

TEST REPORT

Applicant Name: Intellian Technologies, Inc.

Address: 18-7, Jinwisandan-ro, Jinwi-myeon (Chungho-ri),

Pyeongtaek-si, Gyeonggi-do 17709 Korea

Report Number: 2401X39055E-RF

FCC ID: XXZ-BL6066 IC 26236-BL6066

Test Standard (s)

FCC PART 15.407; RSS-247 ISSUE 3, AUGUST 2023

Sample Description

Product Type: CNX-Mobility

Model No.:

Multiple Model(s) No.:

Trade Mark:

Date Received:

Intellian

2024/09/25

Issue Date:

2024/11/07

Test Result: Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By: Approved By:

Wills yu Nang Wang

Wills Yu Nancy Wang
RF Engineer RF Supervisor

Note: The information marked * is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk " ∇ ".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF018 Page 1 of 173 Version 3.0

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	6
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
EQUIPMENT MODIFICATIONS	
EXTERNAL I/O CABLE	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	9
APPLICABLE STANDARDS	10
DFS REQUIREMENT	10
DFS MEASUREMENT SYSTEM	
System Block Diagram	
CONDUCTED METHOD	
RADIATED METHOD	
TEST PROCEDURE	
TEST RESULTS	
DESCRIPTION OF EUT	
RADAR WAVEFORM CALIBRATION TEST DATA	
CHANNEL AVAILABILITY CHECK TIME (CAC)	
Test Procedure Test Data	
CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	
TEST PROCEDURE	
NON-OCCUPANCY PERIOD	
TEST PROCEDURE	
DETECTION BANDWIDTH	
TEST PROCEDURE	
Test Data	
STATISTICAL PERFORMANCE CHECK	
Test Procedure	
Test Data	2.2

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2401X39055E-RF	Original Report	2024/11/07

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

HVIN	BL6066
FVIN	BL6066
Product	CNX-Mobility
Tested Model	BL6066
Multiple Model(s)	N/A
Frequency Range	5GHz Wi-Fi: 5250-5350 MHz; 5470-5725MHz Note: frequency range 5600-5650MHz can't be use in Canada
Mode	802.11a/n20/n40/ac20/ac40/ac80/ac160/ax20/ax40/ax80/ax160
Device Type	Master
Modulation Technique	OFDM, OFDMA
Maximum Conducted Average Ouput Power	5250-5350MHz: 11.62dBm 5470-5725MHz: 17.61dBm
Maximum EIRP	5250-5350MHz: 19.78dBm 5470-5725MHz: 25.77dBm
Antenna Specification [#]	ANT0: 5.0dBi, ANT1: 5.3dBi (It is provided by the applicant)
Voltage Range	DC 56V from adapter
Sample serial number	2S2T-1 (Assigned by BACL, Shenzhen)
Sample/EUT Status	Good condition
Adapter Information	Model: ATM450A2-P560 Input: AC 100-240V, 50-60Hz, 5.3-2.2A Output: DC 56V, 8.05A, 450.8W

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts E of the Federal Communications Commission's rules, and RSS-247 Issue 3, August 2023 of the Innovation, Science and Economic Development Canada...

Report No.: 2401X39055E-RF

The objective is to determine compliance with FCC Part 15, Subpart E, section 15.407 Dynamic Frequency Selection (DFS) for devices operating in the bands 5250-5350 MHz, 5470-5725 MHz.

The objective is to determine compliance with Dynamic Frequency Selection (DFS) of the RSS-247 Issue 3, August 2023 of the Innovation, Science and Economic Development Canada for devices operating in the bands 5250-5350 MHz, 5470-5600MHz and 5650-5725 MHz.

Test Methodology

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02.

