

Template: September 15th, 2023

TEST REPORT

N°: 21019537-796750-D(FILE#6633628) Version: 03

Subject

Radio spectrum tests according to the standards: FCC CFR 47 Part 15.247 & ANSI C63.10 RSS-247 & RSS-Gen

Issued to MICROPORT CRM

4 AVENUE REAUMUR 92140 - CLAMART FRANCE

Apparatus under test

Product Defibrillator

♦ Trade mark
 MICROPORT CRM
 ♦ Manufacturer
 MICROPORT CRM s.r.I

ENERGYA CRT-D 3711
TALENTIA VR 3210
TALENTIA DR 3510
ENERGYA VR 3110

ENERGYA VK 3110 ENERGYA DR 3410

♦ Serial number
Q19JX014 , Q19D4003

♥ FCCID YSGIS1BLE

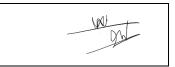
Conclusion See Test Program chapter

Test date January 16, 2024 to February 01, 2024

Test location LCIE Grenoble

FCC Test site FR0008 - 918017 (MOI)

ISED Test site 6500A (MOI)


Sample receipt date January 15, 2024

Composition of document 50 pages
Document issued on July 01, 2024

Written by:

Akram HAKKARI

Tests operator

Approved by :

Majid MOURZAGH Technical manager

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the items tested. It does not imply the conformity of the whole production to the items tested. Unless otherwise specified or rule defined by the test method, the decision of conformity doesn't take into account the uncertainty of measures. This document doesn't anticipate any certification decision. The COFRAC accreditation attests the technical capability of the testing laboratory for the only tests covered by the accreditation. If some tests mentioned in this report are carried out outside the framework of COFRAC accreditation, they are indicated by the symbol 3.

LCIE

Laboratoire Central des Industries Electriques Une société Bureau Veritas Z.I Centr'alp 170, Rue de Chatagnon 38430 Moirans FRANCE Tél. + 33 4 76 07 36 36 contact@lcie.fr www.lcie.fr

PUBLICATION HISTORY

Version	Date	Author	Modification
01	March 20, 2024	Akram HAKKARI	Creation of the document
02	March 28, 2024	Akram HAKKARI	Add informations on tables equipment list
03	July 01, 2024	Akram HAKKARI	Correction limit PSD on page 24

Each new edition of this test report replaces and cancels the previous edition. The control of the old editions of report is under responsibility of client.

SUMMARY 1. TEST PROGRAM4 2. EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)......5 3. 4. 5. POWER SPECTRAL DENSITY21 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS25 6. 7. UNCERTAINTIES CHART50 8.

1. TEST PROGRAM

References

- > 47 CFR Part 15.247 (2023)
- > RSS 247 Issue 3
- > RSS Gen Issue 5
- ➤ KDB 558074 D01 DTS Meas Guidance v05r02 ि
- ➤ KDB 662911 D01 Multiple Transmitter Output v02r01 ि
- > ANSI C63.10 (2013)

Radio requirement:

6dB Bandwidth	FCC & ISED	PASS
Maximum Conducted Output Power	FCC & ISED	PASS
Power Spectral Density	FCC & ISED	PASS
Unwanted Emissions in Non-Restricted Frequency Bands	FCC & ISED	PASS
Unwanted Emissions in Restricted Frequency Bands	FCC & ISED	PASS

This table is a summary of test report, see conclusion of each clause of this test report for detail.

PASS: EUT complies with standard's requirement

FAIL: EUT does not comply with standard's requirement

NA: Not Applicable NP: Test Not Performed

TEST REPORT Version: 03

⁽¹⁾ Limited program

⁽²⁾ Testing covered the receive mode, and receiver spurious emissions are considered to be the same as transmitter.

2. EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)

2.1. INOFRMATIONS

Tests are performed on the most complete product MICROPORT CRM IS1 TALENTIA SonR CRT-D 38111, SN: Q19JX014 for radiated test & Q19D4003 for conducted test.

See Table below for difference between products.

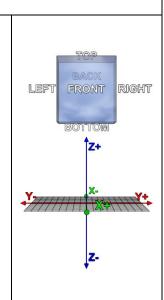
For radiated test:

TALENTIA SonR CRT-D 3811	ENERGYA CRT-D 3711
	ENERGYA VR 3110
	TALENTIA VR 3210
	ENERGYA DR 3410
	TALENTIA DR 3510
Tested product.	Embedded Software is slightly different between
	TALENTIA and ENERGYA. However, these
	differences do not affect the radio functionality of
	the implant.
	The hardware is strictly the same.
	Mechanical structure is slightly different between
	TALENTIA DR & VR, ENERGYA DR & VR, ENERGYA
	CRT-D and TALENTIA SonR CRT-D; but it does not
	affect the radio functionality of the implant.
	Same telemetry Antenna T277
	Same telemetry BLE Antenna G440E

For conducted test:

Hybrid IS1 SN: Q19D4003	ENERGYA VR 3110
	TALENTIA VR 3210
	ENERGYA VR 3140
	TALENTIA VR 3240
	ENERGYA DR 3410
	TALENTIA DR 3510
	ENERGYA DR 3440
	TALENTIA DR 3540
	ENERGYA CRT-D 3711
	ENERGYA CRT-D 3741
Tested product	The radio circuit of hybrid IS1 tested product is
	strictly the same for all IS1 products.

TEST REPORT Version: 03



2.2. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Equipment under test (EUT):

Model under test: TALENTIA SonR CRT-D 3811/IS1 Hybrid
Serial Number: Q19JX014, Q19D4003

Dimensions:5.5cm x 7.2 cm x 0.7cm (Length x Width x Height)Type:Table-Top

Power supply:

Name	Туре	Rating	Reference / Sn	Comments
Supply1	Battery	3.24 VDC	-	-

NC: Not communicated by provider

Auxiliary equipment used during test:

Туре	Reference	Sn	Comments
Laptop	DELL	-	-
Inductive telemetry Head	CPR3	CM1610029S	-
USB adapter to RS232	Sorin	XA1311038E	-

NC: Not communicated by provider

Equipment information (declaration of provider):

Bluetooth Low Energy:	v4.2	
Chipset / RF Module	Nordic nRF52832	
Frequency band:	[2400 – 2483.5] MHz	
Spectrum Modulation:	DSSS (Tested like it – international agreements)	
Number of Channel:	40	
Spacing channel:	2MHz	
Channel bandwidth:	1MHz	
Antenna Type:	Internal	
Antenna connector:	Temporary for tests	
Antenna requirements §15.203	The transmitter uses an integral antenna and it permanently connected	
Transmit chains:	1	
Receiver chains	1	

	CHANNEL PLAN				
Channel	Frequency (MHz)	Channel	Frequency (MHz)		
Cmin: 0	2402	Cmid: 20	2442		
1	2404	21	2444		
2	2406	22	2446		
3	2408	23	2448		
4	2410	24	2450		
5	2412	25	2452		
6	2414	26	2454		
7	2416	27	2456		
8	2418	28	2458		
9	2420	29	2460		
10	2422	30	2462		
11	2424	31	2464		
12	2426	32	2466		
13	2428	33	2468		
14	2430	34	2470		
15	2432	35	2472		
16	2434	36	2474		
17	2436	37	2476		
18	2438	38	2478		
19	2440	Cmax: 39	2480		

	DATA RATE				
Available	Data Rate (Mbps)	Modulation Type	Worst Case Modulation		
	0.25	GFSK (1MHz)			
\square	1	GFSK (1MHz)	$\overline{\checkmark}$		
	2	GFSK (2MHz)			

Antenna Characteristic					
Antenna reference	Gain (dBi)	Frequency Band (MHz)	Impedance(Ω)		
G440E	-23.7	[2400 – 2483.5] MHz	50		

Hardware information					
Highest internal frequency (PLL, Quartz, Clock, Microprocessor):			F _{Highest} :	NC	MHz
Firmware (if applicable):			V:	Platinium V 2.8.1	
Software (if applicable):			V:	NC	
Equipment intended:			Mobile		
Type of equipment:			Stand-alone		
Equipment sample:		Pr	Production model		
Duty cycle:		С	Continuous duty		
	T _{min} :	32 °C			
Operating temperature range:	T _{nom} :	37°C			
	T _{max} :	max: 42 °C			
	V _{min} (85% Vnom):	2.62 VDC			
Operating voltage:	V _{nom} :	3.24 VDC			
	V _{max} (115% Vnom):	3.3 VDC			

NC: Not communicated by provider


2.3. RUNNING MODE

Test mode	Description of test mode		
Test mode 1	Permanent emission with modulation on a fixed channel in the data rate that produced the highest power. Refer to: PLAN 15076C		
Test mode 2	Permanent reception Refer to : PLAN 15076C		

Test	Running mode
6dB Bandwidth	Test mode 1
Maximum Conducted Output Power	Test mode 1
Power Spectral Density	Test mode 1
Conducted Spurious Emission at the Band Edge	Test mode 1
Unwanted Emissions in Non-Restricted Frequency Bands	Test mode 1
Unwanted Emissions in Restricted Frequency Bands	Test mode 1

⁽¹⁾ Testing covered the receive mode, and receiver spurious emissions are considered to be the same as transmitter.

