset; Serial: 605-1

Communication System: UID 0, UMTS 1750; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head, Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.394$ S/m; $\varepsilon_r = 40.606$; $\rho = 1000$ kg/m³ Phantom section: Left Section

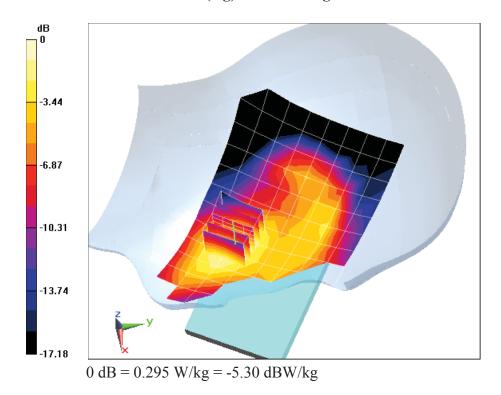
Test Date: 05-14-2014; Ambient Temp: 23.0°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3258; ConvF(5.19, 5.19, 5.19); Calibrated: 2/25/2014; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014

Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: AWS UMTS, Standard Cover, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.381 V/m; Power Drift = 0.00 dB

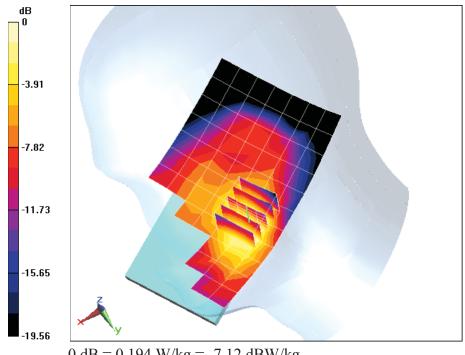
Peak SAR (extrapolated) = 0.417 W/kg

SAR(1 g) = 0.274 W/kg

DUT: ZNFD850; Type: Portable Handset; Serial: 605-5

Communication System: UID 0, GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Head, Medium parameters used: $f = 1880 \text{ MHz}; \sigma = 1.427 \text{ S/m}; \epsilon_r = 40.125; \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 05-19-2014; Ambient Temp: 24.0°C; Tissue Temp: 22.5°C


Probe: ES3DV3 - SN3258; ConvF(5.04, 5.04, 5.04); Calibrated: 2/25/2014; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014

Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

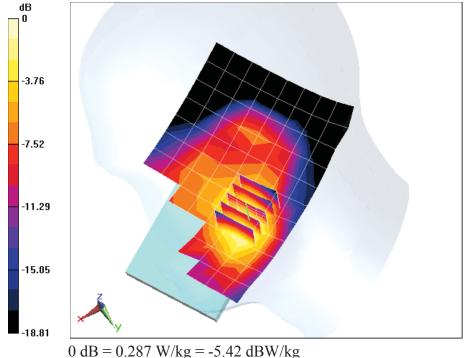
Mode: GPRS 1900, Standard Cover, Right Head, Cheek, Mid.ch, 2 Tx slots

Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.300 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.273 W/kgSAR(1 g) = 0.179 W/kg

DUT: ZNFD850; Type: Portable Handset; Serial: 605-1

Communication System: UID 0, UMTS 1900; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head, Medium parameters used: $f = 1880 \text{ MHz}; \sigma = 1.427 \text{ S/m}; \epsilon_r = 40.125; \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 05-19-2014; Ambient Temp: 24.0°C; Tissue Temp: 22.5°C


Probe: ES3DV3 - SN3258; ConvF(5.04, 5.04, 5.04); Calibrated: 2/25/2014; Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: UMTS 1900, Standard Cover, Right Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.309 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.405 W/kgSAR(1 g) = 0.265 W/kg

DUT: ZNFD850; Type: Portable Handset; Serial: 605-12

Communication System: UID 0, LTE Band 17; Frequency: 710 MHz; Duty Cycle: 1:1 Medium: 750 Head, Medium parameters used: $f = 710 \text{ MHz}; \ \sigma = 0.857 \text{ S/m}; \ \epsilon_r = 41.218; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 05-16-2014; Ambient Temp: 23.8°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3287; ConvF(6.52, 6.52, 6.52); Calibrated: 11/20/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 11/19/2013
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 17, Wireless Charging Cover Open, Left Head, Cheek, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 49 RB Offset

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.777 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.295 W/kg

SAR(1 g) = 0.235 W/kg

DUT: ZNFD850; Type: Portable Handset; Serial: 605-15

Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head, Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.941 \text{ S/m}; \ \epsilon_r = 42.968; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

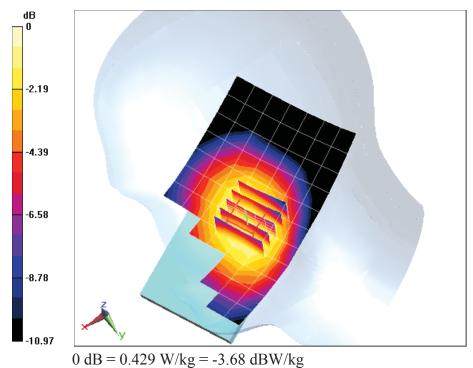
Test Date: 05-21-2014; Ambient Temp: 20.5°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3258; ConvF(6.27, 6.27, 6.27); Calibrated: 2/25/2014; Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 2/26/2014
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 5 (Cell.), Wireless Charging Cover Open, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.116 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.534 W/kg

SAR(1 g) = 0.411 W/kg

DUT: ZNFD850; Type: Portable Handset; Serial: 605-12

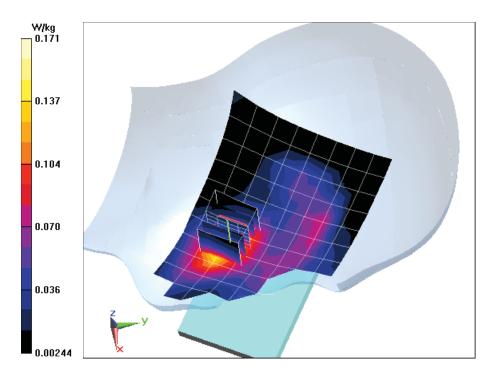
Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Head, Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.394 \text{ S/m}; \ \epsilon_r = 40.605; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 05-14-2014; Ambient Temp: 23.0°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3258; ConvF(5.19, 5.19, 5.19); Calibrated: 2/25/2014; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/26/2014
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 4 (AWS), Standard Cover, Left Head, Cheek, Mid.ch, QPSK, 20 MHz Bandwidth, 1 RB, 50 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.571 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.247 W/kg

SAR(1 g) = 0.156 W/kg

DUT: ZNFD850; Type: Portable Handset; Serial: 605-15

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head, Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.45 \text{ S/m}; \ \epsilon_r = 40.066; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

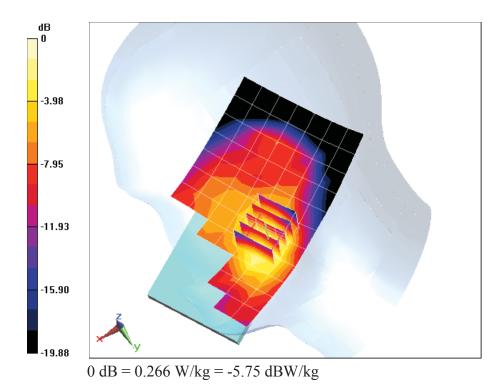
Test Date: 05-19-2014; Ambient Temp: 24.0°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3258; ConvF(5.04, 5.04, 5.04); Calibrated: 2/25/2014; Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 2 (PCS), Wireless Charging Cover Open, Right Head, Cheek, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.630 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.387 W/kg

SAR(1 g) = 0.248 W/kg

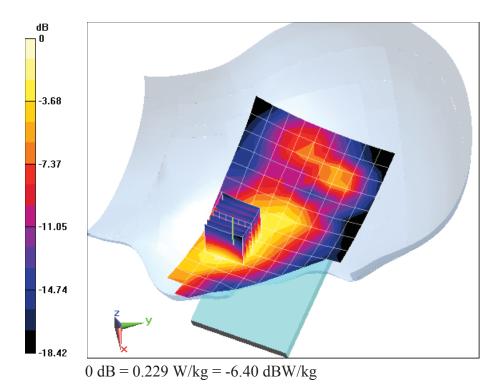
DUT: ZNFD850; Type: Portable Handset; Serial: 605-12

Communication System: UID 0, LTE Band 7; Frequency: 2560 MHz; Duty Cycle: 1:1 Medium: 2600 Head, Medium parameters used (interpolated): $f = 2560 \text{ MHz}; \ \sigma = 1.954 \text{ S/m}; \ \epsilon_r = 38.628; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 05-20-2014; Ambient Temp: 24.1°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3287; ConvF(4.29, 4.29, 4.29); Calibrated: 11/20/2013; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 11/19/2013
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 7, Standard Cover, Left Head, Cheek, High.ch, QPSK, 20 MHz Bandwidth, 1 RB, 99 RB Offset


Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.289 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.336 W/kg

SAR(1 g) = 0.182 W/kg

DUT: ZNFD850; Type: Portable Handset; Serial: 605-18

Communication System: UID 0, IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Head, Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.831 \text{ S/m}; \ \epsilon_r = 38.44; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

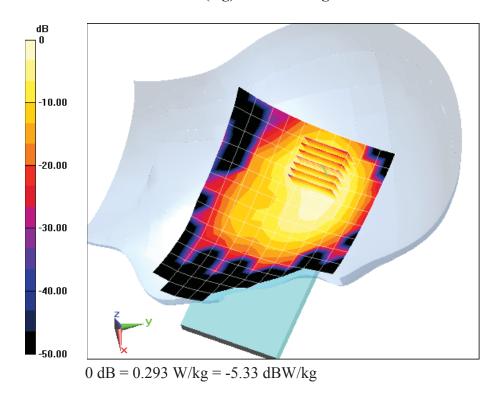
Test Date: 05-05-2014; Ambient Temp: 23.3°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3589; ConvF(6.45, 6.45, 6.45); Calibrated: 1/29/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/22/2014 Phantom: SAM; Type: QD000P40CD; Serial: TP:1758

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11b, Wireless Charging Cover Open, Left Head, Cheek, Ch 11, 1 Mbps


Area Scan (11x16x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.292 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.483 W/kg

SAR(1 g) = 0.238 W/kg

DUT: ZNFD850; Type: Portable Handset; Serial: 605-18

Communication System: UID 0, IEEE 802.11a; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head, Medium parameters used: $f = 5745 \text{ MHz}; \ \sigma = 5.109 \text{ S/m}; \ \epsilon_r = 35.952; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 05-14-2014; Ambient Temp: 24.5°C; Tissue Temp: 24.1°C

Probe: EX3DV4 - SN3914; ConvF(4.52, 4.52, 4.52); Calibrated: 10/23/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 11/19/2013
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.8 GHz, Standard Cover, Right Head, Tilt, Ch 149, 6 Mbps

Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio = 1.4

Reference Value = 7.712 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 0.405 W/kg

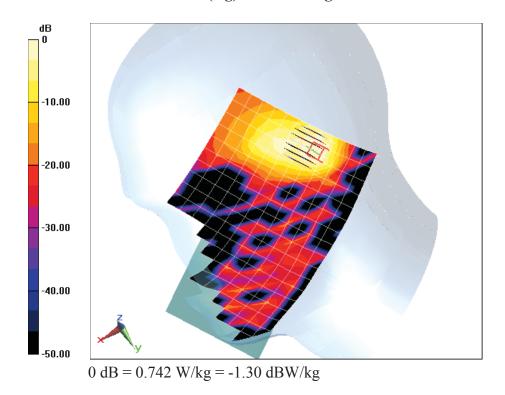
DUT: ZNFD850; Type: Portable Handset; Serial: 605-18

Communication System: UID 0, IEEE 802.11a; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head, Medium parameters used: $f = 5260 \text{ MHz}; \ \sigma = 4.638 \text{ S/m}; \ \epsilon_r = 36.641; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 05-14-2014; Ambient Temp: 24.5°C; Tissue Temp: 24.3°C

Probe: EX3DV4 - SN3914; ConvF(4.82, 4.82, 4.82); Calibrated: 10/23/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 11/19/2013
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.3 GHz, Standard Cover, Right Head, Tilt, Ch 52, 6 Mbps


