

Test Report

- **Report No.:** MTi240320017-01E1
- Date of issue: 2024-04-23
- Applicant: Edifier International Limited
- Product: OTC Hearing Aids
- Model(s): EDF800013
- FCC ID: Z9G-EDF238

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	ral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sumr	nary of Test Result	8
3	Test I	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List o	of test equipment	10
5	Evalu	uation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radio	o Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4 6.5 6.6	Occupied Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time RF conducted spurious emissions and band edge measurement	14 16 17 18
	6.7 6.8 6.9	Band edge emissions (Radiated) Radiated emissions (below 1GHz) Radiated emissions (above 1GHz)	21 26
Pho	otogra	phs of the test setup	37
Pho	otogra	phs of the EUT	38
Ар	oendix	A: 20dB Emission Bandwidth	39
Ар	oendix	K B: Maximum conducted output power	42
Ар	oendix	c C: Carrier frequency separation	45
Ар	oendix	د D: Time of occupancy	47
Ар	pendix	c E: Number of hopping channels	52
		c F: Band edge measurements	
		c G: Conducted Spurious Emission	

Test Result Certification				
Applicant:	Edifier International Limited			
Address:	P.O. Box 6264 General Post Office Hong Kong			
Manufacturer:	Beijing Edifier Technology Co., Ltd.			
Address:	815, Floor 8, Shuangqiao Building, No.68, North Fourth Ring West Road, Haidian District, Beijing 100080, P.R.China			
Product description				
Product name:	OTC Hearing Aids			
Trademark:	EDIFIER			
Model name:	EDF800013			
Series Model(s):	N/A			
Standards:	47 CFR Part 15.247			
Test Method:	ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02			
Date of Test	Date of Test			
Date of test:	2024-04-17 to 2024-04-23			
Test result:	Pass			

Test Engineer	•	Letter. Jan.
		(Letter Lan)
Reviewed By	••	Dowid. Cee
		(David Lee)
Approved By	••	(con chan
		(Leon Chen)

1 General Description

1.1 Description of the EUT

Product name:	OTC Hearing Aids		
Model name:	EDF800013		
Series Model(s):	N/A		
Model difference:	N/A		
Electrical rating:	Input: 5Vdc Battery: Charging case: 3.7Vdc 500mAh Bluetooth earphone: 3.8Vdc 23mAh		
Accessories:	Cable: USB-A to Type-C cable (0.3m)*1		
Hardware version: V1.0			
Software version: V1.0			
Test sample(s) number:	MTi240320017-01S1001		
RF specification			
Bluetooth version: V5.4			
Operating frequency range:	2402-2480MHz		
Channel number: 79			
Modulation type:	GFSK, π/4-DQPSK		
Antenna(s) type:	FPC Antenna		
Antenna(s) gain:	Left: -4.38dBi Right: -3.99dBi		

1.2 Description of test modes

No.	Emission test modes
Mode1	TX-GFSK
Mode2	TX-π/4-DQPSK

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.cnE-mail: mti@51mti.com

Page 6 of 62

Report No.: MTi240320017-01E1

8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

Test Channel List

Operation Band: 2400-2483.5 MHz

Bandwidth	Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)	
(MHz) (MHz)		(MHz)	(MHz)	
1	2402	2441	2480	

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: Assist 1.0.2.2

For power setting, refer to below table.

Mode	2402MHz	2441MHz	2480MHz
GFSK	10	10	10
π/4-DQPSK	10	10	10

Note: Both left and right headphones were tested, and the report only showed the worst data for right headphones.

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list					
Description	Model	Serial No.	Manufacturer		
1	1	/	/		
Support cable list					
Description	Length (m)	From	То		
1	1	/	/		

1.5 Measurement uncertainty

Measurement	Uncertainty
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Time	±1 %
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Requirement	Result
1	Antenna requirement	47 CFR 15.203	Pass
2	Occupied Bandwidth	47 CFR 15.247(a)(1)	Pass
3	Maximum Conducted Output Power	47 CFR 15.247(b)(1)	Pass
4	Channel Separation	47 CFR 15.247(a)(1)	Pass
5	Number of Hopping Frequencies	47 CFR 15.247(a)(1)(iii)	Pass
6	Dwell Time	47 CFR 15.247(a)(1)(iii)	Pass
7	RF conducted spurious emissions and band edge measurement	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Band edge emissions (Radiated)	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Radiated emissions (below 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
10	Radiated emissions (above 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
11	Conducted Emission at AC power line	47 CFR Part 15.207(a)	N/A

Note: Since the EUT cannot be operating while charging, therefore AC power line conducted emissions test is not required.

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone: (86-755)88850135	
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due			
	Dwell Time Emissions in non-restricted frequency bands Occupied Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies								
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25			
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24			
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24			
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24			
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25			
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25			
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04			
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24			
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04			
		Emissions in frequ Band edge	uency bands (ab emissions (Radi						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25			
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16			
3	Amplifier	Agilent	8449B	3008A01120	2023-06-26	2024-06-25			
4	Multi-device Controller	TuoPu	TPMDC	1	2023-05-04	2024-05-03			
5	MXA signal analyzer	Agilent	N9020A	MY54440859	2023-06-01	2024-05-31			
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16			
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2023-05-04	2024-05-03			
8	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24			
		Emissions in freq	uency bands (be	low 1GHz)					
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25			
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10			
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2023-06-11	2025-06-10			
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2023-04-25	2024-04-24			
5	Multi-device Controller	TuoPu	TPMDC	/	2023-05-04	2024-05-03			

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be
	considered sufficient to comply with the provisions of this section.

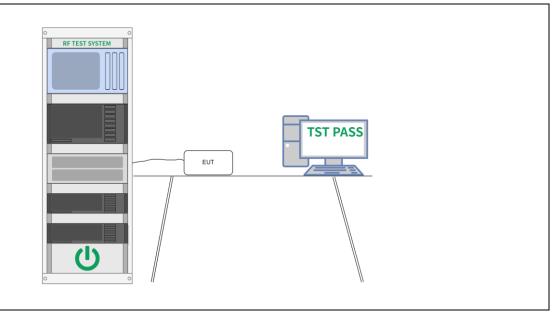
5.1.1 Conclusion:

The antenna of the EUT is permanently attached. The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)

6.1 Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidth measurements, use the procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of



measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the
plot(s).

