

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/erms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Releas	Release Control Record		
1 (Certificate of Conformity	. 4	
2 I	EUT Information	. 5	
2.1 2.2 2.3 2.4 2.5 2.6 2.7	Operating Frequency Bands and Mode of EUT EUT Hardware, Software and Firmware Version Description of Available Antennas to the EUT EUT Maximum Conducted Power EUT Maximum E.I.R.P. Power Transmit Power Control (TPC) Statement of Manufacturer	.5 .5 .6 .7 .8	
3. I	U-NII DFS Rule Requirements	. 9	
3.1 3.2	Working Modes and Required Test Items Test Limits and Radar Signal Parameters		
4.	Test & Support Equipment List	13	
4.1 4.2	Test Instruments Description of Support Units		
5.	Test Procedure	14	
5.1 5.2 5.3 5.4 5.4.1	DFS Measurement System Calibration of DFS Detection Threshold Level Deviation from Test Standard Radiated Test Setup Configuration Client without Radar Detection Mode	15 16 16	
6.	Test Results	17	
6.2.3 6.2.4	Summary of Test Results Test Results Test Mode: Device Operating In Client without Radar Detection Mode Channel Closing Transmission and Channel Move Time Non-Occupancy Period Non-Associated Test Non-Co-Channel Test	18 18 19 23 25	
7. I	Information on the Testing Laboratories	26	

Release Control Record

Issue No.	Description	Date Issued
RFBERD-WTW-P24010469-8	Original release.	2024/3/13

Certificate of Conformity 1

Product:	Mobile Computer/Barcode reader
Brand:	Datalogic
Test Model:	SGVWF
Sample Status:	Engineering sample
Applicant:	Datalogic S.r.l.
Test Date:	2024/2/19
Standards:	FCC Part 15, Subpart E (Section 15.407)
	KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02
	KDB 905462 D03 UNII Clients Without Radar Detection New Rules v01r02

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by : ________, Date: _______, Date: ________, 2024/3/13

Approved by: Jeremy Lin , Date: 2024/3/13

Jeremy Lin / Project Engineer

2 EUT Information

2.1 Operating Frequency Bands and Mode of EUT

Table 1: Operating Frequency Bands and Mode of EUT

Operational Made	Operating Frequency Range	
Operational Mode	5250~5350MHz	5470~5725MHz
Client without radar detection and ad hoc function	\checkmark	✓

2.2 EUT Hardware, Software and Firmware Version

Table 2: The EUT Hardware/Software/Firmware Version

Product	Model	Hardware/Software /Firmware Version
Mobile Computer/Barcode reader	SGVWF	Android 13 5.10.177-android12-9
		#1 Fri Dec 15 14:31:04 UTC 2023

2.3 Description of Available Antennas to the EUT

Table	3:	Antenna	List
iubic	υ.	/	LIOU

ANT No.	Antenna Type	Operation Frequency Range (MHz)	MAX. Gain (dBi)
8	Coupling monopole	5250-5350	0.9
9	Loop	5250-5350	0.6
8	Coupling monopole	5470-5725	1.7
9	Loop	5470-5725	0.8

*Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

2.4 EUT Maximum Conducted Power

Table 4: The Measured Conducted Output Power

802.11a

	Max. Power	
Frequency Band (MHz)	Output Power (dBm)	Output Power (mW)
5250~5350	20.08	101.752
5470~5725	19.73	93.905

802.11ax (HE20)

Frequency Pond (MHz)	Max. Power	
Frequency Band (MHz)	Output Power (dBm)	Output Power (mW)
5250~5350	18.97	78.805
5470~5725	18.89	77.526

802.11ax (HE40)

Frequency Rend (MHz)	Max. Power	
Frequency Band (MHz)	Output Power (dBm)	Output Power (mW)
5250~5350	18.85	76.654
5470~5725	19.12	81.590

802.11ax (HE80)

Frequency Rend (MHz)	Max. Power	
Frequency Band (MHz)	Output Power (dBm)	Output Power (mW)
5250~5350	16.58	45.536
5470~5725	19.08	80.946