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio = 1.4

Reference Value = 7.183 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.328 W/kg

DUT: ZNFD850; Type: Portable Handset; Serial: 605-5

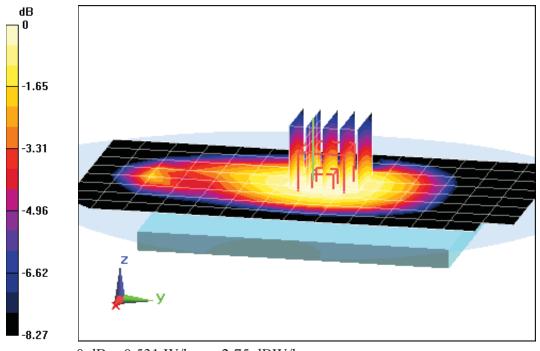
Communication System: UID 0, GSM850 GPRS; 3 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.76 Medium: 835 Body, Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.971$ S/m; $\varepsilon_r = 53.512$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-12-2014; Ambient Temp: 23.0°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3288; ConvF(6.27, 6.27, 6.27); Calibrated: 9/23/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2013
Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: GPRS 850, Body SAR, Standard Cover, Back side, Mid.ch, 3 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.567 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.643 W/kg

SAR(1 g) = 0.511 W/kg

0 dB = 0.531 W/kg = -2.75 dBW/kg

DUT: ZNFD850; Type: Portable Handset; Serial: 605-5

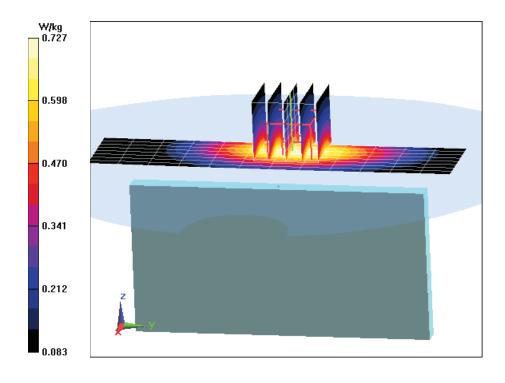
Communication System: UID 0, GSM850 GPRS 3 Tx Slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.76 Medium: 835 Body, Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.971 \text{ S/m}; \ \epsilon_r = 53.512; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-12-2014; Ambient Temp: 23.0°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3288; ConvF(6.27, 6.27, 6.27); Calibrated: 9/23/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2013
Phantom: SAM with CRP; Type: SAM; Serial: TP1375
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Wedsdrellient 5 W. Drist 1, Version 1.7 (00), SEMETED 11 Version 11.0.10 (7101)

Mode: GPRS 850, Body SAR, Standard Cover, Right Edge, Mid.ch, 3 Tx Slots


Area Scan (9x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.621 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.941 W/kg

SAR(1 g) = 0.680 W/kg

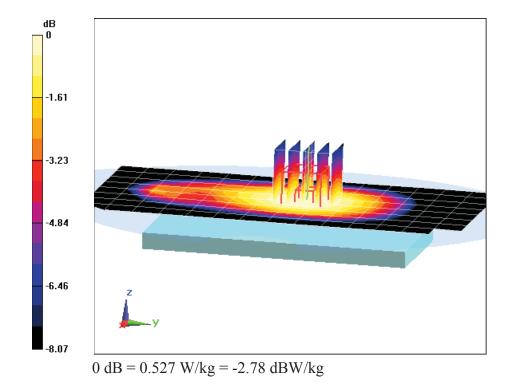
DUT: ZNFD850; Type: Portable Handset; Serial: 605-1

Communication System: UID 0, UMTS 850; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body, Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.971 \text{ S/m}$; $\epsilon_r = 53.512$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-12-2014; Ambient Temp: 23.0°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3288; ConvF(6.27, 6.27, 6.27); Calibrated: 9/23/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2013
Phantom: SAM with CRP; Type: SAM; Serial: TP1375
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: UMTS 850, Body SAR, Standard Cover, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.471 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.631 W/kg

SAR(1 g) = 0.503 W/kg

DUT: ZNFD850; Type: Portable Handset; Serial: 605-1

Communication System: UID 0, UMTS 1750; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body, Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.454 \text{ S/m}; \ \epsilon_r = 52.663; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

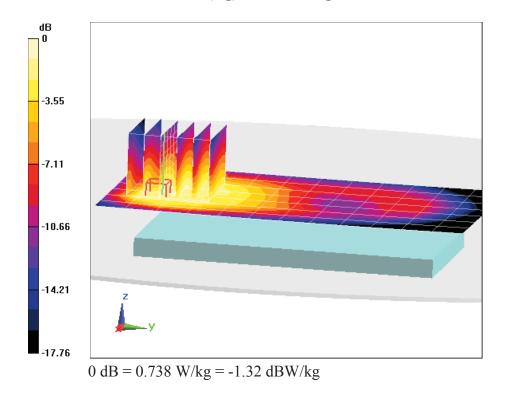
Test Date: 05-14-2014; Ambient Temp: 21.5°C; Tissue Temp: 23.1°C

Probe: ES3DV3 - SN3332; ConvF(4.93, 4.93, 4.93); Calibrated: 11/25/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1407; Calibrated: 11/18/2013 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1226

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: AWS UMTS, Body SAR, Standard Cover, Back side, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.343 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.676 W/kg

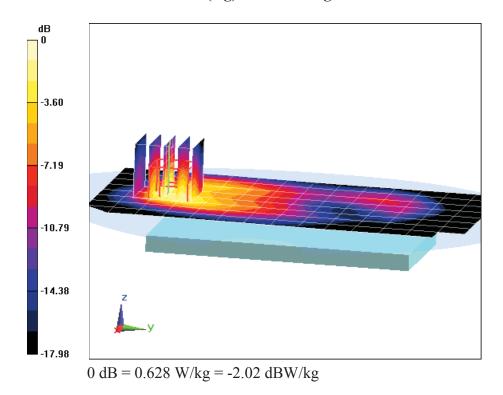
DUT: ZNFD850; Type: Portable Handset; Serial: 605-5

Communication System: UID 0, GSM1900 GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body, Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.53 \text{ S/m}; \ \epsilon_r = 55.093; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-08-2014; Ambient Temp: 23.3°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3288; ConvF(4.82, 4.82, 4.82); Calibrated: 9/23/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2013
Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: GPRS 1900, Body SAR, Standard Cover, Back side, Mid.ch, 2 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.977 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.896 W/kg

SAR(1 g) = 0.544 W/kg

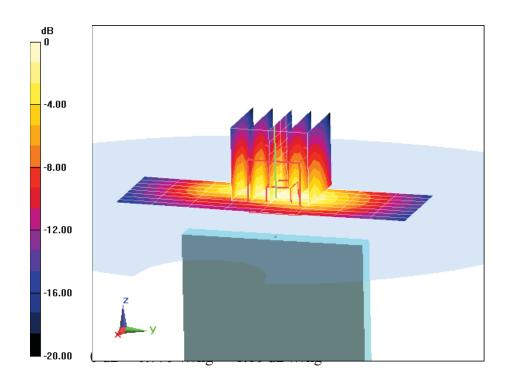
DUT: ZNFD850; Type: Portable Handset; Serial: 605-5

Communication System: UID 0, GSM1900 GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body, Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.53 \text{ S/m}; \ \epsilon_r = 55.093; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-08-2014; Ambient Temp: 23.3°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3288; ConvF(4.82, 4.82, 4.82); Calibrated: 9/23/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2013
Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: GPRS 1900, Body SAR, Wireless Charging Cover Closed, Bottom Edge, Mid.ch, 2 Tx Slots


Area Scan (9x9x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.877 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.694 W/kg

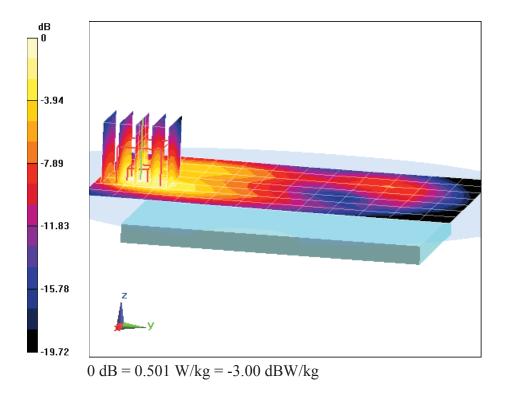
DUT: ZNFD850; Type: Portable Handset; Serial: 605-1

Communication System: UID 0, WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used: f = 1880 MHz; $\sigma = 1.529$ S/m; $\epsilon_r = 55.03$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-12-2014; Ambient Temp: 23.4°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3288; ConvF(4.82, 4.82, 4.82); Calibrated: 9/23/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2013
Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: UMTS 1900, Body SAR, Wireless Charging Cover Closed, Back side, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.964 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.738 W/kg

SAR(1 g) = 0.444 W/kg

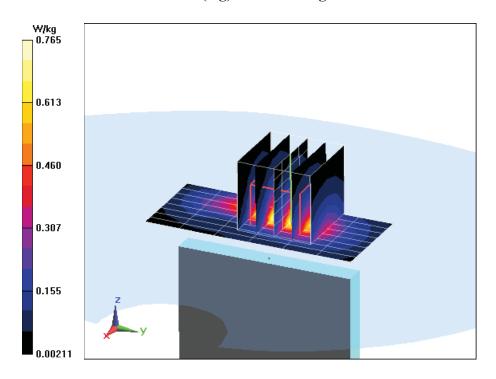
DUT: ZNFD850; Type: Portable Handset; Serial: 605-1

Communication System: UID 0, UMTS1900; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.529 \text{ S/m}; \ \epsilon_r = 55.03; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-12-2014; Ambient Temp: 23.4°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3288; ConvF(4.82, 4.82, 4.82); Calibrated: 9/23/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2013
Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: UMTS 1900, Body SAR, Standard Cover, Bottom Edge, Mid.ch


Area Scan (9x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.319 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.701 W/kg

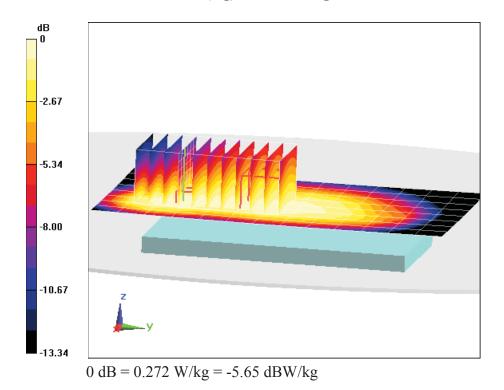
DUT: ZNFD850; Type: Portable Handset; Serial: 605-12

Communication System: UID 0, LTE Band 17; Frequency: 710 MHz; Duty Cycle: 1:1 Medium: 750 Body, Medium parameters used: $f = 710 \text{ MHz}; \ \sigma = 0.946 \text{ S/m}; \ \epsilon_r = 56.654; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-13-2014; Ambient Temp: 23.9°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3333; ConvF(6.11, 6.11, 6.11); Calibrated: 11/22/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 11/19/2013
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 17, Body SAR, Wireless Charging Cover Closed, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (7x11x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.465 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.442 W/kg

SAR(1 g) = 0.257 W/kg

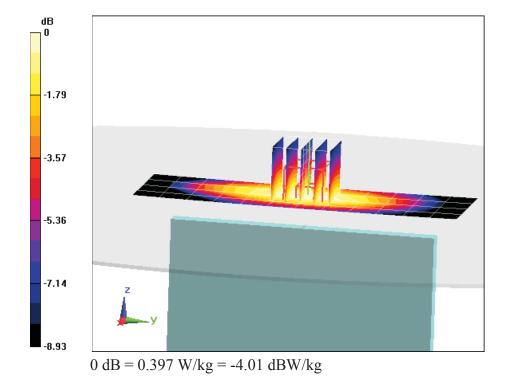
DUT: ZNFD850; Type: Portable Handset; Serial: 605-12

