

FCC Test Report

(Co-Located)

Report No.: RFBERD-WTW-P24010469-9

FCC ID: U4G-SGVWF

Test Model: SGVWF

Received Date: 2023/12/18

Test Date: 2024/3/15 ~ 2024/3/20

Issued Date: 2024/3/20

Applicant: Datalogic S.r.l.

Address: Via San Vitalino 13, 40012 Lippo di Calderara di Reno (BO) – Italy

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kewi Shan Dist., Taoyuan City

33383, Taiwan

FCC Registration/

Designation Number: 788550 / TW0003

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Report No.: RFBERD-WTW-P24010469-9 Page No. 1 / 59 Report Format Version: 6.1.1

Table of Contents

R	elease	Control Record	. 3
1	C	ertificate of Conformity	. 4
2	S	ummary of Test Results	. 5
	2.1	Measurement Uncertainty	
	2.2	Modification Record	
3	G	General Information	. 6
	3.1 3.2	General Description of EUT Description of Test Modes	
	3.2.1	Test Mode Applicability and Tested Channel Detail	
	3.3	Duty Cycle of Test Signal	
	3.4	Description of Support Units	
	3.4.1	Configuration of System under Test	
	3.5	General Description of Applied Standards	16
4	Т	est Types and Results	17
	4.1	Radiated Emission and Bandedge Measurement	17
	4.1.1	Limits of Radiated Emission and Bandedge Measurement	17
	4.1.2	Test Instruments	19
		Test Procedures.	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions	
	4.1.7	Test Results	27
5	Р	rictures of Test Arrangements	57
Α	nnex A	A - Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band)	58
Α	ppend	lix – Information of the Testing Laboratories	59

Release Control Record

Issue No.	Description	Date Issued
RFBERD-WTW-P24010469-9	Original release	2024/3/20

1 Certificate of Conformity

Product: Mobile Computer/Barcode reader

Brand: Datalogic

Test Model: SGVWF

Sample Status: Engineering sample

Applicant: Datalogic S.r.l.

Test Date: 2024/3/15 ~ 2024/3/20

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

47 CFR FCC Part 15, Subpart E (Section 15.407)47 CFR FCC Part 15, Subpart C (Section 15.225)47 CFR FCC Part 15, Subpart C (Section 15.215)

ANSI C63.10-2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :	Holly	di	, Date:	2024/3/20	
	Polly Chie	en / Specialist			•

Approved by: Jeven July Lin , Date: 2024/3/20

Jeremy Lin / Project Engineer

2 Summary of Test Results

Applied Standard	47 CFR FCC Part 15, Subpart E 47 CFR FCC Part 15, Subpart 0	47 CFR FCC Part 15, Subpart C (Section 15.247) 47 CFR FCC Part 15, Subpart E (Section 15.407) 47 CFR FCC Part 15, Subpart C (Section 15.225) 47 CFR FCC Part 15, Subpart C (Section 15.215) ANSI C63.10-2013						
FCC Clause	Test Item							
15.225 (d) 15.205 / 15.209 / 15.247(d) 15.407(b)(9) 15.407(b) (1/10) 15.407(b) (2/10) 15.407(b) (3/10) 15.407(b) (4(i)/10) 15.407(b)(6) 15.407(b)(10) Part 2.1053	Radiated Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -4.8dB at 2483.50MHz.					

Note:

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Radiated Emissions up to 1 GHz	30 MHz ~ 1 GHz	3.60 dB
Redicted Emissions above 1 CHz	1 GHz ~ 18 GHz	2.29 dB
Radiated Emissions above 1 GHz	18 GHz ~ 40 GHz	2.29 dB

2.2 Modification Record

There were no modifications required for compliance.

^{1.} Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

3 General Information

3.1 General Description of EUT

Product	Product Mobile Computer/Barcode reader					
Brand	Datalogic	Baroode roader				
Test Model	SGVWF					
Sample Status	Engineering samp	ole.				
Power Supply Rating	Refer to Note as b					
1 ower supply realing	NFC	ASK				
	Bluetooth	GFSK, π/4-DQPSK, 8DPSK				
	Bluetooth LE	GFSK				
Modulation Type	WLAN	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in VHT/802.11ac mode 1024QAM for OFDMA in 11ax mode				
	NFC	13.56 MHz				
	Bluetooth	2402 ~ 2480 MHz				
O	Bluetooth LE	2402 ~ 2480 MHz				
Operating Frequency	WLAN	2412 ~ 2462 MHz, 5180 ~ 5240 MHz, 5260 ~ 5320 MHz, 5500 ~ 5720 MHz, 5745 ~ 5825 MHz, 5935 ~ 6415 MHz, 6435 ~ 6525 MHz, 6535 ~ 6865 MHz, 6875 ~ 7115 MHz				
Antenna Type	WLAN/ Bluetooth/ Bluetooth LE	Refer to Note				
	NFC	Loop Antenna				
Antenna Connector	WLAN/ Bluetooth/ Bluetooth LE NFC	Refer to Note N/A				
Accessory Device	NA					
HW Version	DVT1					
SW Version	0.11.000.2024013	31				
P/N	Refer to Note as b					
S/N	Refer to Note as b					

Note:

1. The EUT uses following accessories.

Scanner 1					
Brand		Model			
Datalogic			Argon		
Scanner 2					
Brand			Model		
Datalogic			Xenon		
BT/WLAN Module					
Brand		Model			
Qualcomm		WCN6856			
NFC chipset					
Brand		Model			
NXP		PN7161			
Battery					
Brand		Model	Specification		
Datalogic	S	GV-BY-140 Power Rating : 3.86V, 4565mAh, 17.6Wh			
USB Cable					
Brand		Model	Specification		
Datalogic	1	49816360	Signal Line : USB3.0 Type A to Type C, 1.5M		

2. Sample's information is listed as below.

Sample	Sample Scanner		Scanner S/N		P/N	BV Login No.
Α	Argon	V24A00605	944850001	WTW240207/006Q22N03		
В	Xenon	V24A00440	944850004	WTW240207/006Q22N15		
С	Xenon	V24A00476	944850004	WTW240207/006Q22N01		

3. The antenna information is listed as below.

BT/WLAN 2.4GHz/5GHz/5.9GHz

A 4				Gain (dBi)					0
Antenna No.	2.4~2.4835	5.15~5.25	5.25~5.35	5.47~5.725	5.725~5.85	5.725~5.85	5.850~5.895	Antenna Type	Connector Type
INO.	GHz	GHz	GHz	GHz	GHz	GHz	GHz		туре
Ant 8	-1.1	0.9	0.9	1.7	2.1	2.1	2	Coupling monopole	N/A
Ant 9	0.3	0.5	0.6	0.8	1.1	1.1	-0.2	Loop	IPEX

^{*} Only Ant. No. 8 support BT function.