Each test item follows test standards and with no deviation.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 715558, the FCC Designation No.: CN5045.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0023.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

Report No.: 2401X39055E-RF

EUT Exercise Software

"QRCT4" exercise software was used.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	PC	Vostro 3690	E569659A9981
DELL	LED display	E2423H	CN-OPTM1T
DELL	Keyboard	KB1421	E134780
DELL	Mouse	WM-100	Unknown
BIG FIELD	AXE5400 Wi-Fi 6E High Gain Wireless USB Adapter	Archer TXE70UH	Unknown
DELL	Notebook	DESKTOP-1630AQ3	9RVYFH2

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielded detachable AC cable	1.2	AC mains	Adapter
Un-shielded detachable DC Cable	0.6	Adapter	EUT
Shielded detachable RJ45 cable	1.0	Notebook	EUT
Un-shielded detachable USB cable	1.0	Notebook	AXE5400 Wi-Fi 6E High Gain Wireless USB Adapter

SUMMARY OF TEST RESULTS

The following result table represents the list of measurements required under the CFR §47 Part 15.407(h), RSS-247 Issue 3 §6.3 and KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02

Report No.: 2401X39055E-RF

Items	Description of Test	Result
Detection Bandwidth	UNII Detection Bandwidth	Compliant
D. C	Initial Channel Availability Check Time (CAC)	Compliant
Performance Requirements Check	Radar Burst at the Beginning of the CAC	Compliant
Cneck	Radar Burst at the End of the CAC	Compliant
	Channel Move Time	Compliant
In-Service Monitoring	Channel Closing Transmission Time	Compliant
	Non-Occupancy Period	Compliant
Radar Detection	Statistical Performance Check	Compliant

TR-EM-RF018 Page 8 of 173 Version 3.0

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Tonscend	RF control Unit	JS0806-2	19D8060154	2024/08/06	2025/08/05
Rohde & Schwarz	Spectrum Analyzer	FSV40	101473	2024/01/16	2025/01/15
Keysight	MXG Vector Signal Generator	N5182B	MY53051503	2024/01/08	2025/01/07
Narda	20dB Attenuator	99899	0107	2024/06/27	2025/06/26
narda	Power divider	SN5	100005	2024/06/27	2025/06/26
Unknown	RF Cable	65475	01670515	2024/06/27	2025/06/26

Report No.: 2401X39055E-RF

TR-EM-RF018 Page 9 of 173 Version 3.0

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

APPLICABLE STANDARDS

DFS Requirement

CFR §47 Part 15.407(h) & RSS-247 Issue 3, August 2023 section 6.3

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Report No.: 2401X39055E-RF

Requirement	Operational Mode		
	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode		
	Master Device or Client with Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and	All BW modes must be	Not required
Statistical Performance Check	tested	
Channel Move Time and Channel	Test using widest BW mode	Test using the widest
Closing Transmission Time	available	BW mode available
		for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar
Detection

Maximum Transmit Power	Value
	(See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and	-62 dBm
power spectral density < 10 dBm/MHz	
EIRP < 200 milliwatt that do not meet the power spectral	-64 dBm
density requirement	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 4: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over
	remaining 10 second
	period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See
	Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 5 - Short Pulse Radar Test Waveforms

Table 5 – Short Pulse Radar Test Waveforms						
Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum	
Type	Width	(µsec)		Percentage of	Number	
	(µsec)			Successful	of	
				Detection	Trials	
0	1	1428	18	See Note 1	See Note	
					1	
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values	Roundup $ \left\{ \frac{1}{360} \right\} \cdot \left\{ \frac{1}{9 \cdot 10^6} \right\} $	60%	30	
2	1-5	selected in Test A 150-230	23-29	60%	30	
3						
	6-10	200-500	16-18	60%	30	
4	11-20	200-500	12-16	60%	30	
Aggregate (Radar Types	80%	120			

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 usec is selected, the number of pulses

would be Roundup
$$\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{3066} \right) \right\} = \text{Roundup} \left\{ 17.2 \right\} = 18.$$