Communication System: UID 0, LTE Band 17; Frequency: 710 MHz; Duty Cycle: 1:1 Medium: 750 Body, Medium parameters used: $f = 710 \text{ MHz}; \ \sigma = 0.946 \text{ S/m}; \ \epsilon_r = 56.654; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-13-2014; Ambient Temp: 23.9°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3333; ConvF(6.11, 6.11, 6.11); Calibrated: 11/22/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 11/19/2013
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 17, Body SAR, Wireless Charging Cover Closed, Left Edge, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm

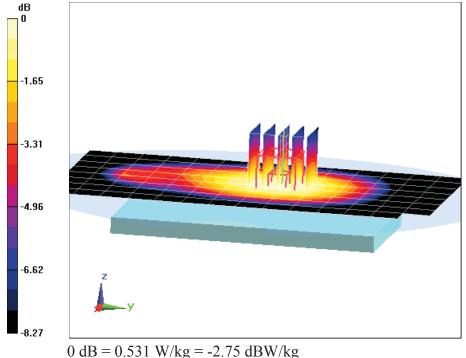
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.860 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.502 W/kg

SAR(1 g) = 0.379 W/kg

DUT: ZNFD850; Type: Portable Handset; Serial: 605-12


Communication System: UID 0, LTE BAND 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body, Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \sigma = 0.971 \text{ S/m}; \epsilon_r = 53.513; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-12-2014; Ambient Temp: 23.0°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3288; ConvF(6.27, 6.27, 6.27); Calibrated: 9/23/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 9/17/2013 Phantom: SAM with CRP; Type: SAM; Serial: TP1375 Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 5 (Cell), Body SAR, Standard Cover, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.463 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.642 W/kgSAR(1 g) = 0.507 W/kg

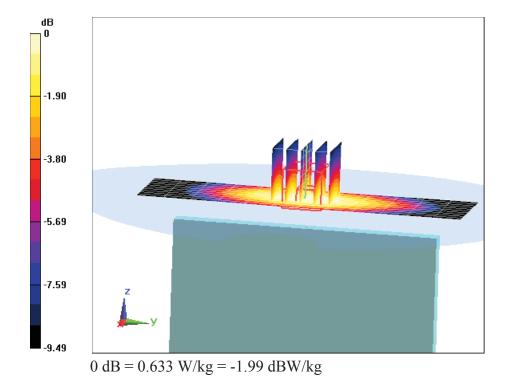
DUT: ZNFD850; Type: Portable Handset; Serial: 605-12

Communication System: UID 0, LTE BAND 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body, Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.971$ S/m; $\varepsilon_r = 53.513$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-12-2014; Ambient Temp: 23.0°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3288; ConvF(6.27, 6.27, 6.27); Calibrated: 9/23/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2013
Phantom: SAM with CRP; Type: SAM; Serial: TP1375
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 5 (Cell), Body SAR, Standard Cover, Right Edge, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (11x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.864 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.828 W/kg

SAR(1 g) = 0.592 W/kg

DUT: ZNFD850; Type: Portable Handset; Serial: 605-1

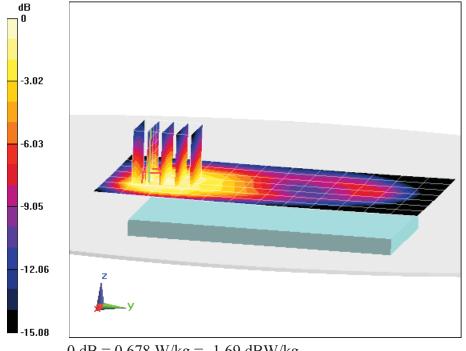
Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body, Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.454$ S/m; $\varepsilon_r = 52.663$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-14-2014; Ambient Temp: 21.5°C; Tissue Temp: 23.1°C

Probe: ES3DV3 - SN3332; ConvF(4.93, 4.93, 4.93); Calibrated: 11/25/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 11/18/2013
Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1226

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 4 (AWS), Body SAR, Standard Cover, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.789 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.960 W/kg

SAR(1 g) = 0.585 W/kg

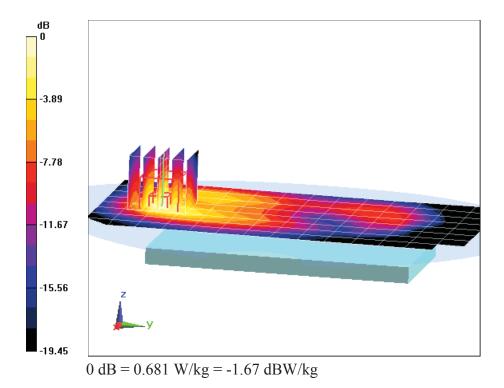
DUT: ZNFD850; Type: Portable Handset; Serial: 605-12

Communication System: UID 0, LTE PCS; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.554 \text{ S/m}; \ \epsilon_r = 54.893; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-12-2014; Ambient Temp: 23.4°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3288; ConvF(4.82, 4.82, 4.82); Calibrated: 9/23/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2013
Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 2 (PCS), Body SAR, Standard Cover, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.929 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.606 W/kg

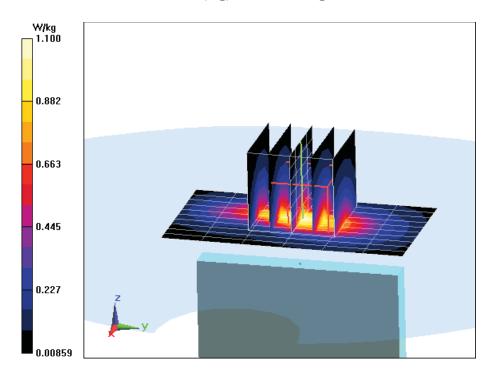
DUT: ZNFD850; Type: Portable Handset; Serial: 605-12

Communication System: UID 0, LTE PCS; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.554 \text{ S/m}; \ \epsilon_r = 54.893; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-12-2014; Ambient Temp: 23.4°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3288; ConvF(4.82, 4.82, 4.82); Calibrated: 9/23/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2013
Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 2 (PCS), Body SAR, Standard Cover, Bottom Edge, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (11x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.386 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.61 W/kg

SAR(1 g) = 0.965 W/kg

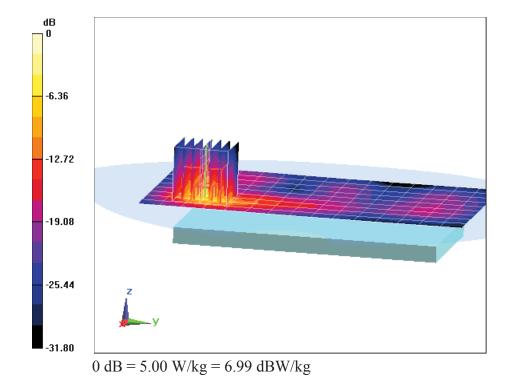
DUT: ZNFD850; Type: Portable Handset; Serial: 605-12

Communication System: UID 0, LTE BAND 7; Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: 2600 Body, Medium parameters used (interpolated): $f = 2535 \text{ MHz}; \ \sigma = 2.158 \text{ S/m}; \ \epsilon_r = 51.349; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-21-2014; Ambient Temp: 21.4°C; Tissue Temp: 23.3°C

Probe: ES3DV3 - SN3213; ConvF(4.05, 4.05, 4.05); Calibrated: 4/11/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 3/17/2014
Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 7, Body SAR, Standard Cover, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.440 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 2.36 W/kg

SAR(1 g) = 1.04 W/kg

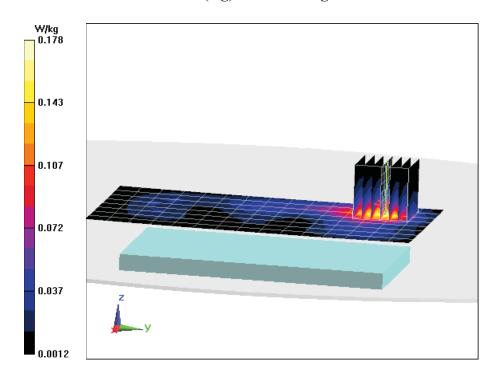
DUT: ZNFD850; Type: Portable Handset; Serial: 605-18

Communication System: UID 0, IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body, Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.061 \text{ S/m}; \ \epsilon_r = 51.089; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-05-2014; Ambient Temp: 24.0°C; Tissue Temp: 23.1°C

Probe: ES3DV3 - SN3258; ConvF(4.14, 4.14, 4.14); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/26/2014
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11b, Body SAR, Ch 11, 1 Mbps, Standard Cover, Back Side


Area Scan (9x16x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.327 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.305 W/kg

SAR(1 g) = 0.138 W/kg

DUT: ZNFD850; Type: Portable Handset; Serial: 605-18

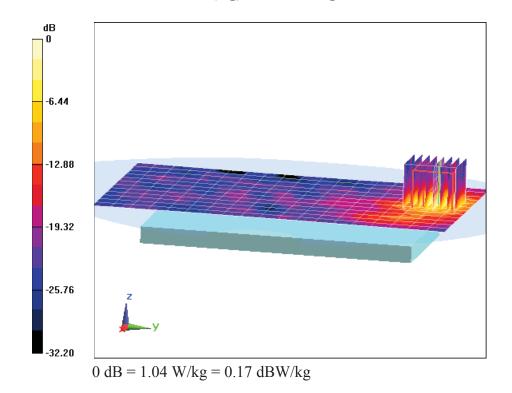
Communication System: UID 0, IEEE 802.11a 5.8 GHz Band; Frequency: 5805 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body, Medium parameters used: $f = 5805 \text{ MHz}; \ \sigma = 6.255 \text{ S/m}; \ \epsilon_r = 46.497; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-06-2014; Ambient Temp: 23.9°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3920; ConvF(4, 4, 4); Calibrated: 12/18/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 12/12/2013
Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.8 GHz, Body SAR, Ch 161, 6 Mbps, Standard Cover, Back Side


Area Scan (13x20x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio = 1.4

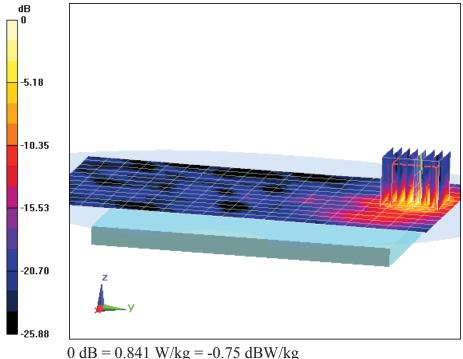
Reference Value = 8.657 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.95 W/kg

SAR(1 g) = 0.436 W/kg

DUT: ZNFD850; Type: Portable Handset; Serial: 605-18

Communication System: UID 0, IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5540 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body, Medium parameters used: $f = 5540 \text{ MHz}; \ \sigma = 5.869 \text{ S/m}; \ \epsilon_r = 46.142; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 05-06-2014; Ambient Temp: 23.9°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3920; ConvF(3.8, 3.8, 3.8); Calibrated: 12/18/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 12/12/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.5 GHz, Body SAR, Ch 108, 6 Mbps, Standard Cover, Back Side

Area Scan (13x20x1): Measurement grid: dx=10mm, dy=10mm **Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio = 1.4 Reference Value = 7.608 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 1.48 W/kgSAR(1 g) = 0.342 W/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1003

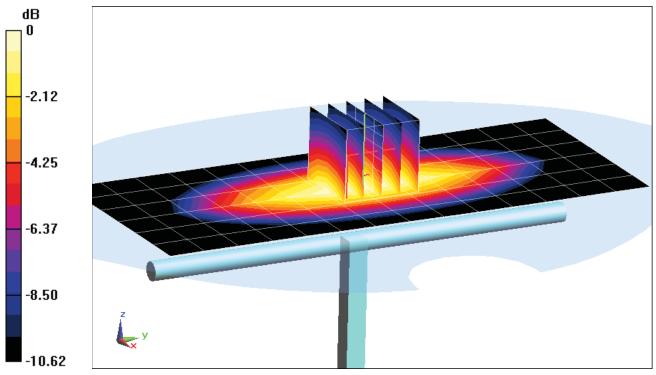
Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): $f = 750 \text{ MHz}; \ \sigma = 0.891 \text{ S/m}; \ \epsilon_r = 40.67; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5cm

Test Date: 05-16-2014; Ambient Temp: 23.8°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3287; ConvF(6.52, 6.52, 6.52); Calibrated: 11/20/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 11/19/2013
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