2.4. EQUIPMENT LABELLING

2.5. EQUIPMENT MODIFICATIONS DURING THE TESTS

None

2.6. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

$$FS = RA + AF + CF - AG$$

Where:

FS = Field Strength
RA = Receiver Amplitude
AF = Antenna Factor
CF = Cable Factor

AG = Amplifier Gain

Example:

Assume a receiver reading of $52.5 dB\mu V$ is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29 dB is subtracted, giving a field strength of $32 dB\mu V/m$.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 \, dB\mu V/m$

The 32 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in $\mu V/m$ = Common Antilogarithm [(32dB μ V/m)/20] = 39.8 μ V/m.

2.7. TEST DISTANCE EXTRAPOLATION – FCC/ISED

The field strength is extrapolated to the new measurement distance using formula from FCC Part15.31 (f) and §6.5-6.6 RSS-GEN:

Below 30MHz,

$$FS_{\text{limit}} = FS_{\text{max}} - 40\log\left(\frac{d_{\text{limit}}}{d_{\text{measure}}}\right)$$

Above 30MHz.

$$FS_{\text{limit}} = FS_{\text{max}} - 20\log\left(\frac{d_{\text{limit}}}{d_{\text{measure}}}\right)$$

Where:

FS_{limit} is the calculation of field strength at the limit distance, expressed in dBμV/m

 FS_{max} is the measured field strength, expressed in $dB\mu V/m$

d_{measure} is the distance of the measurement point from the EUT

d_{limit} is the reference limit distance Calibration date

2.8. CALIBRATION DATE

The calibration intervals are extended at 12+2 months. This extended interval is based on the fact that there is sufficient calibration data to statistically establish a trend or based on experience of use of the test equipment to assure good measurement results for a longer period.

2.9. METHOD TO DETERMINATE THE SPURIOUS RADIATED EMISSION

The Normalized Site Attenuation (NSA) is added to the maximum values observed during the azimuth search in order to obtain the spurious radiated emission. For spurious above -6dB from the limit found with the NSA, the Substitution Method is applied.

The substitution antenna replaces the equipment under test (EUT) for Effective Radiated Power (ERP) or Effective Isotropically Radiated Power (EIRP) measurement following the standard. Power is measured for a high level and calculated for the same level of radiated field strength obtained on the measuring antenna and EUT.

TEST REPORT Version: 03

3. 6DB BANDWIDTH

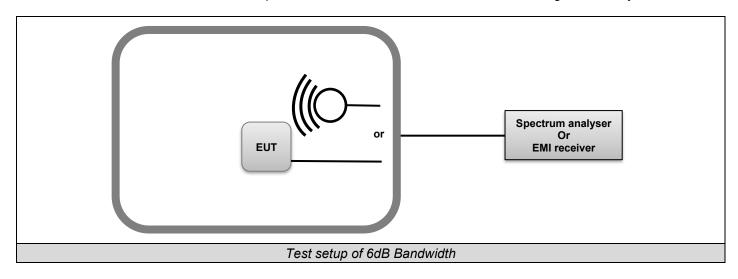
3.1. TEST CONDITIONS

Date of test : January 24, 2024 Test performed by : Akram HAKKARI

Relative humidity (%) : 33 Ambient temperature (°C) : 21

3.2. TEST SETUP

The Equipment Under Test is installed in an anechoic chamber.


Measurement is performed with a spectrum analyzer in conducted method.

The EUT is turned ON, the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Test Procedure:

KDB 558074 D01 DTS Meas Guidance v05r02 § 8.2

- Set resolution bandwidth (RBW) = 100kHz.
- Set the video bandwidth (VBW) ≥ 3 x RBW.
- Detector = Peak.
- Trace mode = max hold.
- Sweep = auto couple.
- Allow the trace to stabilize.
- Measure the maximum width of the emission that is constrained by the frequencies associated with the two
 outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured
 in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer.

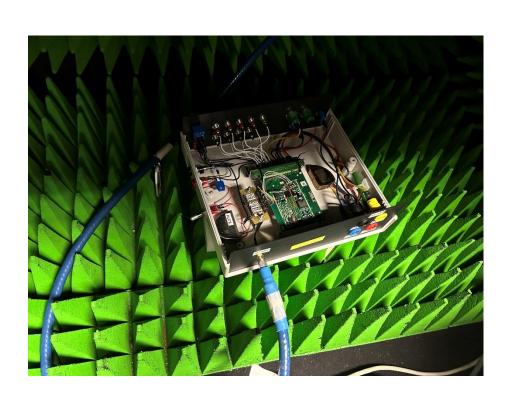


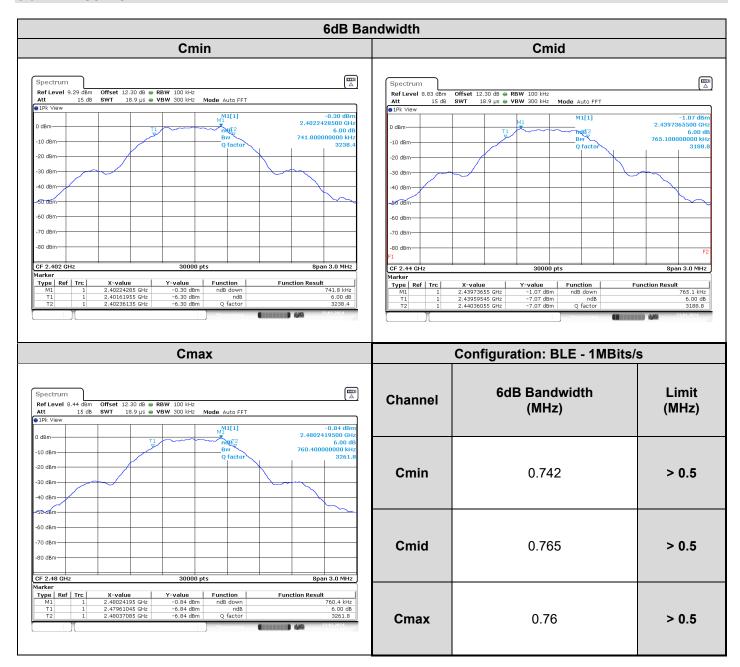
Photo of 6dB bandwidth

3.3. LIMIT

Frequency range	6dB bandwidth
902-928MHz	
2400MHz to 2483.5MHz	≥500kHz
5725-5850 MHz	

3.4. TEST EQUIPMENT LIST

	TEST EQUIPMENT USED				
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due
Attenuator 10dB	AEROFLEX	_	A7122267	10/23	10/25
DC Power Supply	RS PRO	RS3005P	A7042314	N/A	N/A
Multimeter - CEM	FLUKE	87	A1240251	10/23	10/25
Emission Cable (SMA 1m)	TELEDYNE	26GHz	A5329874	08/22	08/25
Full Anechoic Room	SIEPEL	_	D3044024	N/A	N/A
SMA 1.5m	SUCOFLEX	18GHz	A5329864	10/23	10/24
Spectrum analyzer	ROHDE & SCHWARZ	FSV 40	A4060059	11/21	03/24*
Thermo-hygrometer	TESTO	608-H1	B4204120	03/23	03/25


N/A: Not applicable *: Under derogation

3.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

None

3.6. RESULTS

3.7. CONCLUSION

6dB Bandwidth measurement performed on the sample of the product **TALENTIA SonR CRT-D 3811**, Sn: **Q19JX014**, **Q19D4003**, in configuration and description presented in this test report, show levels **compliant** to the **47 CFR PART 15.247 & RSS 247** limits.