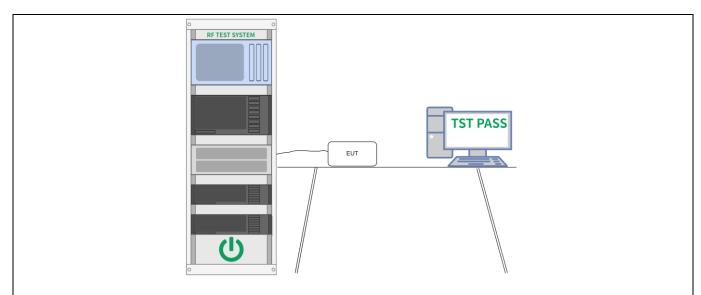
6.1.1 E.U.T. Operation:

Operating Environment:						
Temperature: 31.8 °C			Humidity:	21.4 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode:		Mode	e1, Mode2			

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

6.2 Maximum Conducted Output Power

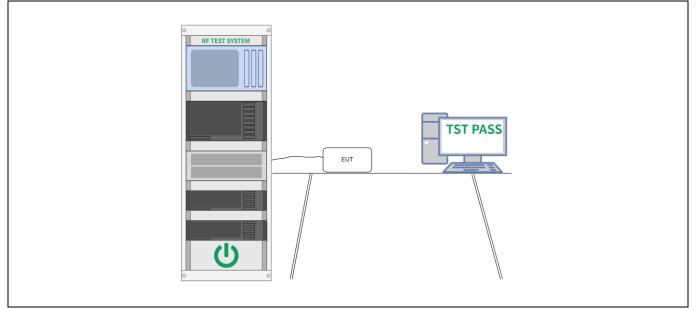

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

6.2.1 E.U.T. Operation:

Operating Environment:						
Temperature: 31.8 °C			Humidity:	21.4 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode: Mod		Mode	e1, Mode2			

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Channel Separation

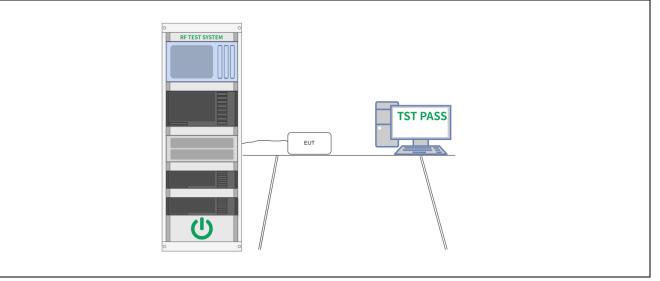
Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6.3.1 E.U.T. Operation:

Temperature:31.8 °CHumidity:21.4 %Atmospheric Pressure:101 kPaPre test mode:Mode1, Mode2	Operating Environment:				
Pre test mode: Mode1, Mode2	Temperature: 31.8 °C	C Humidity:	21.4 %	Atmospheric Pressure:	101 kPa
	Pre test mode:	Mode1, Mode2			
Final test mode: Mode1, Mode2	Final test mode:	Mode1, Mode2			

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

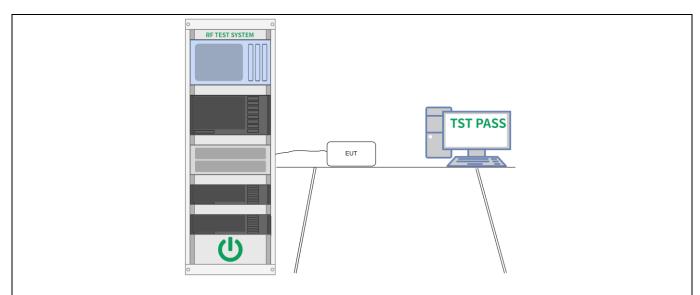
6.4.1 E.U.T. Operation:

Operating Environment:											
Temperature:	Temperature:31.8 °CHumidity:21.4 %Atmospheric Pressure:101 kPa										
Pre test mode:											
Final test mode	:	Mode	e1, Mode2								

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

6.5 Dwell Time

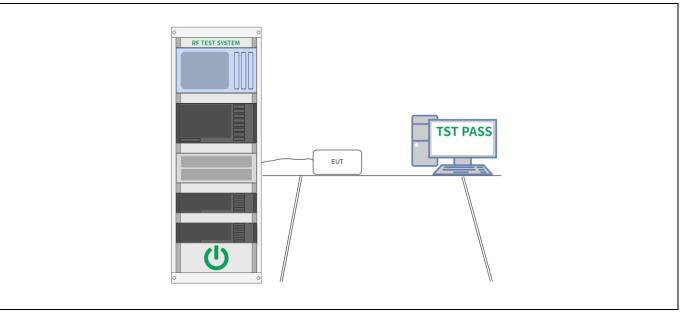

Test Limit: Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. Test Method: ANSI C63.10-2013, section 7.8.4 KDB 558074 DD1 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hops over the sweep time to hops over the sweep time to hops over the sweep time and calculate the total number of hops over the sweep time to determine the requirements, using the following equation:	Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops on spectrum analyzer) × (period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hops in a specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation	Test Limit:	2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels
 a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation in the requirements. If the number of hops in a specific time varies with different modes of operation in the requirements. 	Test Method:	
651 FUT Operation:		 analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops on spectrum analyzer) × (period specified in the requirements, using the following equation: (Number of hops in a specific time varies with different modes of operation data rate, modulation format, number of hops in spectrum analyzer) × (period specified in the requirements. If the number of hops in a specific time varies with different modes of operation specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopps in the period specified in the requirements. If the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping chann

6.5.1 E.U.T. Operation:

Operating Environment:										
Temperature: 31.8 °C Humidity: 21.4 % Atmospheric Pressure: 101 kPa										
Pre test mode: Mode1, Mode2										
Final test mode	e:									
6 5 2 Tost Sotu	5 2 Test Setup Diagram:									

6.5.2 Test Setup Diagram:

6.5.3 Test Data:


6.6 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

6.6.1 E.U.T. Operation:

Operating Environment:									
Temperature:31.8 °CHumidity:21.4 %Atmospheric Pressure:101 kPa									
Pre test mode:		Mode	e1, Mode2						
Final test mode	e:	Mode	e1, Mode2						

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

6.7 Band edge emissions (Radiated)


Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(see	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits sho employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamenta erating under this section sh 2 MHz, 76-88 MHz, 174-216 thin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employing	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.10 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sec	ction 6.10.5.2	

6.7.1 E.U.T. Operation:

Operating Env	Operating Environment:										
Temperature:	31.8 °C		Humidity:	21.4 %	Atmospheric Pressure:	101 kPa					
Pre test mode:		Mod	e1, Mode2								
Final test mode	vere tested, only the data ort	of the worst mode									
Note:											

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

Left:

/lode1/	Polari	zatio	n: Horizonta	al / CH: L					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2310.000	52.22	-12.83	39.39	74.00	-34.61	peak
	2		2310.000	42.39	-12.83	29.56	54.00	-24.44	AVG
	3		2390.000	54.69	-12.42	42.27	74.00	-31.73	peak
	4	*	2390.000	44.00	-12.42	31.58	54.00	-22.42	AVG

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	52.43	-12.83	39.60	74.00	-34.40	peak
2		2310.000	41.99	-12.83	29.16	54.00	-24.84	AVG
3		2390.000	52.81	-12.42	40.39	74.00	-33.61	peak
4	*	2390.000	42.66	-12.42	30.24	54.00	-23.76	AVG