750 MHz System Verification

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 1.19 W/kg

SAR(1 g) = 0.796 W/kg

Deviation = -4.90%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.905$ S/m; $\varepsilon_r = 40.853$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

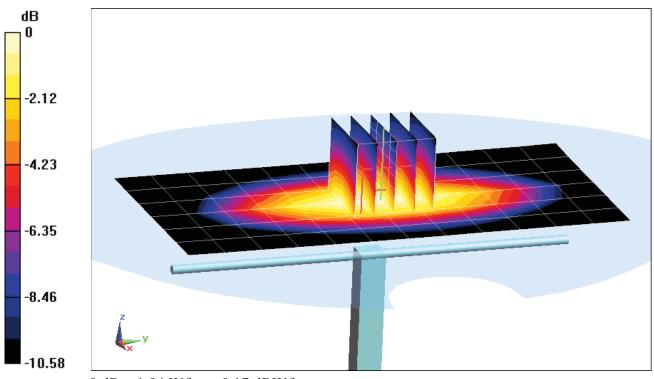
Test Date: 05-14-2014; Ambient Temp: 22.5°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3213; ConvF(6.37, 6.37, 6.37); Calibrated: 4/11/2014; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 3/17/2014
Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

835MHz System Verification

Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 0.964 W/kg

Deviation = 0.21%

0 dB = 1.04 W/kg = 0.17 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d119

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: f = 835 MHz; $\sigma = 0.94 \text{ S/m}$; $\varepsilon_r = 42.984$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 05-21-2014; Ambient Temp: 20.5°C; Tissue Temp: 21.9°C

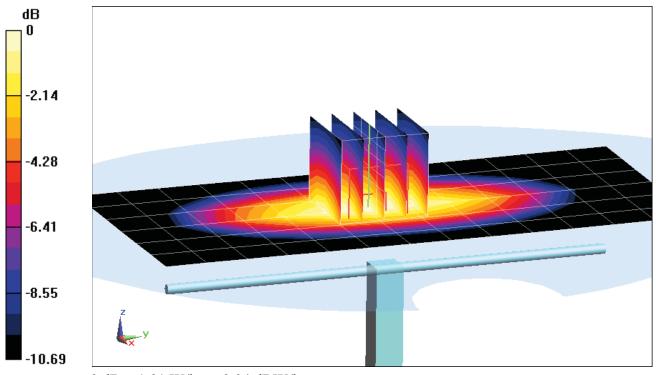
Probe: ES3DV3 - SN3258; ConvF(6.27, 6.27, 6.27); Calibrated: 2/25/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 0.934 W/kg

Deviation = 1.30%

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1051

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: f = 1750 MHz; $\sigma = 1.413$ S/m; $\varepsilon_r = 40.514$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-14-2014; Ambient Temp: 23.0°C; Tissue Temp: 22.4°C

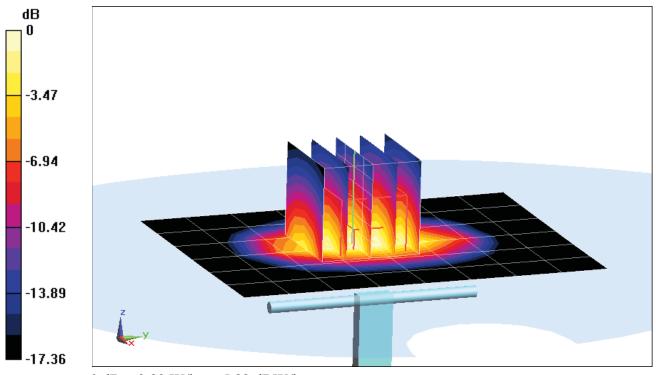
Probe: ES3DV3 - SN3258; ConvF(5.19, 5.19, 5.19); Calibrated: 2/25/2014; Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

1750 MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 6.39 W/kg

SAR(1 g) = 3.46 W/kg

Deviation = -4.42%

DUT: 1900 MHz Dipole; Type: D1900V2; Serial: 5d149

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.45 \text{ S/m}; \ \epsilon_r = 40.066; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-19-2014; Ambient Temp: 24.0°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3258; ConvF(5.04, 5.04, 5.04); Calibrated: 2/25/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/26/2014 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 7.27 W/kg

SAR(1 g) = 3.91 W/kg

Deviation = -3.22%

0 dB = 4.40 W/kg = 6.43 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.818$ S/m; $\epsilon_r = 38.487$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-05-2014; Ambient Temp: 23.3°C; Tissue Temp: 22.5°C

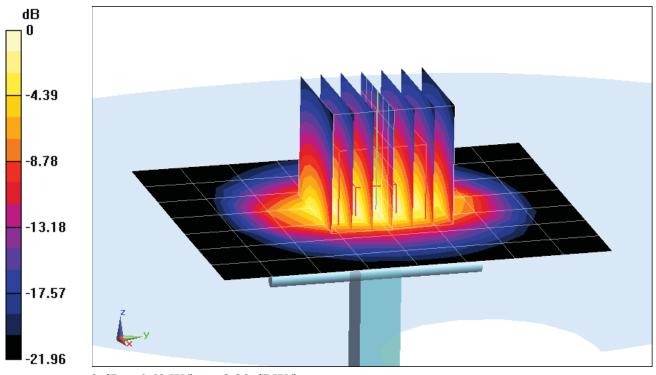
Probe: EX3DV4 - SN3589; ConvF(6.45, 6.45, 6.45); Calibrated: 1/29/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/22/2014 Phantom: SAM; Type: QD000P40CD; Serial: TP:1758

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

2450 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 10.4 W/kg

SAR(1 g) = 5.08 W/kg

Deviation = -1.93%

0 dB = 6.60 W/kg = 8.20 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

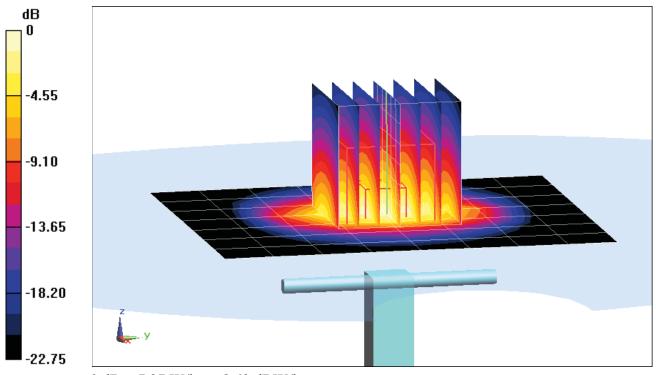
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.824 \text{ S/m}$; $\epsilon_r = 38.997$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-20-2014; Ambient Temp: 24.1°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3287; ConvF(4.43, 4.43, 4.43); Calibrated: 11/20/2013; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 11/19/2013
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

2450 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 11.5 W/kg

SAR(1 g) = 5.53 W/kg

Deviation = 6.76%

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004

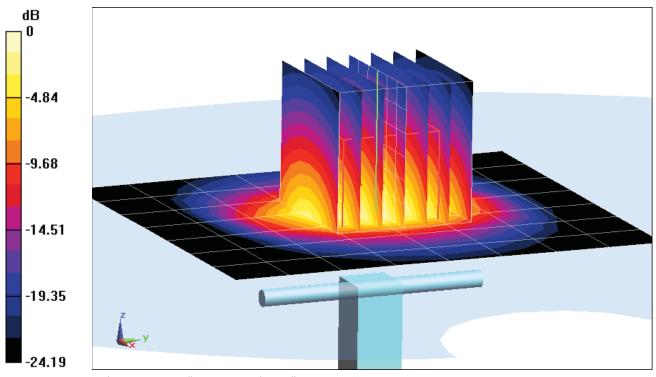
Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Head Medium parameters used: f = 2600 MHz; $\sigma = 1.997$ S/m; $\varepsilon_r = 38.348$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-20-2014; Ambient Temp: 24.1°C; Tissue Temp: 22.2°C

Probe: ES3DV3 - SN3287; ConvF(4.29, 4.29, 4.29); Calibrated: 11/20/2013; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 11/19/2013
Phantom: SAM with CRP v4.0; Type: QD000P40CD; Serial: TP:1797
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

2600 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 12.0 W/kg

SAR(1 g) = 5.59 W/kg

Deviation = -2.44%

0 dB = 7.44 W/kg = 8.72 dBW/kg

DUT: Dipole 5200 MHz; Type: D5GHzV2; Serial: 1057

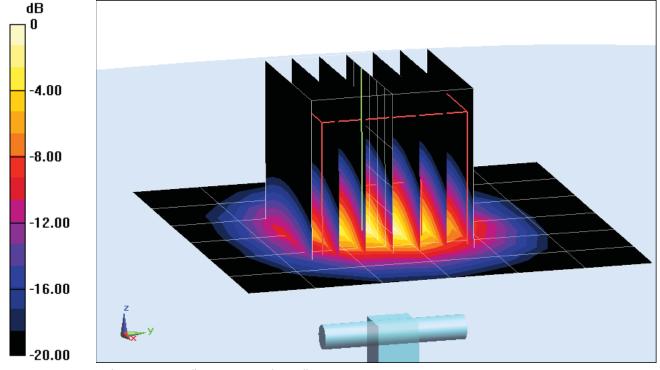
Communication System: UID 0, CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: f = 5200 MHz; $\sigma = 4.563$ S/m; $\varepsilon_r = 36.659$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-14-2014; Ambient Temp: 24.5°C; Tissue Temp: 24.2°C

Probe: EX3DV4 - SN3914; ConvF(4.99, 4.99, 4.99); Calibrated: 10/23/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 11/19/2013
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

5200 MHz System Verification


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio = 1.4

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 30.0 W/kg

SAR(1 g) = 7.27 W/kgDeviation = -6.79%

0 dB = 16.8 W/kg = 12.25 dBW/kg

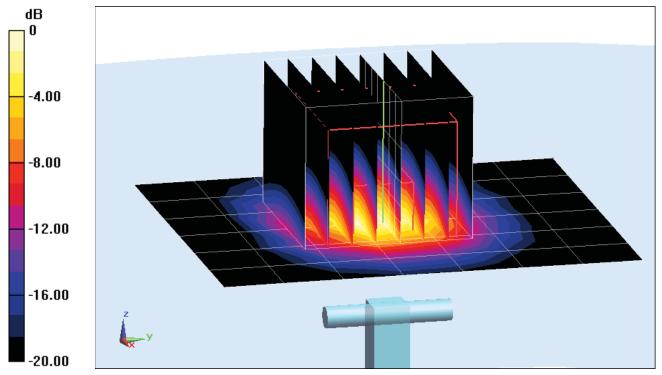
DUT: Dipole 5300 MHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: f = 5300 MHz; $\sigma = 4.649$ S/m; $\epsilon_r = 36.515$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-14-2014; Ambient Temp: 24.5°C; Tissue Temp: 24.3°C

Probe: EX3DV4 - SN3914; ConvF(4.82, 4.82, 4.82); Calibrated: 10/23/2013; Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 11/19/2013
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

5300 MHz System Verification


Area Scan (7x8x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio = 1.4

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 7.68 W/kgDeviation = -7.47%

0 dB = 15.9 W/kg = 12.01 dBW/kg

DUT: Dipole 5500 MHz; Type: D5GHzV2; Serial: 1057

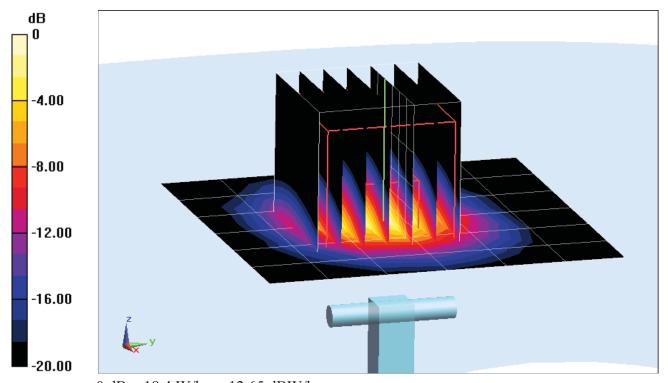
Communication System: UID 0, CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: f = 5500 MHz; $\sigma = 4.861$ S/m; $\epsilon_r = 36.288$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-14-2014; Ambient Temp: 24.4°C; Tissue Temp: 24.0°C