4. MAXIMUM CONDUCTED OUTPUT POWER

4.1. TEST CONDITIONS

Date of test : January 24, 2024 Test performed by : Akram HAKKARI

Relative humidity (%) : 33 Ambient temperature (°C) : 21

4.2. TEST SETUP

The Equipment Under Test is installed in an anechoic chamber.

Measurement is performed with a spectrum analyzer in conducted method.

The EUT is turned ON, the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Test Procedure used: KDB 558074 D01 DTS Meas Guidance v05r02 § 8.3.1.1 KDB 558074 D01 DTS Meas Guidance v05r02 § 8.3.1.1

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- Set the RBW ≥ DTS bandwidth.
- Set VBW ≥ 3 x RBW.
- Set span ≥ 3 x RBW
- Sweep time = auto couple.
- Detector = peak.
- Trace mode = max hold.
- Allow trace to fully stabilize.
- Use peak marker function to determine the peak amplitude level.

KDB 558074 D01 DTS Meas Guidance v05r02 § 8.3.1.2

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

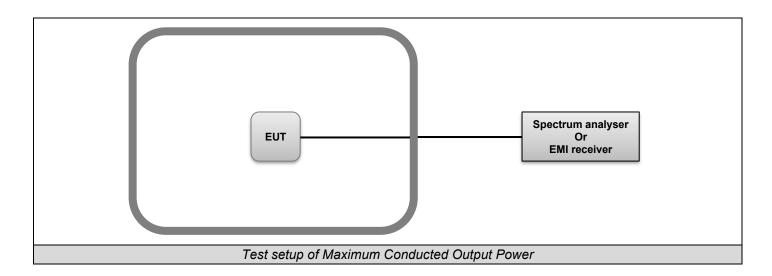
- Set the RBW = 1 MHz.
- Set the VBW ≥ 3 x RBW
- o Set the span ≥ 1.5 x DTS bandwidth.
- Detector = peak.
- Sweep time = auto couple.
- Trace mode = max hold.
- Allow trace to fully stabilize.
- Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges

KDB 558074 D01 DTS Meas Guidance v05r02 § 8.3.2.2(Method AVGSA-1)

Subclause 11.9.2.2 of ANSI C63.10 is applicable, Method AVGSA-1 uses trace averaging with the EUT transmitting at full power throughout each sweep.

- a) Set span to at least 1.5 times the OBW.
- o b) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
- c) Set VBW ≥ [3 × RBW].
- d) Number of points in sweep ≥ [2 × span / RBW]. (This gives bin-to-bin spacing ≤ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.

TEST REPORT Version: 03


- o f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- ⊙ g) If transmit duty cycle < 98%, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at the maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle ≥ 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."
- h) Trace average at least 100 traces in power averaging (rms) mode.
- o i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

KDB 558074 D01 DTS Meas Guidance v05r02 § 8.3.2.2(Method AVGSA-2)

Subclause 11.9.2.2 of ANSI C63.10 is applicable.

Method AVGSA-2 uses trace averaging across ON and OFF times of the EUT transmissions, followed by duty cycle correction. The procedure for this method is as follows:

- o a) Measure the duty cycle D of the transmitter output signal as described in 11.6.
- b) Set span to at least 1.5 times the OBW.
- o c) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
- o d) Set VBW ≥ [3 × RBW].
- e) Number of points in sweep ≥ [2 × span / RBW]. (This gives bin-to-bin spacing ≤ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- f) Sweep time = auto.
- o g) Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector mode.
- h) Do not use sweep triggering. Allow the sweep to "free run."
- i) Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.
- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.

TEST REPORT Version: 03

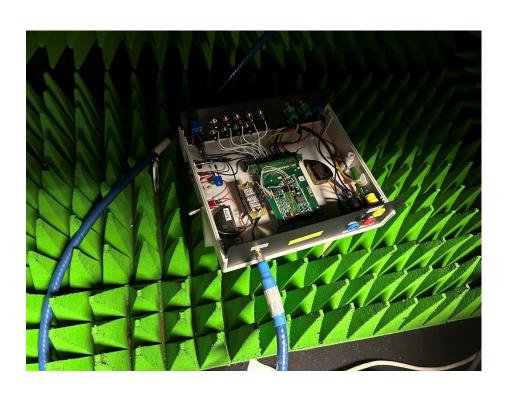


Photo of Maximum Conducted Output Power

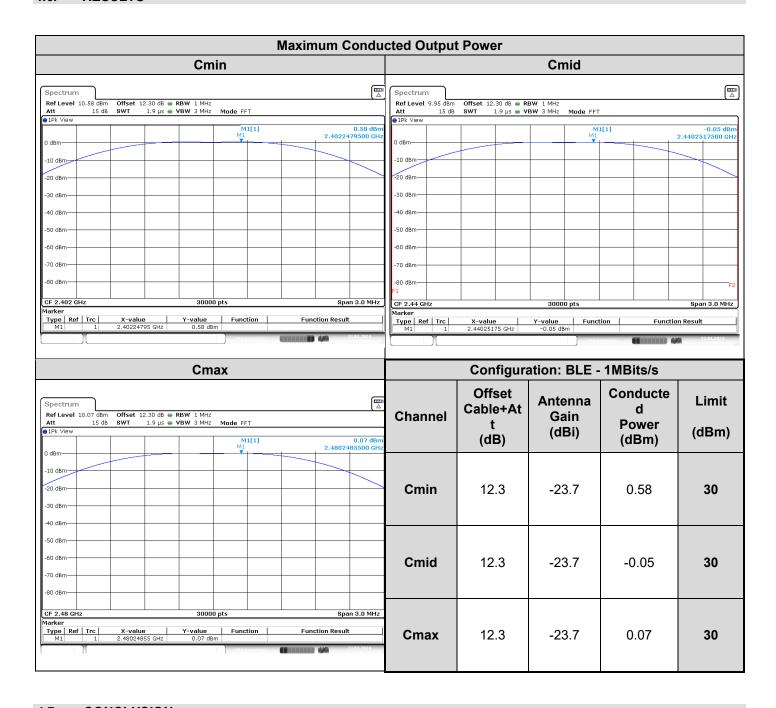
4.3. LIMIT

Frequency range	Maximum Conducted Output Power
902-928MHz	
2400MHz to 2483.5MHz	≤30dBm*
5725-5850 MHz	

^{*}Remark: Limits are reduced by G-6dBi if Overall Antenna Gain above 6dBi

4.4. TEST EQUIPMENT LIST

	TEST EQUIPMENT USED				
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due
Attenuator 10dB	AEROFLEX	_	A7122267	10/23	10/25
DC Power Supply	RS PRO	RS3005P	A7042314	N/A	N/A
Multimeter - CEM	FLUKE	87	A1240251	10/23	10/25
Emission Cable (SMA 1m)	TELEDYNE	26GHz	A5329874	08/22	08/25
Full Anechoic Room	SIEPEL	_	D3044024	N/A	N/A
SMA 1.5m	SUCOFLEX	18GHz	A5329864	10/23	10/24
Spectrum analyzer	ROHDE & SCHWARZ	FSV 40	A4060059	11/21	03/24*
Thermo-hygrometer	TESTO	608-H1	B4204120	03/23	03/25


N/A: Not applicable *: Under derogation

4.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

None

4.6. RESULTS

4.7. CONCLUSION

Maximum Output Conducted Power measurement performed on the sample of the product **TALENTIA SonR CRT-D 3811**, Sn: **Q19JX014**, **Q19D4003**, in configuration and description presented in this test report, show levels **compliant** to the **47 CFR PART 15.247 & RSS 247** limits.

5. POWER SPECTRAL DENSITY

5.1. TEST CONDITIONS

Date of test : January 25, 2024 Test performed by : Akram HAKKARI

Relative humidity (%) : 33 Ambient temperature (°C) : 22

5.2. TEST SETUP

The Equipment Under Test is installed in an anechoic chamber.

Measurement is performed with a spectrum analyzer in conducted method.