802.11ax (HE160)

Frequency Pand (MHz)	Max. Power	
Frequency Band (MHz)	Output Power (dBm)	Output Power (mW)
5250~5350	11.06	12.768
5470~5725	15.46	35.143

2.5 EUT Maximum E.I.R.P. Power

Table 5: The EIRP Output Power List

802.11a

	Max. EIRP Power	
Frequency Band (MHz)	Output Power (dBm)	Output Power (mW)
5250~5350	20.98	125.182
5470~5725	21.43	138.896

802.11ax (HE20)

Fraguanay Rand (MHz)	Max. EIRP Power	
Frequency Band (MHz)	Output Power (dBm)	Output Power (mW)
5250~5350	19.87	96.951
5470~5725	20.59	114.669

802.11ax (HE40)

Frequency Pand (MHz)	Max. EIRP Power	
Frequency Band (MHz)	Output Power (dBm)	Output Power (mW)
5250~5350	19.75	94.305
5470~5725	20.82	120.680

802.11ax (HE80)

Frequency Pond (MHz)	Max. EIRP Power	
Frequency Band (MHz)	Output Power (dBm)	Output Power (mW)
5250~5350	17.48	56.022
5470~5725	20.78	119.728

802.11ax (HE160)

Frequency Pond (MHz)	Max. EIRP Power	
Frequency Band (MHz)	Output Power (dBm)	Output Power (mW)
5250~5350	11.96	15.708
5470~5725	17.16	52.000

2.6 Transmit Power Control (TPC)

U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

Maximum EIRP of this device is 138.896 mW which less than 500mW, therefore it's not require TPC function

TPC	E.I.R.P	FCC 15.407(h)(1)
	> 500mW	The TPC mechanism is required for system with an E.I.R.P. of above 500mW
\checkmark	< 500mW	The TPC mechanism is not required for system with an E.I.R.P. of less 500mW

2.7 Statement of Manufacturer

Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user. And the device doesn't have Ad Hoc mode on DFS frequency band.

3. U-NII DFS Rule Requirements

3.1 Working Modes and Required Test Items

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 6 and 7 for the applicability of DFS requirements for each of the operational modes.

Table C. Applicabilit	A OFC Deguirements	Drian Tallas a Channel
Table 6: Applicabilit	y of DFS Requirements	Prior To Use a Channel

	Operational Mode		
Requirement	Master	Client without radar detection	Client with radar detection
Non-Occupancy Period	✓	✓ note	\checkmark
DFS Detection Threshold	✓	Not required	\checkmark
Channel Availability Check Time	✓	Not required	Not required
U-NII Detection Bandwidth	\checkmark	Not required	\checkmark

Note: Regarding KDB 905462 D03 Client Without DFS New Rules v01r02 section (b)(5/6), If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear. An analyzer plot that contains a single 30-minute sweep on the original channel.

Table 7: Applicability of DFS Requirements during Normal Operation.

	Operational Mode	
Requirement	Master or Client with radar detection	Client without radar detection
DFS Detection Threshold	\checkmark	Not required
Channel Closing Transmission Time	\checkmark	\checkmark
Channel Move Time	\checkmark	✓
U-NII Detection Bandwidth	\checkmark	Not required

Additional requirements for devices with multiple bandwidth modes	Master or Client with radar detection	Client without radar detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing	Test using widest BW mode	Test using the widest BW mode
Transmission Time	available	available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

3.2 Test Limits and Radar Signal Parameters

Detection Threshold Values

Table 8: DFS Detection Thresholds for Master Devices And Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 9: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Parameters of DFS Test Signals

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Number of Trials	
0	1	1428 18		See Note 1	See Note 1
1	1	Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μ sec, excluding PRI values selected in Test A		60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Agg	regate (Radar Types 1	-4)	80%	120
	ort Pulse Rada annel closing ti		ed for the detection band	dwidth test, channel	move time, and