Mode1 /	Polari	zatio	n: Horizonta	al / CH: H					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2483.500	51.83	-12.44	39.39	74.00	-34.61	peak
	2	*	2483.500	42.81	-12.44	30.37	54.00	-23.63	AVG
	3		2500.000	51.07	-12.35	38.72	74.00	-35.28	peak
	4		2500.000	41.72	-12.35	29.37	54.00	-24.63	AVG

e1 / Polari	zatio	n: Vertical /	-					
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	54.56	-12.44	42.12	74.00	-31.88	peak
2	*	2483.500	45.09	-12.44	32.65	54.00	-21.35	AVG
3		2500.000	50.94	-12.35	38.59	74.00	-35.41	peak
4		2500.000	42.05	-12.35	29.70	54.00	-24.30	AVG

Right:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	51.22	-12.83	38.39	74.00	-35.61	peak
2		2310.000	41.41	-12.83	28.58	54.00	-25.42	AVG
3		2390.000	52.19	-12.42	39.77	74.00	-34.23	peak
4	*	2390.000	41.50	-12.42	29.08	54.00	-24.92	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detecto
1		2310.000	51.43	-12.83	38.60	74.00	-35.40	peak
2		2310.000	40.69	-12.83	27.86	54.00	-26.14	AVG
3		2390.000	53.81	-12.42	41.39	74.00	-32.61	peak
4	*	2390.000	43.66	-12.42	31.24	54.00	-22.76	AVG

Mode1 / Polarization: Horizontal / CH: H

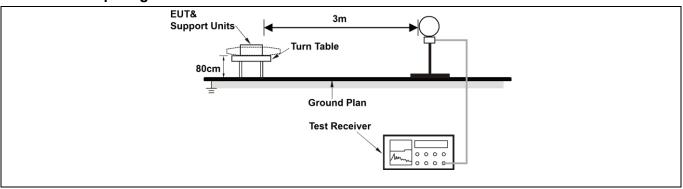
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	54.56	-12.44	42.12	74.00	-31.88	peak
2	*	2483.500	45.09	-12.44	32.65	54.00	-21.35	AVG
3		2500.000	50.44	-12.35	38.09	74.00	-35.91	peak
4		2500.000	41.55	-12.35	29.20	54.00	-24.80	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detecto
1		2483.500	51.33	-12.44	38.89	74.00	-35.11	peak
2	*	2483.500	42.30	-12.44	29.86	54.00	-24.14	AVG
3		2500.000	50.57	-12.35	38.22	74.00	-35.78	peak
4		2500.000	41.22	-12.35	28.87	54.00	-25.13	AVG

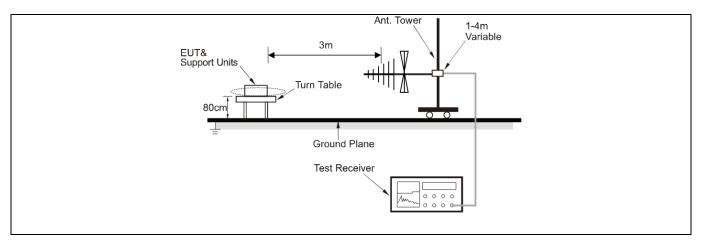
6.8 Radiated emissions (below 1GHz)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(see	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits sho employing a CISPR qu kHz, 110–490 kHz and	in paragraph (g), fundamenta berating under this section sh 2 MHz, 76-88 MHz, 174-216 thin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employin	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sec	ction 6.6.4	

6.8.1 E.U.T. Operation:


Operating Envi	ronment:					
Temperature:	31.8 °C		Humidity:	21.4 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:			re-test mode w ded in the repo	ere tested, only the data rt	of the worst mode
Mater						

Note:


The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

6.8.2 Test Setup Diagram:

2

3

4

5

6

122.4039

216.0238

307.8312

432.5455

716.6820

33.59

37.35

32.09

32.53

26.35

-11.31

-8.98

-5.73

-5.08

0.79

22.28

28.37

26.36

27.45

27.14

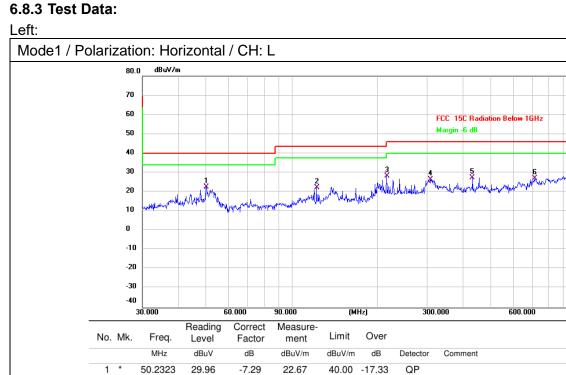
43.50 -21.22

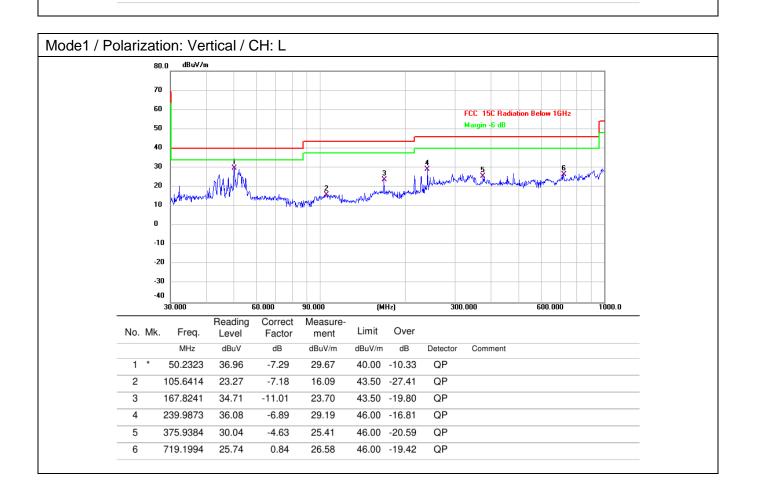
46.00 -17.63

46.00 -19.64

46.00 -18.55

46.00 -18.86

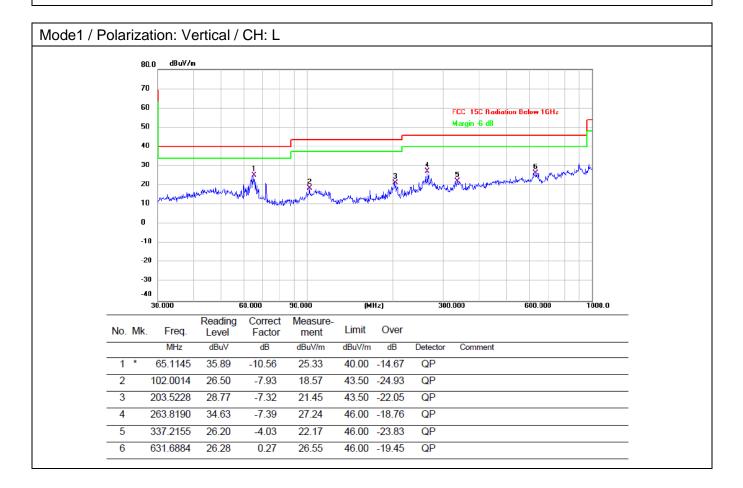

QP


QP QP

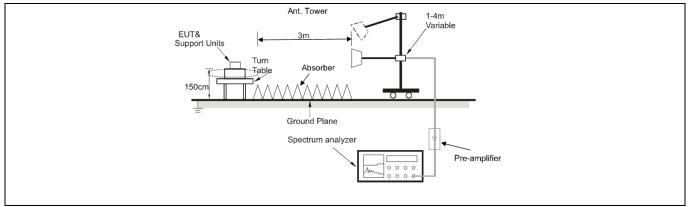
QP

QP

1000.0



Right:


6.9 Radiated emissions (above 1GHz)

Test Requirement:	-	nissions which fall in the rest comply with the radiated em 5(c)).`	-
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits sho employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamenta erating under this section sh 2 MHz, 76-88 MHz, 174-216 hin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employin	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	tion 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sec	ction 6.6.4	

6.9.1 E.U.T. Operation:

Operating Envi	ironment:					
Temperature:	31.8 °C		Humidity:	21.4 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:			re-test mode w ded in the repo	rere tested, only the data ort	of the worst mode
attenuated more	re than 20) dB b	elow the lim	its are not repo	itude of spurious emission orted. d only the worst-case resu	

6.9.2 Test Setup Diagram:

6.9.3 Test Data:

Left:

Mode1 /	Polari	zatic	on: Horizonta	al / CH: L						
	No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1		4804.000	49.26	-7.40	41.86	74.00	-32.14	peak	
	2	*	4804.000	52.76	-7.40	45.36	54.00	-8.64	AVG	
	3		7206.000	46.39	0.96	47.35	74.00	-26.65	peak	
	4		7206.000	40.69	0.96	41.65	54.00	-12.35	AVG	
	5		9608.000	48.23	2.16	50.39	74.00	-23.61	peak	
	6		9608.000	42.19	2.16	44.35	54.00	-9.65	AVG	

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	50.57	-7.40	43.17	74.00	-30.83	peak
2		4804.000	44.66	-7.40	37.26	54.00	-16.74	AVG
3		7206.000	47.45	0.96	48.41	74.00	-25.59	peak
4		7206.000	41.36	0.96	42.32	54.00	-11.68	AVG
5		9608.000	48.07	2.16	50.23	74.00	-23.77	peak
6	*	9608.000	41.96	2.16	44.12	54.00	-9.88	AVG

ode1 / Po	olariz	zatio	n: Horizonta		Corroct	Magaura			
I	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4882.000	49.93	-7.44	42.49	74.00	-31.51	peak
	2		4882.000	43.76	-7.44	36.32	54.00	-17.68	AVG
	3		7323.000	49.38	0.79	50.17	74.00	-23.83	peak
	4		7323.000	43.57	0.79	44.36	54.00	-9.64	AVG
	5		9764.000	48.05	3.14	51.19	74.00	-22.81	peak
	6	*	9764.000	41.98	3.14	45.12	54.00	-8.88	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4882.000	49.77	-7.44	42.33	74.00	-31.67	peak
2		4882.000	43.56	-7.44	36.12	54.00	-17.88	AVG
3		7323.000	47.90	0.79	48.69	74.00	-25.31	peak
4		7323.000	41.57	0.79	42.36	54.00	-11.64	AVG
5		9764.000	47.21	3.14	50.35	74.00	-23.65	peak
6	*	9764.000	41.07	3.14	44.21	54.00	-9.79	AVG

/lode1 /	Polarizatio	on: Horizonta		O a mar at				
	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	4960.000	51.14	-7.20	43.94	74.00	-30.06	peak
	2	4960.000	45.04	-7.20	37.84	54.00	-16.16	AVG
	3	7440.000	46.45	0.98	47.43	74.00	-26.57	peak
	4	7440.000	40.38	0.98	41.36	54.00	-12.64	AVG
	5	9920.000	46.26	3.02	49.28	74.00	-24.72	peak
	6 *	9920.000	40.24	3.02	43.26	54.00	-10.74	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	50.59	-7.20	43.39	74.00	-30.61	peak
2		4960.000	44.46	-7.20	37.26	54.00	-16.74	AVG
3		7440.000	48.04	0.98	49.02	74.00	-24.98	peak
4		7440.000	42.14	0.98	43.12	54.00	-10.88	AVG
5		9920.000	48.38	3.02	51.40	74.00	-22.60	peak
6	*	9920.000	42.34	3.02	45.36	54.00	-8.64	AVG

Right:

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4	804.000	49.26	-7.40	41.86	74.00	-32.14	peak
2	4	804.000	43.16	-7.40	35.76	54.00	-18.24	AVG
3	7	206.000	46.39	0.96	47.35	74.00	-26.65	peak
4	7	206.000	40.55	0.96	41.51	54.00	-12.49	AVG
5	9	608.000	48.23	2.16	50.39	74.00	-23.61	peak
6	* 9	608.000	42.10	2.16	44.26	54.00	-9.74	AVG

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4804.000	51.07	-7.40	43.67	74.00	-30.33	peak
2	4804.000	44.66	-7.40	37.26	54.00	-16.74	AVG
3	7206.000	47.45	0.96	48.41	74.00	-25.59	peak
4	7206.000	41.18	0.96	42.14	54.00	-11.86	AVG
5	9608.000	48.07	2.16	50.23	74.00	-23.77	peak
6 *	9608.000	41.86	2.16	44.02	54.00	-9.98	AVG

Mode1 / Polarization: Horizontal / CH: M

		Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4882.000	49.27	-7.44	41.83	74.00	-32.17	peak
2	4882.000	42.70	-7.44	35.26	54.00	-18.74	AVG
3	7323.000	47.40	0.79	48.19	74.00	-25.81	peak
4	7323.000	41.42	0.79	42.21	54.00	-11.79	AVG
5	9764.000	46.71	3.14	49.85	74.00	-24.15	peak
6 *	9764.000	40.51	3.14	43.65	54.00	-10.35	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4882.000	51.43	-7.44	43.99	74.00	-30.01	peak
2		4882.000	45.09	-7.44	37.65	54.00	-16.35	AVG
3		7323.000	46.44	0.79	47.23	74.00	-26.77	peak
4		7323.000	40.45	0.79	41.24	54.00	-12.76	AVG
5		9764.000	48.05	3.14	51.19	74.00	-22.81	peak
6	*	9764.000	42.18	3.14	45.32	54.00	-8.68	AVG