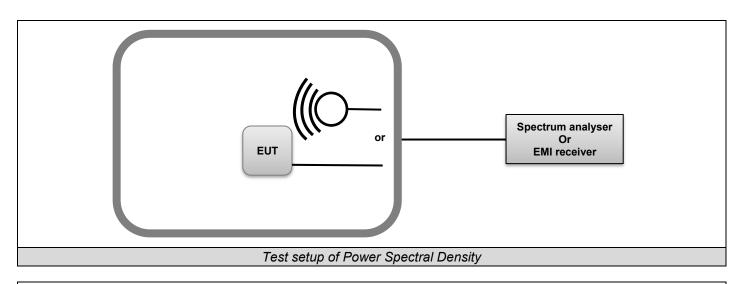
The EUT is turned ON, the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

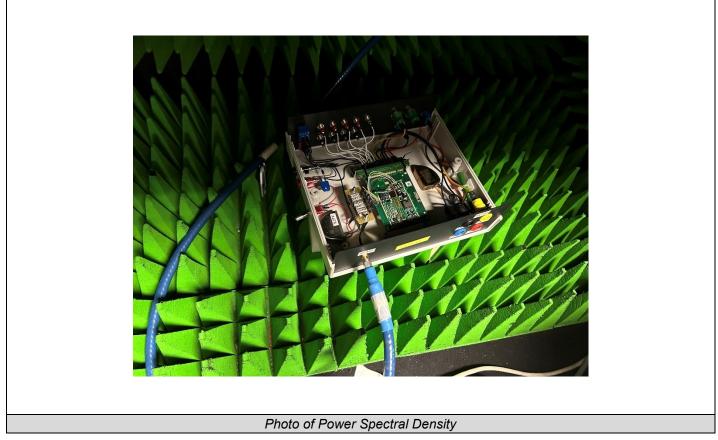
Test Procedure used: KDB 558074 D01 DTS Meas Guidance v05r02 § 8.4 (Method PKPSD) KDB 558074 D01 DTS Meas Guidance v05r02 § 8.4 (Method PKPSD)

Subclause 11.10 of ANSI C63.10 is applicable

- Set analyzer center frequency to DTS channel center frequency.
- Set the span to 1.5 times the DTS bandwidth.
- Set the RBW to: 3 kHz.
- Set the VBW \geq 3 x RBW.
- Detector = peak.
- Sweep time = auto couple.
- Trace mode = max hold.
- Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum amplitude level within the RBW.
- If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

KDB 558074 D01 DTS Meas Guidance v05r02 § 8.4 (Method AVGPSD-1)


Subclause 11.10 of ANSI C63.10 is applicable


Method AVGPSD-1 uses trace averaging with EUT transmitting at full power throughout each sweep. The following procedure may be used when the maximum (average) conducted output power was used to determine compliance to the fundamental output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has a power averaging (rms) detector, then it must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (D \geq 98%), or else sweep triggering/signal gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter OFF time to be considered):

- o a) Set instrument center frequency to DTS channel center frequency.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW to: 3 kHz ≤ RBW ≤ 100 kHz.
- d) Set VBW ≥ [3 × RBW].
- e) Detector = power averaging (rms) or sample detector (when rms not available).
- f) Ensure that the number of measurement points in the sweep ≥ [2 x span / RBW].
- g) Sweep time = auto couple.
- h) Employ trace averaging (rms) mode over a minimum of 100 traces.
- o i) Use the peak marker function to determine the maximum amplitude level.
- j) If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

TEST REPORT Version: 03

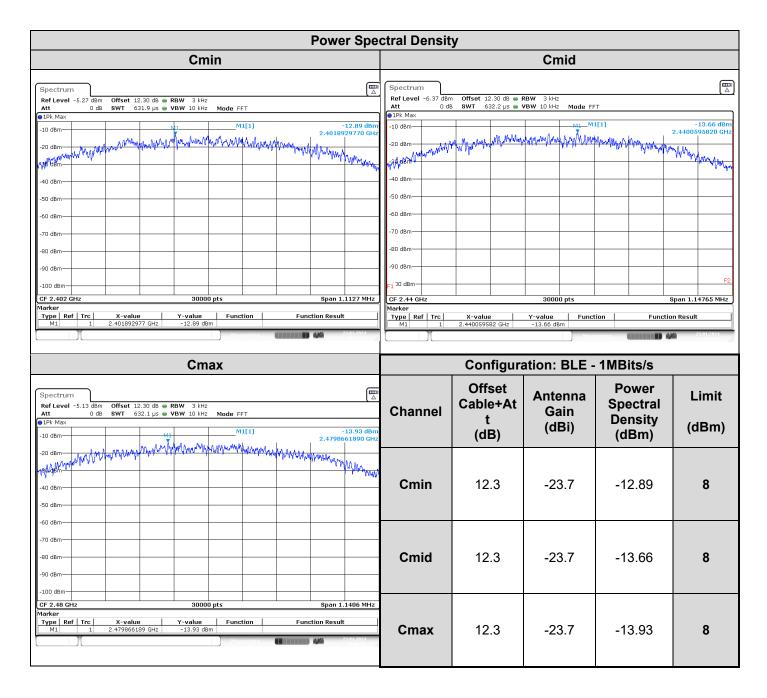
5.3. LIMIT

Frequency range	Power Spectral Density
902-928MHz	40 dD / 21d l *
2400MHz to 2483.5MHz 5725-5850 MHz	≤8dBm / 3kHz *

^{*}Remark: Limits are reduced by G-6dBi if Overall Antenna Gain above 6dBi

5.4. TEST EQUIPMENT LIST

	TEST EQUIPMENT USED				
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due
Attenuator 10dB	AEROFLEX	_	A7122267	10/23	10/25
DC Power Supply	RS PRO	RS3005P	A7042314	N/A	N/A
Multimeter - CEM	FLUKE	87	A1240251	10/23	10/25
Emission Cable (SMA 1m)	TELEDYNE	26GHz	A5329874	08/22	08/25
Full Anechoic Room	SIEPEL	_	D3044024	N/A	N/A
SMA 1.5m	SUCOFLEX	18GHz	A5329864	10/23	10/24
Spectrum analyzer	ROHDE & SCHWARZ	FSV 40	A4060059	11/21	03/24*
Thermo-hygrometer	TESTO	608-H1	B4204120	03/23	03/25


N/A: Not applicable *: Under derogation

5.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

None

5.6. RESULTS

5.7. CONCLUSION

Power Spectral Density measurement performed on the sample of the product **TALENTIA SonR CRT-D 3811**, Sn: **Q19JX014**, **Q19D4003**, in configuration and description presented in this test report, show levels **compliant** to the **47 CFR PART 15.247 & RSS 247** limits.

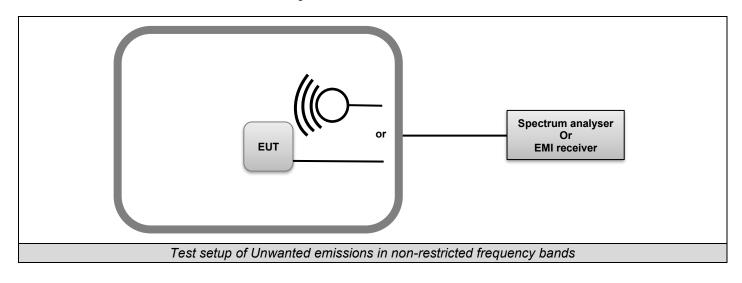
6. UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

6.1. TEST CONDITIONS

Date of test : January 23, 2024 Test performed by : Akram HAKKARI

Relative humidity (%) : 32 Ambient temperature (°C) : 22

6.2. TEST SETUP


The Equipment Under Test is installed in an anechoic chamber.

Measurement is performed with a spectrum analyzer in conducted method.