Table 5a - Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

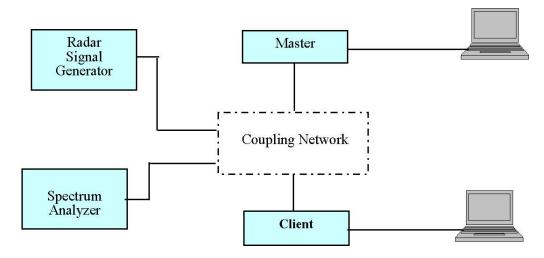
The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful	
			Detection	
1	35	29	82.9%	
2	30	18	60%	
3	30	27	90%	
4	50	44	88%	
Aggregate (82.9% + 60% + 90% + 88%)/4 = 80.2%				

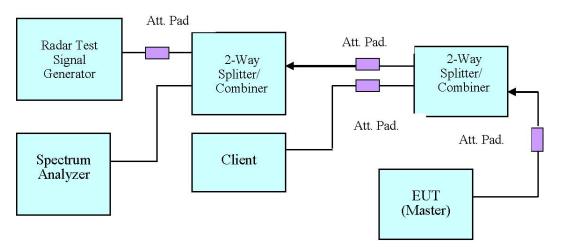
Table 6 - Long Pulse Radar Test Waveform

Report No.: 2401X39055E-RF

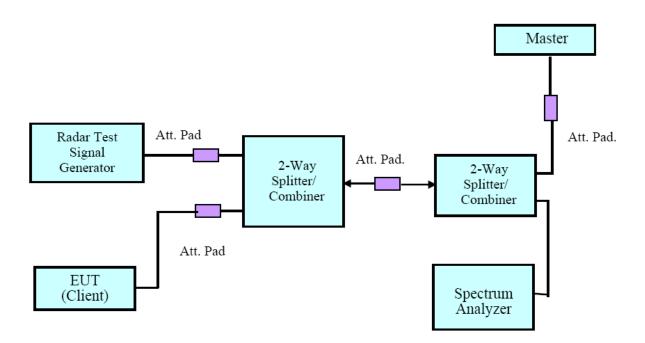
Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum
Type	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of
	(µsec)	(MHz)		per Burst		Successful	Trials
						Detection	
5	50-100	5-20	1000-	1-3	8-20	80%	30
			2000				

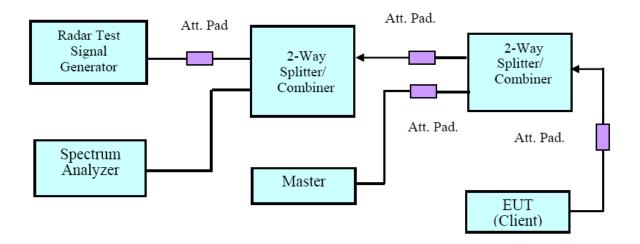

Table 7 - Frequency Hopping Radar Test Waveform

Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
Type	Width	(µsec)	per	Rate	Sequence	Percentage of	Number of
	(µsec)		Hop	(kHz)	Length	Successful	Trials
					(msec)	Detection	
6	1	333	9	0.333	300	70%	30

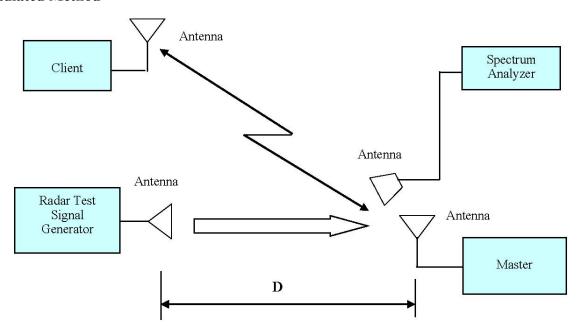

DFS Measurement System

BACL DFS measurement system consists of two subsystems: (1) The radar signal generating subsystem and (2) the traffic monitoring subsystem.