Mode1 / Polarization: Horizontal / CH: H

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	52.64	-7.20	45.44	74.00	-28.56	peak
2		4960.000	46.52	-7.20	39.32	54.00	-14.68	AVG
3		7440.000	46.95	0.98	47.93	74.00	-26.07	peak
4		7440.000	40.71	0.98	41.69	54.00	-12.31	AVG
5		9920.000	46.76	3.02	49.78	74.00	-24.22	peak
6	*	9920.000	40.73	3.02	43.75	54.00	-10.25	AVG

Mode1 /	[/] Polari	zatio	n: Vertical /	CH: H					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4960.000	52.59	-7.20	45.39	74.00	-28.61	peak
	2		4960.000	46.52	-7.20	39.32	54.00	-14.68	AVG
	3		7440.000	46.54	0.98	47.52	74.00	-26.48	peak
	4		7440.000	40.27	0.98	41.25	54.00	-12.75	AVG
	5		9920.000	46.88	3.02	49.90	74.00	-24.10	peak
	6	*	9920.000	40.83	3.02	43.85	54.00	-10.15	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

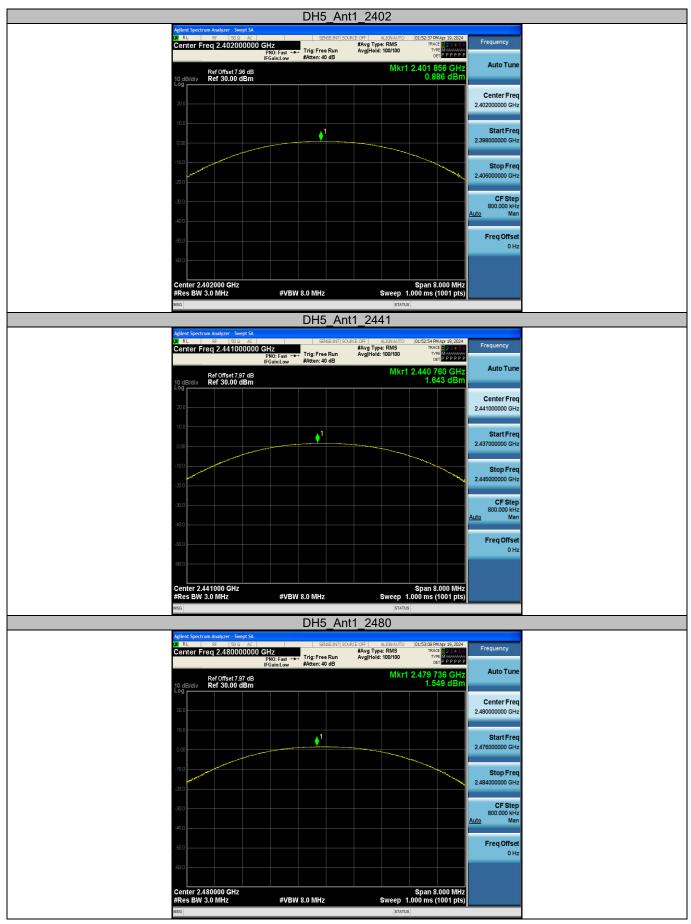
Page 38 of 62

Appendix

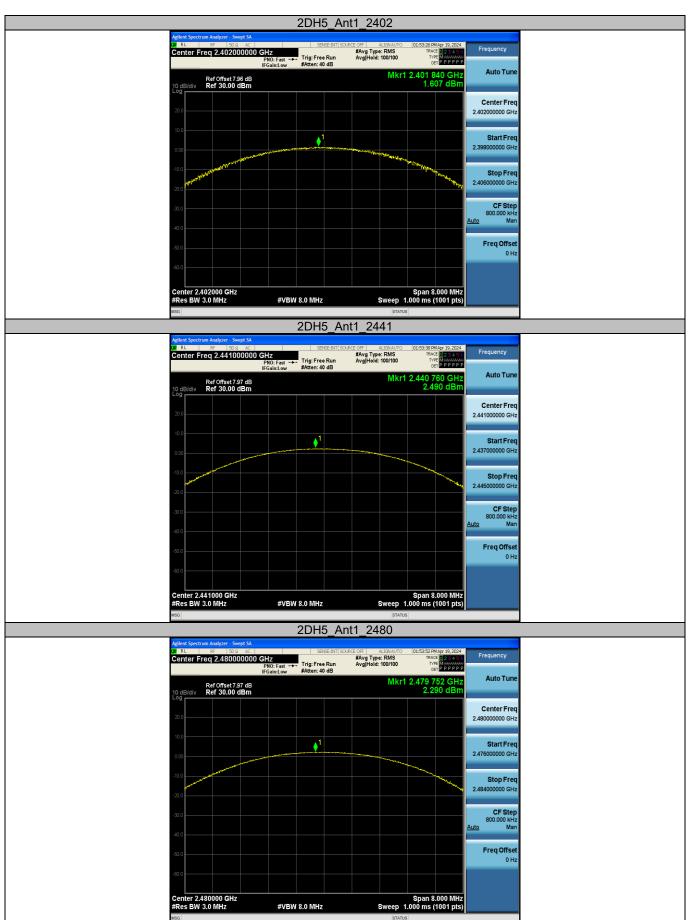
Appendix A: 20dB Emission Bandwidth

Test Result

Test Mode	Antenna	Frequency [MHz]	20db EBW [MHz]
		2402	1.023
DH5	Ant1	2441	1.017
		2480 1.026	1.026
		2402	1.329
2DH5	Ant1	2441	1.338
		2480	1.329



Appendix B: Maximum conducted output power


Test Result Peak

Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
		2402	0.89	≤30	PASS
DH5	Ant1	Ant1 2441	1.64	≤30	PASS
	248	2480	1.55	≤30	PASS
		2402	1.61	≤20.97	PASS
2DH5	Ant1	2441	2.49	≤20.97	PASS
		2480	2.29	≤20.97	PASS