The EUT is turned ON, the captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Test Procedure:

KDB 558074 D01 DTS Meas Guidance v05r02 § 8.5

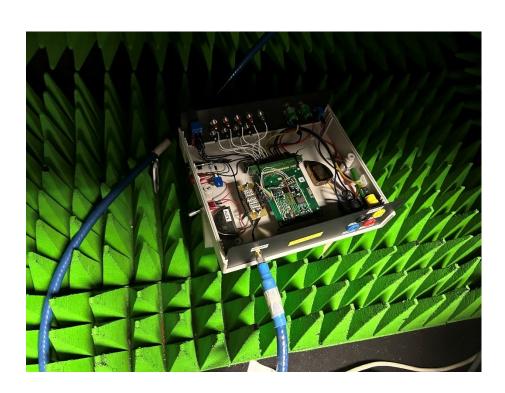


Photo of Unwanted emissions in non-restricted frequency bands

6.3. LIMIT

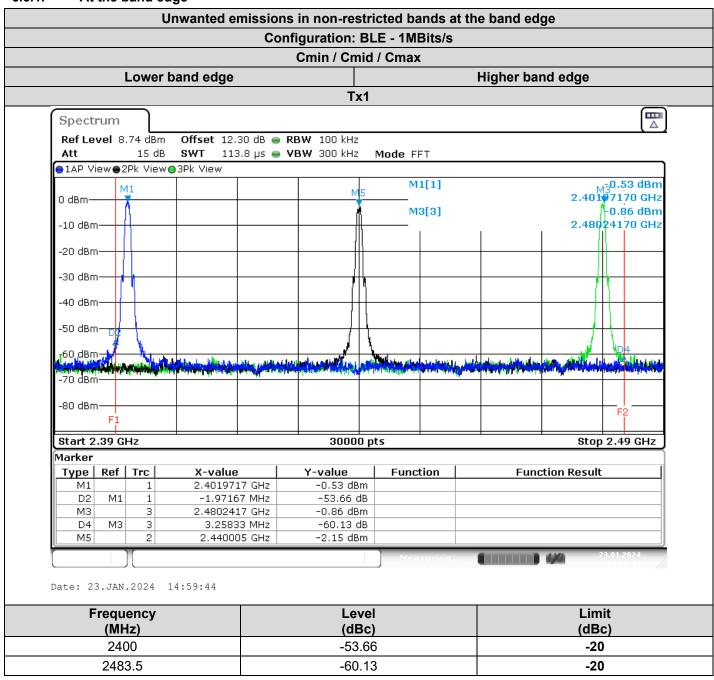
All Spurious Emissions must be at least 20dB below the Fundamental Radiator Level at the Band Edge of operating frequency band and in non-restricted bands.

6.4. TEST EQUIPMENT LIST

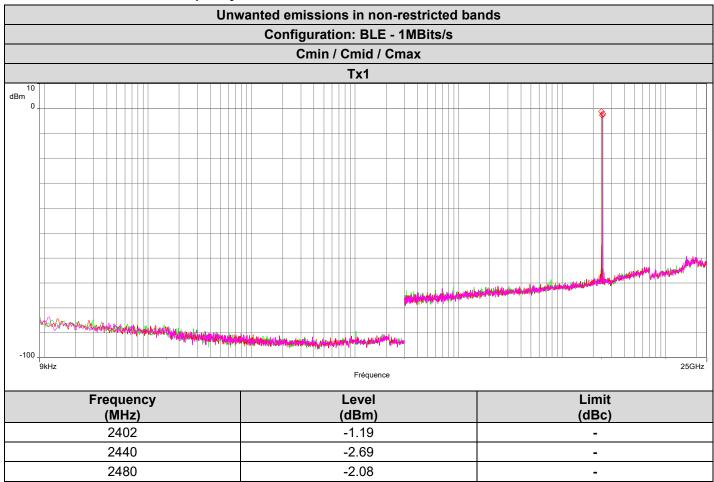
	TEST EQUIPMENT USED				
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due
Attenuator 10dB	AEROFLEX	_	A7122267	10/23	10/25
DC Power Supply	RS PRO	RS3005P	A7042314	N/A	N/A
Multimeter - CEM	FLUKE	87	A1240251	10/23	10/25
Emission Cable (SMA 1m)	TELEDYNE	26GHz	A5329874	08/22	08/25
Full Anechoic Room	SIEPEL	_	D3044024	N/A	N/A
SMA 1.5m	SUCOFLEX	18GHz	A5329864	10/23	10/24
Spectrum analyzer	ROHDE & SCHWARZ	FSV 40	A4060059	11/21	03/24*
Thermo-hygrometer	TESTO	608-H1	B4204120	03/23	03/25

N/A: Not applicable *: Under derogation

6.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION


None

TEST REPORT Version: 03


6.6. RESULTS

6.6.1. At the band edge

6.6.2. Non restricted frequency bands

6.7. CONCLUSION

Unwanted emissions in non-restricted bands and at the band edge measurement performed on the sample of the product **TALENTIA SonR CRT-D 3811**, Sn: **Q19JX014**, **Q19D4003**, in configuration and description presented in this test report, show levels **compliant** to the **47 CFR PART 15.247 & RSS 247** limits.

7. UNWANTED EMISSIONS IN RESTRICTED FREQUENCY BANDS

7.1. TEST CONDITIONS

Date of test : January 24, 2024 Test performed by : Akram HAKKARI

Test performed by : Akı Relative humidity (%) : 33 Ambient temperature (°C) : 22

7.2. TEST SETUP

Test procedure:

ANSI C63.10 & FCC Part 15 subpart C

Following frequency ranges, test setup parameters are different and specified in this table:

Frequency range:	9kHz to 30MHz			
Test:	Pre-Characterization	Qualification		
Antenna Polarization:	Parallel, Perpendicula	ar and Ground parallel		
Antenna Height:	1m	1m		
Antenna Type:	Lo	Loop		
RBW Filter:	200Hz below 150kHz / 9kHz above 150kHz			
Maximization:	Turntable rotation o	f 360 degrees range		
EUT height:	1.5m	1.0m		
Test site:	Full Anechoic Chamber	Open Aera Test Site		
Distance EUT - Antenna:	3m	10m		
Detector:	Peak	QPeak		

Frequency range:	30MHz to 1GHz		
Test:	Pre-Characterization Qualification		
Antenna Polarization:	Horizontal a	and Vertical	
Antenna Height:	Centered on EUT (§6.6.5 ANSI C63-10) Varied from 1m to 4m		
Antenna Type:	Bi-L	Log	
RBW Filter:	120	kHz	
Maximization:	Turntable rotation of	360 degrees range	
EUT height:	1.5m	0.8m	
Test site:	Full Anechoic Chamber	Open Aera Test Site	
Distance EUT - Antenna:	3m 3m		
Detector:	Peak QPeak		

Frequency range:	1GHz to 14GHz		
Test:	Pre-Characterization Qualification		
Antenna Polarization:	Horizontal a	and Vertical	
Antenna Height:	Centered on EUT (§6.6.5 ANSI C63-10)	Centered on EUT (§6.6.5 ANSI C63-10)	
Antenna Type:	Horn		
RBW Filter:	1MHz		
Maximization:	Turntable rotation of	f 360 degrees range	
EUT height:	1.5m 1.5m		
Test site:	Full Anechoic Chamber Full Anechoic Chamber		
Distance EUT - Antenna:	3m 3m		
Detector:	Peak & Average Peak & Average		

Frequency range:	14GHz to 25GHz		
Test:	Pre-Characterization Qualification		
Antenna Polarization:	Horizontal and Vertical		
Antenna Height:	Centered on EUT (§6.6.5 ANSI C63-10) Centered on EUT (§6.6.5 ANSI C63-1		
Antenna Type:	Horn		
RBW Filter:	1MHz		
Maximization:	Turntable rotation of	360 degrees range	
EUT height:	1.5m 1.5m		
Test site:	Full Anechoic Chamber Full Anechoic Chamber		
Distance EUT - Antenna:	1m 1m		
Detector:	Peak & Average Peak & Average		

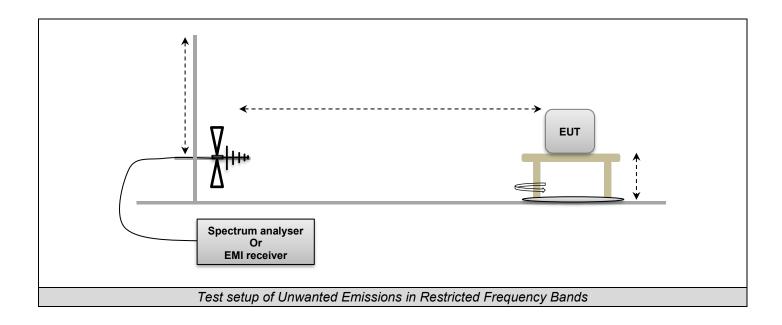


Photo of Unwanted Emissions in Restricted Frequency Bands

7.3. LIMIT

	Measure at 300m		
Frequency range	Level	Detector	
9kHz-490kHz	67.6dBµV/m /F(kHz)	QPeak	
	Measure at 30m		
Frequency range	Level	Detector	
490kHz-1.705MHz	87.6dBµV/m /F(kHz)	QPeak	
1.705MHz-30MHz	29.5dBµV/m	QPeak	
	Measure at 10m		
Frequency range	Level	Detector	
30MHz to 88MHz	29.5dBµV/m	QPeak	
88MHz to 216MHz	33dBμV/m	QPeak	
216MHz to 960MHz	35.5BμV/m	QPeak	
960MHz to 1000MHz	43.5dBµV/m	QPeak	
Al 4000MH=	63.5dBµV/m	Peak	
Above 1000MHz	43.5dBµV/m	Average	
	Measure at 3m		
Frequency range	Level	Detector	
30MHz to 88MHz	40dBμV/m	QPeak	
88MHz to 216MHz	43.5dBµV/m	QPeak	
216MHz to 960MHz	46BµV/m	QPeak	
960MHz to 1000MHz	54dBµV/m	QPeak	
Above 1000MHz	74dBμV/m	Peak	
	54dBµV/m	Average	