Table 10: Short Pulse Radar Test Waveforms

Radar Type Width (Lsec) Width (MHz) PHR (µsec) Pulses Per Burst Number Of Bursts Percentage Of Successful Detection Number Of Trials 5 50-100 5-20 1000-2000 1-3 8-20 80% 30 Three subsets of trials will be performed with a minimum of ten trials per subset. The subset of trials differ where the Long Pulse Type 5 Signal is tuned in frequency. a) the Channel center frequency b) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the low edge the UUT Occupied Bandwidth c) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the high edge the UUT Occupied Bandwidth the center frequency of the signal generator will remain fixed at the center of the UUT Occupied Bandwidth It include 10 trails for every subset, the formula as below, For subset case 1: the center frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 2 The center frequency of the signal generator for each trial is calculated by: FL+(0.4+Chirp Width [in MHz]) For subset case 3: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator for each trial is calculated by: FL+(0.4+Chirp Width [in MHz]) Table 12: Frequency Hopping Radar Test Waveform								VERITAS	
Radar Type Puise Width (µsec) Chirp (µsec) PRI (µsec) Number OF Pulses Pr Burst Number Of Bursts Percentage Of Successful Mumber O Trials 5 50-100 5-20 1000-2000 1-3 8-20 80% 30 Three subsets of trials will be performed with a minimum of ten trials per subset. The subset of trials differ where the Long Pulse Type 5 Signal is tuned in frequency. a) the Channel center frequency b) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the low edge the UUT Occupied Bandwidth c) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the high edge the UUT Occupied Bandwidth It include 10 trails for every subset, the formula as below, For subset case 1: the center frequency of the signal generator will remain fixed at the center of the UUT Channel. For subset case 2: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator for each trial is calculated by: FL+(0.4+Chirp Width [in MHz]) For subset case 3: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator for each trial is calculated by: FL+(0.4+Chirp Width [in MHz]) Table 12: Frequency Hopping Radar Test Waveform				Table 11: Lo	ng Pulse Rad	ar Test Wavef	orm		
Three subsets of trials will be performed with a minimum of ten trials per subset. The subset of trials differ where the Long Pulse Type 5 Signal is tuned in frequency. a) the Channel center frequency b) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the low edge the UUT Occupied Bandwidth c) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the high edge the UUT Occupied Bandwidth lt include 10 trails for every subset, the formula as below, For subset case 1: the center frequency of the signal generator will remain fixed at the center of the UUT Channel. For subset case 2: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 2 The center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator for each trial is calculated by: <i>FH</i> -(0.4* <i>Chirp Width</i> [<i>in MHz</i>]) Table 12: Frequency Hopping Radar Test Waveform		Width	Width		Pulses Per		Percentage Of Successful	Minimum Number Of Trials	
where the Long Pulse Type 5 Signal is tuned in frequency. a) the Channel center frequency b) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the low edge the UUT Occupied Bandwidth c) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the high edge the UUT Occupied Bandwidth It include 10 trails for every subset, the formula as below, For subset case 1: the center frequency of the signal generator will remain fixed at the center of the UUT Channel. For subset case 2: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 2 The center frequency of the signal generator will vary for each of the ten trials in subset case 2 Fl+(0.4*Chirp Width [in MHz]) For subset case 3: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator for each trial is calculated by: FH=(0.4*Chirp Width [in MHz]) Table 12: Frequency Hopping Radar Test Waveform	5	50-100	5-20	1000-2000	1-3	8-20	80%	30	
b) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the low edge the UUT Occupied Bandwidth c) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the high edge the UUT Occupied Bandwidth It include 10 trails for every subset, the formula as below, For subset case 1: the center frequency of the signal generator will remain fixed at the center of the UUT Channel. For subset case 2: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 2 The center frequency of the signal generator for each trial is calculated by: <i>FL</i> +(0.4* <i>Chirp Width</i> [<i>in MHz</i>]) For subset case 3: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator for each trial is calculated by: <i>FH</i> -(0.4* <i>Chirp Width</i> [<i>in MHz</i>]) Table 12: Frequency Hopping Radar Test Waveform	Three subsets of trials will be performed with a minimum of ten trials per subset. The subset of trials differ in								
For subset case 1: the center frequency of the signal generator will remain fixed at the center of the UUT Channel. For subset case 2: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 2 The center frequency of the signal generator for each trial is calculated by: <i>FL</i> +(0.4* <i>Chirp Width</i> [<i>in MHz</i>]) For subset case 3: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator for each trial is calculated by: <i>FH</i> -(0.4* <i>Chirp Width</i> [<i>in MHz</i>]) Table 12: Frequency Hopping Radar Test Waveform	 b) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the low edge of the UUT Occupied Bandwidth c) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the high edge of 								
Channel. For subset case 2: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 2 The center frequency of the signal generator for each trial is calculated by: <i>FL</i> +(0.4* <i>Chirp Width</i> [<i>in MHz</i>]) For subset case 3: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator for each trial is calculated by: <i>FH</i> -(0.4* <i>Chirp Width</i> [<i>in MHz</i>]) Table 12: Frequency Hopping Radar Test Waveform	It include 10	trails for e	very subs	et, the formula	a as below,				
Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 2 The center frequency of the signal generator for each trial is calculated by: FL+(0.4*Chirp Width [in MHz]) For subset case 3: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator for each trial is calculated by: FH-(0.4*Chirp Width [in MHz]) Table 12: Frequency Hopping Radar Test Waveform		case 1: the	center fre	quency of the	signal gener	ator will rema	in fixed at the center	of the UUT	
For subset case 3: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 3 The center frequency of the signal generator for each trial is calculated by: <i>FH</i> -(0.4* <i>Chirp Width</i> [<i>in MHz</i>]) Table 12: Frequency Hopping Radar Test Waveform	Bandwidth, t The center fi	the center requency o	frequency of the sign	of the signal	generator will	vary for each	of the ten trials in s		
Hopping Minimum	Bandwidth, t The center fi	the center requency o	frequency of the sign	of the signal	generator will	vary for each	of the ten trials in s		
Hopping Minimum									
Hopping Minimum			Tab	le 12: Freque	ency Hopping	Radar Test W	aveform		
Badar Puise DPI Dulcas Hopping Sequence Percentage Of Minimum						Length	Successful	Minimum Number Of Trials	
6 1 333 9 0.333 300 70% 30	6	1	333	9	0.333	300	70%	30	