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.cnE-mail: mti@51mti.com

Appendix C: Carrier frequency separation

Test Result

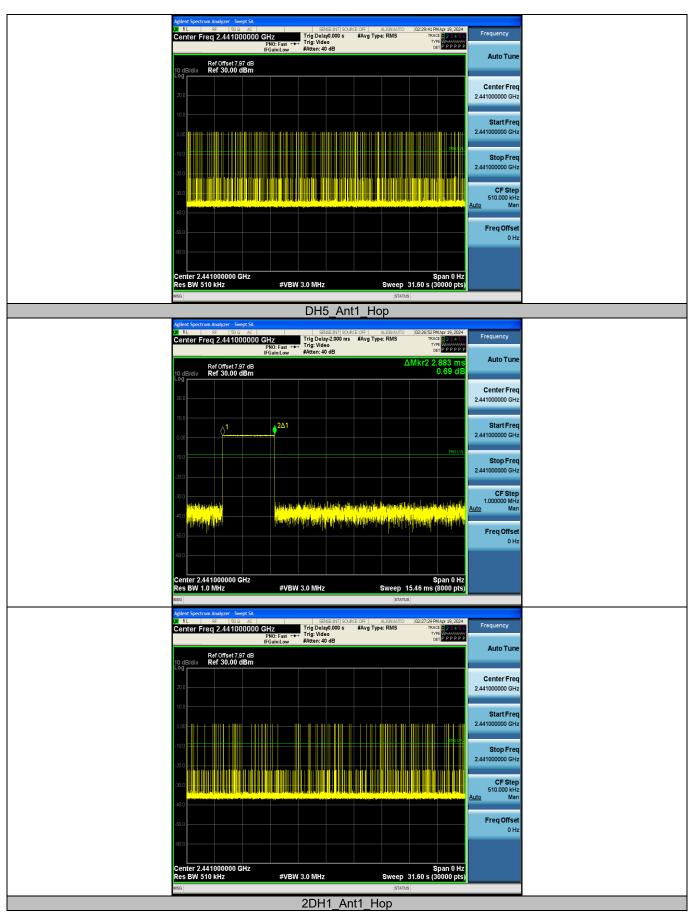
Test Mode	Antenna	Frequency [MHz]	Result [MHz]	Limit [MHz]	Verdict
DH5	Ant1	Нор	1.026	≥0.712	PASS
2DH5	Ant1	Нор	0.998	≥0.892	PASS

Appendix D: Time of occupancy

Test Result

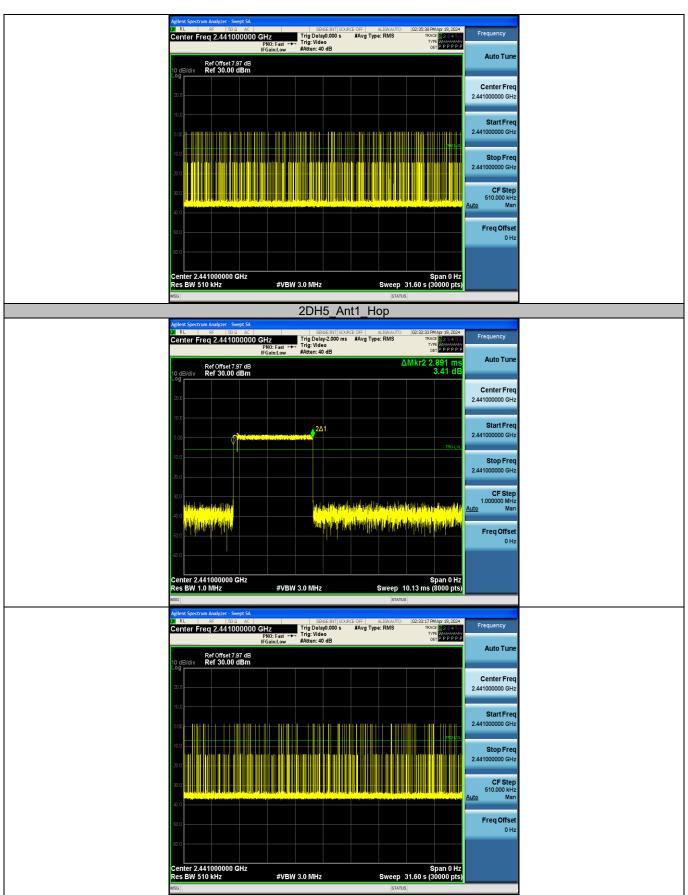
Test Mode	Antenna	Frequency [MHz]	BurstWidth [ms]	Hops in 31.6s [Num]	Result [s]	Limit [s]	Verdict
DH1	Ant1	Нор	0.380	315	0.12	≤0.4	PASS
DH3	Ant1	Нор	1.638	163	0.267	≤0.4	PASS
DH5	Ant1	Нор	2.883	106	0.306	≤0.4	PASS
2DH1	Ant1	Нор	0.390	316	0.123	≤0.4	PASS
2DH3	Ant1	Нор	1.643	156	0.256	≤0.4	PASS
2DH5	Ant1	Нор	2.891	106	0.306	≤0.4	PASS

Notes:


1. Period time = 0.4s * 79 = 31.6s

2. Result (Time of occupancy) = BurstWidth[ms] * Hops in 31.6s [Num]

DH1_Ant1_Hop	
Agilent Spectrum Analyzer - Swept SA	Frequency
Center Freq 2.441000000 GHz Trig Delay-2.000 ms #Avg Type: RMS Trig: Uideo PN0: Fast Trig: Video Trig: Video Trig: Video IFGainLow #Atten: 40 dB tel: 2000 pp pp	
Ref Offset 7.97 dB	Auto Tune
10 dB/div Ref 30.00 dBm 6.16 dB	
20.0	Center Freq 2.44100000 GHz
10.0	
	Start Freq 2.44100000 GHz
100 TROLV	
	Stop Freq 2.44100000 GHz
.20.0	
2000 Landershipstyliger – Uthelesterkersteldig, divitetioteder 1000 (1100) for a station of the station of the station	CF Step 1.00000 MHz Auto Man
1900 alashatin xilada dala da Umumi kalancada. Maana da baya tara aya kila markana alatha da baya kala da kalanda Mar	
2000 Land And Marken and the second shall a contract and the second second straighted as a	Freq Offset 0 Hz
60.0	
Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pts)	
MSG STATUS	
Aglent Spectrum Analyzer - Swept SA R. R. SP SD AC SPECIAL SP	Frequency
Center Fred 2.44100000 GTZ This Serence as a wary type. This are the series of the ser	
Ref Offset 7.97 dB 10 dB/dlv Ref 30.00 dBm	Auto Tune
	Center Freq
200	2.441000000 GHz
10.0	Start Freq
	2.441000000 GHz
-00 -	
	Stop Freq 2.44100000 GHz
an a tha tha an	CF Step
	510.000 kHz Auto Man
40.0	
50.0	Freq Offset 0 Hz
60.0	
Center 2.441000000 GHz Span 0 Hz	
Center 2.441000000 GHz Span 0 Hz Res BW 510 kHz #VBW 3.0 MHz Sweep 31.60 s (30000 pts	
DH3_Ant1_Hop Agilent Spectrum Analyzer - Swept SA	
RL RF 50.9 AC SEMERINT SOURCE OFF ALIGNAUTO D02:29:04 PMAgr 19,2024 Center Freq 2.441000000 GHz Trig Delay-2000 ms #Avg Type: RMS TRACE 12,34 45 DM Care - Trig Video Trig Delay-2000 ms #Avg Type: RMS TRACE 12,34 45	Frequency
IFGain:Low #Atten: 40 dB	Auto Tune
Ref Offset7 97 dB △NKK72 1.038 MS 10 dB/div Ref 30.00 dBm 19.59 dB	
	Center Freq
	2.441000000 GHz
2Δ1	Start Freq
	2.441000000 GHz
-10.0	Stop Freq
	2.441000000 GHz
	CF Step 1.000000 MHz
40 (124) Sector (124) (1	Auto Man
1900 Ang ng n	Freq Offset
	0 Hz
2001	
Center 2.441000000 GHz Span 0 Hz	
Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pts)	



