

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 1 of 57

FCC Test Report

Applicant : Iton Technology Corp.

7 Floor East, Building C, Shenzhen International

Address : Innovation Center, No.1006 Shennan Rd. Futian

Dist, Shenzhen, China

Product Name : WIFI+BT Module

Report Date : Apr. 22, 2024

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 2 of 57

Contents

General Information 1.1. Client Information	Wpo.	L. Hotek		O.c.	Vur Viek		6
1.1. Client Information	Vupose.	VUL	الاها	wotek	Aupo		
1.2. Description of Device (EUT)	ol [©]				<i></i> /0.0	br.	6
1.3. Auxiliary Equipment Used Durir	ng Test		1001EK	Anbo	·········	Yar	7900
1.4. Operation channel list	ek hub),		برويي	Ser Vi	<u>.</u>	8
1.5. Description of Test Modes	- No.	otek	-F0pg				8
1.6. Measurement Uncertainty	9	-16k	ote!	p.S			1(
1.7. Test Summary 1.8. Description of Test Facility				rek.	Aupole		T(1.
1.6. Description of Test Facility	Ali	Vupolet.	160	. e/Ł	bojek	AUPO!	1 14
1.10. Test Equipment List	Anb		e _K	Upol	K4.	/s	12
1.8. Description of Test Facility 1.9. Disclaimer	Vupo _{ter}	AUF	*ek	Spotek	Aupo,	h.	.45
2. Conducted Emission at AC power line	/k ~/00	ter bu	Ao,,		sk on	00/01	VU CL
2.1. EUT Operation	V	*6/	botek	bo	-7/- 		14
2.2. Test Deta		,0.?`	br. Otek	100	301°	40.4	14
2.3. Test Data	ek	bolek			notek	Anbore	10
3. Duty Cycle	^K Up _o ,		<u>0</u> 4/20		Ani	ote	17
3.1. EUT Operation	Napoter.	VU _D	, ,y	bolek	Aupo,	b	e17
3.2. Test Setup		·····	Ν,			Anb	17
3.3. Test Data	- Anu		ek	Pupo,	bv.		74 ₀₀
3.1. EUT Operation	k Aupo	Δ11.	,ke ^V	nobote	V. VUI		18
4.1. EUT Operation							10
4.2 Test Setup	,	otek	AUPO IS	100	-el-	abořek	19
4.3. Test Data	upo _{fer}	Ann	امريرا	e _K	Wpo,	, tel	19
4.3. Test Data							20
5.1. EUT Operation 5.2. Test Setup	VI.	anbote	V.U	0	hotel	k Anbe),\
5.1. EUT Operation	<i>Vil</i> po		ořek	Aupore.	202	-ek	Z
5.2. Test Detap	· Noboli	312		hote	Anb	o/	Z 2'
5.2. Test Setup 5.3. Test Data 6. Emission bandwidth and occupied bar 6.1. EUT Operation 6.2. Test Setup	-V- 111 V	otek	upor	View	rek .	nbotel.	PUL
6. Emission bandwidth and occupied bar	nawiath	-e/-	olok.	····················////	?:	, otek	22
6.1. EUT Operation	hotek	hopo,,,	b11.	.	400 ton	Anb	23
6.2. Test Setup	-*6K		<u>kabu</u>		Notok.	Aupore	24
6.3. Test Data					٧٥		
7. Channel Move Time, Channel Closing	Transmiss	ion Time	. e.k	botek		Ant	
7.1. EUT Operation		k Aup	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7		yer Ar	26
7.2. Test Setup	VUr.	V		Aupo.		yek	26
7.3. Test Data		O. b	,		Ye.	VD.	26
0 DEC Detection Three-balds			. 030	VUP.			
o. Des defection internoids		abořek	Anbore	V	otek	Anbotek	27
8.1 FUT Operation	100 feyr	,obotek ,botek	Anbore Anbore	k Ar	(ao _{tek}	Anbotek	2
7.2. Test Setup	2000 and 20	pupotek potek	Anbore Anbore	oteje Pur	(potek Anbatek	Anbotek Anbotek	27
8.2. Test Setup	VUP Jek	abotek		o.	hotek.	Anbot	28 28
8.2. Test Setup	VUP Jek	abotek		o.	hotek.	Anbot	28 28
8.1. EUT Operation	VUP Jek	abotek		o.	hotek.	Anbot	28 28

Report No.: 18220WC40015304 FCC ID:	VYVAW65P1-50B1	Page 3 of 57
9.2. Test Setup	k Anbote And	32
9.3. Test Data		33
10. Undesirable emission limits (below 1GHz)	ahotek Anbo	43
A. VIII OK	iupo, ek kotek tupe	45
10.1. EUT Operation	Anbore An	
10.3. Test Data	"otek Pupou b	47
11. Undesirable emission limits (above 1GHz)	Ans stek anbotek	49
11.1 FUT Operation	. And tek abotek	
11.2. Test Setup	stek Pupo, w	52
11.3. Test Data	ek botek Anbo	
APPENDIX I TEST SETUP PHOTOGRAPH	nbor k kotek Anbo	57
APPENDIX II EXTERNAL PHOTOGRAPH	"Upote, Vine	
APPENDIX III INTERNAL PHOTOGRAPH	riek subore Ar	57

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 4 of 57

TEST REPORT

Applicant : Iton Technology Corp.

Manufacturer : Iton Technology Corp.

Product Name : WIFI+BT Module

Test Model No. : AW65P1-50B1

Reference Model No. : AW65P1-50B2, AW65P1-50B3

Trade Mark : N/A

Rating(s) : Input: DC 3.3V

47 CFR Part 15E

ANSI C63.10-2020

Test Standard(s) : KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

KDB 662911 D01 Multiple Transmitter Output v02r01

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Jan. 23, 2024
Date of Test:	Jan. 23, 2024 to Mar. 29, 2024
	Ella Liang
Prepared By:	sek abotek Anbo. A. Matek Ant
	(Ella Liang)
	Idward pan
Approved & Authorized Signer:	abotek Anbot
	(Edward Pan)

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 5 of 57

Revision History

-	Report Version	Description	Issued Date		
	Anbote R00 potek An	Original Issue.	Apr. 22, 2024		
V	arbotek Anbotek	Aupoter Aupotek Aupotek	k Anbotek Anbotek Ar		
0	stek Anbotek Anboten	Anbotek Anbotek Anbot	tek anbotek Anboter		

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 6 of 57

1. General Information

1.1. Client Information

Applicant	:	Iton Technology Corp.
Address	:	7 Floor East, Building C, Shenzhen International Innovation Center, No.1006 Shennan Rd. Futian Dist, Shenzhen, China
Manufacturer	:	Iton Technology Corp.
Address	:	7 Floor East, Building C, Shenzhen International Innovation Center, No.1006 Shennan Rd. Futian Dist, Shenzhen, China
Factory	:	Iton Technology Corp.
Address		7 Floor East, Building C, Shenzhen International Innovation Center, No.1006 Shennan Rd. Futian Dist, Shenzhen, China

1.2. Description of Device (EUT)

1.2. Description of	שטפ	Augo, W. Stek Supote, Wung
Product Name	:	WIFI+BT Module
Test Model No.	:	AW65P1-50B1
Reference Model No.	:	AW65P1-50B2, AW65P1-50B3 (Note: All samples are the same except the model number and module naming, so we prepare "AW65P1-50B1" for test only.)
Trade Mark	:	N/A Anbore Anborek Anborek Anborek Anborek Anborek Anborek
Test Power Supply	:	DC 3.3V via Debug board
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A Anbotek Anbotek Anbotek Anbotek
RF Specification		
Operation Frequency	:	802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 2A: 5260MHz to 5320MHz; U-NII Band 2C: 5500MHz to 5700MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(VHT40)/ax(HEW40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 2A: 5270MHz to 5310MHz; U-NII Band 2C: 5510MHz to 5670MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(VHT80)/ax(HEW80): U-NII Band 1: 5210MHz; U-NII Band 2A: 5290MHz; U-NII Band 2A: 5290MHz; U-NII Band 3: 5775MHz
Number of Channel	:	802.11a/n(HT20)/ac(HT20)/ax(HEW20): U-NII Band 1: 4; U-NII Band 2A: 4; U-NII Band 2C: 11;

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 7 of 57

		U-NII Band 3: 5;
		upoter And A hotek Anbort Air tek upoter
		802.11n(HT40)/ac(HT40)/ax(HEW40):
		U-NII Band 1: 2; U-NII Band 2A: 2:
		1 100
		U-NII Band 2C: 5;
		U-NII Band 3: 2;
		802.11ac(HT80)/ax(HEW80):
		U-NII Band 1: 1;
		U-NII Band 2A: 1;
		U-NII Band 2C: 2;
		U-NII Band 3: 1
		802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM);
		802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);
Modulation Type	:	802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);
		802.11ax: OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM,
		1024QAM)
Antenna Type		ANT1: Dipole Antenna
7 titterina 1 ype	•	ANT2: Dipole Antenna
		WiFi 5.2G ANT 1: 1.87 dBi
		WiFi 5.2G ANT 2: 1.87 dBi
		WiFi 5.3G ANT 1: 2.11 dBi
Antenna Gain(Peak)	:	WiFi 5.3G ANT 1: 2:31 dBi WiFi 5.6G ANT 1: 2:93 dBi
,		1711 1 0.00 0 MITT 11 2.00 0 MIT
		WiFi 5.6G ANT 2: 2.93 dBi WiFi 5.8G ANT 1: 3.16 dBi
		WiFi 5.8G ANT 1: 3.16 dBi
		WiFi 5.2G: 4.88 dBi
Directional antenna		WiFi 5.3G: 5.12 dBi
gain	:	WiFi 5.6G: 5.94 dBi
gani		WiFi 5.8G: 6.17 dBi
Domonie	78×	Washington and the same of the

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Only 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80), 802.11ax(HEW20), 802.11ax(HEW40), 802.11ax(HEW80) support MIMO.