WLAN 6E

WEAR OL										
			Gain							
Antenna	No.	5.925~	6.425~	6.525~	6.875~	Antenna Type	Connector			
		6.425GHz	6.525GHz	6.875GHz	7.125GHz		Туре			
	Max.	1.6	1.2	0.4	1.3	Coupling	N//0			
Ant 8	Min.	0.9	0.34	0.34	0.56	monopole	N/A			
A 4 O	Max.	1.2	0.6	0.6	0.3	1	IDEV			
Ant 9	Min.	0.45	0.44	0.13	0.08	Loop	IPEX			

^{*}Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

NFC:

1 channel is provided to this EUT

Channel	Freq. (MHz)
1	13.56

Bluetooth:

79 channels are provided for BT-EDR:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

BT LE:

40 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

WLAN 2.4G:

11 channels are provided for 802.11b, 802.11g, 802.11n (HT20), VHT20, 802.11ax (HE20):

Channel	Frequency	Channel	Frequency
1	2412 MHz	7	2442 MHz
2	2417 MHz	8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz	10	2457 MHz
5	2432 MHz	11	2462 MHz
6	2437 MHz		

7 channels are provided for 802.11n (HT40), VHT40, 802.11ax (HE40):

Channel	Frequency	Channel	Frequency
3	2422 MHz	7	2442 MHz
4	2427 MHz	8	2447 MHz
5	2432 MHz	9	2452 MHz
6	2437 MHz		

WLAN 5G:

FOR 5180 ~ 5320 MHz

8 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20):

Channel	Frequency	Channel	Frequency
36	5180 MHz	52	5260 MHz
40	5200 MHz	56	5280 MHz
44	5220 MHz	60	5300 MHz
48	5240 MHz	64	5320 MHz

4 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40):

	1 //	, ,	
Channel	Frequency	Channel	Frequency
38	5190 MHz	54	5270 MHz
46	5230 MHz	62	5310 MHz

2 channels are provided for 802.11ac (VHT80), 802.11ax (HE80):

Channel	Frequency	Channel	Frequency
42	5210 MHz	58	5290 MHz

1 straddle channel is provided for 802.11ac (VHT160), 802.11ax (HE160):

Channel	Frequency
50	5250 MHz

FOR 5500 ~ 5720 MHz

12 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20):

Channel	Frequency	Channel	Frequency
100	5500 MHz	124	5620 MHz
104	5520 MHz	128	5640 MHz
108	5540 MHz	132	5660 MHz
112	5560 MHz	136	5680 MHz
116	5580 MHz	140	5700 MHz
120	5600 MHz	144	5720 MHz

6 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40):

Channel	Frequency	Channel	Frequency
102	5510 MHz	126	5630 MHz
110	5550 MHz	134	5670 MHz
118	5590 MHz	142	5710 MHz

3 channels are provided for 802.11ac (VHT80), 802.11ax (HE80):

Channel	Frequency	Channel	Frequency
106	5530 MHz	138	5690 MHz
122	5610 MHz		

Report No.: RFBERD-WTW-P24010469-9 Page No. 10 / 59 Report Format Version: 6.1.1

1 channel is provided for 802.11ac (VHT160), 802.11ax (HE160):

Channel	Frequency
114	5570 MHz

FOR 5745 ~ 5825 MHz:

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20):

Channel	Frequency	Channel	Frequency
149	5745 MHz	161	5805 MHz
153	5765 MHz	165	5825 MHz
157	5785 MHz		

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40):

Channel	Frequency	Channel	Frequency
151	5755 MHz	159	5795 MHz

1 channel is provided for 802.11ac (VHT80), 802.11ax (HE80):

Channel	Frequency		
155	5775 MHz		

WLAN 6E:

U-NII-5:

25 channels are provided for 802.11a, 802.11ax (HE20):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
2	5935 MHz	1	5955 MHz	5	5975 MHz	9	5995 MHz
13	6015 MHz	17	6035 MHz	21	6055 MHz	25	6075 MHz
29	6095 MHz	33	6115 MHz	37	6135 MHz	41	6155 MHz
45	6175 MHz	49	6195 MHz	53	6215 MHz	57	6235 MHz
61	6255 MHz	65	6275 MHz	69	6295 MHz	73	6315 MHz
77	6335 MHz	81	6355 MHz	85	6375 MHz	89	6395 MHz
93	6415 MHz						

12 channels are provided for 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
3	5965 MHz	11	6005 MHz	19	6045 MHz	27	6085 MHz
35	6125 MHz	43	6165 MHz	51	6205 MHz	59	6245 MHz
67	6285 MHz	75	6325 MHz	83	6365 MHz	91	6405 MHz

6 channels are provided for 802.11ax (HE80):

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Ī	7	5985 MHz	23	6065 MHz	39	6145 MHz	55	6225 MHz
Ī	71	6305 MHz	87	6385 MHz				

3 channels are provided for 802.11ax (HE160):

Channel	Channel Frequency		Frequency	Channel	Frequency
15	6025 MHz	47	6185 MHz	79	6345 MHz

U-NII-6:

5 channels are provided for 802.11a, 802.11ax (HE20):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
97	6435 MHz	101	6455 MHz	105	6475 MHz	109	6495 MHz
113	6515 MHz						

3 channels are provided for 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	Channel	Frequency
99	6445 MHz	107	6485 MHz	*115	6525 MHz

1 channel is provided for 802.11ax (HE80):

Channel	Frequency
103	6465 MHz

1 channel is provided for 802.11ax (HE160):

Channel	Frequency
*111	6505 MHz

Report No.: RFBERD-WTW-P24010469-9 Page No. 12 / 59 Report Format Version: 6.1.1

U-NII-7:

17 channels are provided for 802.11a, 802.11ax (HE20):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
117	6535 MHz	121	6555 MHz	125	6575 MHz	129	6595 MHz
133	6615 MHz	137	6635 MHz	141	6655 MHz	145	6675 MHz
149	6695 MHz	153	6715 MHz	157	6735 MHz	161	6755 MHz
165	6775 MHz	169	6795 MHz	173	6815 MHz	177	6835 MHz
181	6855 MHz						

8 channels are provided for 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
123	6565 MHz	131	6605 MHz	139	6645 MHz	147	6685 MHz
155	6725 MHz	163	6765 MHz	171	6805 MHz	179	6845 MHz

5 channels are provided for 802.11ax (HE80):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
*119	6545 MHz	135	6625 MHz	151	6705 MHz	167	6785 MHz
*183	6865 MHz						

2 channels are provided for 802.11ax (HE160):

Channel	Frequency	Channel	Frequency
143	6665 MHz	175	*6825 MHz

U-NII-8:

13 channels are provided for 802.11a, 802.11ax (HE20):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
185	6875 MHz	189	6895 MHz	193	6915 MHz	197	6935 MHz
201	6955 MHz	205	6975 MHz	209	6995 MHz	213	7015 MHz
217	7035 MHz	221	7055 MHz	225	7075 MHz	229	7095 MHz
233	7115 MHz						

6 channels are provided for 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
187	6885 MHz	195	6925 MHz	203	6965 MHz	211	7005 MHz
219	7045 MHz	227	7085 MHz				

2 channels are provided for 802.11ax (HE80):

Channel	Frequency	Channel	Frequency
199	6945 MHz	215	7025 MHz

1 channel is provided for 802.11ax (HE160):

Channel	Frequency
207	6985 MHz

Note: * mean these are straddle channels and operating under control by under control of a low-power indoor access point only.