7.4. TEST EQUIPMENT LIST

TEST EQUIPMENT USED							
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due		
Amplifier 10MHz - 18GHz	LCIE SUD EST	_	A7102082	05/22	05/24		
Antenna Bi-log	AH System	SAS-521-7	C2040180	05/23	05/25		
Antenna horn 18GHz	EMCO	3115	C2042029	03/22	03/25		
BAT EMC	NEXIO	v3.21.0.32	L1000115	N/A	N/A		
Cable 0.75m	-	18GHz	A5329900	08/22	08/24		
Comb EMR HF	YORK	CGE01	A3169114	N/A	N/A		
CONTROLLER	INNCO	CO3000	D3044034	N/A	N/A		
Filter Matrice	LCIE SUD EST	Combined filters	A7484078	03/23	03/25		
Multimeter - CEM	FLUKE	87	A1240251	10/23	10/25		
Rehausse Table C3	LCIE	_	F2000507	N/A	N/A		
Rehausse Table C3	LCIE	_	F2000511	N/A	N/A		
Semi-Anechoic chamber #3 (BF)	SIEPEL	_	D3044017_BF	04/22	04/25		
Semi-Anechoic chamber #3 (VSWR)	SIEPEL	_	D3044017_VSWR	04/22	04/25		
SMA Cable 18GHz 0.5m	TELEDYNE	18GHz	A5330059	02/23	02/24		
SMA Cable 18GHz 0.5m	TELEDYNE	18GHz	A5330060	02/23	02/24		
SMA Cable 18GHz 0.6m	TELEDYNE	18GHz	A5330055	02/23	02/24		
SMA Cable 18GHz 3.5m	TELEDYNE	18GHz	A5330058	02/23	02/24		
SMA Cable 18GHz 6m	TELEDYNE	18GHz	A5330057	02/23	02/24		
Spectrum analyzer	ROHDE & SCHWARZ	FSU 26	A4060058	09/23	09/25		
Table C3	LCIE	_	F2000461	N/A	N/A		
Thermo-hygrometer (PM1/2/3)	KIMO	HQ 210	B4206022	05/23	05/25		
TILT	INNCO	TILT	D3044033	N/A	N/A		
Turntable chamber (Cage#3)	ETS Lingren	Model 2165	F2000371	N/A	N/A		
Turntable controller (Cage#3)	ETS Lingren	Model 2090	F2000444	N/A	N/A		
Antenna horn 40GHz	SCHWARZBECK	BBHA 9170	C2042028	06/22	06/25		
Cable 1m 40GHz	INTELLICONNECT	C-KPKP-1503-1M	A5329987	04/21	04/24		
Emission Cable 0.5m (Ampl <-> receptor)	INTELLICONNECT	C-KPKP-1503- 500MM	A5329988	04/23	04/26		
Emission Cable 0.6m (Ampl <-> receptor)	TELEDYNE	A90-010-0.6MTR	A5330056	04/23	04/24		
PRE-AMPLIFIER	LCIE SUD EST	PRE-AMPLIFIER (40GHz)	A7080078	09/22	09/24		
SMK 1.2m (Ampl <-> chamber)	HUBER-SUHNER	SUCOFLEX 102	A5330062	04/23	04/26		
SMK 1.2m Emission Cable 0.5m (Ampl <->Chamber)	HUBER-SUHNER	SUCOFLEX 102	A5330063	04/23	04/24		
Spectrum analyzer	ROHDE & SCHWARZ	FSV 40	A4060059	11/21	11/23		

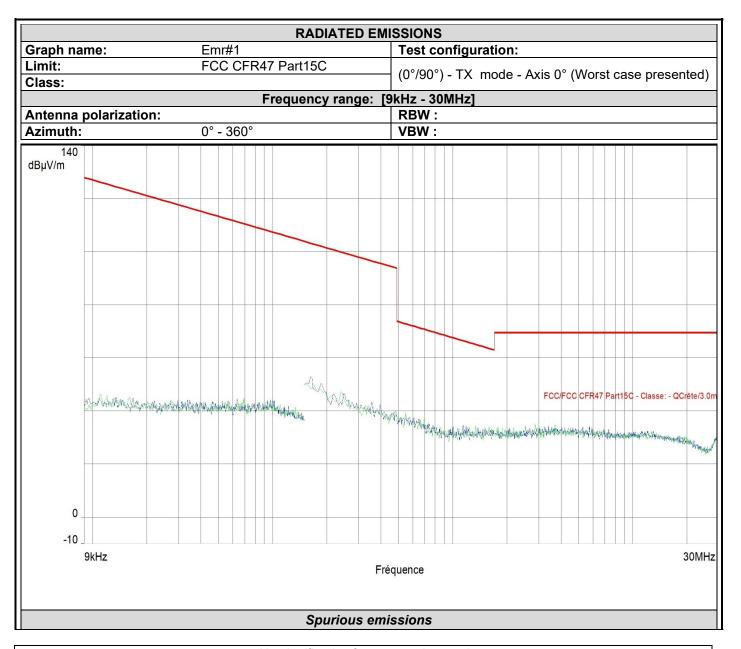
Antenna loop	ELECTRO- METRICS	EM-6879	C2040294	08/22	08/24
Antenna Mat (OATS)	ETS Lingren	2071-2	F2000392	N/A	N/A
Biconic Antenna	EATON	94455-1	C2040234	05/23	05/25
Cable (OATS)	_	1GHz	A5329623	09/23	09/24
Emission Cable	MICRO-COAX	1GHz	A5329656	09/23	09/24
Emission Cable	RADIALEX		A5329061	07/23	07/24
Emission Cable	CABELTEL	6GHz	A5329069	05/22	09/23
OATS	_	_	F2000409	08/23	08/24
Rehausse Table C1/OATS	LCIE	_	F2000512	N/A	N/A
Table C1/OATS	LCIE	_	F2000445	N/A	N/A
Turntable (OATS)	ETS Lingren	Model 2187	F2000403	N/A	N/A
Turntable / Mast controller (OATS)	ETS Lingren	Model 2066	F2000372	N/A	N/A

N/A: Not applicable

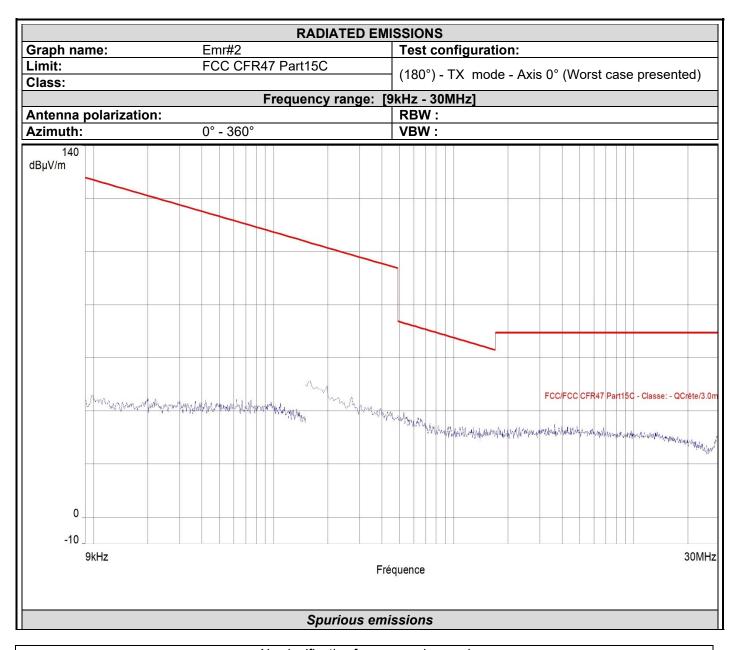
7.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