Probe: EX3DV4 - SN3914; ConvF(4.55, 4.55, 4.55); Calibrated: 10/23/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 11/19/2013
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

5500 MHz System Verification


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio = 1.4

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 7.67 W/kgDeviation = -9.02%

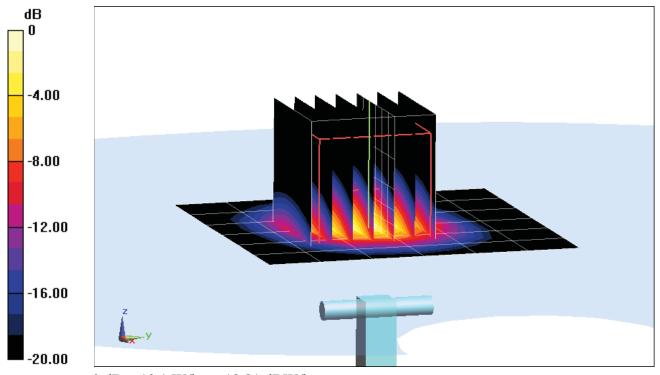
DUT: Dipole 5600 MHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: f = 5600 MHz; $\sigma = 4.952$ S/m; $\varepsilon_r = 36.142$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-14-2014; Ambient Temp: 24.5°C; Tissue Temp: 24.0°C

Probe: EX3DV4 - SN3914; ConvF(4.37, 4.37, 4.37); Calibrated: 10/23/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 11/19/2013
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

5600 MHz System Verification


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio = 1.4

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 34.9 W/kg

SAR(1 g) = 7.83 W/kgDeviation = -6.23%

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used: f = 5800 MHz; $\sigma = 5.13$ S/m; $\epsilon_r = 35.894$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-14-2014; Ambient Temp: 24.5°C; Tissue Temp: 24.1°C

Probe: EX3DV4 - SN3914; ConvF(4.52, 4.52, 4.52); Calibrated: 10/23/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1333; Calibrated: 11/19/2013
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

5800 MHz System Verification

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio = 1.4

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 35.3 W/kg

SAR(1 g) = 7.64 W/kg

Deviation = -3.66%

0 dB = 19.0 W/kg = 12.79 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1003

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body, Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.981$ S/m; $\epsilon_r = 56.249$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 05-13-2014; Ambient Temp: 23.9°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3333; ConvF(6.11, 6.11, 6.11); Calibrated: 11/22/2013;

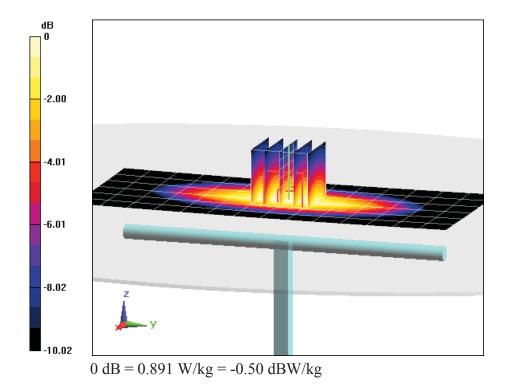
Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1408; Calibrated: 11/19/2013

Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1229

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

750 MHz System Verification

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.823 W/kg

Deviation = -6.16%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body, Medium parameters used: f = 835 MHz; $\sigma = 0.969$ S/m; $\epsilon_r = 53.523$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 05-12-2014; Ambient Temp: 23.0°C; Tissue Temp: 21.9°C

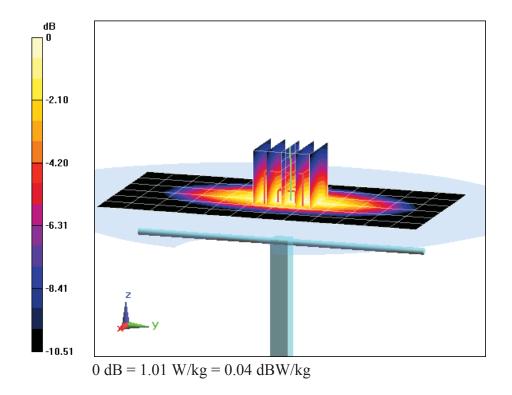
Probe: ES3DV3 - SN3288; ConvF(6.27, 6.27, 6.27); Calibrated: 9/23/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 9/17/2013

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

835MHz System Verification

Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 1.38 W/kg

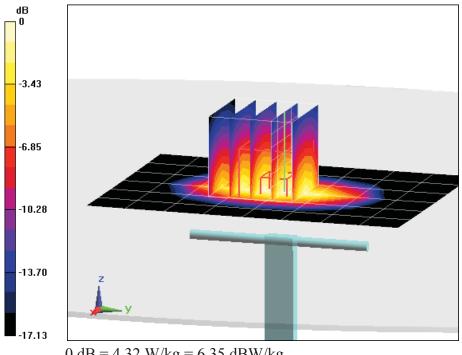
SAR(1 g) = 0.937 W/kg

Deviation = -2.50%

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1051

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body, Medium parameters used: $f = 1750 \text{ MHz}; \sigma = 1.473 \text{ S/m}; \epsilon_r = 52.582; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-14-2014; Ambient Temp: 21.5°C; Tissue Temp: 23.1°C


Probe: ES3DV3 - SN3332; ConvF(4.93, 4.93, 4.93); Calibrated: 11/25/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1407; Calibrated: 11/18/2013 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 1226

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

1750 MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW)Peak SAR (extrapolated) = 6.82 W/kgSAR(1 g) = 3.89 W/kgDeviation = 4.01%

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.56 \text{ S/m}$; $\epsilon_r = 54.958$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-08-2014; Ambient Temp: 23.3°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3288; ConvF(4.82, 4.82, 4.82); Calibrated: 9/23/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/17/2013
Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

1900MHz System Verification

Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

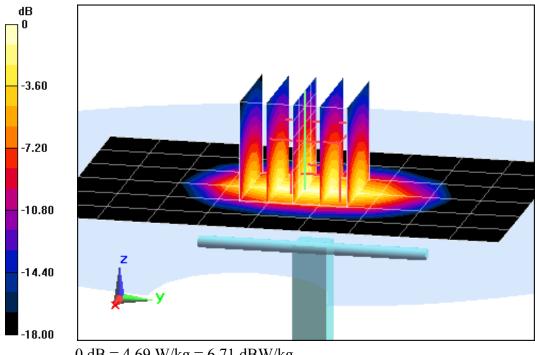
Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 7.26 W/kg

SAR(1 g) = 4.12 W/kg

Deviation = 4.83%

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body, Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \sigma = 1.572 \text{ S/m}; \epsilon_r = 51.811; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-19-2014; Ambient Temp: 24.5°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN3914; ConvF(7.51, 7.51, 7.51); Calibrated: 10/23/2013; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 11/19/2013 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648 Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Input Power = 20.0 dBm (100 mW)Peak SAR (extrapolated) = 7.67 W/kgSAR(1 g) = 4.19 W/kgDeviation = 3.97%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

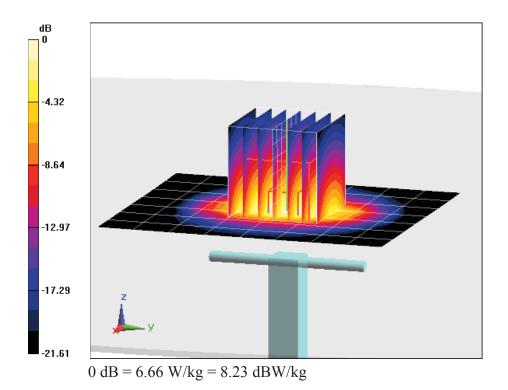
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body, Medium parameters used: f = 2450 MHz; $\sigma = 2.045$ S/m; $\varepsilon_r = 51.139$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-05-2014; Ambient Temp: 24.0°C; Tissue Temp: 23.1°C

Probe: ES3DV3 - SN3258; ConvF(4.14, 4.14, 4.14); Calibrated: 2/25/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 2/26/2014
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

2450 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 10.8 W/kg

SAR(1 g) = 5.09 W/kg

Deviation = 3.04%

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719

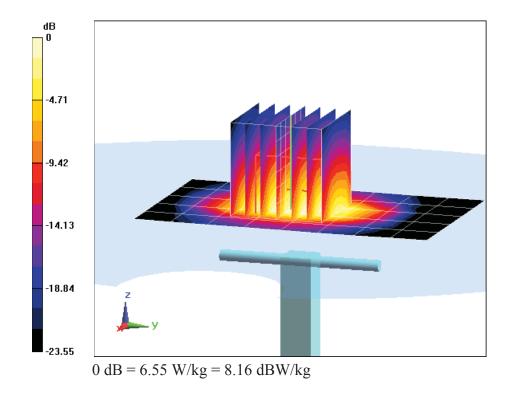
Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body, Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.027 \text{ S/m}; \ \epsilon_r = 51.641; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-21-2014; Ambient Temp: 21.4°C; Tissue Temp: 23.3°C

Probe: ES3DV3 - SN3213; ConvF(4.26, 4.26, 4.26); Calibrated: 4/11/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 3/17/2014
Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

2450MHz System Verification

Area Scan (6x9x1): Measurement grid: dx=12mm, dy=12mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 11.0 W/kg

SAR(1 g) = 5.21 W/kg

Deviation = 0.77%

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1071

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2600 Body, Medium parameters used: f = 2600 MHz; $\sigma = 2.263$ S/m; $\varepsilon_r = 51.154$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

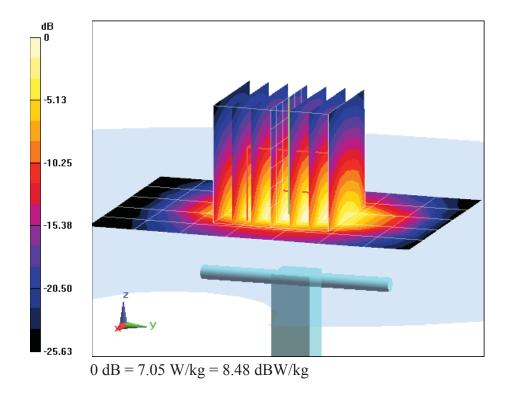
Test Date: 05-21-2014; Ambient Temp: 21.4°C; Tissue Temp: 23.3°C

Probe: ES3DV3 - SN3213; ConvF(4.05, 4.05, 4.05); Calibrated: 4/11/2014; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 3/17/2014
Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

2600MHz System Verification

Area Scan (6x8x1): Measurement grid: dx=12mm, dy=12mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 12.8 W/kg

SAR(1 g) = 5.41 W/kg

Deviation = -2.87%

DUT: Dipole 5200 MHz; Type: D5GHzV2; Serial: 1007

Communication System: UID 0, CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body, Medium parameters used: f = 5200 MHz; $\sigma = 5.155 \text{ S/m}$; $\epsilon_r = 47.532$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-06-2014; Ambient Temp: 23.9°C; Tissue Temp: 22.5°C

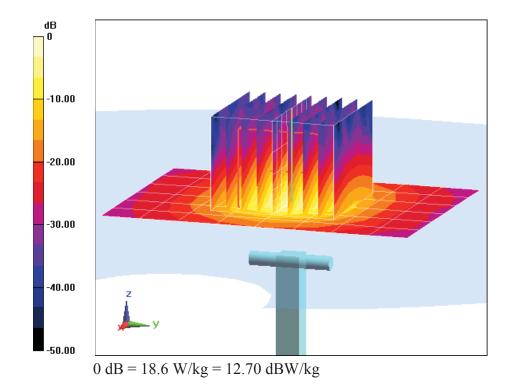
Probe: EX3DV4 - SN3920; ConvF(4.23, 4.23, 4.23); Calibrated: 12/18/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 12/12/2013