System Block Diagram


Conducted Method

Setup for Master with injection at the Master



Setup for Client with injection at the Master

Setup for Client with injection at the Client

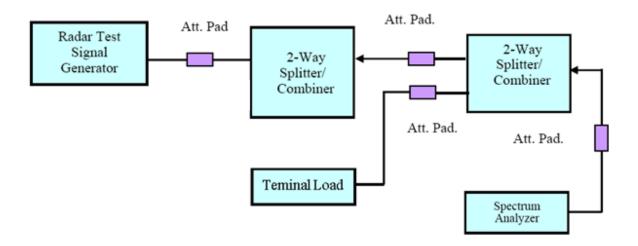
Radiated Method

Test Procedure

A spectrum analyzer is used as a monitor verifies that the EUT status including Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the diction and Channel move. It is also used to monitor EUT transmissions during the Channel Availability Check Time.

TR-EM-RF018 Page 16 of 173 Version 3.0

TEST RESULTS


Description of EUT

For 5250-5350 MHz, the maximum EIRP is less than 200 mW. The calibrated radiated DFS detection threshold level is set to -62 dBm.

Report No.: 2401X39055E-RF

For 5470-5725MHz, the maximum EIRP is great than 200mW. The calibrated radiated DFS detection threshold level is set to -64dBm.

Radar Waveform Calibration

Test Data

Environmental Conditions

Temperature:	25~26 °C
Relative Humidity:	55~60 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li and Tom Tan from 2024-10-01 to 2024-10-19.

EUT operation mode: Transmitting

Test Result: Compliant

CHANNEL AVAILABILITY CHECK TIME (CAC)

Test Procedure

1. Initial Channel Availability Check Time

The U-NII devices will be powered on and be instructed to operate on the appropriate U-NII Channel that must incorporate DFS functions. At the same time the UUT is powered on, the spectrum analyzer will be set to zero span and the spectrum analyzer's sweep will be started at the same time power is applied to the U-NII device.

Report No.: 2401X39055E-RF

The UUT should not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle.

Confirm that the UUT initiates transmission on the channel

2. Radar Burst at the Beginning of the Channel Availability Check Time

A single Burst of one of the Short Pulse Radar Types 0-4 will commence within a 6 second window at the beginning of CAC time. Visual indication or measured results on the UUT of successful detection of the radar Burst will be recorded and reported.

3. Radar Burst at the End of the Channel Availability Check Time

A single Burst of one of the Short Pulse Radar Types 0-4 will commence within a 6 second window at the end of CAC time. Visual indication or measured results on the UUT of successful detection of the radar Burst will be recorded and reported.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2024-10-01.

EUT operation mode: Transmitting

Test Result: Compliant

CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

Test Procedure

Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. repeat using a long pulse radar type5 waveform.

Report No.: 2401X39055E-RF

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = N*Dwell Time

N is the number of spectrum analyzer bins showing a device transmission Dwell Time is the dwell time per bin (i.e. Dwell Time = S/B, S is the sweep time and B is the number of bin, i.e. 8192)

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2024-10-01.

EUT operation mode: Transmitting

Test Result: Compliant

NON-OCCUPANCY PERIOD

Test Procedure

Measure the EUT for more than 30 minutes following the channel close/move time to very that the EUT does not resume any transmissions on this channel. Provide one plot to demonstrate no transmission on the channel for the non-occupancy period (30 minutes observation time)

Report No.: 2401X39055E-RF

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li on 2024-10-01

EUT operation mode: Transmitting

Test Result: Compliant

DETECTION BANDWIDTH

Test Procedure

Performed with Type 0 radar waveforms

Starting at the center frequency of the UUT operating Channel, increase the radar frequency in 5 MHz steps, repeating the above test sequence, until the detection rate falls below the *U-NII Detection Bandwidth* criterion specified in Table 4. Repeat this measurement in 1MHz steps at frequencies 5 MHz below where the detection rate begins to fall. Record the highest frequency (denote as F_H) at which detection is greater than or equal to the *U-NII Detection Bandwidth* criterion. Recording the detection rate at frequencies above F_H is not required to demonstrate compliance.