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
Adapter	SHENZHEN TOPOW ELECTRONICS CO., LTD	TA259-18120-US	ek Wyokek
ROG Rapture Quad- band Gaming Router	ASUSTeK Computer Inc	GT-AXE16000 (FCC-ID: MSQ-RTAX5D00; IC: 3568A-RTAX5D00)	Anbotek / Anbotek

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 8 of 57

1.4. Operation channel list

Operation Band: U-NII Band 1

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel Channel	Frequency (MHz)	Channel	Frequency (MHz)
36,50° 10° 10° 10° 10° 10° 10° 10° 10° 10° 1	5180	Anbotek 38 Anbot	5190	42	5210
botek 40 Anbotek	5200	10 46 An	5230	sk Vpolen	Aups Viek
botek44 Anbr	5220	an Brek	Anbore	potek / Anboten	And
48	5240	ek Inbotek	Vupor V	shotek / Anbot	Approview

Operation Band: U-NII Band 2A

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	54	5270	tek 58 mbote	5290
56	5280	62	5310	and and	otek \Aupote
60 Mer	5300	or I hote	K Moores	Aug	hotek / Anbor
64	5320	Auport Am	otek / Aupoter	And	Anbotek/ Anb

Operation Band: U-NII Band 2C

Operation band.	O-IVII Dana 20	VUD.	d. Yo.	O. D.	40,0
Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	102	5510	106	5530 And
104 nbo	5520	Anbor 110	5550 Anbore	122	5610
inbotek 108 Anbot	5540	118	5590	yek Aupo	Borek
112 And	5560	126	5630	hotek / Anbo	ek Inbotek
116	5580	134	5670	Anbotek / Anbo	otek / Anbotek
120	5600	upotek / Aupote	ek potek	Aupoten An	po grek / Aupo
124 O	5620	Anbotek / Anbo	ek abotek	Autopton	And world
botek 128 Moote	5640	Anbotek Ar	both / All Sho	ick Yupoles	Andhorek
132 Anb	5660	Anyorek	Aupo.	botek / Anbote	K WOLEK
136	5680	lek Anbotek	Anbo Liek	upotek / Aubor	An botek
140	5700	botek / Anbotek	Aupo	Anboret An	DOLD Y WILL STORY
-	- 07°	1.	70	T	2/1

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 9 of 57

Operation Band: U-NII Band 3

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	botek 151 Anbotes	5755	155	5775
153°°°°	5765	159 Anbo	5795	Aupligh	Anboatel
botek 157 Anbote	5785	anbotak An	port / All	sk Wpotek	Anbo
Spote 161 And	5805	Anbbrek.	Anboro An	potek / Anboten	And Josek
165	5825	ek Inbotek	Vupo, 1	botek / Anbote	Aug Stek

1.5. Description of Test Modes

Pretest Modes	Descriptions
nbotek Anbote Anbotel	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case.
Anbotek TM2 Anbotek Anbotek Anbotek	Only the data of worst case is recorded in the report. Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
botek Anbotek Anbotek TM3 k Anbotek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek Anbotek Ar	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM5 Anbotek	Keep the EUT works in normal operating mode and connect to companion device

Hotline

www.anbotek.com.cn

400-003-0500

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 10 of 57

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Occupied Bandwidth	925Hz
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Conducted Emission at AC power line	Mode1,2,3,4	iek P Anbi
Duty Cycle	Mode1,2,3,4	boiek P A
Maximum conducted output power	Mode1,2,3,4	anbot P
Power spectral density	Mode1,2,3,4	An Prek
Emission bandwidth and occupied bandwidth	Mode1,2,3,4	Photek
Channel Move Time, Channel Closing Transmission Time	Mode5	ek P Anbo
DFS Detection Thresholds	Mode5	ootek P Ar
Band edge emissions (Radiated)	Mode1,2,3,4	anboteP
Undesirable emission limits (below 1GHz)	Mode1,2,3,4	Np Biok
Undesirable emission limits (above 1GHz)	Mode1,2,3,4	Photek
Note: P: Pass N: N/A not applicable	tek Aupotek Aupot	ak Anboi

N: N/A, not applicable

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 11 of 57

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 12 of 57

1.10. Test Equipment List

Cond	ucted Emission at A	C power line	Aupo	k hotel	Anbore	Andrek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
. 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
otek 2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
30t	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	Alooiek	Anborek
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11

Duty Cycle

Maximum conducted output power

Power spectral density

Emission bandwidth and occupied bandwidth

Channel Move Time, Channel Closing Transmission Time

DFS Detection Thresholds

Item	Equipment	Manufacturer	Manufacturer Model No. Serial		Last Cal.	Cal.Due Date	
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	ootek N/A	2023-10-16	2024-10-15	
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19	
An3ote	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25	
4 .nb	MYA Spectrum		N9020A	MY505318 23	2023-10-12	2024-10-11	
5	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11	
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03	

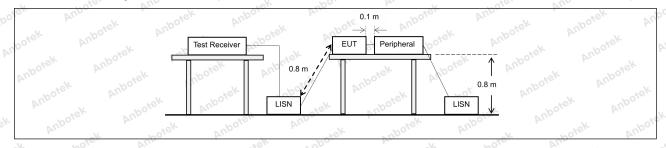
Hotline N

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 13 of 57

	edge emissions (Ra sirable emission limi		Aupote _k	Anboiek	Vupotek Vupotek	Anboyek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 00	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
nbole 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Ans	Anboiek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
*e ¹ 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Unde	sirable emission limit	ts (below 1GHz)				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
34	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4ntel	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5,00	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A.cook	y Aupon	k Anbotek

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 14 of 57

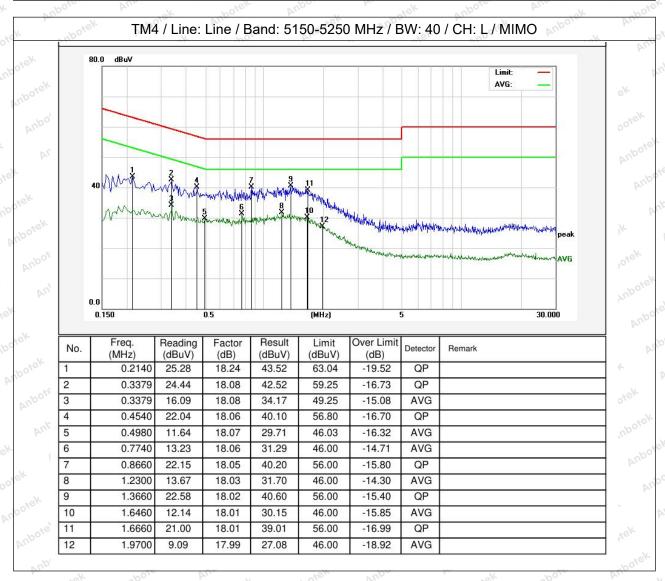

2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)	ek hotek Ant	Jose Aug Otek
Yun Volek	Frequency of emission (MHz)	Conducted limit (dBµV) bojek Anbo
	And Andrew And	Quasi-peak	Average
K- botek Anbo	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5 And	56	46 20010
	5-30 And And	60 Potek Wupo,	50
otek Anbotek	*Decreases with the logarithm of the	ne frequency.	V Vupo
Test Method:	ANSI C63.10-2020 section 6.2	Aug.	otek Anbote

2.1. EUT Operation

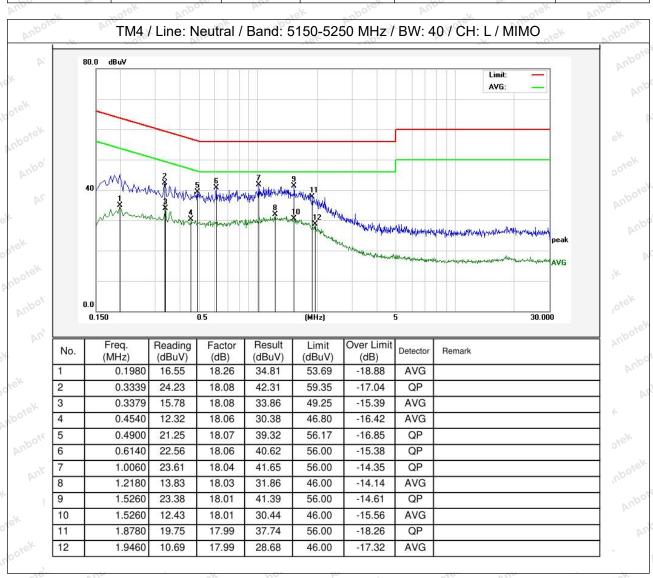
Operating Envi	ronment: And
	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and
	found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
	2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has
Test mode:	been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anguo:	3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and
	data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
otek Ant	4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and
	data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

2.2. Test Setup



Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 15 of 57

2.3. Test Data


Temperature:	22 6°C	H Pool	umidity:	52 %	n'el	Atmospheric Pressure:	101 kPa
remperature.	22.0	VUr.	unitidity.	JZ 70	000.	Authosphichic i ressure.	TOTKLA

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 16 of 57

Temperature: 22.6 °C Humidity: 52 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