4. Test & Support Equipment List

4.1 Test Instruments

Table 13: Test Instruments List

Description	Brand	Model No.	Serial No.	Date Of Calibration	Due Date Of Calibration
Spectrum analyzer	R&S	ESR	101264	Mar. 27, 2023	Mar. 26, 2024
Signal generator	KEYSIGHT	MXG	MY53052282	Jan. 08, 2024	Jan. 07, 2025
Horn antenna	Schwarzbeck	BBHA 9120 D	9120D-563	Nov. 12, 2023	Nov. 11, 2024
RF coaxial cable	HUBER SUHNER	SUCOFLEX 104	CABLE-DFS-01-25 4644	NA	NA

Note: Calibrate the RF coaxial cable before each test and use the radiation or conducted method to calibrate the reference FCC KDB 412172 standard.

4.2 Description of Support Units

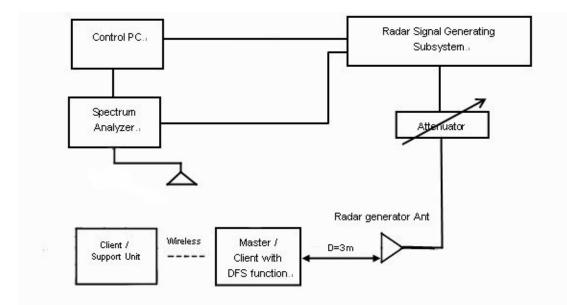
Table 14: Support Unit Information

No.	Product	Brand	Model No.	FCC ID	Gain
1	802.11ax wireless Router	ASUS	RT-AX88U	MSQ-RTAXHP00	5G Ant Min gain: 2.24dBi Maximum EIRP: 26.30dBm

NOTE: This device was functioned as a Master Slave device during the DFS test.