Report No.: RFBERD-WTW-P24010469-9 Page No. 13 / 59 Report Format Version: 6.1.1

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure	Applic	.	
Mode	RE≥1G	RE<1G	Description
-	\checkmark	\checkmark	Sample A

Where RF>1G

RE≥1G: Radiated Emission above 1GHz & Bandedge Measurement

RE<1G: Radiated Emission below 1GHz

Pre-Scan:	1.	EUT can be used in the following ways: X-axis/ Y-axis/ Z-axis. Pre-scan these ways and find the worst case as a representative test condition.
	2.	Pre-scan ac adapter and Notebook mode
Worst Case:	1.	X-axis/ Y-axis/ Z-axis Worst Condition: Z-axis
Worst Case.	2.	Worst Condition: adapter mode

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

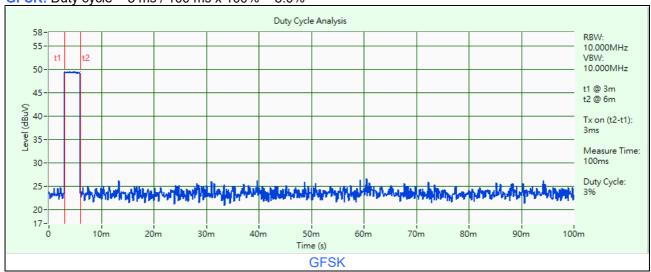
EUT Configure Mode	Mode	Frequency Band (MHz)	Available Channel	Tested Channel	Modulation Technology
	NEC - DI - ()	13.56	1		ASK
-	NFC + Bluetooth + 802.11b	2402-2480	0 to 78	1 + 39 + 11	8DPSK
	002.110	2412-2472	1 to 11		BPSK
	NEC : Bi - i ii	13.56	1		ASK
-	NFC + Bluetooth + 802.11a	2402-2480	0 to 78	1 + 39 + 149	8DPSK
		5745-5825	149 to 165		BPSK
	NFC + Bluetooth +	13.56	1	1 + 39 + 45	ASK
-	802.11ax (HE160) Ful RU (Under controlled by	2402-2480	0 to 78		8DPSK
	Standard Power AP)	5.935-6.415	2 to 181		BPSK

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	Frequency Band (MHz)	Available Channel	Tested Channel	Modulation Technology
	NEC : Di	13.56	1		ASK
-	NFC + Bluetooth + 802.11b	2402-2480	0 to 78	1 + 39 + 11	8DPSK
	0U2.11D	2412-2472	1 to 11] [BPSK
	NEC : Di	13.56	1		ASK
-	NFC + Bluetooth + 802.11a	2402-2480	0 to 78	1 + 39 + 149	8DPSK
		5745-5825	149 to 165		BPSK
	NFC + Bluetooth +	13.56	1	1 + 39 + 45	ASK
-	802.11ax (HE160) Ful RU (Under controlled by	2402-2480	0 to 78		8DPSK
	Standard Power AP)	5.935-6.415	2 to 181		BPSK



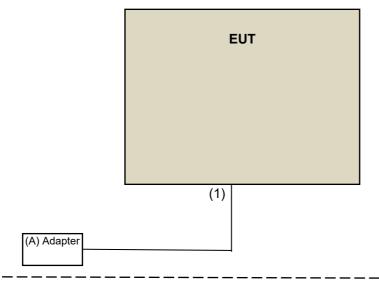
Test Condition:

Applicable to	Environmental Conditions	Input Power (System)	Tested by
RE≥1G	23 deg. C, 63% RH 23 deg. C, 67% RH	120 Vac, 60 Hz	Rex Wang
RE<1G	23 deg. C, 67% RH	120 Vac, 60 Hz	Rex Wang

3.3 Duty Cycle of Test Signal

GFSK: Duty cycle = 3 ms / 100 ms x 100% = 3.0%

3.4 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Adapter	CWT	2ACP0183C	N/A	N/A	Supplied by applicant

No.	Cable Descriptions	Qty.	Length (m)	Shielded (Yes/ No)	Cores (Qty.)	Remark
1.	USB Cable	1	1.5	Yes	0	Supplied by applicant

3.4.1 Configuration of System under Test

Under Table

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specification of the EUT declared by the manufacturer, it must comply with the requirements of the following standards:

47 CFR FCC Part 15, Subpart C (Section 15.247) 47 CFR FCC Part 15, Subpart E (Section 15.407) 47 CFR FCC Part 15, Subpart C (Section 15.225) 47 CFR FCC Part 15, Subpart C (Section 15.215)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

For NFC

The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

For WLAN, BT:

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Radiated emissions above 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
Above 960	500	3

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

4.1.2 Test Instruments

Radiated Spurious Emissions below 1GHz

Vadiated Sparious Emissions below 19112							
Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until			
Antenna Tower &Turn BV ADT	AT100	AT93021705	N/A	N/A			
Bi_Log Antenna Schwarzbeck	VULB 9168	9168-160	2023/10/17	2024/10/16			
Loop Antenna Electro-Metrics	EM-6879	269	2023/9/23	2024/9/22			
Loop Antenna TESEQ	HLA 6121	45745	2023/8/8	2024/8/7			
MXE EMI Receiver Keysight	N9038A	MY55420137	2023/5/3	2024/5/2			
Preamplifier Agilent	8447D	2944A10638	2023/5/7	2024/5/6			
RF Coaxial Cable Woken	8D-FB	Cable-CH9-01	2023/5/7	2024/5/6			
Signal & Spectrum Analyzer R&S	FSW43	101867	2023/12/29	2024/12/28			
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A			
Turn Table BV ADT	TT100	TT93021705	N/A	N/A			
Turn Table Controller BV ADT	SC100	SC93021705	N/A	N/A			

- 1. The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in HY 966 chamber 4.
- 3. Tested Date: 2024/3/15

Radiated Spurious Emissions above 1GHz

Toriz			
Model No.	Serial No.	Calibrated	Calibrated Until
		Date	Ontil
AT100	AT93021705	N/A	N/A
BAF-02	5	N/A	N/A
BBHA 9120D	9120D-1169	2023/11/12	2024/11/11
DD114 0470	9170-480	2023/11/12	2024/11/11
BBHA 9170	BBHA9170243	2023/11/12	2024/11/11
N9038A	MY55420137	2023/5/3	2024/5/2
BRM17690	004	2024/1/23	2025/1/22
BRM50716	060	2023/12/25	2024/12/24
8449B	3008A02367	2024/1/6	2025/1/5
EMC 184045	980116	2023/9/27	2024/9/26
EMC102-KM-KM-600	150928	2023/7/8	2024/7/7
EMC102-KM-KM-3000	150929	2023/7/8	2024/7/7
SUCOFLEX 104	CABLE-CH9-(250795/4)	2024/1/6	2025/1/5
SUCOFLEX 104& EMC104-SM-SM8000	CABLE-CH9-02 (248780+171006)	2024/1/6	2025/1/5
FSW43	101867	2023/12/29	2024/12/28
ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
TT100	TT93021705	N/A	N/A
SC100	SC93021705	N/A	N/A
	AT100 BAF-02 BBHA 9120D BBHA 9170 N9038A BRM17690 BRM50716 8449B EMC 184045 EMC102-KM-KM-600 EMC102-KM-KM-3000 SUCOFLEX 104 SUCOFLEX 104 SUCOFLEX 1048 EMC104-SM-SM8000 FSW43 ADT_Radiated_ V7.6.15.9.5 TT100	AT100 AT93021705 BAF-02 5 BBHA 9120D 9120D-1169 BBHA 9170 9170-480 BBHA9170243 N9038A MY55420137 BRM17690 004 BRM50716 060 8449B 3008A02367 EMC 184045 980116 EMC102-KM-KM-600 150928 EMC102-KM-KM-3000 150929 SUCOFLEX 104 CABLE-CH9-(250795/4) SUCOFLEX 104& CABLE-CH9-02 (248780+171006) FSW43 101867 ADT_Radiated_ V7.6.15.9.5 TT100 TT93021705	Model No. Serial No. Date AT100 AT93021705 N/A BAF-02 5 N/A BBHA 9120D 9120D-1169 2023/11/12 BBHA 9170 9170-480 2023/11/12 BBHA 9170243 2023/11/12 BBHA 9170243 2023/5/3 BRM17690 004 2023/5/3 BRM50716 060 2023/12/25 8449B 3008A02367 2024/1/6 EMC 184045 980116 2023/9/27 EMC102-KM-KM-600 150928 2023/7/8 EMC102-KM-KM-3000 150929 2023/7/8 SUCOFLEX 104 CABLE-CH9-(250795/4) 2024/1/6 SUCOFLEX 104& EMC104-SM-SM8000 CABLE-CH9-02 (248780+171006) 2024/1/6 FSW43 101867 2023/12/29 ADT_Radiated_ V7.6.15.9.5 N/A N/A TT100 TT93021705 N/A