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

5200MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio = 1.4

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 29.1 W/kg

SAR(1 g) = 7.31 W/kgDeviation = 0.69%

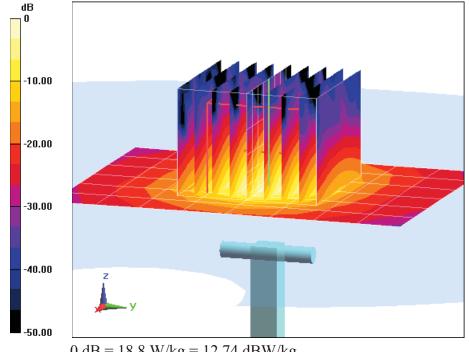
DUT: Dipole 5300 MHz; Type: D5GHzV2; Serial: 1007

Communication System: UID 0, CW; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body, Medium parameters used: f = 5300 MHz; $\sigma = 5.34 \text{ S/m}$; $\varepsilon_r = 46.95$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-06-2014; Ambient Temp: 23.9°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3920; ConvF(4.11, 4.11, 4.11); Calibrated: 12/18/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 12/12/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357


Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

5300MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm **Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio = 1.4 Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 29.7 W/kgSAR(1 g) = 7.45 W/kg

Deviation = -0.27%

DUT: Dipole 5500 MHz; Type: D5GHzV2; Serial: 1007

Communication System: UID 0, CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body, Medium parameters used: f = 5500 MHz; $\sigma = 5.788 \text{ S/m}$; $\epsilon_r = 46.207$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

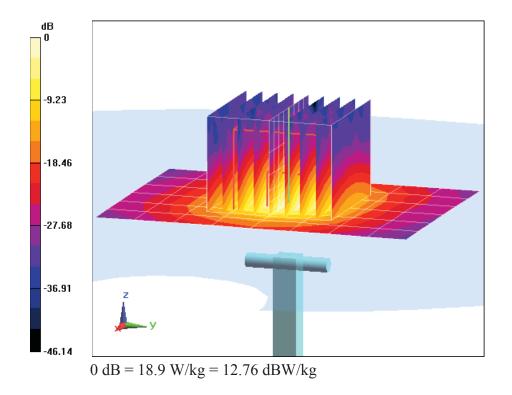
Test Date: 05-06-2014; Ambient Temp: 23.9°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3920; ConvF(3.8, 3.8, 3.8); Calibrated: 12/18/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 12/12/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

5500MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio = 1.4

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 7.68 W/kgDeviation = 1.19%

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1007

Communication System: UID 0, CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body, Medium parameters used: f = 5800 MHz; $\sigma = 6.248 \text{ S/m}$; $\epsilon_r = 46.492$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

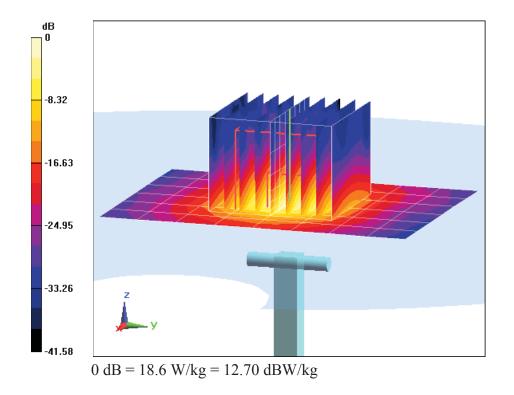
Test Date: 05-06-2014; Ambient Temp: 23.9°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3920; ConvF(4, 4, 4); Calibrated: 12/18/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 12/12/2013
Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

5800MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm


Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio = 1.4

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 36.4 W/kg

SAR(1 g) = 7.32 W/kg

AR(1 g) = 7.32 W/KDeviation = 0.41%

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étatonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 108

Certificate No: D750V3-1003 Jan14

CALIBRATION CERTIFICATE

Object

D750V3 - SN: 1003

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

CC Y

Calibration date:

Primary Standarde

Approved by:

January 20, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

10.#

Primary Standards	ID#	Cai Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	S N: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Isran Elnawag

Cal Data (Cartificate No.)

Issued: January 21, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

PCT#80200

Technical Manager

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1003_Jan14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.37 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.46 W/kg ± 16.5 % (k=2)

Body TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.0 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	~~~	444

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.77 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.47 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.78 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1003_Jan14 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.7 Ω - 0.2 jΩ
Return Loss	- 27.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.5 Ω - 2.6 jΩ
Return Loss	- 31.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.043 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 21, 2009

Page 4 of 8

Certificate No: D750V3-1003_Jan14

DASY5 Validation Report for Head TSL

Date: 20.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1003

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.92 \text{ S/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.37, 6.37, 6.37); Calibrated: 30.12.2013;

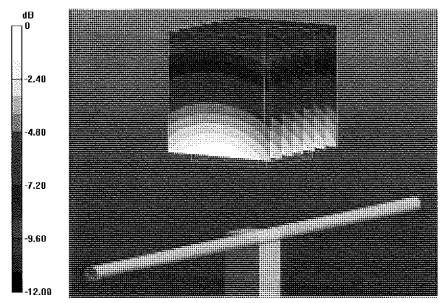
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 25.04.2013

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

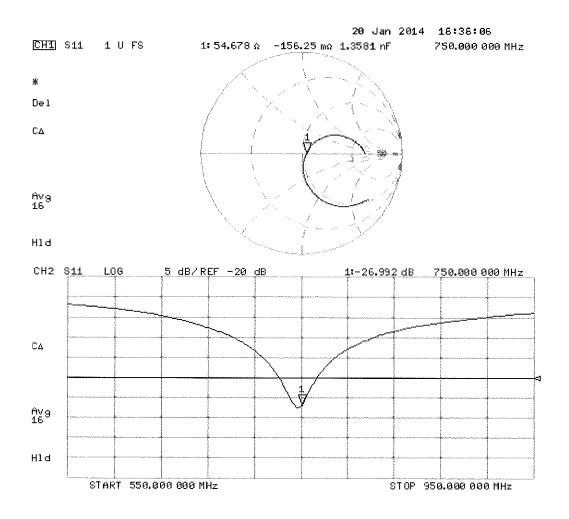
• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.711 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.27 W/kg


SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.4 W/kg

Maximum value of SAR (measured) = 2.51 W/kg

0 dB = 2.51 W/kg = 4.00 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 20.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1003

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.98 \text{ S/m}$; $\varepsilon_r = 54$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.13, 6.13, 6.13); Calibrated: 30.12.2013;

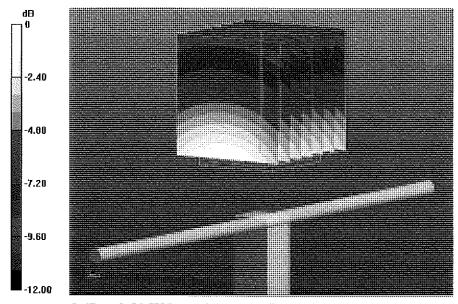
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

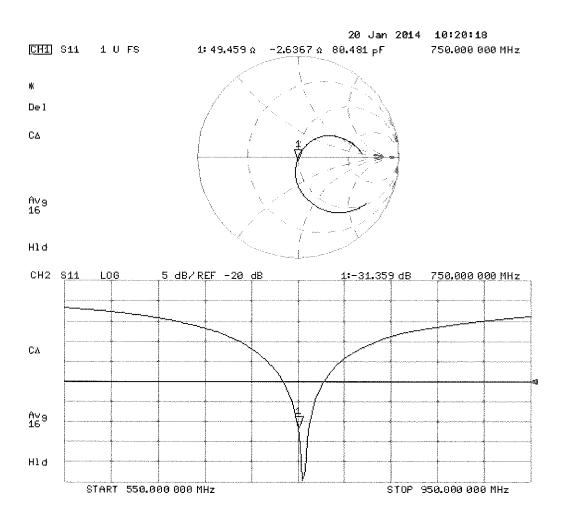
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.082 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.31 W/kg


SAR(1 g) = 2.24 W/kg; SAR(10 g) = 1.47 W/kg

Maximum value of SAR (measured) = 2.58 W/kg

0 dB = 2.58 W/kg = 4.12 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 108

Certificate No: D835V2-4d133 Jul13

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d133

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 17, 2013

104 213

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Leif Man
Approved by:	Katja Pokovic	Technical Manager	is the

Issued: July 18, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d133_Jul13

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d133_Jul13 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.8 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.62 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.28 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	<u> </u>	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.61 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.36 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d133_Jul13

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.0 Ω - 1.8 jΩ
Return Loss	- 31.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.2 Ω - 3.6 jΩ
Return Loss	- 27.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	4.005
Liectical Delay (one direction)	1.395 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

DASY5 Validation Report for Head TSL

Date: 17.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;

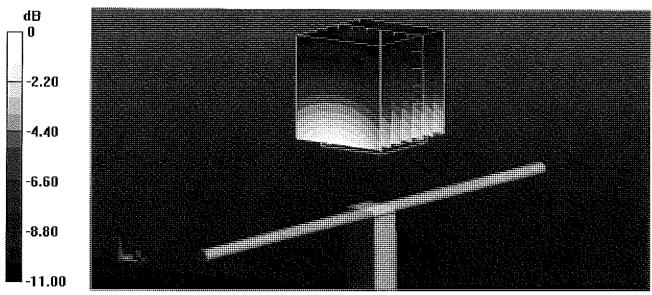
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

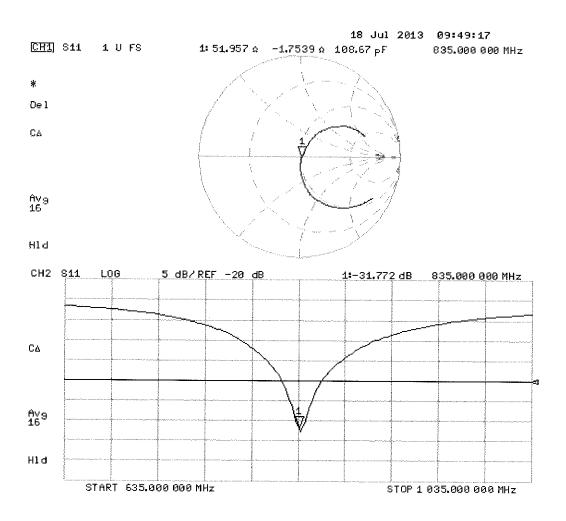
• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.188 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.66 W/kg


SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) = 2.84 W/kg

0 dB = 2.84 W/kg = 4.53 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 17.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1$ S/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012;

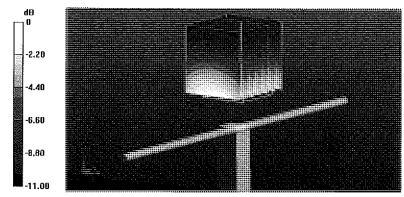
Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

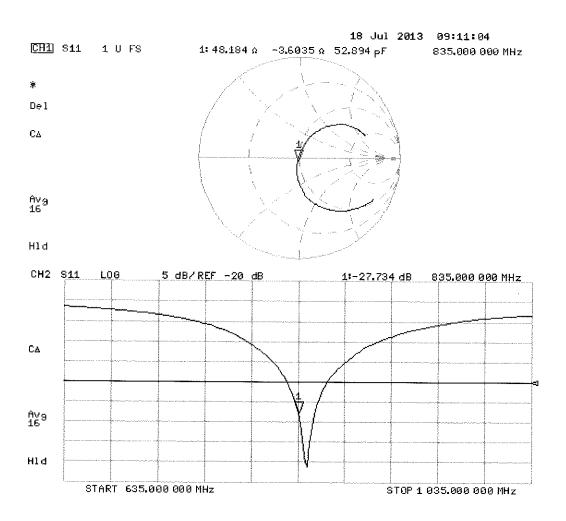
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.351 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.59 W/kg


SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.62 W/kg

Maximum value of SAR (measured) = 2.86 W/kg

0 dB = 2.86 W/kg = 4.56 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

PC Test

Certificate No: D835V2-4d119_Apr14

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d119

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

UCV 4/25/4

Calibration date:

April 07, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Seif Illy
Approved by:	Katja Pokovic	Technical Manager	20111

Issued: April 9, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8. 7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.22 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.97 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.34 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.15 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d119_Apr14 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.2 Ω - 1.6 jΩ
Return Loss	- 34.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.3 Ω - 4.5 jΩ
Return Loss	- 24.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.386 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 29, 2010

Certificate No: D835V2-4d119_Apr14

DASY5 Validation Report for Head TSL

Date: 07.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 41.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.22, 6.22, 6.22); Calibrated: 30.12.2013;