Report No.: 18220WC40015304

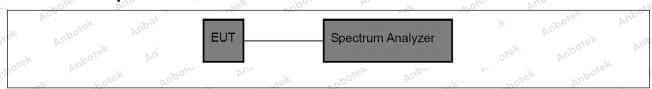
3. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Whotek Whotek	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value.
Procedure:	iii) Set VBW >= RBW. iv) Set detector = peak.
Hek Anbotek Anb	v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

3.1. EUT Operation

Operating Envi	ronment:							
tek Anbotek	transmitti found the	a mode: Kee ng mode with data rate @ in the report.	802.11a mo 6Mbps is th	odulation	type. A	ll data rates	s has been	tested and

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of


worst case is recorded in the report. Test mode:

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and

data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3.2. Test Setup

3.3. Test Data

Temperature: 25.3 °C Humidity: 49 % Atmospheric Pressure: 101 kPa

Please Refer to Appendix for Details.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 18 of 57

4. Maximum conducted output power

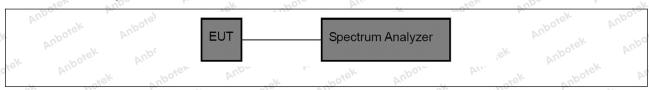
And V Colek	LANCED D. LAT. 1076 (A)(1) And
Took Dequirement	47 CFR Part 15.407(a)(1)(iv)
Test Requirement:	47 CFR Part 15.407(a)(2)
Vupo. N.	47 CFR Part 15.407(a)(3)(i)
k Anbotek Anbo	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW
otek Anbore An	provided the maximum antenna gain does not exceed 6 dBi.
obotek botek	If transmitting antennas of directional gain greater than 6 dBi are used, the
Inpose Aur Tek	maximum conducted output power shall be reduced by the amount in dB that
Anbotek Anbo.	the directional gain of the antenna exceeds 6 dBi.
botek Anbore	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted
Ans rek abore	output power over the frequency bands of operation shall not exceed the
Yupo, N	lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission
rek sobotek And	bandwidth in megahertz.
b. K. Colek	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that
upoter And	the directional gain of the antenna exceeds 6 dBi.
Test Limit:	Are tek anbore Ane ak hotek Anbore An
Aug Spokek	For the band 5.725-5.850 GHz, the maximum conducted output power over
Anbore An	the frequency band of operation shall not exceed 1 W.
Anborek Anbo	If transmitting antennas of directional gain greater than 6 dBi are used, the
y sotek anb	maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
ter And	However, fixed point-to-point U-NII devices operating in this band may
Sofek Anbore A	employ transmitting antennas with directional gain greater than 6 dBi without
rek abojek	any corresponding reduction in transmitter conducted power. Fixed, point-to-
Aupor Air	point operations exclude the use of point-to-multipoint systems,
anbotek Anbo	omnidirectional applications, and multiple collocated transmitters transmitting
w. Potek Whote,	the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems
Aug ek	employing high gain directional antennas are used exclusively for fixed,
ek Aupore Aur	point-to-point operations.
Test Method:	ANSI C63.10-2013, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4
VUPO. Y.	Post Must dept May by the Market

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 19 of 57

4.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.


2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4.2. Test Setup

4.3. Test Data

Temperature:	25.3 °C	Humidity: 49 %	Anboter	Atmospheric Pressure:	101 kPa
--------------	---------	----------------	---------	-----------------------	---------

Please Refer to Appendix for Details.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 20 of 57

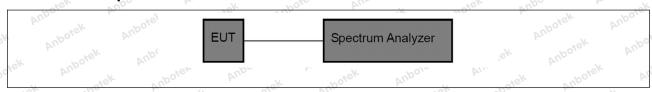
5. Power spectral density

upo. K.	Lote, Mus tek upo, W. M. M. Moste,
Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
otek Anbotek	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the entenne exceeds 6 dBi.
nTest Limit: Anborek	the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.
botek Anbotek Anbotek Anbotek Anbotek Anbotek	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2020, section 12.6
Procedure:	Refer to ANSI C63.10-2020, section 12.6
	-U

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 21 of 57

5.1. EUT Operation

Operating Environment:


1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

5.2. Test Setup

5.3. Test Data

Temperature:	25.3 °C	Humidity: 49 %	Anboter	Atmospheric Pressure:	101 kPa
--------------	---------	----------------	---------	-----------------------	---------

Please Refer to Appendix for Details.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 22 of 57

6. Emission bandwidth and occupied bandwidth

Tabotek Anbote	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Aupotek Aupo	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5 KDB 789033 D02, Clause C.2
Anbotek Anbote	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak.
	d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW,
Procedure:	and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the
	spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and
	single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be
	used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace data points are

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 23 of 57

recovered and directly summed in linear power terms. The recovered amplitude data points,

beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached:

that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).

6 dB emission bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.1. EUT Operation

Operating Environment:

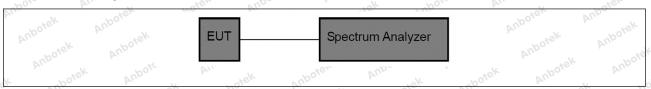
1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.



Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 24 of 57

6.2. Test Setup

6.3. Test Data

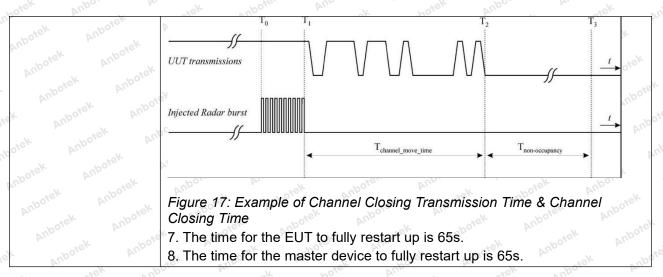
· - · · · · · · · · · · · · · · · · · ·	25.3 °C	100	40.0000	All Doler	404 LD
Temperature:	25.3 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

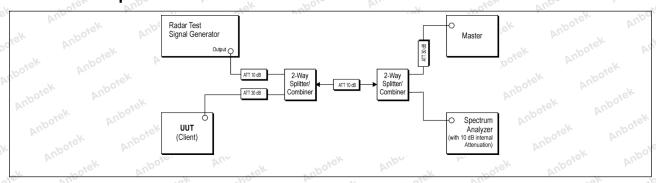
Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 25 of 57

7. Channel Move Time, Channel Closing Transmission Time

Test Requirement:	47 CFR Part 15.407(h)(2)(iii)
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	Channel Move Time: within 10 seconds Channel Closing Transmission Time: 200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. (The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.)
Test Method:	KDB 905462 D02, Clause 7.8.3
Test Method: Anborek Anborek	KDB 905462 D02, Clause 7.8.3 The steps below define the procedure to determine the above-mentioned parameters when a radar <i>Burst</i> with a level equal to the <i>DFS Detection Threshold</i> + 1dB is generated on the <i>Operating Channel</i> of the U-NII device (<i>In- Service Monitoring</i>). 1. One frequency will be chosen from the <i>Operating Channels</i> of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected. 2. In case the UUT is a U-NII device operating as a <i>Client Device</i> (with or without DFS), a U-NII device operating as a <i>Master Device</i> . In case the UUT (Client device) to <i>Associate</i> with the <i>Master Device</i> . In case the UUT is a <i>Master Device</i> , a U-NII device operating as a <i>Client Device</i> will be used and it is assumed that the Client will <i>Associate</i> with the UUT (Master). In both cases for conducted tests, the <i>Radar Waveform</i> generator will be directed towards the <i>Master Device</i> . If the <i>Master Device</i> has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing. 3. Stream the channel loading test file from the <i>Master Device</i> to the <i>Client Device</i> on the test <i>Channel</i> for the entire period of the test. 4. At time T0 the <i>Radar Waveform</i> generator sends a <i>Burst</i> of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3, on the <i>Operating Channel</i> . An additional 1 dB is added to the radar test signal to ensure it is at or above the <i>DFS Detection Threshold</i> , accounting for equipment variations/errors. 5. Observe the transmissions of the UUT at the end of the radar Burst on the <i>Operating Channel</i> for duration greater than 10 seconds. Measure and
	record the transmissions from the UUT during the observation time (Channel Move Time). Measure and record the Channel Move Time and Channel Closing Transmission Time if radar detection occurs. Figure 17 illustrates Channel Closing Transmission Time.
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	6. When operating as a <i>Master Device</i> , monitor the UUT for more than 30 minutes following instant T2 to verify that the UUT does not resume any transmissions on this <i>Channel</i> . Perform this test once and record the measurement result. 7. In case the UUT is a U-NII device operating as a <i>Client Device</i> with <i>In-Service Monitoring</i> , perform steps 1 to 6.



Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 26 of 57


7.1. EUT Operation

Operating Environment:

Test mode:

5: Normal Operating: Keep the EUT works in normal operating mode and connect to companion device

7.2. Test Setup

7.3. Test Data

Temperature:	25.3 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa
V. 10.	10.	-100	- PA	Yes. Vien	

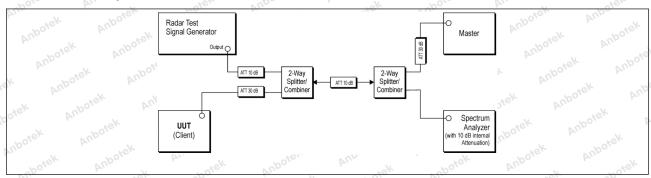
Please Refer to Appendix for Details.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 27 of 57

8. DFS Detection Thresholds

Test Requirement:	KDB 905462 D02, Clause 5.2 Table 3	
Anbotek Anbotek	Table 3: DFS Detection Thresholds for Master E with Radar Detection Table 3: DFS Detection Thresholds for Ma and Client Devices with Radar De	ster Devices
	Maximum Transmit Power EIRP ≥ 200 milliwatt	Value (See Notes 1, 2, and 3)
est Limit:	EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
Anbotek Anbotek Anbotek Anbotek Anbotek Anbot	EIRP < 200 milliwatt that do not meet the power spectral density requirement Note 1: This is the level at the input of the receiver assuming a 0 dl Note 2: Throughout these test procedures an additional 1 dB has be test transmission waveforms to account for variations in measurement the test signal is at or above the detection threshold level to trigger Note3: EIRP is based on the highest antenna gain. For MIMO device 662911 D01.	een added to the amplitude of the ent equipment. This will ensure that a DFS response.
est Method:	KDB 905462 D02, Clause 7.4.1.1	Anbotek Anbotek
	1) A 50 ohm load is connected in place of the spectrum analyzer is connected to place of the2) The interference Radar Detection Threshold had been taken into account the output power r	master Level is TH+ 0dBi +1dB that ange and antenna gain.
	3) The following equipment setup was used to a waveform. A vector signal generator was utilized level for radar type 0. During this process, there either the master or client device. The spectrum	d to establish the test signal were no transmissions by
Procedure:	the zero spans (time domain) at the frequency of generator. Peak detection was used. The spect bandwidth (RBW) and video bandwidth (VBW)	of the radar waveform rum analyzer resolution were set to 3 MHz. The
	spectrum analyzer had offset -1.0dB to compen 4) The vector signal generator amplitude was someasured at the spectrum analyzer was TH + 0	et so that the power level dBi +1dB = -63dBm. Captur
	the spectrum analyzer plots on short pulse rada Note: TH=-64 dBm or -62 dBm	ar wavetorm.

8.1. EUT Operation


Operating Envi	ronment:	Mpotek	Anbo.	h. boiek	Aupore.	Aur
Test mode:	5: Normal Operatin	g: Keep the EU	T works in nor	mal operating	mode and	connect to
rest mode.	companion device	PUP.	botek	Aupo.	by.	ik abou

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 28 of 57

8.2. Test Setup

8.3. Test Data

e)	Temperature:	25.3 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa
		-0.0	Committee 1	10 70	100mm	13.64 2

Please Refer to Appendix for Details.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 29 of 57

9. Band edge emissions (Radiated)

	·	WO WILLIAM TO THE PARTY OF THE	_40	V U/2		VAV.
	hotek Anbore	47 CFR Part 15.407(b)(1)	Aupo	-orek	Anbole	Vur Fek
		47 CFR Part 15.407(b)(2)	aboles			Anbo.
	Test Requirement:	47 CFR Part 15.407(b)(3)				hote
		47 CFR Part 15.407(b)(4)				And
6	Anbo. K	47 CFR Part 15.407(b)(10)	ek abote	Anbo	-k hote	ik anb

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Toet	ı	imit:	

MHz M	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475- 16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2) 10 tek
13.36-13.41	Vupo, Vi	de de	View Vup

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 30 of 57

otek Anbore A		ok botek Ar	upor A. Stek					
abotek Alex	The field strength of emiss	sions appearing within thes	se frequency bands shall					
Anbore All.	not exceed the limits show	vn in § 15.209. At frequenc	ies equal to or less than					
	1000 MHz, compliance wi	th the limits in § 15.209sha	all be demonstrated					
	using measurement instru	mentation employing a CIS	SPR quasi-peak					
	detector. Above 1000 MHz	z, compliance with the emis	ssion limits in §					
A. Stek Anbo	15.209shall be demonstra	ted based on the average	value of the measured					
	emissions. The provisions	in § 15.35apply to these n	neasurements.					
	" " ciek Ant		botek Anb					
		here in this subpart, the en						
hotek Anbo		ot exceed the field strength	n levels specified in the					
	following table:		shorek Anbo					
	Frequency (MHz)	Field strength	Measurement					
botek Anbote	Al abover	(microvolts/meter)	distance					
And	ek Anbor Arr	k Spoten And	(meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30 months					
	1.705-30.0	30	30					
	30-88	100 **	aboter 3 Ambo					
	88-216	150 **	Pos 3 Opolok					
	216-960	200 **	Anbo 3					
	Above 960	500	3 Anbort					
		aragraph (g), fundamental	No.					
		iting under this section sha						
		Hz, 76-88 MHz, 174-216 M						
		these frequency bands is						
	sections of this part, e.g.,		permitted under other					
			at the hand edges					
	In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements							
	employing a CISPR quasi-peak detector except for the frequency bands 9–							
		90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in						
		these three bands are based on measurements employing an average						
	detector.	V solek Anbor	All					
Test Method:	ANSI C63.10-2020, section	on 12 7 4 12 7 6 12 7 7	otek Pupo, Y					
Tool Manous	MOTO AM	hotek Arbos, Z. Arr	atek anboten An					
	Above 1GHz:	117 ok 1 1/20 ^t ek	-6 - u-t-tiu u t-bl- 4 5					
		UT was placed on the top						
		at a 3 meter fully-anechoic						
		termine the position of the						
		ters away from the interference						
		e top of a variable-height a						
		aried from one meter to for						
		naximum value of the field						
Procedure:		of the antenna are set to m						
		ission, the EUT was arrang						
		tuned to heights from 1 m						
in wotek		MHz, the antenna was tur						
	6/1/2	s turned from 0 degrees to	300 degrees to find the					
	maximum reading.	m was set to Book Detact	Function and Specified					
	Bandwidth with Maximum	m was set to Peak Detect F	-unclion and Specified					
. aboiek Anbo			10dR lower than the					
		he EUT in peak mode was						
tek por Ar	I IIIIII speciliea, then testing	g could be stopped and the	peak values of the EUT					

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 31 of 57

would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

9.1. EUT Operation

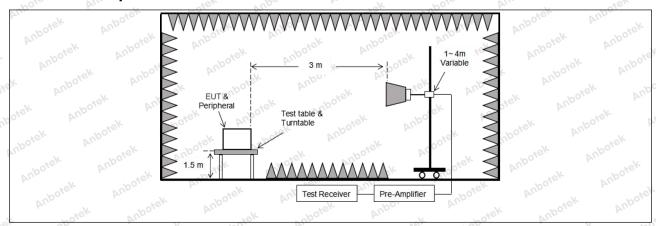
Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.



Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 32 of 57

9.2. Test Setup

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 33 of 57

9.3. Test Data

Temperature: 25.3 °C Humidity: 49 % Atmospheric Pressure: 101 kPa

		Pr.	7,46,	~~~	- No.	-200.	- Pr
		TM1 / B	and: 5150-5	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	37.02 M	15.99 M	53.01	68.20	-15.19	workH A	Peak
5150.00	39.10	15.99	55.09	68.20	-13.11	V	Peak
5150.00	26.95	15.99	42.94	54.00	-11.06	Anna Hick	AVG
5150.00	29.01	15.99	45.00	54.00	-9.00	AND STOK	AVG
		TM1 / B	and: 5150-5	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.46	16.43	53.89	68.20	-14.31	H	Peak
5350.00	40.43	16.43	56.86	68.20	-11.34	VUD A'SK	Peak
5350.00	28.80	16.43	45.23	54.00	-8.77	Anh H	AVG
5350.00	29.68	16.43	46.11	54.00	-7.89	Mpoles	AVG

Remark: 1. Result=Reading + Factor

2. During the test, all antenna chains has been tested, and only worst case (ANT1) data is listed in the report.

-V-	no' A		750,	V Up	- Va	20,	27.
		TM2 / B	and: 5150-5	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	35.95	15.99	51.94	68.20	-16.26	ek H _{anbote}	Peak
5150.00	37.36 NO	15.99	53.35	68.20 AND	-14.85	otek V and	Peak
5150.00	26.67	15.99 M	42.66	54.00	11.34 An	H ,	AVG
5150.00	27.66	15.99	43.65	54.00	-10.35	Augo Ask	AVG
		TM2 / B	and: 5150-53	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.78	16.43	54.21	68.20 (b ⁰)	-13.99	otek H no	Peak
5350.00	38.81	o ¹⁶ 16.43 M	55.24	68.20	-12.96	V	Peak
5350.00	27.82	16.43	44.25	54.00	-9.75	rupour H	AVG
5350.00	29.28	16.43	45.71	54.00	-8.29	Nup of	AVG

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 34 of 57

40.	TOTO AT		Stell L	Upo h	You	1000	111.
		TM2 / B	and: 5150-5	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.52	15.99	52.51	68.20	-15.69	k Hupotei	Peak
5150.00	38.36	15.99	54.35	68.20	-13.85	otek V Anb	Peak
5150.00	27.09	15.99	43.08	54.00	-10.92	- Otek H	AVG M
5150.00	28.76	15.99	44.75	54.00	-9.25	V	AVG
		TM2 / B	and: 5150-53	350 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.11	16.43	54.54	68.20	-13.66	tek H anbo	Peak
5350.00	36.96	16.43 M	53.39	68.20 M	-14.81	V V	Peak M
5350.00	28.34	16.43	44.77	54.00	-9.23	H H	AVG
5350.00	29.55	16.43	45.98	54.00	-8.02	Anboro	AVG