- 1. The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in HY 966 chamber 4.
- 3. Tested Date: 2024/3/15 ~ 2024/3/20

4.1.3 Test Procedures

For NFC, WLAN 2.4G, WLAN 5G, BT:

For Radiated emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

Notes:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
- 3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 1 GHz

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
- 2. For fundamental and harmonic signal measurement, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10 Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1 GHz.
- 3. For BT: According to ANSI C63.10 section 6.6.4 and 4.1.4.2.2. For fundamental and harmonic signal measurement, according to ANSI C63.10 section 7.5, the average value = peak value + duty cycle correction factor. For duty cycle correction factor values, see the Test Signal Duty Cycle section in this report.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

For WLAN 6E:

For Radiated emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

Notes:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
- 3. All modes of operation were investigated and the worst-case emissions are reported.

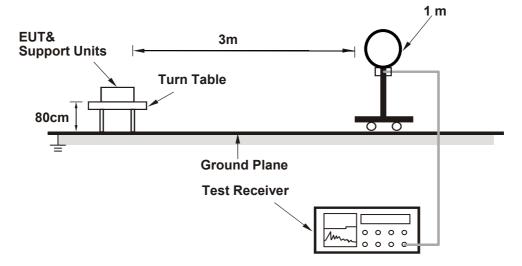
For Radiated emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

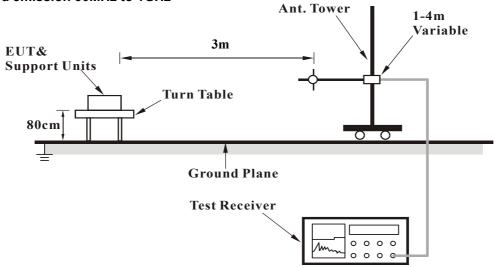
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 1 GHz

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

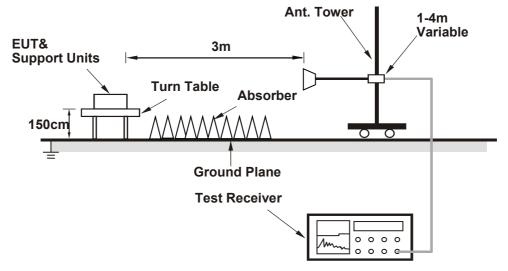

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
- 2. For fundamental and harmonic signal measurement, the resolution bandwidth of test

receiver/spectrum analyzer is 1 MHz and the video bandwidth is \geq 1/T (Duty cycle < 98%) or 10 Hz (Duty cycle \geq 98%) for Average detection (AV) at frequency above 1 GHz.
3. All modes of operation were investigated and the worst-case emissions are reported.
4.1.4 Deviation from Test Standard
No deviation.
140 deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz



For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

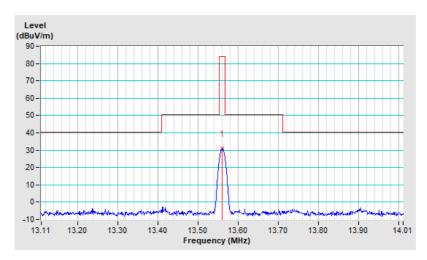
4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data:

NFC + Bluetooth + 802.11b

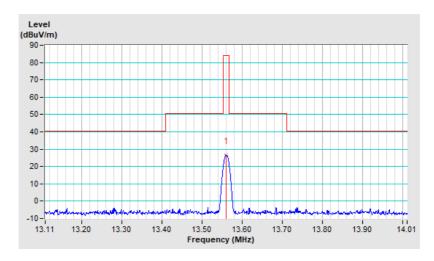

NFC Type A

EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang	

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)
1	*13.56	31.0 QP	84.0	-53.0	1.00	163	49.6	-18.6

Remarks:

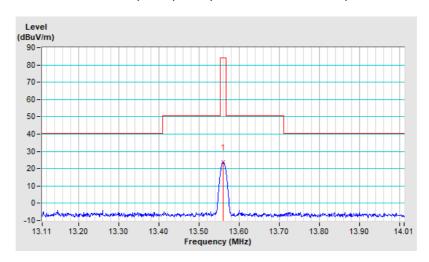
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor(dB)+Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency
- 6. Above limits have been translated by the formula



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang	

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)
1	*13.56	26.6 QP	84.0	-57.4	1.00	241	45.2	-18.6

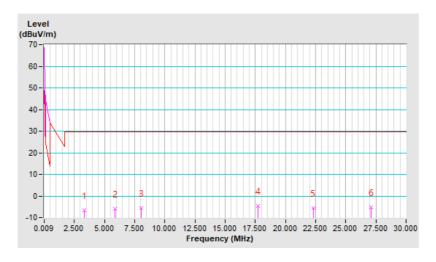
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor(dB)+Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency
- 6. Above limits have been translated by the formula



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang	

	Antenna Polarity & Test Distance: Loop Antenna Ground Parallel At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)
1	*13.56	23.9 QP	84.0	-60.1	1.00	145	42.5	-18.6

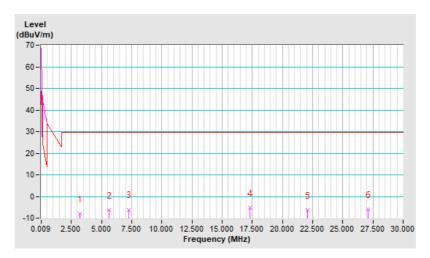
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor(dB)+Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency
- 6. Above limits have been translated by the formula



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 30MHz	
Input Power	nput Power 120Vac, 60Hz		Quasi-Peak	
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang	

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)
1	3.31	-6.6 QP	29.5	-36.1	1.00	21	13.8	-20.4
2	5.89	-6.1 QP	29.5	-35.6	1.00	340	12.8	-18.9
3	8.05	-5.6 QP	29.5	-35.1	1.00	74	13.3	-18.9
4	17.75	-4.7 QP	29.5	-34.2	1.00	335	13.2	-17.9
5	22.29	-5.5 QP	29.5	-35.0	1.00	137	12.8	-18.3
6	27.12	-5.2 QP	29.5	-34.7	1.00	359	12.6	-17.8

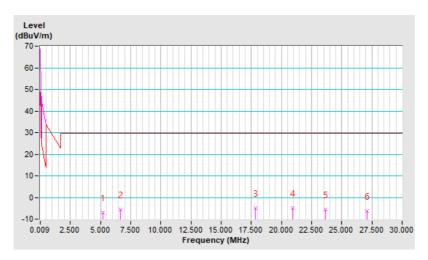
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- Pre-Amplifier Factor(dB) +Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)