None

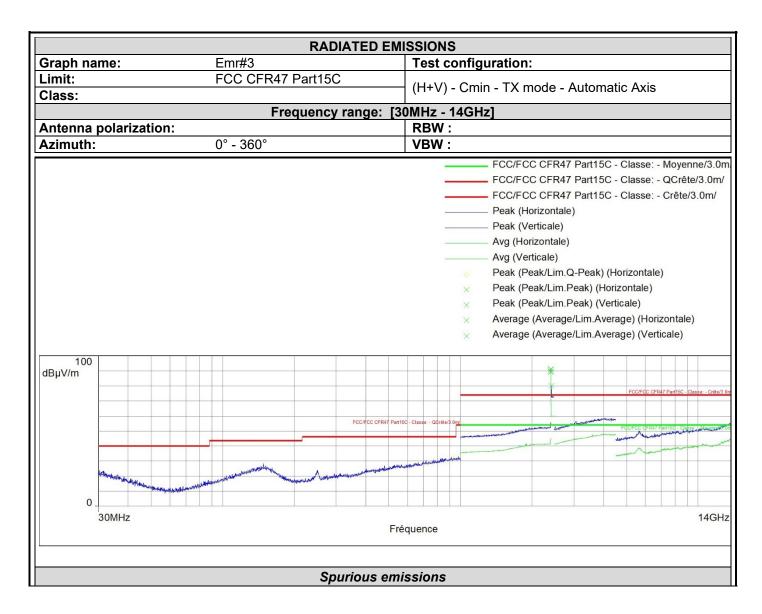
7.6. RESULTS

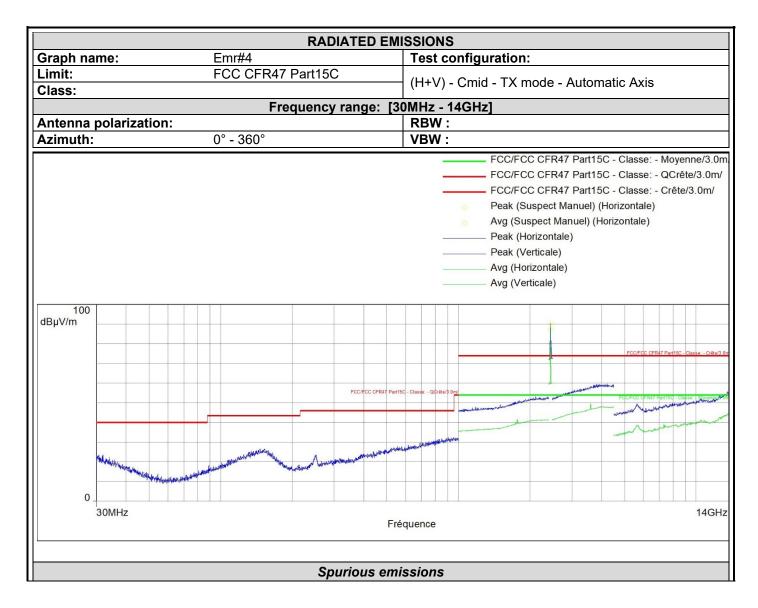

For all following measurements, worst case is presented with different configurations and modulations of EUT.

7.6.1. 9kHz to 26GHz


Graphs – Pre characterization:

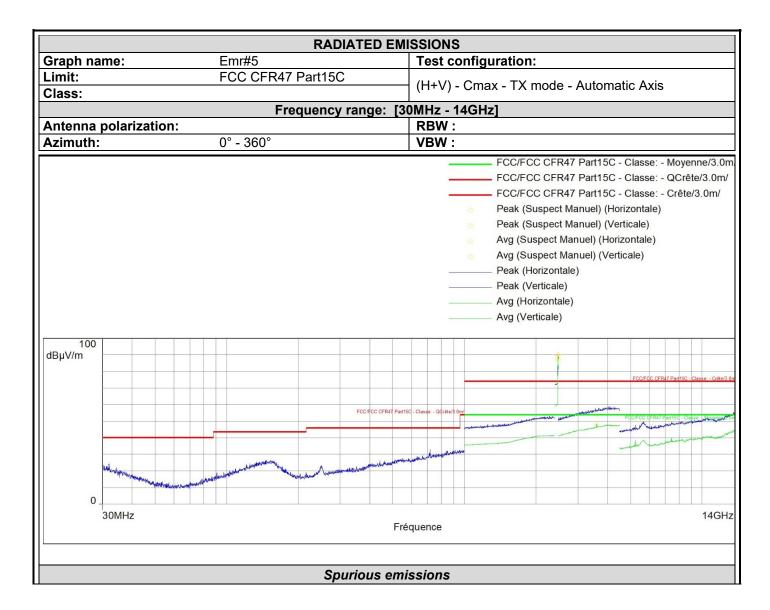
Graph identi	ifier	Polarization	Mode	Channel	EUT position	Comments
Emr#	1	0°/90°	TX	Single	Axis XY/Z	9KHz – 30MHz
Emr#	2	180°	TX	Single	Axis XY/Z	9KHz – 30MHz
Emr#	3	H/V	TX	Cmin	Axis XY/Z	30MHz - 14 GHZ
Emr#	4	H/V	TX	Cmid	Axis XY/Z	30MHz - 14 GHZ
Emr#	5	H/V	TX	Cmax	Axis XY/Z	30MHz - 14 GHZ
Emr#	6	H/V	TX	Cmin	Axis XY/Z	14 GHZ – 26GHz
Emr#	7	H/V	TX	Cmid	Axis XY/Z	14 GHZ – 26GHz
Emr#	8	H/V	TX	Cmax	Axis XY/Z	14 GHZ – 26GHz





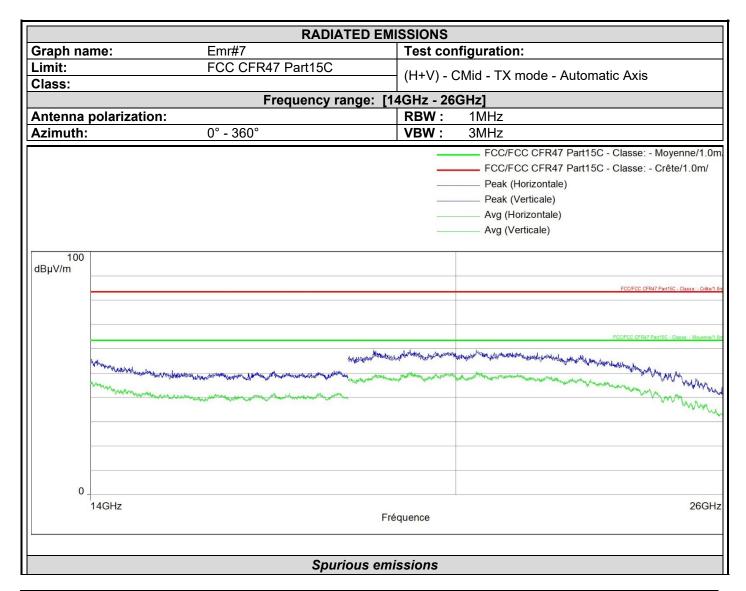
Frequency (MHz)	Average (dBµV/m)	Lim.Average (dBµV/m)	Peak (dBµV/m)	Lim.Peak (dBµV/m)	Polarization
2401.962*	89.5	54.0	91.1	74.0	Horizontal
2402.046*	89.2	54.0	80.0	74.0	Vertical