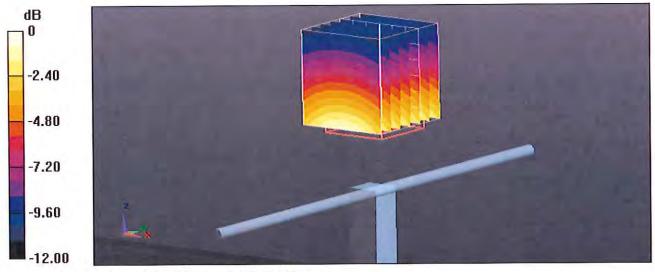
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 25.04.2013

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

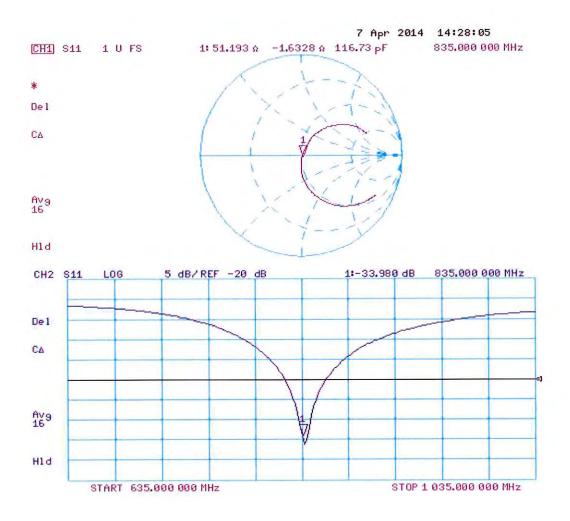
• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.289 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.59 W/kg


SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.02 \text{ S/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.09, 6.09, 6.09); Calibrated: 30.12.2013;

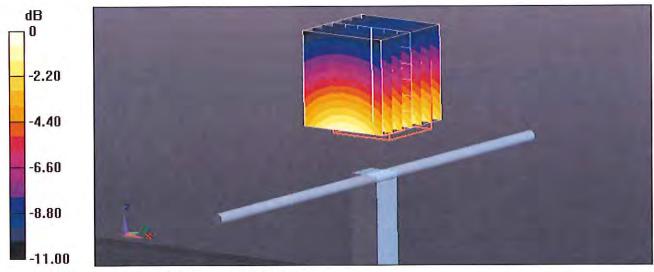
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

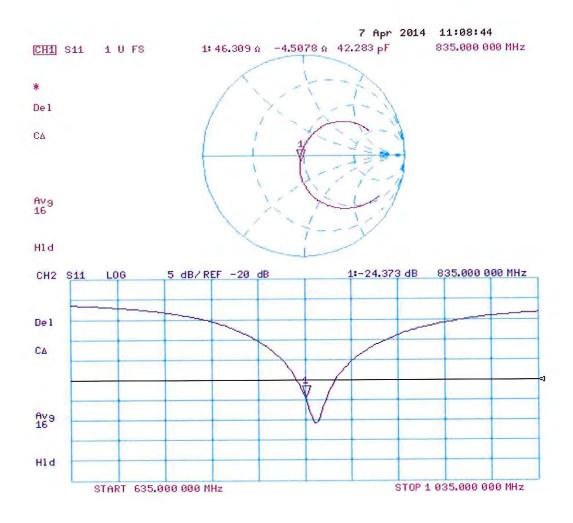
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.594 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.61 W/kg


SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Impedance Measurement Plot for Body TSL

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1750V2-1051_Apr14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D1750V2 - SN: 1051

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

April 10, 2014

1 tot In

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Ofreen Chilosuson
Approved by:	Katja Pokovic	Technical Manager	Delle

Issued: April 10, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.35 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.0 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	·
SAR measured	250 mW input power	5.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.1 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1051_Apr14

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.7 Ω + 0.4 jΩ
Return Loss	- 41.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8 Ω + 0.8 jΩ
Return Loss	- 29.3 dB

General Antenna Parameters and Design

	The state of the s
Electrical Delay (one direction)	1.222 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	February 19, 2010

Certificate No: D1750V2-1051_Apr14 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 10.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1051

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.35 \text{ S/m}$; $\varepsilon_r = 39.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.23, 5.23, 5.23); Calibrated: 30.12.2013;

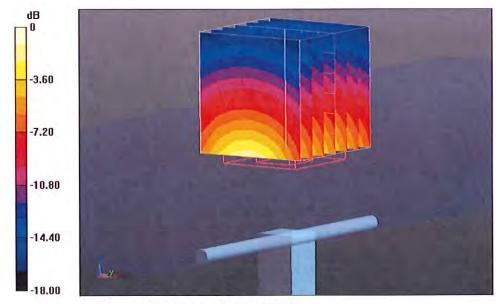
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 25.04.2013

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

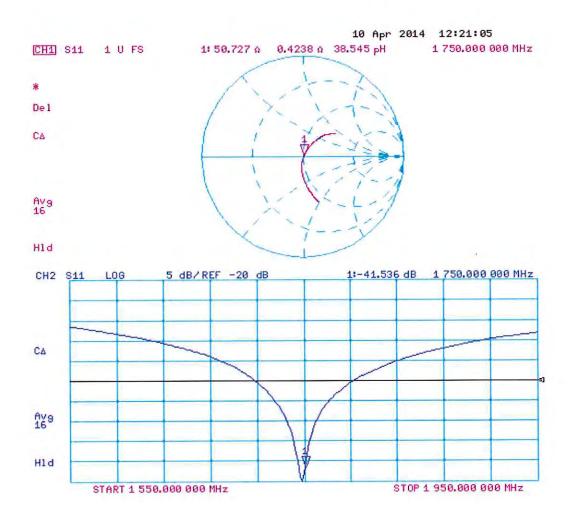
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.631 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 16.2 W/kg


SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.79 W/kg

Maximum value of SAR (measured) = 11.3 W/kg

0 dB = 11.3 W/kg = 10.53 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1051

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.48 \text{ S/m}$; $\varepsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.89, 4.89, 4.89); Calibrated: 30.12.2013;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

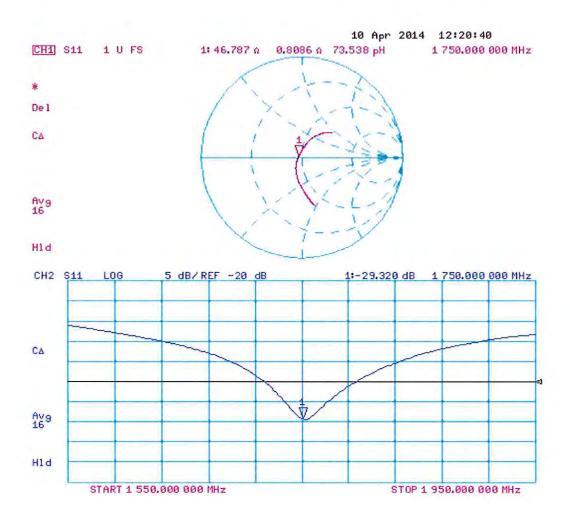
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.321 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 16.1 W/kg


SAR(1 g) = 9.37 W/kg; SAR(10 g) = 5.04 W/kg

Maximum value of SAR (measured) = 11.8 W/kg

0 dB = 11.8 W/kg = 10.72 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Wat 2

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1900V2-5d080_Jul12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 5d080

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 20, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB 3 7480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	U\$37390585 \$4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	M. Wiles

Katja Pokovic

Issued: July 20, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Approved by:

Technical Manager

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

The tenowing parameters and tenowing parameters	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.78 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.17 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.8 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.6 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	en 427/10 an	

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.35 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.4 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9 Ω + 5.7 jΩ
Return Loss	- 24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9 Ω + 6.0 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.191 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 28, 2006

DASY5 Validation Report for Head TSL

Date: 20.07.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d080

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011;

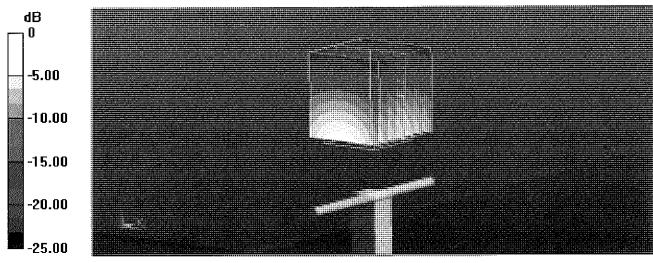
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

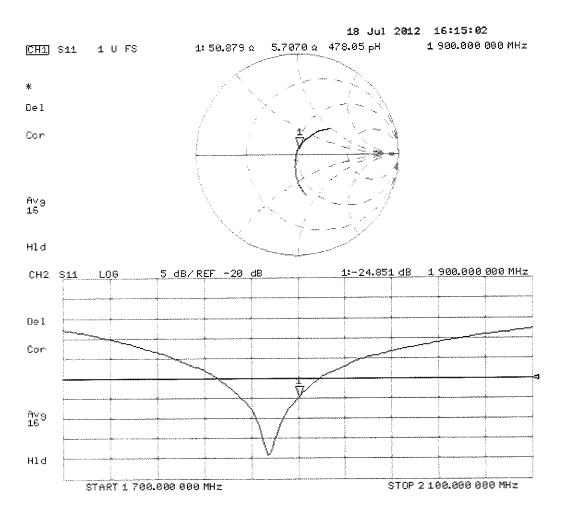
• DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.586 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 17.454 mW/g


SAR(1 g) = 9.78 mW/g; SAR(10 g) = 5.17 mW/g

Maximum value of SAR (measured) = 12.2 mW/g

0 dB = 12.2 mW/g = 21.73 dB mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 20.07.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d080

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\varepsilon_r = 52.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011;

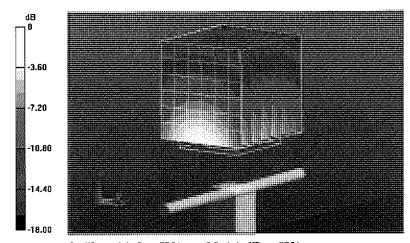
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

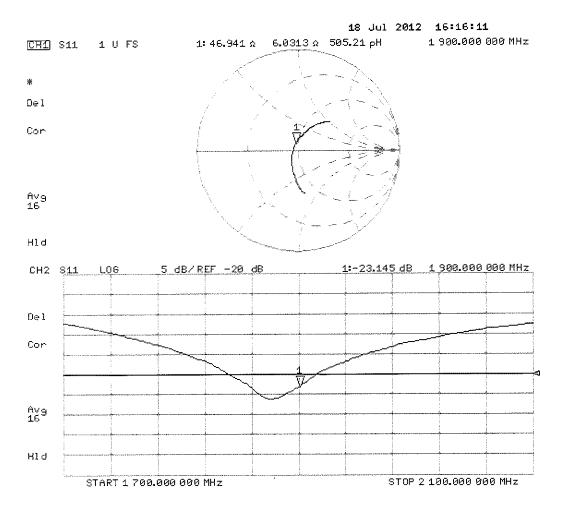
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.688 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 17.552 mW/g

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.35 mW/g


Maximum value of SAR (measured) = 12.8 mW/g

0 dB = 12.8 mW/g = 22.14 dB mW/g

D--

Impedance Measurement Plot for Body TSL

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Accreditation No.: SCS 108

Certificate No: D1900V2-5d149_Jul13

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d149

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 22, 2013

160Ka113

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	
	******		V
Approved by:	Katja Pok o vic	Technical Manager	

Issued: July 22, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d149 Jul13

Page 1 of 8

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d149_Jul13 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	0 - 10 - 100
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	5556	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.36 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d149_Jul13 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 6.0 jΩ
Return Loss	- 23.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.5 \Omega + 6.4 j\Omega$
Return Loss	- 23.5 dB

General Antenna Parameters and Design

Flootrical Dolon (and alive ation)	
Electrical Delay (one direction)	1.196 ns
	1.100116

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 22.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.36 \text{ S/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$