EUT Test Condition		Measurement Detail		
Channel 1		Frequency Range	Below 30MHz	
Input Power	nput Power 120Vac, 60Hz		Quasi-Peak	
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang	

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)
1	3.19	-8.0 QP	29.5	-37.5	1.00	238	12.4	-20.4
2	5.62	-6.2 QP	29.5	-35.7	1.00	238	13.1	-19.3
3	7.24	-6.1 QP	29.5	-35.6	1.00	183	12.7	-18.8
4	17.28	-5.3 QP	29.5	-34.8	1.00	8	12.7	-18.0
5	22.08	-6.2 QP	29.5	-35.7	1.00	2	12.0	-18.2
6	27.12	-5.8 QP	29.5	-35.3	1.00	4	12.0	-17.8

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- Pre-Amplifier Factor(dB) +Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)



EUT Test Condition		Measurement Detail		
Channel 1		Frequency Range	Below 30MHz	
Input Power	nput Power 120Vac, 60Hz		Quasi-Peak	
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang	

	Antenna Polarity & Test Distance: Loop Antenna Ground Paralle At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)
1	5.20	-6.8 QP	29.5	-36.3	1.00	299	13.0	-19.8
2	6.64	-5.6 QP	29.5	-35.1	1.00	354	13.2	-18.8
3	17.82	-5.0 QP	29.5	-34.5	1.00	57	12.9	-17.9
4	20.94	-4.8 QP	29.5	-34.3	1.00	222	13.4	-18.2
5	23.67	-5.7 QP	29.5	-35.2	1.00	262	12.8	-18.5
6	27.12	-6.2 QP	29.5	-35.7	1.00	67	11.6	-17.8

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- Pre-Amplifier Factor(dB) +Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

RF Mode	Bluetooth	Channel	CH 39: 2441 MHz
Frequency Range	1GHz ~ 25GHz		PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 MHz, DET=RMS

	Antenna Polarity & Test Distance : Horizontal at 3 m									
	Fraguenav	Emission	Limit	Morgin	Antenna	Table	Raw	Correction		
No	Frequency (MHz)	Level	Limit	Margin	Height	Angle	Value	Factor		
	(IVITZ)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)		
1	*2441.00	99.0 PK			1.30 H	226	66.4	32.6		
2	*2441.00	68.5 AV			1.30 H	226	35.9	32.6		
3	4882.00	46.7 PK	74.0	-27.3	2.84 H	123	42.2	4.5		
4	4882.00	16.2 AV	54.0	-37.8	2.84 H	123	11.7	4.5		
		A	ntenna Polar	ity & Test Dis	stance : Verti	cal at 3 m				
	Fraguenay	Emission	Limit	Margin	Antenna	Table	Raw	Correction		
No	Frequency (MHz)	Level	(dBuV/m)	•	Height	Angle	Value	Factor		
	(IVITZ)	(dBuV/m)	(ubuv/III)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)		
1	*2441.00	97.2 PK			1.92 V	132	64.6	32.6		
2	*2441.00	66.7 AV			1.92 V	132	34.1	32.6		
3	4882.00	46.4 PK	74.0	-27.6	2.25 V	154	41.9	4.5		
4	4882.00	15.9 AV	54.0	-38.1	2.25 V	154	11.4	4.5		
D	- ul									

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula: 20 log(Duty cycle) = 20 log(3 ms / 100 ms) = -30.5 dB

RF Mode	802.11b	Channel	CH 11: 2462 MHz
Frequency Range	1GHz ~ 25GHz	5 1 111	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=10 Hz, DET=Peak

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2462.00	109.6 PK			1.86 H	124	76.8	32.8
2	*2462.00	106.8 AV			1.86 H	124	74.0	32.8
3	2483.50	58.5 PK	74.0	-15.5	1.92 H	122	25.8	32.7
4	2483.50	47.0 AV	54.0	-7.0	1.92 H	122	14.3	32.7
5	4924.00	38.4 PK	74.0	-35.6	2.15 H	116	33.8	4.6
6	4924.00	26.0 AV	54.0	-28.0	2.15 H	116	21.4	4.6
		A	Antenna Polar	ity & Test Dis	stance : Verti	cal at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2462.00	111.3 PK			2.88 V	221	78.5	32.8
2	*2462.00	108.4 AV			2.88 V	221	75.6	32.8
3	2483.50	58.7 PK	74.0	-15.3	2.26 V	146	26.0	32.7
4	2483.50	49.2 AV	54.0	-4.8	2.26 V	146	16.5	32.7
5	4924.00	39.9 PK	74.0	-34.1	1.67 V	163	35.3	4.6
6	4924.00	27.7 AV	54.0	-26.3	1.67 V	163	23.1	4.6

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

NFC + Bluetooth + 802.11a

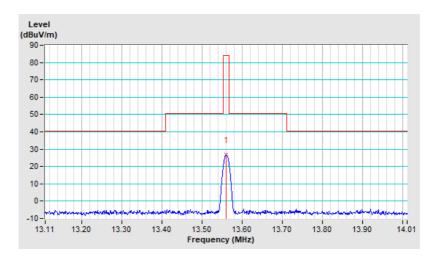
NFC Type A

EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	Input Power 120Vac, 60Hz		Quasi-Peak	
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang	

Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)
1	*13.56	31.2 QP	84.0	-52.8	1.00	165	49.8	-18.6

Remarks:

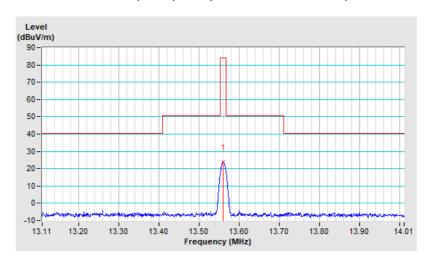
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor(dB)+Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency
- 6. Above limits have been translated by the formula



EUT Test Condition		Measurement Detail			
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz		
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak		
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang		

Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)
1	*13.56	26.8 QP	84.0	-57.2	1.00	243	45.4	-18.6

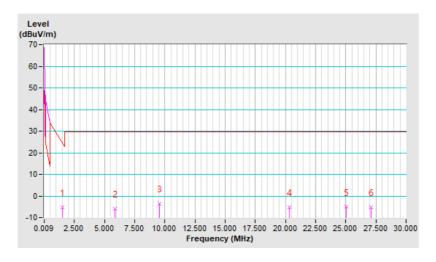
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor(dB)+Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency
- 6. Above limits have been translated by the formula



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang	

	Antenna Polarity & Test Distance: Loop Antenna Ground Parallel At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)
1	*13.56	23.8 QP	84.0	-60.2	1.00	146	42.4	-18.6

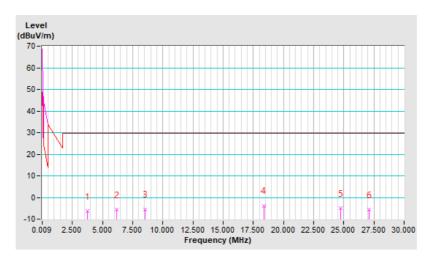
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor(dB)+Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency
- 6. Above limits have been translated by the formula



EUT Test Condition	UT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 30MHz		
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak		
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang		