Agilent Spectrum Analyzer - Swept SA	
18 RI RE 50.0 AC SENSE-INT SOURCE OFF ALIGNALITO 12-33-40 PM Are 19 20	Frequency
Center Freq 2.441000000 GHz Trig Delay-2.000 ms #Avg Type: RMS Trig: Video Trig: Video #Avg Type: RMS Trig: Video Trig: Video Trig: Video Trig: Video Trig: Video Trig: Video	
IFGain:Low #Atten: 40 dB	Auto Tuno
Ref Offset 7.97 dB ΔMkr2 390.0 μ 10 dB/div Ref 30.00 dBm 0.00 dBm	
10 dB/div Ref 30.00 dBm 0.00 d Log	
	Center Freq
20.0	2.441000000 GHz
100	
Δ1_221	Start Freq
	2.441000000 GHz
1801	
-10.0	Stop Freq
	2.441000000 GHz
-200	
300	CF Step 1.000000 MHz
arkinaateelakteensti – teepi kistemaatekisteinisti kaliskiristeere ekistemaatekisteere si	Auto Man
- 200 plot to soft a local data in the product of the product o	Lat
	Freq Offset
	0 Hz
-60.0	
Center 2.441000000 GHz Span 0 H	Hz
Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pt	ts)
 MSG STATUS	
Agilent Spectrum Analyzer - Swept SA	
RL RF 50 Q AC SENSE:INT SOURCE OFF ALIGNAUTO 02:34:26 PM Apr 19, 20: Tria Data 0.00 c #Aver Two: PMS RAFE 19, 20:	Frequency
Center Fred 2.441000000 GHZ Fing Decayood a wey rive runs for the formation of the formatio	
	Auto Tune
Ref Offset 7.97 dB 10 dB/div Ref 30.00 dBm	
Log	
200	Center Freq 2.44100000 GHz
	2.44100000 GH2
10.0	
	Start Freq
	2.441000000 GHz
	Stop Freq
-200	2.441000000 GHz
-30.0	CF Step 510.000 kHz
	Auto Man
-40.0	
-50.0	FreqOffset
	0 Hz
-60.0	
Center 2.441000000 GHz Span 0 H	Hz
Res BW 510 kHz #VBW 3.0 MHz Sweep 31.60 s (30000 pt	(5)
 MSG STATUS	
2DH3_Ant1_Hop	
Agilent Spectrum Analyzer - Swept SA	
DE RL RF SO.Q AL SENSE:INT SOURCE OFF ALIGNAUTO D2:34:54 PMApr 19, 20; Center Freq 2.441000000 GHz Trig Delay-2.000 ms #Avg Type: RMS TRACE IP 2:34	Frequency
Center Freq 2.441000000 GHz Trig Delay-2.000 ms #Avg Type: RMS TRME Raise PN0: Fast →→ Trig: Video Trig: Video Trig: Video Trig: Video IFGail: 0w #Atter: 40 dB Cel P P P Cel P P Cel P P	P P
Ref Offset 7.97 dB AWK12 1.643 fr 10 dB/div Ref 30.00 dBm 17.31 d	
20.0	Center Freq
	2.441000000 GHz
10.0	
2Δ1	Start Freq
	2.441000000 GHz
-10.0	
	Stop Freq 2.44100000 GHz
-20.0	2.44100000 GHZ
	CF Step
	1.000000 MHz
	Auto Man
and the address of the trade of the second	
	0 Hz
-60.0	
Center 2.441000000 GHz Span 0 H	Hz to
Center 2.44 1000000 GHz Span 0 H Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pt Issoi	HZ ts)

Appendix E: Number of hopping channels

Test Result

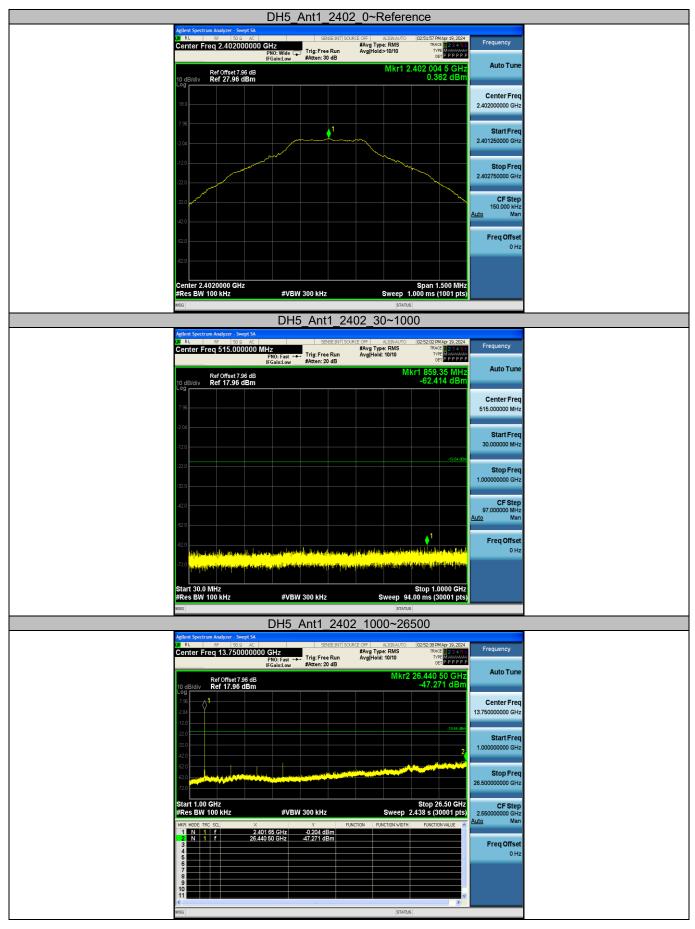
Test Mode	Antenna	Frequency [MHz]	Result [Num]	Limit [Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
2DH5	Ant1	Нор	79	≥15	PASS