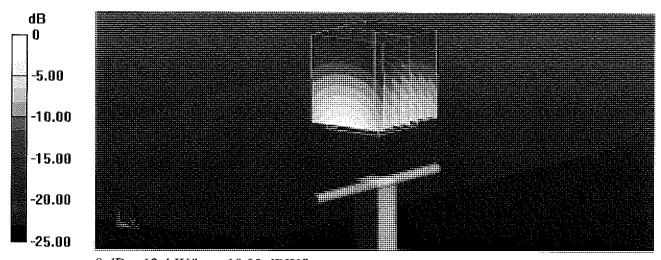
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

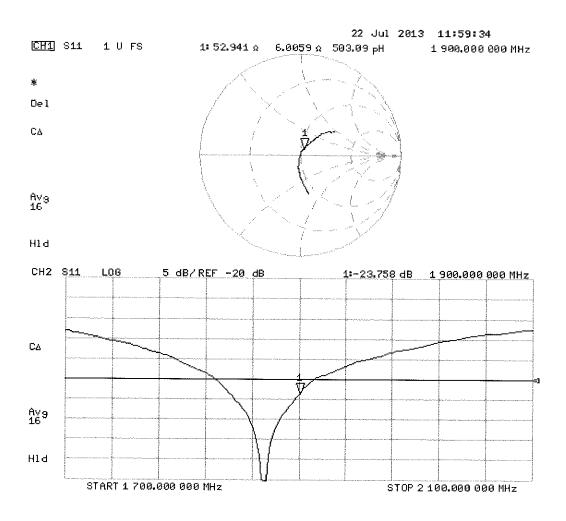
- Probe: ES3DV3 SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.173 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 18.0 W/kg


SAR(1 g) = 9.99 W/kg; SAR(10 g) = 5.28 W/kg

Maximum value of SAR (measured) = 12.4 W/kg

0 dB = 12.4 W/kg = 10.93 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d149

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ S/m; $\varepsilon_r = 53.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012;

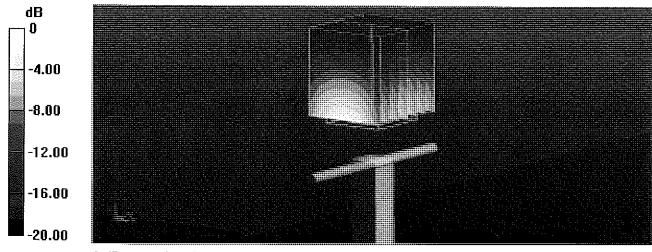
Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 25.04.2013

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

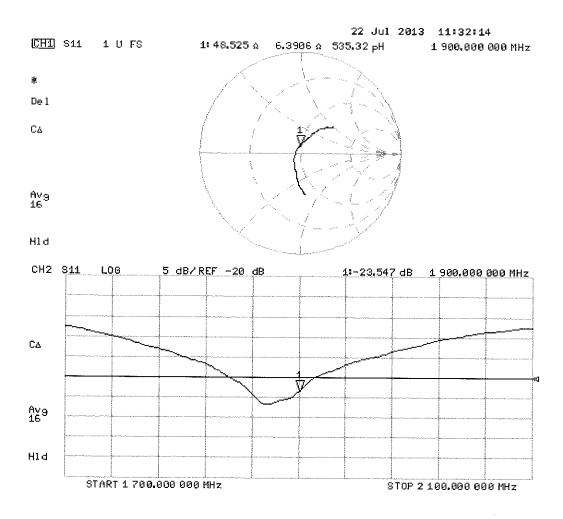
• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.173 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.0 W/kg


SAR(1 g) = 10 W/kg; SAR(10 g) = 5.36 W/kg

Maximum value of SAR (measured) = 12.6 W/kg

0 dB = 12.6 W/kg = 11.00 dBW/kg

Impedance Measurement Plot for Body TSL

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Certificate No: D2450V2-797_Jan14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 797

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

January 21, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

<i>></i> "	Cal Date (Certificate No.)	Scheduled Calibration
iB37480704 .	09-Oct-13 (No. 217-01827)	Oct-14
S37292783	09-Oct-13 (No. 217-01827)	Oct-14
IY41092317	09-Oct-13 (No. 217-01828)	Oct-14
N: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
N: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
N: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
N: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
O #	Check Date (in house)	Scheduled Check
00005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
IS37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	B37480704 S37292783 Y41092317 N: 5058 (20k) N: 5047.3 / 06327 N: 3205 N: 601	937480704 09-Oct-13 (No. 217-01827) 937292783 09-Oct-13 (No. 217-01827) 941092317 09-Oct-13 (No. 217-01828) 95 5058 (20k) 04-Apr-13 (No. 217-01736) 95 5047.3 / 06327 04-Apr-13 (No. 217-01739) 97 3205 30-Dec-13 (No. ES3-3205_Dec13) 98 601 25-Apr-13 (No. DAE4-601_Apr13) 98 Check Date (in house) 98 00005 04-Aug-99 (in house check Oct-13)

Page 1 of 8

Calibrated by:

Name

Function

Israe El-Naoug

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: January 21, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,v,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	·
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.1 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω + 3.2 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.0 \Omega + 4.9 j\Omega$
Return Loss	- 26.2 dB

General Antenna Parameters and Design

111111	
Floatrical Dalay (one divention)	a ded
Electrical Delay (one direction)	1.151 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 24, 2006

DASY5 Validation Report for Head TSL

Date: 21.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;

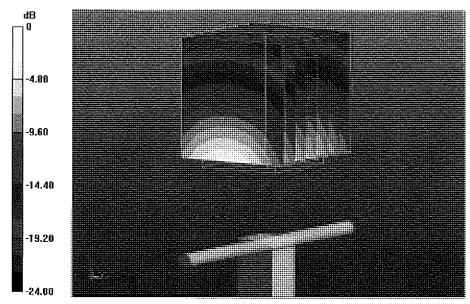
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

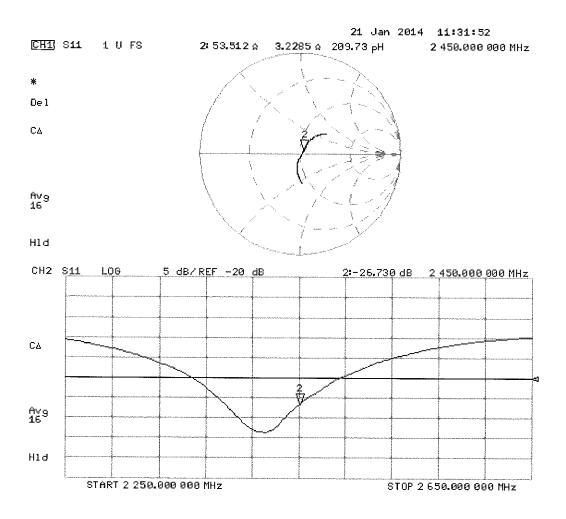
• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.151 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 27.5 W/kg


SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.13 W/kg

Maximum value of SAR (measured) = 16.9 W/kg

0 dB = 16.9 W/kg = 12.28 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 21.01.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.04 \text{ S/m}$; $\varepsilon_r = 51.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;

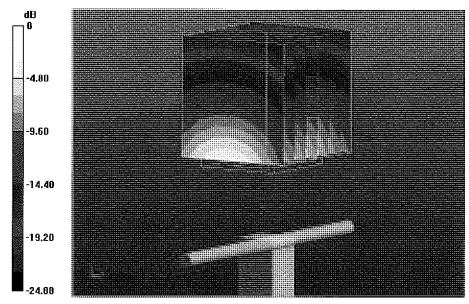
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

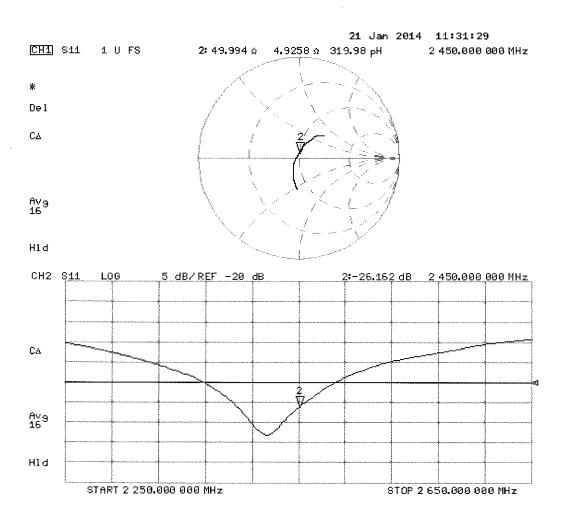
• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.709 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.4 W/kg


SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.86 W/kg

Maximum value of SAR (measured) = 16.8 W/kg

0 dB = 16.8 W/kg = 12.25 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D2600V2-1004_Apr14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D2600V2 - SN: 1004

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

April 08, 2014

140×111/2

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Seif My
			22

Issued: April 9, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8. 7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	1.98 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	57.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.2 ± 6 %	2.19 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	56.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.38 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	25.2 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1004_Apr14 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.4 Ω - 4.8 jΩ
Return Loss	- 26.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.4 Ω - 3.3 jΩ
Return Loss	- 25.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.149 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 23, 2006

Certificate No: D2600V2-1004_Apr14 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 08.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 1.98 \text{ S/m}$; $\varepsilon_r = 37.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.46, 4.46, 4.46); Calibrated: 30.12.2013;

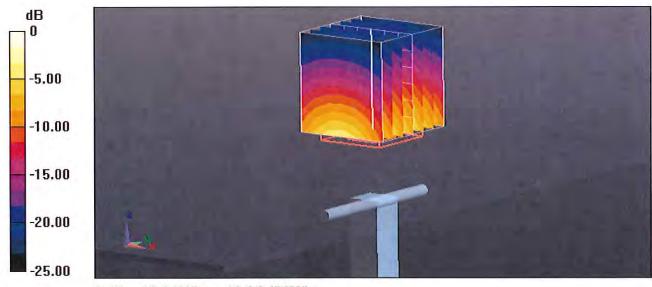
Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

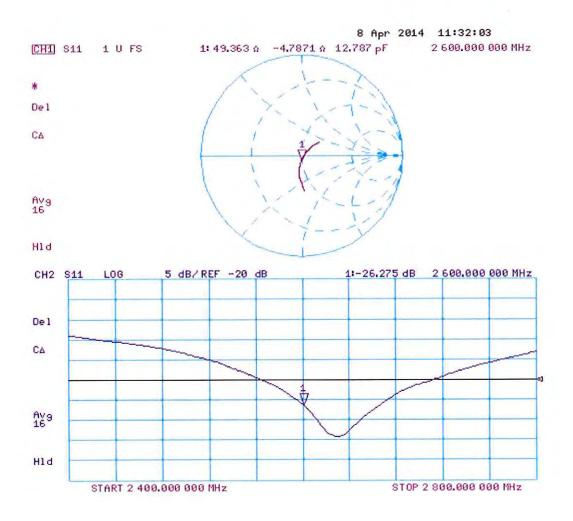
• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.0 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 30.7 W/kg


SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.44 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

0 dB = 19.3 W/kg = 12.86 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.19 \text{ S/m}$; $\varepsilon_r = 50.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.24, 4.24, 4.24); Calibrated: 30.12.2013;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

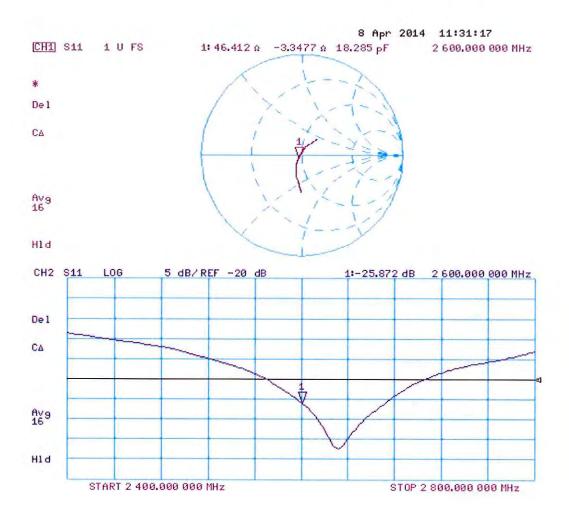
• DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.472 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 31.1 W/kg


SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.38 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

0 dB = 19.4 W/kg = 12.88 dBW/kg

Impedance Measurement Plot for Body TSL