*Carrier frequency No significant frequency observed

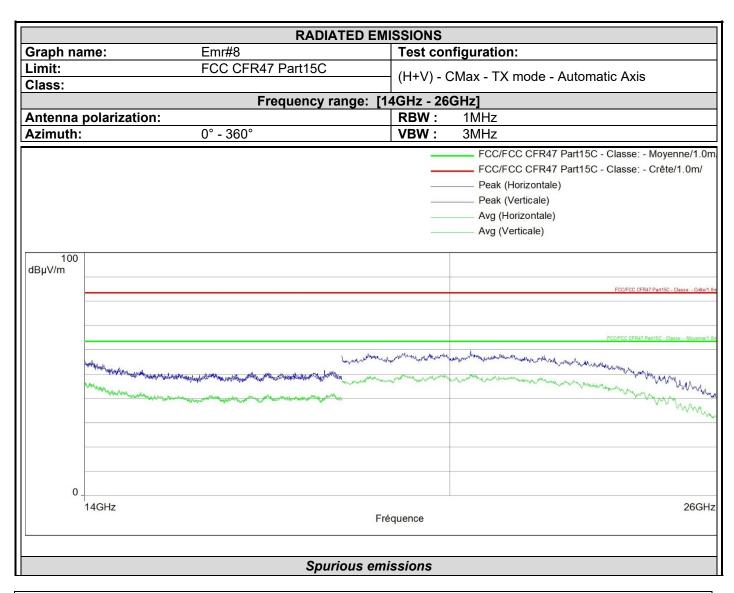


Frequency (MHz)	Peak (dBµV/m)	Lim.Peak (dBµV/m)	Avg (dBµV/m)	Lim.Avg (dBµV/m)	Lim.Q-Peak (dBµV/m)	Polarization	Correction (dB)
2439.746*	90.4	74.0	87.3	54.0		Horizontal	35.1

*Carrier frequency
No significant frequency observed

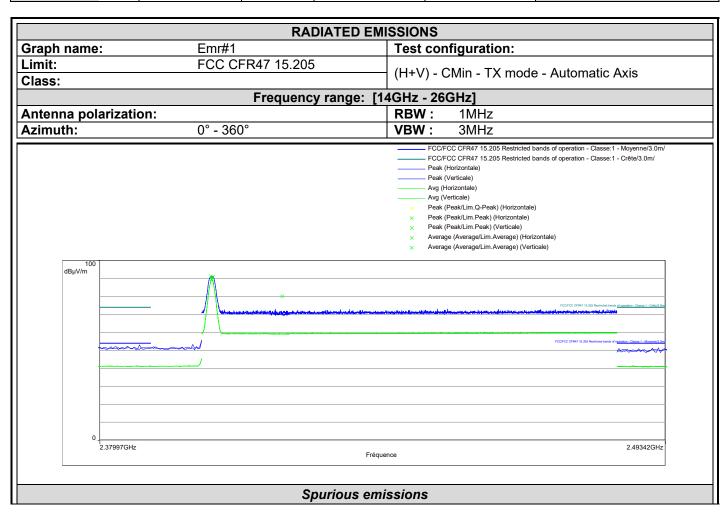

Frequency (MHz)	Peak (dBµV/m)	Lim.Peak (dBµV/m)	Avg (dBμV/m)	Lim.Avg (dBµV/m)	Lim.Q-Peak (dBµV/m)	Polarization	Correction (dB)
2480.285*	90.0	74.0	86.8	54.0		Horizontal	35.1
3599.834	54.3	74.0	47.7	54.0		Vertical	39.5
2480.076*	89.2	74.0	87.8	54.0		Vertical	35.1

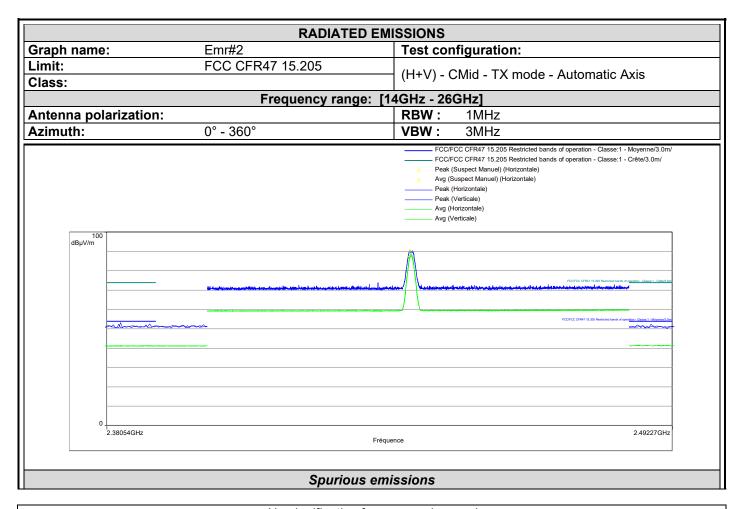
*Carrier frequency No significant frequency observed



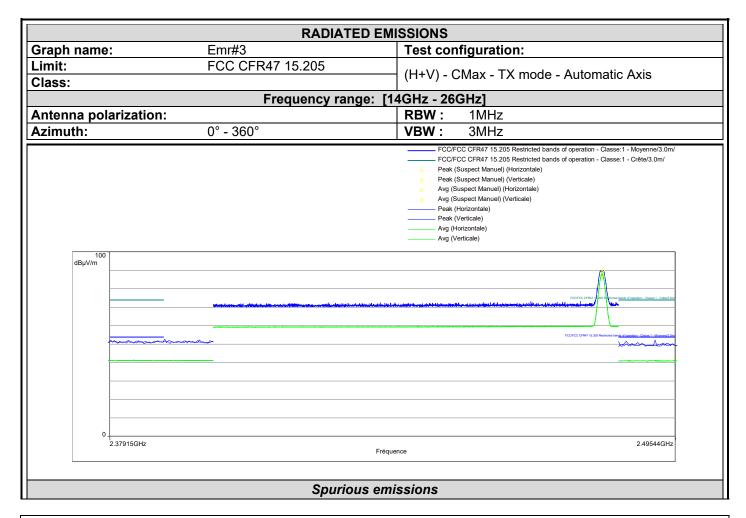
	RADIATED EM	ISSIONS						
Graph na		Test co	nfiguration:					
Limit:	FCC CFR47 Part15C	(ПТ//)	CMin - TX mode - Automatic Axis					
Class:		(n+v)-	Civilii - 1X mode - Automatic Axis					
	Frequency range: [14GHz - 26GHz]							
	polarization:	RBW:	1MHz					
Azimuth:	0° - 360°	VBW:	3MHz					
			FCC/FCC CFR47 Part15C - Classe: - Moyenne/1.0m					
		_	FCC/FCC CFR47 Part15C - Classe: - Crête/1.0m/					
		_	Peak (Horizontale)					
			Peak (Verticale)					
			Avg (Horizontale)					
			Avg (Verticale)					
100 dBµV/m								
			FCC/FCC CFR47 Part15C - Classe: - Crête/1.0m					
			FCC/FCC CFR47 Part15C - Classe: - Moyenne/1.0e					
	And the state of t	Alegan May State Sta	and a super will a me supposed the survey of the super for the super sup					
	And the state of t		and the second					
	The state of the s		and the state of t					
0 _								
	14GHz Fre	équence	26GHz					
	Spurious em	issions						

Final measurement:


Carrier Frequency (MHz)	Mode	Frequency (MHz)	Power	Limit	Unit
3599.800	TX	3599.800	51.38	54	dBm


7.6.2. Restricted Band

Graphs - Pre characterization:


Graph identif	fier	Polarization	Mode	Channel	EUT position	Comments
Emr#	1	H/V	TX	Cmin	Axis XY/Z	-
Emr# 2	2	H/V	TX	Cmid	Axis XY/Z	-
Emr#	3	H/V	TX	Cmax	Axis XY/Z	-

NO SIGNIFICATIVE FREQUENCY OBSERVED

7.7. CONCLUSION

Unwanted emissions in non-restricted bands measurement performed on the sample of the product **TALENTIA SonR CRT-D 3811**, Sn: **Q19JX014**, **Q19D4003**, in configuration and description presented in this test report, show levels **compliant** to the **47 CFR PART 15.247 & RSS 247** limits.

8. UNCERTAINTIES CHART

Kind of measurement	Wide uncertainty laboratory
Occupied Channel Bandwidth	±2.8 %
Humidity	±3.2 %
Power Spectral Density, Conducted	±1.7 dB
Radio frequency	±0.3 ppm
RF power, conducted	±1.2 dB
RF power, radiated (Full anechoic chamber above 1GHz)	±3.7 dB
RF power, radiated (Semi anechoic chamber & open test site)	±5.6 dB
Spurious emission, conducted	±2.3 dB
Spurious emission, radiated (Full anechoic chamber above 1GHz)	±3.8 dB
Spurious emission, radiated (Semi anechoic chamber & open test site)	±5.7 dB
Temperature	±0.75 °C
Time	±2.3 %
Voltage	±1.7 %

The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the standard. The conformity of the sample is directly established by the applicable limit values. This table includes all uncertainties maximum feasible for testing in the laboratory, whether or not made in this report.