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

VF - PO.			16.		- No	, S	6.0			
TM3 / Band: 5150-5350 MHz / BW: 20 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5150.00	36.98	15.99	52.97	68.20	-15.23	AnbHer	Peak			
5150.00	38.74	15.99	54.73	68.20	-13.47	Nootek	Peak			
5150.00	26.58	15.99	42.57	54.00	-11.43	ek Hanbote	AVG			
5150.00	28.79	15.99 nbox	44.78	54.00 _{km}	-9.22	nek V no	AVG M			
		TM3 / B	and: 5150-53	350 MHz / BV	V: 20 / H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5350.00	37.90	16.43	54.33	68.20	-13.87	Hoter	Peak			
5350.00	38.15	16.43	54.58	68.20	-13.62	k V botel	Peak			
5350.00	27.82	16.43	44.25	54.00	-9.75	H	AVG			
5350.00	28.40	16.43	44.83	54.00	9.17 A	Ofer V And	AVG			

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 35 of 57

		TM3 / E	Band: 5150-53	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	35.93	15.99	51.92	68.20	-16.28	PH	Peak
5150.00	36.36	15.99	52.35	68.20	-15.85	Nupp.	Peak
5150.00	26.13 ¹⁰⁰⁰	15.99	42.12 A	54.00	rel-11.88	otek H Anbo	AVG
5150.00	26.85 An	15.99	42.84	54.00	-11.16	nbotek V A	AVG
		TM3 / E	and: 5150-53	350 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.07	16.43	54.50	68.20	-13.70	Hup	Peak
5350.00	37.20	16.43	53.63	68.20	-14.57	tek A Vupo	Peak
5350.00	27.51	16.43	43.94	54.00	-10.06	Lotek H An	AVG
5350.00	27.52	16.43	43.95	54.00	-10.05	V	AVG

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

7030.	VU.	18K	Upo.	h	K hoje	VUr	
		TM3 / B	and: 5150-5	350 MHz / BV	N: 80 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.04	15.99	52.03	68.20	-16.17	Anborek	Peak
5150.00	36.48	15.99	52.47	68.20	-15.73	No Ask	Peak
5150.00	26.62	15.99	42.61	54.00	-11.39	Horek	AVG
5150.00	26.87	15.99	42.86	54.00	-11.14	ek V _{ubote}	AVG
		TM3 / B	and: 5150-53	350 MHz / BV	V: 80 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.34	16.43	54.77	68.20	-13.43	no4e"	Peak
5350.00	37.48	16.43	53.91	68.20	-14.29	Votek	Peak
5350.00	28.84	16.43	45.27	54.00	-8.73	H Lotel	AVG
5350.00	28.14	16.43	44.57	54.00	-9.43	VARIE	AVG NO

Remark: 1. Result=Reading + Factor

^{2.} During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 36 of 57

O, by	* *	46, 741	,		10, b.		7,6,
		TM4 / B	and: 5150-53	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.88	15.99	52.87	68.20	-15.33	HA	Peak
5150.00	38.62	15.99	54.61	68.20	-13.59	Nupo,	Peak
5150.00	26.53	15.99	42.52	54.00	-11.48 ₍₁₎	otek H Anbo	AVG
5150.00	28.70 M	15.99	44.69	54.00	-9.31	nbotek V A	AVG
		TM4 / B	and: 5150-53	50 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.85	16.43	54.28	68.20	-13.92	Hupp	Peak
5350.00	38.10	16.43	54.53	68.20	-13.67	tek A Vupo,	Peak
5350.00	27.75	16.43	44.18	54.00	-9.82	hotek H An	AVG
5350.00	28.30	16.43	44.73	54.00	-9.27	V	AVG

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

		TM4 / B	and: 5150-53	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	35.83	15.99	51.82	68.20	-16.38	Anbo H	Peak
5150.00	36.29	15.99	52.28	68.20	-15.92	Auport Ok	Peak
5150.00	26.00	15.99	41.99	54.00	-12.01	H	AVG
5150.00	26.75	15.99	42.74	54.00	-11.26	sk Avupore	AVG
		TM4 / B	and: 5150-53	350 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.99	16.43	54.42	68.20	-13.78	And H	Peak
5350.00	37.15	16.43	53.58	68.20	-14.62	Nove	Peak
5350.00	27.46	16.43	43.89	54.00	-10.11	k Hanboies	AVG
5350.00	27.40	16.43	43.83	54.00	-10.17	N V NO	AVG AVG

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: Page 37 of 57 18220WC40015304 FCC ID: VYVAW65P1-50B1

		TM4 / B	and: 5150-53	350 MHz / BV	V: 80 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	35.99	15.99	51.98	68.20	-16.22	PH	Peak
5150.00	36.36	15.99	52.35	68.20	-15.85	Nupo,	Peak
5150.00	26.50 ^{7/00}	15.99	42.49	54.00	11.51 NO	otek H Anbo	AVG
5150.00	26.78 M	15.99	42.77	54.00	-11.23	nbotek V A	AVG
		TM4 / B	and: 5150-53	350 MHz / BV	V: 80 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.22	16.43	54.65	68.20	-13.55	H ^{nb}	Peak
5350.00	37.38	16.43	53.81,00	68.20	-14.39	tek A Vupo	Peak
5350.00	28.70	16.43	45.13	54.00	-8.87	Lotek H An	AVG AN
5350.00	28.05	16.43	44.48	54.00	-9.52	V	AVG

Remark: 1. Result=Reading + Factor
2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 38 of 57

		TM1 / B	and: 5470-5	850 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	38.01	16.37	54.38	68.20	-13.82	"Ho,	Peak
5460.00	39.33	16.37	55.70	68.20	-12.50	V V botel	Peak
5470.00	38.94	16.70	55.64	68.20	-12.56	H	Peak o
5470.00	39.62	16.70	56.32	68.20	-11.88	oten V And	Peak
5460.00	28.65	16.37	45.02	54.00	-8.98	borek H M	AVG
5460.00	28.50	16.37	44.87	54.00	-9.13	V	AVG
5470.00	28.92	16.70	45.62	54.00	-8.38	VUD H CK	AVG
5470.00	30.01	16.70	46.71	54.00	-7.29	PUA.	AVG
		TM1 / B	and: 5470-58	850 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.93	17.21 ATT	56.14	68.20	-12.06	botek H An	Peak Po
5850.00	39.26	17.21	56.47	68.20	-11.73	V	Peak
5850.00	28.94	17.21	46.15	54.00	-7.85	Anbo, H	AVG
5850.00	28.98	17.21	46.19	54.00	-7.81	NIN SE	AVG

Remark: 1. Result=Reading + Factor

2. During the test, all antenna chains has been tested, and only worst case (ANT1) data is listed in the report.

	U, 12/	TM2 / B	and: 5470-58	350 MHz / BV	V: 20 / L	,_Ω'	
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	37.97	16.37	54.34	68.20	-13.86	AM H Nek	Peak
5460.00	38.50	16.37	54.87	68.20	-13.33	V	Peak
5470.00	38.08	16.70	54.78	68.20	-13.42	ek Hanbore	Peak
5470.00	38.45	16.70	55.15	68.20 68.20 68.20 68.20 68.20 68.20 68.20 68.20 68.20 68.20 68.20 68.20 68.20 68.20 68.20 68.20 68.20	-13.05	V Yes	Peak Pool
5460.00	27.07	16.37	43.44	54.00	-10.56	H	AVG
5460.00	27.45	16.37	43.82	54.00	-10.18	Yupole A	AVG
5470.00	27.51	16.70	44.21	54.00	-9.79	A H	AVG
5470.00	27.99	16.70	44.69	54.00	-9.31	Votek	AVG
		TM2 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.17		54.38	68.20	-13.82	H	Peak
5850.00	37.82	17.21	55.03	68.20	-13.17	Inbotek A	Peak
5850.00	27.39	17.21	44.60	54.00	-9.40	~oH ^k	AVG
5850.00	28.28	17.21	45.49	54.00	-8.51	Dur A sek	AVG

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 39 of 57

10.	-700, by.		A.S.	Up	40.	-100, b	
		TM2 / E	and: 5470-58	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	37.55	16.37	53.92	68.20	-14.28	H note	Peak
5460.00	38.38	16.37	54.75	68.20	-13.45	$\Lambda_{\omega_{0}}$	Peak
5470.00	38.38	16.70	55.08	68.20	-13.12	otek H Anbo	Peak
5470.00	38.99	16.70 PM	55.69	68.20	-12.51	V _{Aster} V	Peak
5460.00	26.71	16.37	43.08	54.00	-10.92	Th.	AVG
5460.00	00 28.63 16.37		45.00	54.00	-9.00	Anbov	AVG
5470.00	26.91	16.70	43.61	54.00	-10.39	NO President	AVG
5470.00	28.31	16.70	45.01	54.00	-8.99	Votek	AVG
0.01-		TM2 / B	and: 5470-58	350 MHz / BV	V: 40 / H		'
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.91	17.21	55.12	68.20	-13.08	H	Peak
5850.00	38.33	17.21	55.54	68.20	-12.66	Anboro	Peak
5850.00	28.07	17.21	45.28	54.00	-8.72	Hren.	AVG
5850.00	29.20	17.21	46.41	54.00	-7.59	Votek	AVG

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

		TM3 / B	and: 5470-58	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	37.22	16.37	53.59	68.20	-14.61	Hoiek	Peak
5460.00	5460.00 37.45 16.37		53.82	68.20	-14.38	V	Peak
5470.00	37.80	16.70	54.50	68.20	-13.70	HANDO.	Peak
5470.00	38.25 M	16.70	54.95	68.20	-13.25	otek V Anb	Peak
5460.00	27.91	16.37	44.28	54.00	-9.72	H	AVG
5460.00	28.46	16.37	44.83	54.00	-9.17	Mybo. V	AVG
5470.00	28.19	16.70	44.89	54.00	-9.11	Anb H	AVG
5470.00	28.92	16.70	45.62	54.00	-8.38	Votek	AVG
		TM3 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.96	17.21 M	55.17	68.20	-13.03	Н	Peak
5850.00	38.88	17.21	56.09	68.20	-12.11	Note V	Peak
5850.00	27.87	17.21	45.08	54.00	-8.92	nb H	AVG
5850.00	28.88	17.21	46.09	54.00	-7.91	Votek	AVG