Report No.: 2401X39055E-RF

Starting at the center frequency of the UUT operating Channel, decrease the radar frequency in 5 MHz steps, repeating the above test sequence, until the detection rate falls below the *U-NII Detection Bandwidth* criterion specified in Table 4. Repeat this measurement in 1MHz steps at frequencies 5 MHz above where the detection rate begins to fall. Record the lowest frequency (denote as F_L) at which detection is greater than or equal to the *U-NII Detection Bandwidth* criterion. Recording the detection rate at frequencies below F_L is not required to demonstrate compliance

The *U-NII Detection Bandwidth* is calculated as follows: *U-NII Detection Bandwidth* = F_H – F_L

The *U-NII Detection Bandwidth* must meet the *U-NII Detection Bandwidth* criterion specified in Table 4. Otherwise, the UUT does not comply with DFS requirements. This is essential to ensure that the UUT is capable of detecting *Radar Waveforms* across the same frequency spectrum that contains the significant energy from the system. In the case that the *U-NII Detection Bandwidth* is greater than or equal to the 99 percent power bandwidth for the measured F_H and F_L, the test can be truncated and the *U-NII Detection Bandwidth* can be reported as the measured F_H and F_L.

Test Data

Environmental Conditions

Temperature:	25~26 °C
Relative Humidity:	55~60 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li and Tom Tan from 2024-10-01 to 2024-10-19.

EUT operation mode: Transmitting

Test Result: Compliant

STATISTICAL PERFORMANCE CHECK

Test Procedure

The steps below define the procedure to determine the minimum percentage of successful detection requirements found in **Tables 5-7** when a radar burst with a level equal to the *DFS Detection Threshold* + 1dB is generated on the *Operating Channel* of the U-NII device (*In- Service Monitoring*).

a) One frequency will be chosen from the *Operating Channels* of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands.

Report No.: 2401X39055E-RF

- b) In case the UUT is a U-NII device operating as a *Client Device* (with or without Radar Detection), a U-NII device operating as a *Master Device* will be used to allow the UUT (Client device) to *Associate* with the *Master Device*. In case the UUT is a *Master Device*, a U-NII device operating as a *Client Device* will be used and it is assumed that the Client will *Associate* with the UUT (Master). In both cases for conducted tests, the *Radar Waveform* generator will be connected to the *Master Device*. For radiated tests, the emissions of the *Radar Waveform* generator will be directed towards the *Master Device*. If the *Master Device* has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing.
- c) Stream the channel loading test file from the *Master Device* to the Client Device on the test *Channel* for the entire period of the test.
- d) At time To the *Radar Waveform* generator sends the individual waveform for each of the Radar Types 1-6 in **Tables 5-7**, at levels defined in **Table 3**, on the *Operating Channel*. An additional 1 dB is added to the radar test signal to ensure it is at or above the *DFS Detection Threshold*, accounting for equipment variations/errors.
- e) Observe the transmissions of the UUT at the end of the Burst on the *Operating Channel* for duration greater than 10 seconds for Radar Type 0 to ensure detection occurs.
- f) Observe the transmissions of the UUT at the end of the Burst on the *Operating Channel* for duration greater than 22 seconds for Long Pulse Radar Type 5 to ensure detection occurs.
- g) In case the UUT is a U-NII device operating as a *Client Device* with *In-Service Monitoring*, perform steps a) to f).

Test Data

Environmental Conditions

Temperature:	25~26 °C
Relative Humidity:	55~60 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li and Tom Tan from 2024-10-01 to 2024-10-19.

EUT operation mode: Transmitting

Test Result: Compliant

BRIDGE AND/OR MESH MODE

Test Procedure

Networks Access Points with Bridge and/or MESH modes of operation are permitted to operate in the DFS bands but must employ a DFS function. The functionality of the Bridge mode as specified in ?15.403(a) must be validated in the DFS test report. Devices operating as relays where they act as master and client must also employ DFS function for the master. The method used to validate the functionality must be documented and validation data must be documented. Bridge mode can be validated by performing a test statistical performance check (Section 7.8.4) on any one of the radar types. This is an abbreviated test to verify DFS functionality. MESH mode operational methodology must be submitted in the application for certification for evaluation by the FCC.