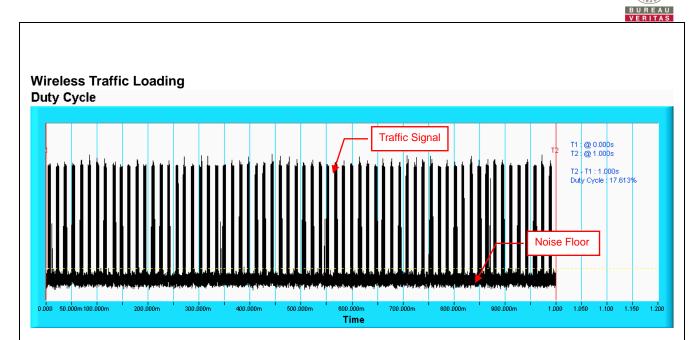
Table 15: Software/Firmware Information

No.	Product	Model No.	Software/Firmware Version	
1.	802.11ax wireless Router	RT-AX88U	3.0.0.4.384_5329-gd8d34a4	

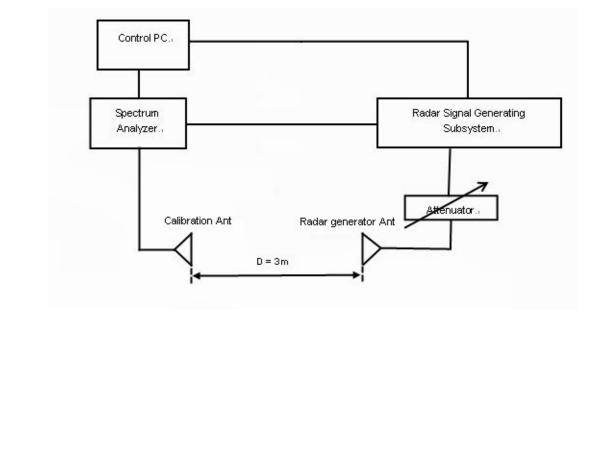


5. Test Procedure

5.1 DFS Measurement System


A complete DFS Measurement System consists of two subsystems: (1) the Radar Signal Generating Subsystem and (2) the Traffic Monitoring Subsystem. The control PC is necessary for generating the Radar waveforms in Table 10, 11 and 12. The traffic monitoring subsystem is specified to the type of unit under test (UUT).

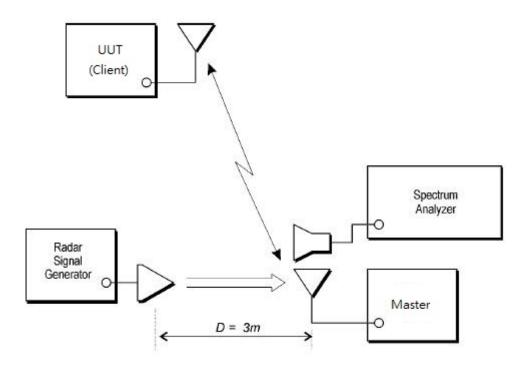
Radiated Setup Configuration of DFS Measurement System


System testing will be performed with channel-loading using means appropriate to the data types that are used by the unlicensed device. The following requirements apply:

	a) The data file must be of a type that is typical for the device (i.e., MPEG-2, MPEG-4, WAV, MP3, MP4, AVI, etc.) and must generally be transmitting in a streaming mode.
	b) Software to ping the client is permitted to simulate data transfer but must have random ping intervals.
V	c) Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater.
	d) Unicast or Multicast protocols are preferable but other protocols may be used. The appropriate protocol used must be described in the test procedures.

5.2 Calibration of DFS Detection Threshold Level

The measured channel is 5500MHz and 5510MHz and 5530MHz and 5250MHz and 5570MHz. The radar signal was the same as transmitted channels, and injected into the antenna of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time. The calibrated detection threshold level is set to -64dBm. The tested level is lower than required level hence it provides margin to the limit.


Radiated setup configuration of Calibration of DFS Detection Threshold Level

5.3 Deviation from Test Standard

No deviation.