DH5_Ant1_Hop		
Agliers Sysetzim Analyzer – Swept SA → Rt. Series Ford SA Center Freq 2.441750000 GHz FNO: East →→ If Gaint ow Free Run Argitheid: 50005000 Trig: Free Run Argitheid: 50005000 ref 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	Frequency	
	Auto Tune Center Freq 441750000 GHz	
	Start Freq 40000000 GHz	
	Stop Freq 483500000 GHz	
300 400	CF Step 8.350000 MHz Man Freq Offset	
600	0 Hz	
Start 2.40000 GHz Stop 2.48350 GHz #Res BW 300 kHz #VBW 300 kHz Sweep 1.133 ms (1001 pts) Israrus Israrus		
2DH5_Ant1_Hop Agilent Spectrum Analyzer - Swept SA		
D RL SF 1908 AC SPNSEINT] SOURCE CFF ALLSANUTO 02:28:13MAW 19,2024 Center Freq 2.441750000 GHz PH0: Fast → PH0: Fast → IFGeint.tow #Atten: 40 dB VigiHold: 500005000 cel PPPPP	Frequency	
Ref Offset 7.96 dB 10 dB/div Ref 30.00 dBm	Auto Tune	
2.00	Center Freq 441750000 GHz	
000 monorphonethered and a 24	Start Freq 40000000 GHz	
.000	Stop Freq 483500000 GHz	
40.0	CF Step 8.350000 MHz 2 Man	
80.0	Freq Offset 0 Hz	
Start 2.40000 GHz Stop 2.48350 GHz #Res BW 300 kHz #VBW 300 kHz Sweep 1.133 ms (1001 pts)		
MSG STATUS		

Appendix F: Band edge measurements

Test Graphs

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.cnE-mail: mti@51mti.com



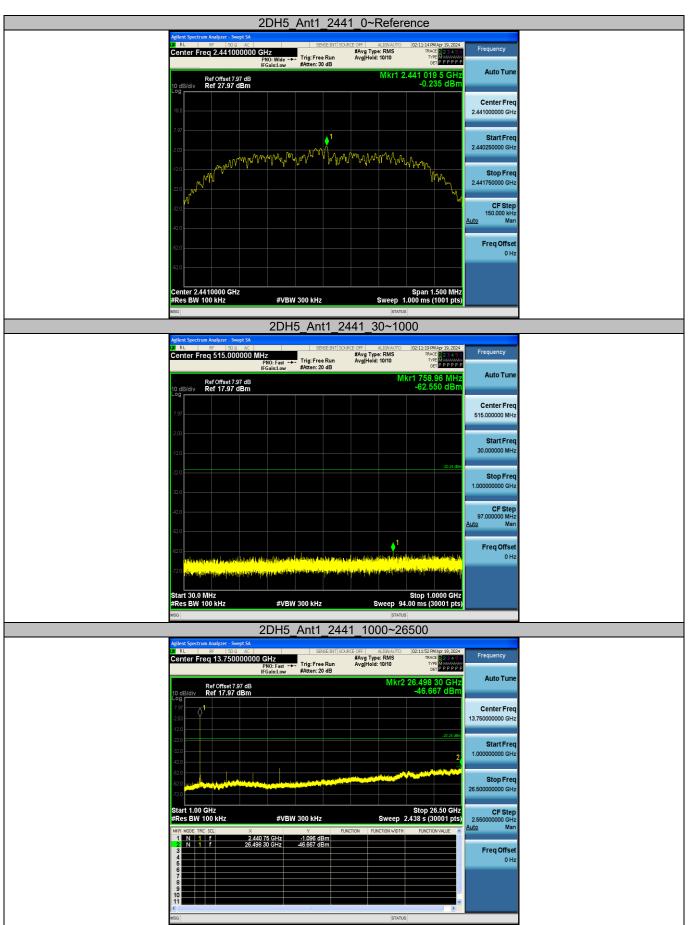
Agilent Spectrum Analyzer - Swept SA	RCE OFF ALIGNAUTO 02:30:38 PM Apr 19, 2024		
Center Freq 2.352500000 GHz PNO: Fast IFGaincl.ow	#Avg Type: RMS TRACE 23456 Avg Hold:>100/100 TYPE MUSER	Frequency	
Ref Offset 7.9 dB 10 dB/div Ref 20.00 dBm	Mkr5 2.390 930 GHz -49.500 dBm	Auto Tune	
	8	Center Freq 2.352500000 GHz	
-10.0	22.4.89		
-30.0		Start Freq 2.30000000 GHz	
-50 0	or the provide and the provided and the	Stop Freq	
-70.0		2.405000000 GHz	
Start 2.30000 GHz #Res BW 100 kHz #VBW 300 kHz	Stop 2.40500 GHz Sweep 10.07 ms (1001 pts)	CF Step 10.500000 MHz Auto Man	
1 N 1 f 2.403 005 GHz -2.395 dBm 2 N 1 f 2.400 000 GHz -52.052 dBm	NUTION FONCTION WIDTH FONCTION VALUE	Freq Offset	
3 N 1 f 2.390 000 GHz 52.607 dBm 4 N 1 f 2.310 000 GHz 51.714 dBm 5 N 1 f 2.390 930 GHz 49.500 dBm 6 49.500 dBm 49.500 dBm		0 Hz	
7 8 9 9			
II ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	STATUS		
2DH5 Ant1 Hi			
Agilent Spectrum Analyzer - Swept SA			
Center Freq 2.510000000 GHz Freq 2.51000000 GHZ Freq 2.510000000 GHZ Freq 2.5100000000 GHZ Freq 2.5100000000 GHZ Freq 2.5100000000 GHZ Freq 2.5100000000 GHZ Freq 2.510000000000 GHZ Freq 2.51000000000000000000000000000000000000	RCE OFF ALIGNAUTO 02:36:04 PMApr 19, 2024 #Avg Type: RMS TRACE 2.3 4 5 6 Avg Hold>100/100 TYPE TYPE MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Frequency	
Ref Offset 7.97 dB	Mkr4 2.487 04 GHz -48.858 dBm	Auto Tune	
10 dB/div Ref 20.00 dBm Log1	-46.656 (16)	Center Freq	
0.00 -10.0		2.51000000 GHz	
-20.0	-19.28 dBn	Start Freq 2.470000000 GHz	
-40.0 -50.0	adversional and the second of the second of	Stop Freq	
-60.0		2.55000000 GHz	
Start 2.47000 GHz #Res BW 100 kHz #VBW 300 kHz	Stop 2.55000 GHz Sweep 7.667 ms (1001 pts)	CF Step 8.000000 MHz	
MKR MODE TRC SCL X Y FU 1 N 1 f 2.480.00 GHz 0.723 dBm 2 N 1 f 2.483.50 GHz -50.298 dBm	NCTION FUNCTION WIDTH FUNCTION VALUE	A <u>uto</u> Man	
1 N 1 f 249000 GHz 0.723 dBm 2 N 1 f 2483 50 GHz 50.298 dBm 3 N 1 f 2.50000 GHz 49.002 dBm 4 N 1 f 2.487 04 GHz 48.050 dBm 5 48.704 GHz 48.856 dBm		Freq Offset 0 Hz	
6 7 8 9			
	×		
MSG	STATUS		

Appendix G: Conducted Spurious Emission

Test Graphs



Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.cnE-mail: mti@51mti.com



----End of Report----