Report No.: 2401X39055E-RF

Test Data

Environmental Conditions

Temperature:	25~26 °C
Relative Humidity:	55~60 %
ATM Pressure:	101 kPa

The testing was performed by Lee Li and Tom Tan from 2024-10-01 to 2024-10-19.

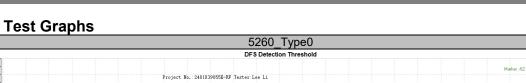
EUT operation mode: Transmitting

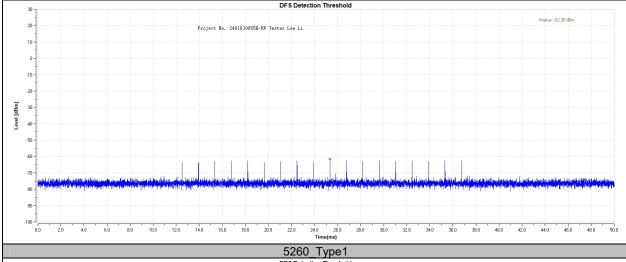
Test Result: Compliant

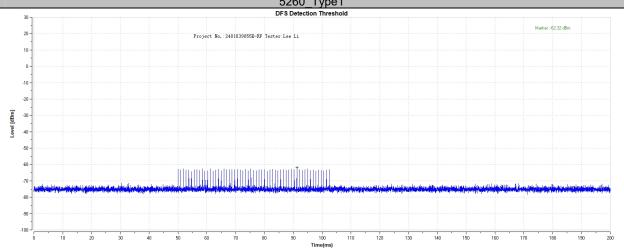
Bay Area Compliance Laboratories Corp. (Shenzhen)	Report No.: 2401X39055E-RF			
EUT PHOTOGRAPHS				
Please refer to the attachment 2405X57681E-RF External photo and 2405X57681E-RF Internal photo.				

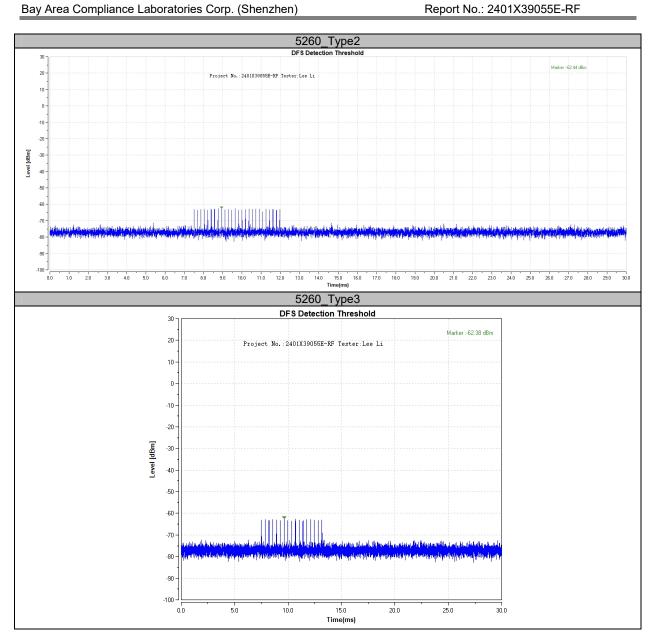
Bay Area Compliance Laboratories Corp. (Shenzhen)	Report No.: 2401X39055E-RF
TEST SETUP PHOTOGRAPHS	
	uh .a.
Please refer to the attachment 2401X39055E-RF Test Setup	pnoto.