5.4 Radiated Test Setup Configuration

5.4.1 Client without Radar Detection Mode

6. Test Results

6.1 Summary of Test Results

Clause	Test Parameter	Remarks	Pass/Fail
15.407	DFS Detection Threshold	Not Applicable	NA
15.407	Channel Availability Check Time	Not Applicable	NA
15.407	Channel Move Time	Applicable	Pass
15.407	Channel Closing Transmission Time	Applicable	Pass
15.407	Non-Occupancy Period	Applicable	Pass
15.407	Uniform Spreading	Not Applicable	NA
15.407	U-NII Detection Bandwidth	Not Applicable	NA
15.407	Non-associated test	Applicable	Pass
15.407	Non-Co-Channel test	Applicable	Pass

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

6.2 Test Results

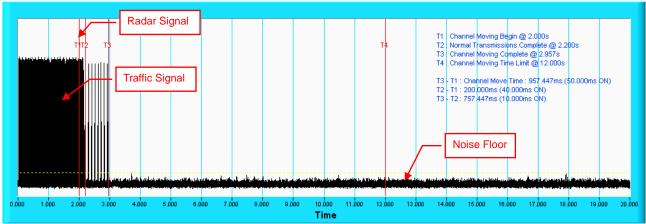
6.2.1 Test Mode: Device Operating In Client without Radar Detection Mode.

Client with injection at the Master. (The radar test signals are injected into the Master Device)

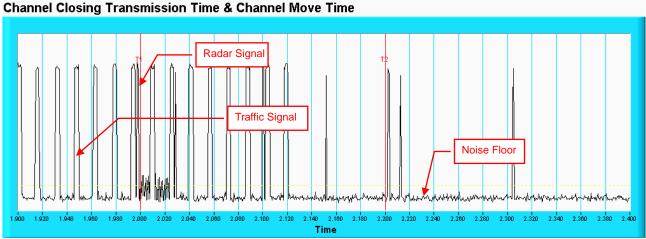
DFS Detection Threshold

For a detection threshold level of -64dBm, the required signal strength at EUT antenna location is -64dBm. The tested level is lower than required level hence it provides margin to the limit.

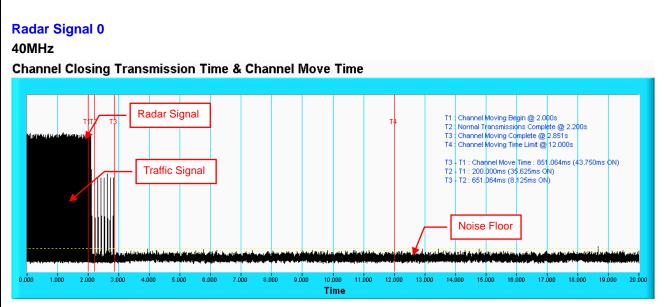
Receiver	Spe	ctrum	×					
Ref Leve Att TRG: VID P			● RE 50 ms ● VE		Inp	ut 1 AC		`,
⊖1AP Clrw								
-20 dBm—					M	1[1]	1 1	-64.12 dBm 5.71094 ms
-30 dBm—								
-40 dBm—								
-50 dBm—								1
-60 dBm—				MI			Radar signal	
-70 dBm	-TRG -70.000) dBm						
-80 dBm—								Noise Floor
proceeding the Place	anti-danidinan	n din ka kan	alapalitashalah	distanting the participation of the participation o	dest tradiciple	and and the first of the first	ub it bittlend dawy	
CF 5.5 GH	z			3200	1 pts			5.0 ms/
					Wait fo	or Trigger		23.03.2015 14:53:55