Remark: 1. Result=Reading + Factor

^{2.} During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 40 of 57

		TM3 / B	and: 5470-5	850 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	36.18	16.37	52.55	68.20	-15.65	"Ho,	Peak
5460.00	37.75	16.37	54.12	68.20	-14.08	V V botel	Peak
5470.00	36.61	16.70	53.31	68.20	-14.89	H	→ Peak → ○
5470.00	38.09	16.70	54.79	68.20	13.41	oten V And	Peak
5460.00	27.22	16.37	43.59	54.00	-10.41	botek H A	AVG
5460.00	27.36	16.37	43.73	54.00	-10.27	V	AVG
5470.00	27.47	16.70	44.17	54.00	-9.83	And H	AVG
5470.00	28.17	16.70	44.87	54.00	-9.13	PUA.	AVG
		TM3 / B	and: 5470-5	850 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.55	17.21 Ame	54.76	68.20	-13.44	botek H An	Peak
5850.00	38.32	17.21	55.53	68.20	-12.67	V	Peak
5850.00	27.53	17.21	44.74	54.00	-9.26	Anbo H	AVG
5850.00	27.11	17.21	44.32	54.00	-9.68	NIN SE	AVG

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

		TM3 / B	and: 5470-58	350 MHz / BV	V: 80 / L	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ω, ΣΣ,
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	35.48	16.37	51.85	68.20	-16.35	AnbA	Peak
5460.00	0.00 36.96 16.37		53.33	68.20	-14.87	Votek	Peak
5470.00	35.84	16.70	52.54	68.20	-15.66	H	Peak
5470.00	37.91	16.70	54.61	68.20	-13.59	VAND	Peak
5460.00	25.67	16.37	42.04	54.00	-11.96	potek H Anb	AVG
5460.00	26.86	16.37 An	43.23	54.00	-10.77	Veto	AVG
5470.00	26.42	16.70	43.12	54.00	-10.88	Hk.	AVG
5470.00	27.07	16.70	43.77	54.00	-10.23	AUPOL	AVG
		TM3 / B	and: 5470-58	50 MHz / BV	V: 80 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.38	17.21	54.59	68.20	-13.61	otek H Anbo	Peak
5850.00	37.74	o ^{tel} 17.21 And	54.95	68.20	-13.25	New V	Peak M
5850.00	27.70	17.21	44.91	54.00	-9.09	Pupper H	AVG
5850.00	28.13	17.21	45.34	54.00	-8.66	Anboro	AVG

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 41 of 57

			,				
		TM4 / B	and: 5470-5	850 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	37.31	16.37	53.68	68.20	-14.52	"Ho _{tot}	Peak
5460.00	37.50	16.37	53.87	68.20	-14.33	V botek	Peak
5470.00	37.89	16.70	54.59	68.20	-13.61	H	→ Peak 🎷
5470.00	38.30	16.70	55.00 m	68.20	13.20	oten A Vuga	Peak
5460.00	27.97	16.37	44.34	54.00	-9.66	botek H A	AVG
5460.00	28.57	16.37	44.94	54.00	-9.06	V.	AVG
5470.00	28.25	16.70	44.95	54.00	-9.05	And H.ok	AVG
5470.00	29.03	16.70	45.73	54.00	-8.27	PUA,	AVG
		TM4 / B	and: 5470-58	850 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.05	17.21 And	55.26	68.20	-12.94	Lotek H An	Peak Peak
5850.00	38.95	17.21	56.16	68.20	-12.04	V	Peak
5850.00	27.94	17.21	45.15	54.00	-8.85	Aupo, H	AVG
5850.00	28.99	17.21	46.20	54.00	-7.80	N. A. A. S.	AVG

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

	TM4 / Band: 5470-5850 MHz / BW: 40 / L											
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector					
5460.00	36.26	16.37	52.63	68.20	-15.57	AnoH	Peak					
5460.00	37.80	16.37	54.17	68.20	-14.03	Voisk	Peak					
5470.00	36.69	16.70	53.39	68.20	-14.81	H note	Peak					
5470.00	38.14	16.70	54.84	68.20	-13.36 °°	VAMO	, Peak					
5460.00	27.28	16.37	43.65	54.00	-10.35	potek H Anb	AVG					
5460.00	27.41	16.37	43.78	54.00	-10.22	Ver	AVG AVG					
5470.00	27.53	16.70	44.23	54.00	9.77	H.	AVG					
5470.00	28.22	16.70	44.92	54.00	-9.08	Anbor	AVG					
2000		TM4 / B	and: 5470-58	50 MHz / BV	V: 40 / H		0.00					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector					
5850.00	37.62	17.21	54.83	68.20	-13.37	otek H Anb	Peak					
5850.00	38.43	17.21 And	55.64	68.20	-12.56	VYSY	Peak					
5850.00	27.61	17.21	44.82	54.00	-9.18	My H	AVG					
5850.00	27.22	17.21	44.43	54.00	-9.57	Aupolo	AVG					

Remark: 1. Result=Reading + Factor

2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 42 of 57

0. 4.		TM4 / B	and: 5470-58	350 MHz / BV	V: 80 / L		- ATO - AT
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	35.55	16.37	51.92	68.20	-16.28	"Ho _{to} "	Peak
5460.00	37.06	16.37	53.43	68.20	-14.77	k V bojek	Peak
5470.00	35.91	16.70	52.61	68.20	-15.59	H	Peak
5470.00	38.01	16.70	54.71	68.20	-13.49	OLE A VUDE	Peak
5460.00	25.78	16.37	42.15	54.00	-11.85	hotek H Ar	AVG
5460.00	26.93	16.37	43.30	54.00	-10.70	V	AVG
5470.00	26.53	16.70	43.23	54.00	-10.77	Aup H ok	AVG
5470.00	27.14	16.70	43.84	54.00	-10.16	PU.D.	AVG
		TM4 / B	and: 5470-58	350 MHz / BV	V: 80 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.52	17.21 And	54.73	68.20	-13.47	hotek H An	Peak An
5850.00	37.85	17.21	55.06	68.20	-13.14	V	Peak
5850.00	27.89	17.21	45.10	54.00	-8.90	Anbort H	AVG
5850.00	28.23	17.21	45.44	54.00	-8.56	N. W. Co.	AVG

Remark: 1. Result=Reading + Factor
2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 43 of 57

10. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)	And abotek Ant	o. Al.
Aupotek Vupote	Unwanted emissions below strength limits set forth in §	v 1 GHz must comply with the go	eneral field
		nere in this subpart, the emission ot exceed the field strength level	
Anbotek Anbotek	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3 Anbo.
Test Limit:	88-216	150 **	3 apporer
sotek Anbore	216-960	200 **	3
ok wotek	Above 960	500	3 Ambore
abote. And	-10,0	aragraph (g), fundamental emiss	-16/4
	The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and	e, the tighter limit applies at the in the above table are based or peak detector except for the free above 1000 MHz. Radiated emised on measurements employing	n measurements quency bands 9– ssion limits in
Test Method:	ANSI C63.10-2020, section	n 12.7.4, 12.7.5	Vupo, W.
Procedure:	meters above the ground a was rotated 360 degrees to b. The EUT was set 3 or 10 antenna, which was mound c. The antenna height is var ground to determine the mand vertical polarizations of d. For each suspected emissions.	JT was placed on the top of a rotat a 3 meter semi-anechoic chan be determine the position of the hold meters away from the interferenced on the top of a variable-heighed from one meter to four met aximum value of the field streng of the antenna are set to make the ission, the EUT was arranged to tuned to heights from 1 meter to	nber. The table ighest radiation. ence-receiving ht antenna tower. ers above the th. Both horizontale measurement. its worst case
	test frequency of below 30 and the rotatable table was maximum reading.	MHz, the antenna was tuned to sturned from 0 degrees to 360 cm was set to Peak Detect Function	heights 1 meter) degrees to find the
	Bandwidth with Maximum f. If the emission level of the limit specified, then testing		lower than the values of the EU

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 44 of 57

would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 45 of 57

below the limit need not be reported.

- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

10.1. EUT Operation

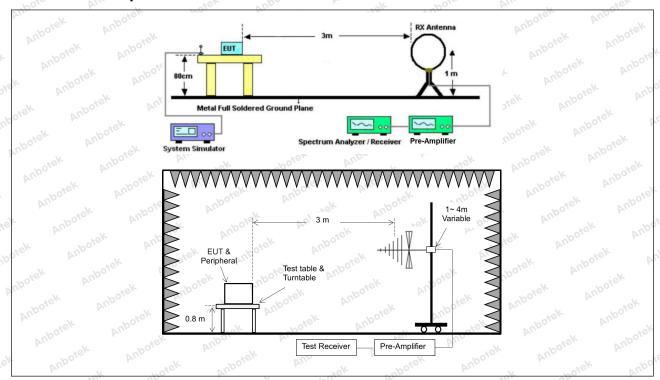
Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

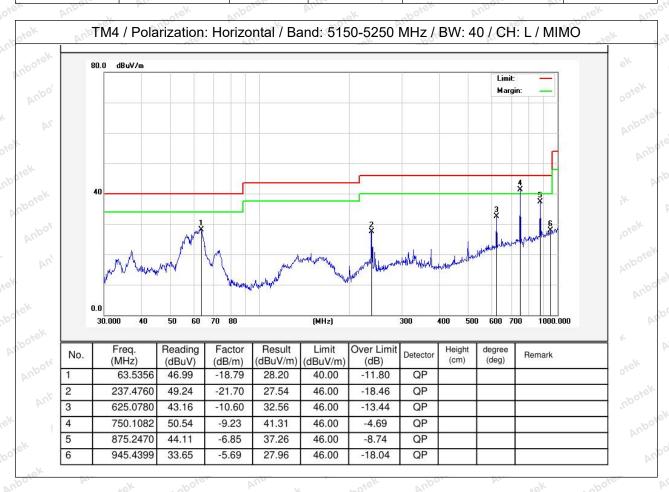
Test mode:

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.


Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 46 of 57

10.2. Test Setup

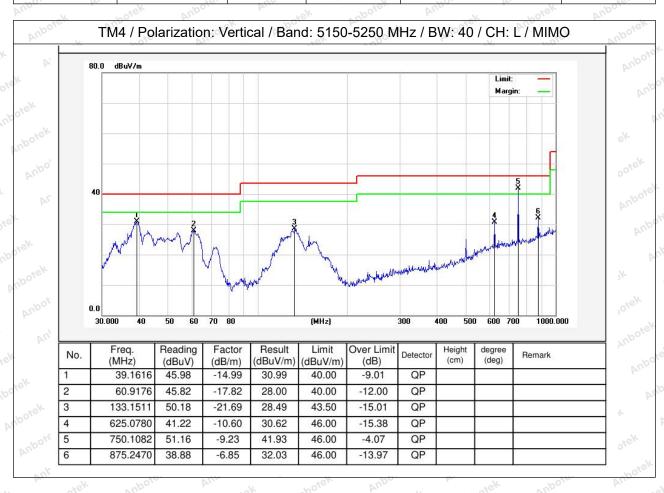


Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 47 of 57

10.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

1000	-V	V	0,0		Yes Vigo	10 V
Temperature:	23.6 °C		Humidity:	51 %	Atmospheric Pressure:	101 kPa



Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 48 of 57

Temperature: 23.6 °C Humidity: 51 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 49 of 57

11. Undesirable emission limits (above 1GHz)

	- AV	~0. P.	_%&.	~ OV	No.	~0.
	Anbore.	47 CFR Part 15.407(b)(1)	Aupo	r. Ciek	Anbois	AUR
		47 CFR Part 15.407(b)(2)	apoier			Aupo,
	Test Requirement:	47 CFR Part 15.407(b)(3)				hote
	h. Stek Anboti	47 CFR Part 15.407(b)(4)				Vur
46	W Aupo. K	47 CFR Part 15.407(b)(10)	ek abote	Vupo,	-k hote	K Anb

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Toet	ı	imit:	

MHz	MHz	GHz
16.42-16.423	399.9-410	4.5-5.15
16.69475- 16.69525	608-614	5.35-5.46
16.80425- 16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5- 1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
108-121.94	1718.8- 1722.2	13.25-13.4
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475- 156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	(2) 10 tek
Aupore Dir.	tek oup	Le. Vup.
	16.42-16.423 16.69475- 16.69525 16.80425- 16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 108-121.94 123-138 149.9-150.05 156.52475- 156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	16.42-16.423 399.9-410 16.69475- 608-614 16.80425- 960-1240 16.80475 1300-1427 25.5-25.67 1300-1427 37.5-38.25 1435-1626.5 73-74.6 1645.5- 1646.5 1718.8- 1722.2 123-138 2200-2300 149.9-150.05 2310-2390 156.52475- 2483.5-2500 156.7-156.9 2690-2900 162.0125-167.17 3260-3267 167.72-173.2 3332-3339 240-285 3345.8-3358

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 50 of 57

otek Anbore A		or hotek A	upo, Ve.
eak abotek	The field strength of emiss	sions appearing within thes	se frequency bands shall
Anbore Arr	not exceed the limits show	n in § 15.209. At frequenc	cies equal to or less than
	1000 MHz, compliance with	th the limits in § 15.209sha	all be demonstrated
	using measurement instru	mentation employing a CIS	SPR quasi-peak
	detector. Above 1000 MHz	z, compliance with the emi	ssion limits in §
A. Otek Anboi	15.209shall be demonstra	ted based on the average	value of the measured
	emissions. The provisions	in § 15.35apply to these n	neasurements.
	k cotek Ant		abotek Anbe
	Except as provided elsewh		
hotek Anbo.	intentional radiator shall no	ot exceed the field strength	n levels specified in the
	following table:	Anbore And	potek Anbo
	Frequency (MHz)	Field strength	Measurement
kotek Anbore	All abover	(microvolts/meter)	distance
And	ek Anbore Arr	k aboten And	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30 do 100 pm
	1.705-30.0	30 botek An	30
	30-88	100 **	botel 3 Anbo
	88-216	150 **	AND O TOTOK
	216-960	200 **	Anbor 3 Ans
	Above 960	500	3er Ancor
	** Except as provided in p	V 1201	D.C.
	intentional radiators opera		
	frequency bands 54-72 MI		
sk abotek Ant	However, operation within		
	sections of this part, e.g.,		permitted under other
	In the emission table above		at the hand edges
	The emission limits shown		
	employing a CISPR quasi-		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
	90 kHz, 110–490 kHz and		
	these three bands are bas		
	detector.	K Kotek Anbort	Plus Sek Spot
Test Method:	ANSI C63.10-2020, sectio	n 12.7.4. 12.7.6. 12.7.7	otek Aupon K
- Stek	NOTO ALL	Polok Pupos, - HV	Cick Vupore, Mu
	Above 1GHz:	IT was also and so the tow	of a matation table 1.5
	a. For above 1GHz, the El		
	meters above the ground		
	rotated 360 degrees to de		
	b. The EUT was set 3 met		
	which was mounted on the		
	c. The antenna height is v		
	ground to determine the m		
Procedure:	and vertical polarizations of		
	d. For each suspected em and then the antenna was		
	test frequency of below 30		
	and the rotatable table wa	s turried from 0 degrees to	5 300 degrees to lind the
	maximum reading. e. The test-receiver syster	n was set to Poak Dotact I	Function and Specified
	Bandwidth with Maximum		unction and Specified
	f. If the emission level of the		10dB lower than the
	limit specified, then testing		
		こししいい いき ろいしいせん すけい けん	- DUAN VAIDES UI LIE EUT

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 51 of 57

would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

11.1. EUT Operation

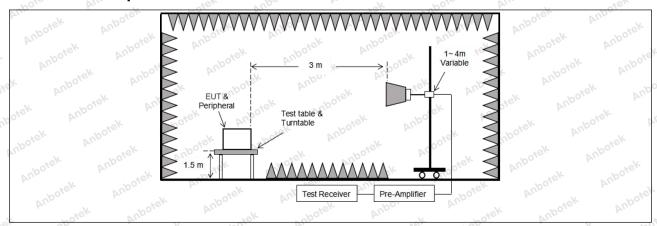
Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.



Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 52 of 57

11.2. Test Setup

Report No.: 18220WC40015304 Page 53 of 57 FCC ID: VYVAW65P1-50B1

11.3. Test Data

23.6 °C Humidity: Temperature: 51 % Atmospheric Pressure: 101 kPa

70.		7,0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		-100.	- P*
	TM4 / Ban	d: 5150-525	MHz / BW:	40 / CH: L		
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
29.55	23.81 And	53.36	68.20	-14.84	V	Peak
30.83	28.91	59.74	68.20	-8.46	Wpo. A	Peak
30.65	23.81	54.46	68.20	-13.74	Anboth	Peak
31.49	28.91	60.40	68.20	-7.80	V.Ho _{fer}	Peak
20.27	23.81	44.08	54.00	-9.92	V botek	AVG
20.74	28.91	49.65	54.00	-4.35	V	AVG NO
20.60	23.81	44.41	54.00	otel -9.59 And	H Pun	AVG
20.87	28.91	49.78	54.00	-4.22	upotek H Ar	AVG
	TM4 / Ban	d: 5150-5250	MHz / BW:	40 / CH: H		
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
29.87	23.80	53.67	68.20	-14.53	Nupote	Peak
31.06	30.03	61.09	68.20	-7.11	ek V noot	Peak
30.43	23.80	54.23	68.20	-13.97	, H	Peak 📈
31.64	30.03	61.67	68.20	-6.53	H bu	Peak
20.49	23.80	44.29	54.00	-9.71	Anborev	AVG
20.67	30.03	50.70	54.00	-3.30	No.	AVG
20.46	23.80	44.26	54.00	-9.74	Horek	AVG
20.60	30.03	50.63	54.00	-3.37	. H	⊬ AVG∖°
	(dBuV) 29.55 30.83 30.65 31.49 20.27 20.74 20.60 20.87 Reading (dBuV) 29.87 31.06 30.43 31.64 20.49 20.67 20.46	Reading (dBuV) (dB/m) 29.55 23.81 30.83 28.91 30.65 23.81 31.49 28.91 20.27 23.81 20.74 28.91 20.60 23.81 20.87 28.91 TM4 / Ban Reading (dBuV) (dB/m) 29.87 23.80 31.06 30.03 30.43 23.80 31.64 30.03 20.49 23.80 20.46 23.80	Reading (dBuV) Factor (dB/m) Result (dBuV/m) 29.55 23.81 53.36 30.83 28.91 59.74 30.65 23.81 54.46 31.49 28.91 60.40 20.27 23.81 44.08 20.74 28.91 49.65 20.60 23.81 44.41 20.87 28.91 49.78 TM4 / Band: 5150-5250 Reading (dBuV) (dB/m) Result (dBuV/m) 29.87 23.80 53.67 31.06 30.03 61.09 30.43 23.80 54.23 31.64 30.03 61.67 20.49 23.80 44.29 20.67 30.03 50.70 20.46 23.80 44.26	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 29.55 23.81 53.36 68.20 30.83 28.91 59.74 68.20 30.65 23.81 54.46 68.20 31.49 28.91 60.40 68.20 20.27 23.81 44.08 54.00 20.74 28.91 49.65 54.00 20.60 23.81 44.41 54.00 20.87 28.91 49.78 54.00 TM4 / Band: 5150-5250 MHz / BW: Reading (dBuV) Result (dBuV/m) Limit (dBuV/m) 29.87 23.80 53.67 68.20 31.06 30.03 61.09 68.20 30.43 23.80 54.23 68.20 31.64 30.03 61.67 68.20 20.49 23.80 44.29 54.00 20.67 30.03 50.70 54.00 20.46 23.80 44.26 54.00	(dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 29.55 23.81 53.36 68.20 -14.84 30.83 28.91 59.74 68.20 -8.46 30.65 23.81 54.46 68.20 -13.74 31.49 28.91 60.40 68.20 -7.80 20.27 23.81 44.08 54.00 -9.92 20.74 28.91 49.65 54.00 -4.35 20.60 23.81 44.41 54.00 -9.59 20.87 28.91 49.78 54.00 -4.22 TM4 / Band: 5150-5250 MHz / BW: 40 / CH: H Reading (dBuV) (dB/m) (dBw/m) Limit (dBuV/m) Over limit (dB) 29.87 23.80 53.67 68.20 -14.53 31.06 30.03 61.09 68.20 -7.11 30.43 23.80 54.23 68.20 -13.97 31.64 30.03 61.67 68.20 -6.53 20.49	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) Antenna Pol. 29.55 23.81 53.36 68.20 -14.84 V 30.83 28.91 59.74 68.20 -8.46 V 30.65 23.81 54.46 68.20 -13.74 H 31.49 28.91 60.40 68.20 -7.80 H 20.27 23.81 44.08 54.00 -9.92 V 20.74 28.91 49.65 54.00 -4.35 V 20.60 23.81 44.41 54.00 -9.59 H 20.87 28.91 49.78 54.00 -4.22 H TM4 / Band: 5150-5250 MHz / BW: 40 / CH: H Reading (dBuV) (dB/m) (dBuV/m) (dBuV/m) Over limit (dB) Antenna Pol. 29.87 23.80 53.67 68.20 -14.53 V 30.43 23.80 54.23 68.20 -7.11 V

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ax(HEW40)_MIMO) is recorded in the report.

Hotline

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 54 of 57

Die Ville	0.0	481 491	N	- 4	POLO VIL		101
		TM2 / Ban	d: 5250-535	0 MHz / BW:	40 / CH: L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10540.00	27.44	23.83	51.27	68.20	-16.93	V.	Peak
15810.00	29.22	30.70	59.92	68.20	-8.28	K Nupore	Peak
10540.00	27.78	23.83	51.61	68.20	-16.59	oder H var	Peak
15810.00	29.18	otel*30.70 pmbs	59.88	68.20	-8.32 Ant	Н	Peak
10540.00	17.02	23.83	40.85	54.00	-13.15	Npo, A	AVG
15810.00	18.36	30.70	49.06	54.00	-4.94	Aupor	AVG
10540.00	17.60	23.83	41.43	54.00	-12.57	Hotek	AVG
15810.00	18.51	30.70	49.21	54.00	-4.79	H botek	AVG
		TM2 / Ban	d: 5250-535	0 MHz / BW:	40 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10620.00	28.20	23.90	52.10	68.20	-16.10	Ŋ.	Peak
15930.00	27.85	31.83	59.68	68.20	-8.52	Aup Aup A	Peak
10620.00	28.58	23.90	52.48	68.20	-15.72	ANH"	Peak
15930.00	28.64	31.83	60.47	68.20	-7.73	Hypotes	Peak
10620.00	18.41	23.90	42.31	54.00	-11.69	iek V nbot	AVG
15930.00	17.66	31.83	49.49	54.00	-4.51 h	V	ore AVG Ant
10620.00	18.60	23.90	42.50 An	54.00	-11.50 N	H by	AVG
15930.00	17.80	31.83	49.63	54.00	-4.37	Anbort H	AVG
			17.7.	1.07			

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11n(HT40)_MIMO) is recorded in the report.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 55 of 57

		TM4 / Ban	d: 5470-572	5 MHz / BW:	40 / CH: L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11020.000	27.64	24.12	51.76	68.20	-16.44	V.	Peak
16530.000	27.98	32.96	60.94	68.20	-7.26	k Nupote	Peak
11020.000	28.83	24.12	52.95	68.20	-15.25	oder H valo	Peak
16530.000	27.60	32.96 M	60.56	68.20	-7.64 Ant	Н	Peak
11020.000	17.38	24.12	41.50 N	54.00	-12.50	Npo, A	AVG
16530.000	18.10	32.96	51.06	54.00	-2.94	Nuporte.	AVG
11020.000	17.03	24.12	41.15	54.00	-12.85	Hotek	AVG
16530.000	17.70	32.96	50.66	54.00	-3.34	H botek	AVG
		TM4 / Ban	d: 5470-572	5 MHz / BW:	40 / CH: M		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11180.000	27.02	23.86	50.88	68.20	-17.32	Ŋ.	Peak
16770.000	28.19	32.25	60.44	68.20	-7.76	Yupo A'Sk	Peak
11180.000	27.48	23.86	51.34	68.20	-16.86	ANH"	Peak
16770.000	27.73	32.25	59.98	68.20	-8.22	Hooter	Peak
11180.000	16.67	23.86	40.53	54.00	-13.47	ek V nbot	AVG
16770.000	16.80	32.25 nbo	49.05	54.00	-4.95 And	V	AVG
11180.000	16.52	23.86	40.38	54.00	-13.62	H PI	AVG
16770.000	17.24	32.25	49.49	54.00	-4.51	Anborth	AVG
		TM4 / Ban	d: 5470-572	5 MHz / BW:	40 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11340.000	28.02	23.60	51.62	68.20	-16.58	Sk A Vupos	Peak
17010.000	28.19	31.58	59.77	68.20	-8.43	otek V Ant	Peak
11340.000	26.48	23.60	50.08	68.20	-18.12 An	Н	Peak
17010.000	27.18	31.58	58.76	68.20	-9.44	Pupo. H	Peak
11340.000	17.46	23.60	41.06	54.00	-12.94	AUPSIG	AVG
17010.000	18.04	31.58	49.62	54.00	-4.38	Notek	AVG
11340.000	17.00	23.60	40.60	54.00	-13.40	k Habote	AVG
17010.000	17.84	31.58	49.42	54.00	-4.58 nbo	, Н	AVG.

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ax(HEW40)_MIMO) is recorded in the report.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 56 of 57

ter Aup		riek not	DOLO VILLE	- 2/-	hotel An	D. L.	riek
		TM4 / Bar	nd: 5725-585	0 MHz / BW:		1	
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11490.000	28.47	23.36	51.83	68.20	-16.37	AV.	Peak
17235.000	29.77	31.97	61.74	68.20	-6.46	K VAnbore	Peak
11490.000	28.86	23.36	52.22	68.20	-15.98	otek H anb	Peak
17235.000	30.02	31.97 M	61.99	68.20	ote -6.21 Ant	Н	Peak
11490.000	17.72	23.36	41.08	54.00	-12.92	Nupor A	AVG
17235.000	18.44	31.97	50.41	54.00	-3.59	AUP OF	AVG
11490.000	17.89	23.36	41.25	54.00	-12.75	Hotek	AVG
17235.000	18.00	31.97	49.97	54.00	-4.03	H botek	AVG
		TM4 / Ban	d: 5725-5850	MHz / BW:	20 / CH: M		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11570.000	29.05	23.42	52.47	68.20	-15.73	Ŋ.	Peak
17355.000	29.65	32.18	61.83	68.20	-6.37	Anbo V.Sk	Peak
11570.000	29.06	23.42	52.48	68.20	-15.72	ANH	Peak
17355.000	30.11	32.18	62.29	68.20	-5.91	Hopoise	Peak
11570.000	18.991	23.42	42.41	54.00	-11.59	ek V nbot	AVG
17355.000	18.763	32.18	50.94	54.00	-3.06	V	AVG
11570.000	18.877	23.42	42.30	54.00	-11.70	H W	AVG
17355.000	18.380	32.18	50.56	54.00	-3.44	anbotell	AVG
		TM4 / Ban	nd: 5725-585	MHz / BW:	20 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11650.000	28.56	23.49	52.05	68.20	-16.15	Sk A Vupos	Peak
17475.000	29.89	32.39	62.28	68.20	-5.92	otek V anh	Peak N
11650.000	28.80	23.49	52.29	68.20	15.91 AC	H	Peak
17475.000	29.72	32.39	62.11	68.20	-6.09	Anbor H	Peak
11650.000	18.06	23.49	41.55	54.00	-12.45	Anboli	AVG
17475.000	18.56	32.39	50.95	54.00	-3.05	Notek	AVG
11650.000	18.06	23.49	41.55	54.00	-12.45	ek H bote	AVG
17475.000	18.35	32.39	50.74	54.00	-3.26 nbox	Н	AVG

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ax(HEW20)_MIMO) is recorded in the report.

Report No.: 18220WC40015304 FCC ID: VYVAW65P1-50B1 Page 57 of 57

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF_RLAN

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