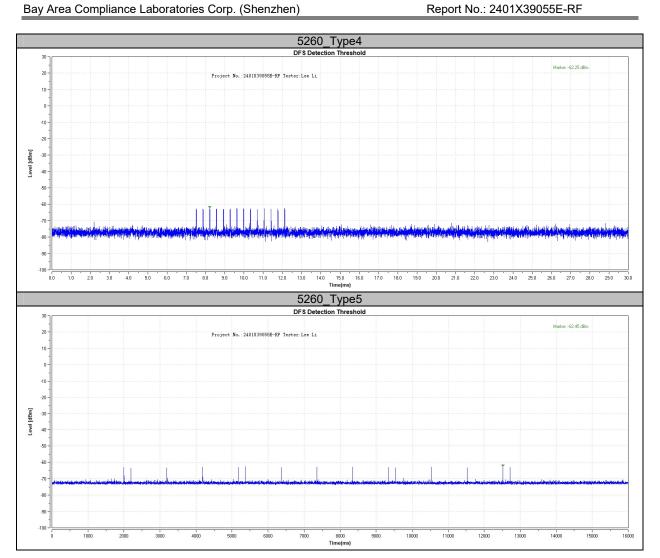
APPENDIX


Appendix A: DFS Detection Thresholds


Test Result


Frequency[MHz]	Radar Type	Result[dBm]	Limit[dBm]	Verdict
	Type0	-62.30	-62.00	PASS
	Type1	-62.32	-62.00	PASS
	Type2	-62.44	-62.00	PASS
5260	Type3	-62.38	-62.00	PASS
	Type4	-62.25	-62.00	PASS
	Type5	-62.45	-62.00	PASS
	Type6	-62.20	-62.00	PASS
	Type0	-64.34	-64.00	PASS
	Type1	-64.35	-64.00	PASS
	Type2	-64.26	-64.00	PASS
5500	Type3	-64.26	-64.00	PASS
	Type4	-64.10	-64.00	PASS
_	Type5	-64.27	-64.00	PASS
	Type6	-64.17	-64.00	PASS
<u> </u>	Type0	-62.11	-62.00	PASS
<u> </u>	Type1	-62.46	-62.00	PASS
_	Type2	-62.01	-62.00	PASS
5270	Type3	-62.36	-62.00	PASS
	Type4	-62.30	-62.00	PASS
	Type5	-62.27	-62.00	PASS
	Type6	-62.48	-62.00	PASS
	Type0	-64.00	-64.00	PASS
	Type1	-64.13	-64.00	PASS
	Type2	-64.25	-64.00	PASS
5510	Type3	-64.36	-64.00	PASS
	Type4	-64.25	-64.00	PASS
	Type5	-64.28	-64.00	PASS
	Type6	-64.01	-64.00	PASS
	Type0	-62.03	-62.00	PASS
	Type1	-62.23	-62.00	PASS
	Type2	-62.12	-62.00	PASS
5290	Type3	-62.17	-62.00	PASS
	Type4	-62.49	-62.00	PASS
	Type5	-62.28	-62.00	PASS
	Type6	-62.35	-62.00	PASS
	Type0	-64.37	-64.00	PASS
	Type1	-64.37	-64.00	PASS
	Type2	-64.38	-64.00	PASS
5530	Type3	-64.07	-64.00	PASS
	Type4	-64.32	-64.00	PASS
	Type5	-64.30	-64.00	PASS
	Type6	-64.26	-64.00	PASS
	Type0	-62.10	-62.00	PASS
	Type1	-62.20	-62.00	PASS
	Type2	-62.19	-62.00	PASS
5250	Type3	-62.32	-62.00	PASS
0200	Type4	-62.29	-62.00	PASS
	Type5	-62.11	-62.00	PASS
	Type6	-62.23	-62.00	PASS
5570	Type0	-64.20	-64.00	PASS


	Bay Area Compliance Laboratories Corp. (Shenzhen	Report No.: 2401X39055E-RF
_		


Type1	-64.23	-64.00	PASS
Type2	-64.05	-64.00	PASS
Type3	-64.37	-64.00	PASS
Type4	-64.31	-64.00	PASS
Type5	-64.08	-64.00	PASS
Type6	-64.26	-64.00	PASS