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)		
1	1.51	-5.4 QP	24.0	-29.4	1.00	189	15.0	-20.4		
2	5.89	-6.1 QP	29.5	-35.6	1.00	340	12.8	-18.9		
3	9.58	-3.7 QP	29.5	-33.2	1.00	74	15.0	-18.7		
4	20.34	-5.2 QP	29.5	-34.7	1.00	250	12.8	-18.0		
5	25.02	-5.1 QP	29.5	-34.6	1.00	359	12.3	-17.4		
6	27.12	-5.1 QP	29.5	-34.6	1.00	359	12.7	-17.8		

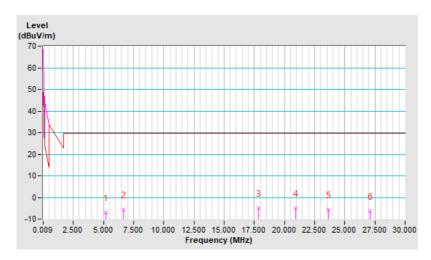
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- Pre-Amplifier Factor(dB) +Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)



EUT Test Condition	EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 30MHz		
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak		
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang		

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)		
1	3.76	-6.4 QP	29.5	-35.9	1.00	196	13.9	-20.3		
2	6.19	-5.5 QP	29.5	-35.0	1.00	155	13.3	-18.8		
3	8.56	-5.4 QP	29.5	-34.9	1.00	58	13.5	-18.9		
4	18.36	-3.7 QP	29.5	-33.2	1.00	286	14.2	-17.9		
5	24.75	-5.0 QP	29.5	-34.5	1.00	178	12.6	-17.6		
6	27.12	-5.7 QP	29.5	-35.2	1.00	2	12.1	-17.8		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- Pre-Amplifier Factor(dB) +Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 30MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang	

	Antenna Polarity & Test Distance: Loop Antenna Ground Paralle At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)		
1	5.20	-6.8 QP	29.5	-36.3	1.00	299	13.0	-19.8		
2	6.64	-5.6 QP	29.5	-35.1	1.00	354	13.2	-18.8		
3	17.82	-5.0 QP	29.5	-34.5	1.00	57	12.9	-17.9		
4	20.94	-4.8 QP	29.5	-34.3	1.00	222	13.4	-18.2		
5	23.67	-5.7 QP	29.5	-35.2	1.00	262	12.8	-18.5		
6	27.12	-6.2 QP	29.5	-35.7	1.00	67	11.6	-17.8		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- Pre-Amplifier Factor(dB) +Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

RF Mode	Bluetooth	Channel	CH 39: 2441 MHz
Frequency Range	1GHz ~ 25GHz		PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 MHz, DET=RMS

	Antenna Polarity & Test Distance : Horizontal at 3 m								
	Fraguanay	Emission	mission Limit	NAi	Antenna	Table	Raw	Correction	
No	Frequency	Level		Margin	Height	Angle	Value	Factor	
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)	
1	*2441.00	99.1 PK			1.34 H	226	66.5	32.6	
2	*2441.00	68.6 AV			1.34 H	226	36.0	32.6	
3	4882.00	46.9 PK	74.0	-27.1	2.84 H	128	42.4	4.5	
4	4882.00	16.4 AV	54.0	-37.6	2.84 H	128	11.9	4.5	
		Д	ntenna Polar	ity & Test Dis	stance : Verti	cal at 3 m			
	Eroguenev	Emission	Limit	Margin	Antenna	Table	Raw	Correction	
No	Frequency (MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor	
	(1011 12)	(dBuV/m)	(ubu v/III)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	
1	*2441.00	97.3 PK			1.90 V	132	64.7	32.6	
2	*2441.00	66.8 AV			1.90 V	132	34.2	32.6	
3	4882.00	46.5 PK	74.0	-27.5	2.28 V	155	42.0	4.5	
4	4882.00	16.0 AV	54.0	-38.0	2.28 V	155	11.5	4.5	
D	orko								

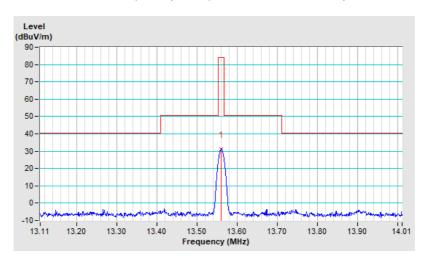
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula: 20 log(Duty cycle) = 20 log(3 ms / 100 ms) = -30.5 dB

RF Mode	802.11a	Channel	CH 149 : 5745 MHz
Frequency Range	1 GHz ~ 40 GHz	5 1 111	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=10 Hz, DET=Peak

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	#5644.60	54.2 PK	68.2	-14.0	1.55 H	124	48.5	5.7		
2	*5745.00	113.1 PK			1.55 H	124	73.2	39.9		
3	*5745.00	103.7 AV			1.55 H	124	63.8	39.9		
4	#5928.70	54.1 PK	68.2	-14.1	1.55 H	124	47.9	6.2		
5	11490.00	50.7 PK	74.0	-23.3	1.66 H	204	33.8	16.9		
6	11490.00	36.4 AV	54.0	-17.6	1.66 H	204	19.5	16.9		
7	#17235.00	56.8 PK	68.2	-11.4	1.77 H	229	34.6	22.2		
		A	Antenna Polar	ity & Test Dis	stance : Verti	cal at 3 m				
No	Ereguency Emission Limit				Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	#5638.80	54.0 PK	68.2	-14.2	1.80 V	158	48.4	5.6		
2	*5745.00	115.5 PK			1.80 V	158	75.6	39.9		
3	*5745.00	106.3 AV			1.80 V	158	66.4	39.9		
4	#5955.10	54.1 PK	68.2	-14.1	1.80 V	158	47.7	6.4		
5	11490.00	50.8 PK	74.0	-23.2	2.51 V	196	33.9	16.9		
6	11490.00	36.8 AV	54.0	-17.2	2.51 V	196	19.9	16.9		
7	#17235.00	57.0 PK	68.2	-11.2	1.33 V	212	34.8	22.2		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

NFC + Bluetooth + 802.11ax (HE160) Full RU (Under controlled by Standard Power AP)

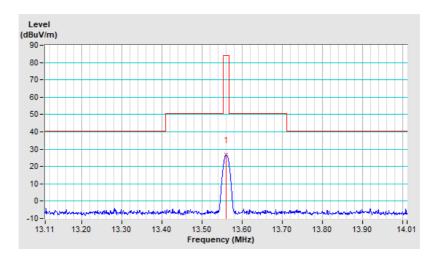

NFC Type A

EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang	

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)	
1	*13.56	31.1 QP	84.0	-52.9	1.00	164	49.7	-18.6	

Remarks:

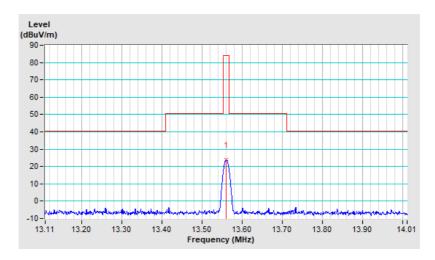
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor(dB)+Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency
- 6. Above limits have been translated by the formula



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang	

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)	
1	*13.56	26.7 QP	84.0	-57.3	1.00	246	45.3	-18.6	

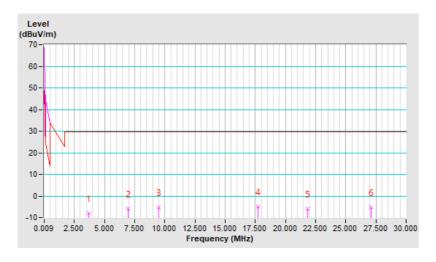
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor(dB)+Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency
- 6. Above limits have been translated by the formula



EUT Test Condition		Measurement Detail	Quasi-Peak	
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang	

	Antenna Polarity & Test Distance: Loop Antenna Ground Parallel At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)	
1	*13.56	23.8 QP	84.0	-60.2	1.00	144	42.4	-18.6	

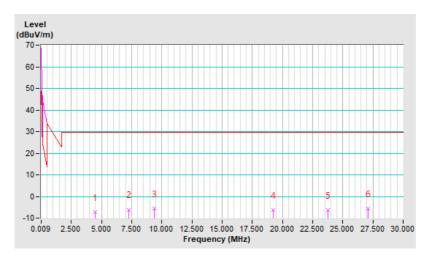
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor(dB)+Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency
- 6. Above limits have been translated by the formula



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 30MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang	

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)		
1	3.70	-7.8 QP	29.5	-37.3	1.00	356	12.5	-20.3		
2	6.97	-5.8 QP	29.5	-35.3	1.00	90	13.0	-18.8		
3	9.49	-5.2 QP	29.5	-34.7	1.00	227	13.6	-18.8		
4	17.73	-4.8 QP	29.5	-34.3	1.00	335	13.1	-17.9		
5	21.81	-5.9 QP	29.5	-35.4	1.00	96	12.3	-18.2		
6	27.12	-5.1 QP	29.5	-34.6	1.00	359	12.7	-17.8		

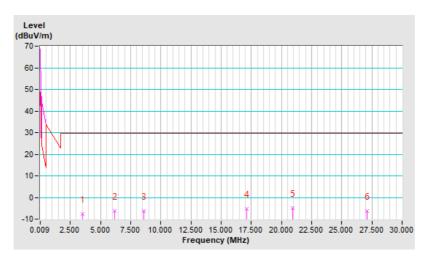
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- Pre-Amplifier Factor(dB) +Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 30MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang	

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)		
1	4.51	-7.3 QP	29.5	-36.8	1.00	349	12.8	-20.1		
2	7.24	-6.1 QP	29.5	-35.6	1.00	183	12.7	-18.8		
3	9.37	-5.5 QP	29.5	-35.0	1.00	226	13.3	-18.8		
4	19.23	-6.2 QP	29.5	-35.7	1.00	231	11.6	-17.8		
5	23.76	-6.2 QP	29.5	-35.7	1.00	108	12.2	-18.4		
6	27.12	-5.7 QP	29.5	-35.2	1.00	4	12.1	-17.8		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- Pre-Amplifier Factor(dB) +Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 30MHz	
Input Power	120Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 63% RH	Tested By	Rex Wang	

	Antenna Polarity & Test Distance: Loop Antenna Ground Paralle At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m) (30m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV) (3m)	Correction Factor (dB/m)		
1	3.49	-7.6 QP	29.5	-37.1	1.00	35	12.8	-20.4		
2	6.19	-6.2 QP	29.5	-35.7	1.00	104	12.6	-18.8		
3	8.59	-6.4 QP	29.5	-35.9	1.00	241	12.5	-18.9		
4	17.10	-5.3 QP	29.5	-34.8	1.00	57	12.7	-18.0		
5	20.94	-4.8 QP	29.5	-34.3	1.00	222	13.4	-18.2		
6	27.12	-6.3 QP	29.5	-35.8	1.00	67	11.5	-17.8		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- Pre-Amplifier Factor(dB) +Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

RF Mode	Bluetooth	Channel	CH 39: 2441 MHz
Frequency Range	1GHz ~ 25GHz	- · · · · ·	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=3 MHz, DET=RMS

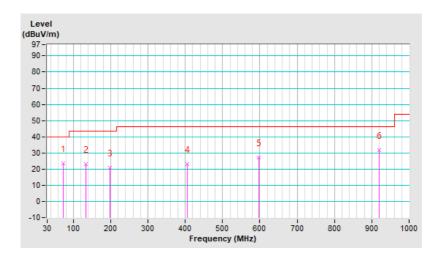
	Antenna Polarity & Test Distance : Horizontal at 3 m								
	Fraguenay	Emission	Limit	Morgin	Antenna	Table	Raw	Correction	
No	Frequency (MHz)	Level	Limit	Margin	Height	Angle	Value	Factor	
	(IVITZ)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)	
1	*2441.00	98.7 PK			1.28 H	223	66.1	32.6	
2	*2441.00	68.2 AV			1.28 H	223	35.6	32.6	
3	4882.00	46.3 PK	74.0	-27.7	2.83 H	125	41.8	4.5	
4	4882.00	15.8 AV	54.0	-38.2	2.83 H	125	11.3	4.5	
		A	ntenna Polar	ity & Test Dis	stance : Verti	cal at 3 m			
	Frequency	Emission	Limit	Margin	Antenna	Table	Raw	Correction	
No	(MHz)	Level	(dBuV/m)	(dB)	Height	Angle	Value	Factor	
	(IVITZ)	(dBuV/m)	(ubuv/III)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	
1	*2441.00	96.9 PK			1.92 V	134	64.3	32.6	
2	*2441.00	66.4 AV			1.92 V	134	33.8	32.6	
3	4882.00	46.1 PK	74.0	-27.9	2.25 V	153	41.6	4.5	
4	4882.00	15.6 AV	54.0	-38.4	2.25 V	153	11.1	4.5	
D	- ul				•		•		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula: 20 log(Duty cycle) = 20 log(3 ms / 100 ms) = -30.5 dB

RF Mode	802.11ax (HE160) Full RU	Channel	CH 45 : 6175 MHz
Frequency Range	1GHz ~ 40GHz		PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=10 Hz, DET=Peak

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*6175.00	118.0 PK			1.79 H	113	77.0	41.0
2	*6175.00	103.6 AV			1.79 H	113	62.6	41.0
3	12350.00	60.6 PK	74.0	-13.4	2.52 H	115	45.8	14.8
4	12350.00	42.1 AV	54.0	-11.9	2.52 H	115	27.3	14.8
	Antenna Polarity & Test Distance : Vertical at 3 m							
		Α	ntenna Polar	ity & Test Dis	stance : Verti	cal at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	untenna Polar Limit (dBuV/m)	ity & Test Dis Margin (dB)	stance : Vertion Antenna Height (m)	cal at 3 m Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
No 1		Emission Level	Limit	Margin	Antenna Height	Table Angle	Value	Factor
	(MHz)	Emission Level (dBuV/m)	Limit	Margin	Antenna Height (m)	Table Angle (Degree)	Value (dBuV)	Factor (dB/m)
1	(MHz) *6175.00	Emission Level (dBuV/m) 120.5 PK	Limit	Margin	Antenna Height (m) 2.44 V	Table Angle (Degree) 116	Value (dBuV) 79.5	Factor (dB/m) 41.0

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

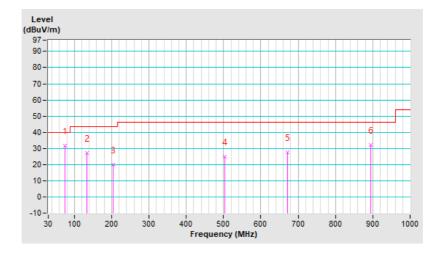

Below 1GHz data

NFC + Bluetooth + 802.11b

CHANNEL	CH 1 + CH 39 + CH 11	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
FREQUENCY RANGE	9kHz ~ 1GHz		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m									
	ANTENNA FOLANTITA TEST DISTANCE, HONZONTAL AT STIL									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	72.68	23.7 QP	40.0	-16.3	1.50 H	48	35.7	-12.0		
2	132.82	23.0 QP	43.5	-20.5	1.50 H	155	33.2	-10.2		
3	198.78	20.8 QP	43.5	-22.7	1.00 H	147	32.8	-12.0		
4	406.36	23.2 QP	46.0	-22.8	1.50 H	18	29.2	-6.0		
5	597.45	27.1 QP	46.0	-18.9	1.00 H	189	29.0	-1.9		
6	920.46	31.8 QP	46.0	-14.2	2.00 H	155	27.2	4.6		

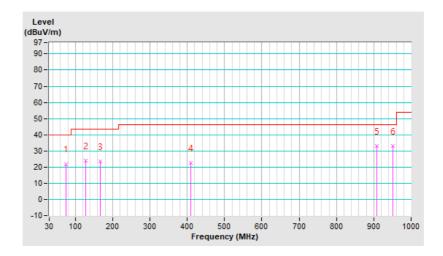
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The frequency range 9 kHz \sim 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



CHANNEL	CH 1 + CH 39 + CH 11	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
FREQUENCY RANGE	9kHz ~ 1GHz		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 m									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	74.62	31.9 QP	40.0	-8.1	1.00 V	198	44.3	-12.4		
2	132.82	27.2 QP	43.5	-16.3	1.50 V	283	37.4	-10.2		
3	203.63	19.8 QP	43.5	-23.7	1.50 V	81	31.7	-11.9		
4	503.36	24.8 QP	46.0	-21.2	1.00 V	115	28.7	-3.9		
5	672.14	27.5 QP	46.0	-18.5	2.00 V	16	28.1	-0.6		
6	895.24	32.1 QP	46.0	-13.9	1.00 V	2	28.1	4.0		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The frequency range 9 kHz \sim 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

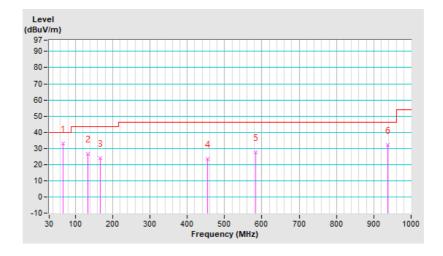


NFC + Bluetooth + 802.11a

CHANNEL	CH 1 + CH 39 + CH 149	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
FREQUENCY RANGE	9kHz ~ 1GHz		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	75.59	22.0 QP	40.0	-18.0	1.00 H	72	34.7	-12.7		
2	127.97	24.1 QP	43.5	-19.4	1.00 H	254	34.7	-10.6		
3	167.74	23.5 QP	43.5	-20.0	1.00 H	262	32.7	-9.2		
4	409.27	22.8 QP	46.0	-23.2	1.00 H	144	28.8	-6.0		
5	908.82	33.0 QP	46.0	-13.0	1.00 H	1	28.5	4.5		
6	950.53	32.9 QP	46.0	-13.1	1.00 H	77	27.8	5.1		

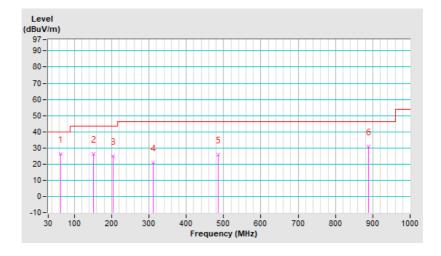
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The frequency range 9 kHz \sim 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



CHANNEL	CH 1 + CH 39 + CH 149	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
FREQUENCY RANGE	9kHz ~ 1GHz		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 m									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	67.83	33.0 QP	40.0	-7.0	1.00 V	190	43.9	-10.9		
2	132.82	26.8 QP	43.5	-16.7	1.00 V	87	37.0	-10.2		
3	167.74	23.9 QP	43.5	-19.6	1.50 V	300	33.1	-9.2		
4	453.89	23.5 QP	46.0	-22.5	1.50 V	12	28.3	-4.8		
5	583.87	27.7 QP	46.0	-18.3	1.00 V	268	29.9	-2.2		
6	936.95	32.1 QP	46.0	-13.9	2.00 V	346	27.1	5.0		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The frequency range 9 kHz \sim 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

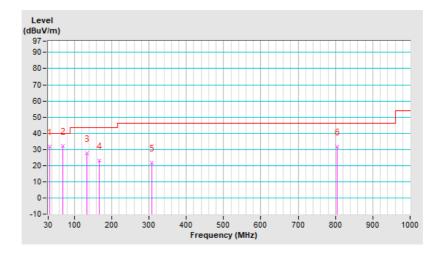


NFC + Bluetooth + 802.11ax (HE160) Full RU (Under controlled by Standard Power AP)

CHANNEL	CH 1 + CH 39 + CH 45	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
FREQUENCY RANGE	9kHz ~ 1GHz		

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 m								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	63.95	26.1 QP	40.0	-13.9	1.50 H	67	36.7	-10.6
2	151.25	26.2 QP	43.5	-17.3	1.00 H	6	35.2	-9.0
3	204.60	24.7 QP	43.5	-18.8	1.50 H	125	36.6	-11.9
4	312.27	20.7 QP	46.0	-25.3	2.00 H	323	28.2	-7.5
5	485.90	25.9 QP	46.0	-20.1	1.00 H	280	30.2	-4.3
6	888.45	30.7 QP	46.0	-15.3	1.00 H	325	26.8	3.9

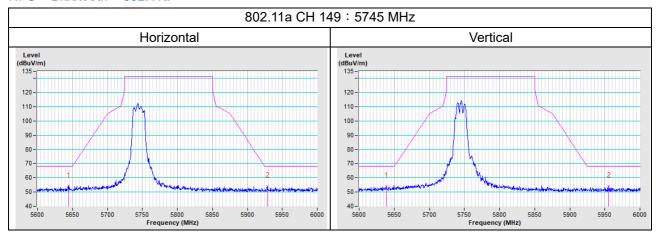
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The frequency range 9 kHz \sim 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



CHANNEL	CH 1 + CH 39 + CH 45	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
FREQUENCY RANGE	9kHz ~ 1GHz		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 m							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	34.85	31.7 QP	40.0	-8.3	1.00 V	83	42.4	-10.7
2	69.77	32.1 QP	40.0	-7.9	1.49 V	211	43.4	-11.3
3	132.82	27.6 QP	43.5	-15.9	1.00 V	313	37.8	-10.2
4	167.74	23.0 QP	43.5	-20.5	1.00 V	6	32.2	-9.2
5	307.42	21.9 QP	46.0	-24.1	1.99 V	172	29.5	-7.6
6	804.06	31.8 QP	46.0	-14.2	1.99 V	354	29.4	2.4

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The frequency range 9 kHz \sim 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.


5 Pictures of Test Arrangements
Please refer to the attached file (Test Setup Photo).

Report No.: RFBERD-WTW-P24010469-9 Page No. 57 / 59

Annex A - Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band)

NFC + Bluetooth + 802.11a

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-3-6668565 Fax: 886-3-6668323

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@bureauveritas.com. Web Site: http://ee.bureauveritas.com.tw

The address and road map of all our labs can be found in our web site also.

--- END ---