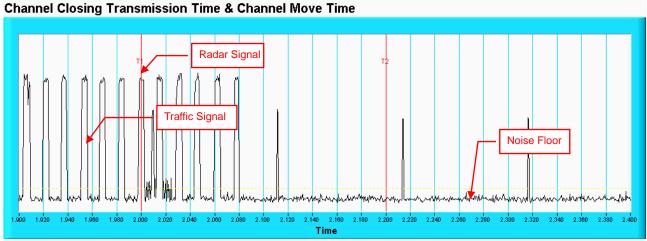

Radar Signal 0

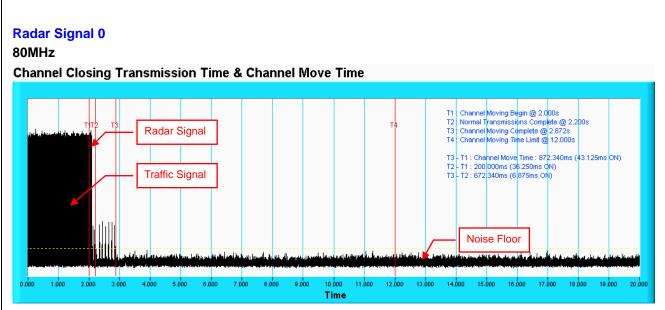
6.2.2 Channel Closing Transmission and Channel Move Time

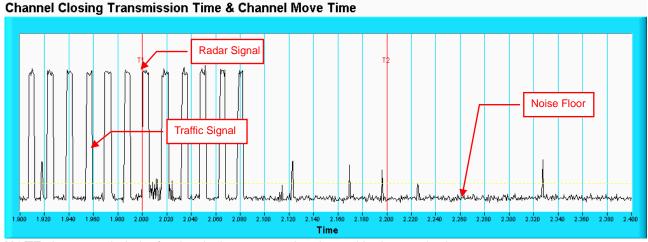

Radar Signal 0

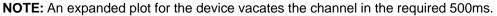
20MHz

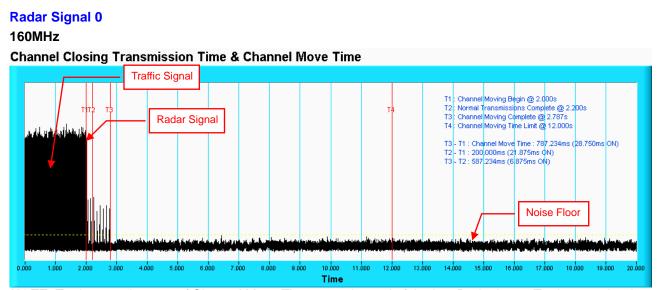

Channel Closing Transmission Time & Channel Move Time

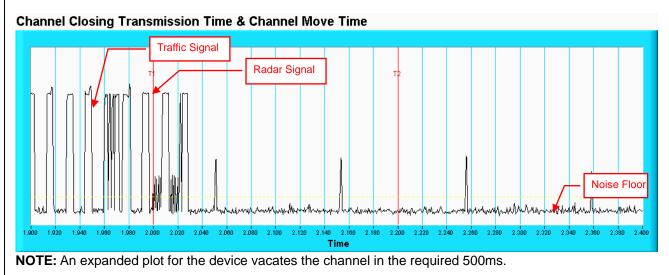

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time.T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.


NOTE: An expanded plot for the device vacates the channel in the required 500ms.

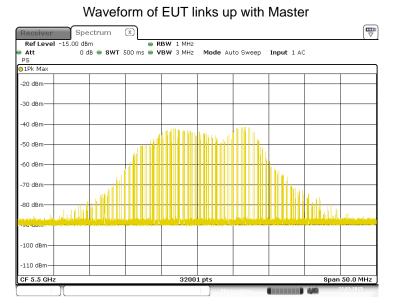

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time.T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.



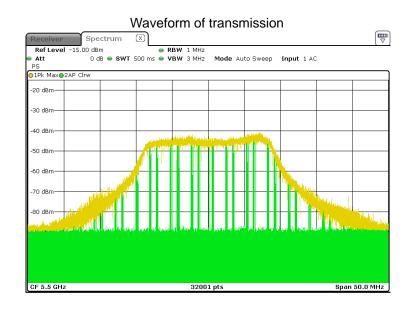


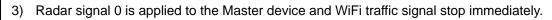

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time.T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time.T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

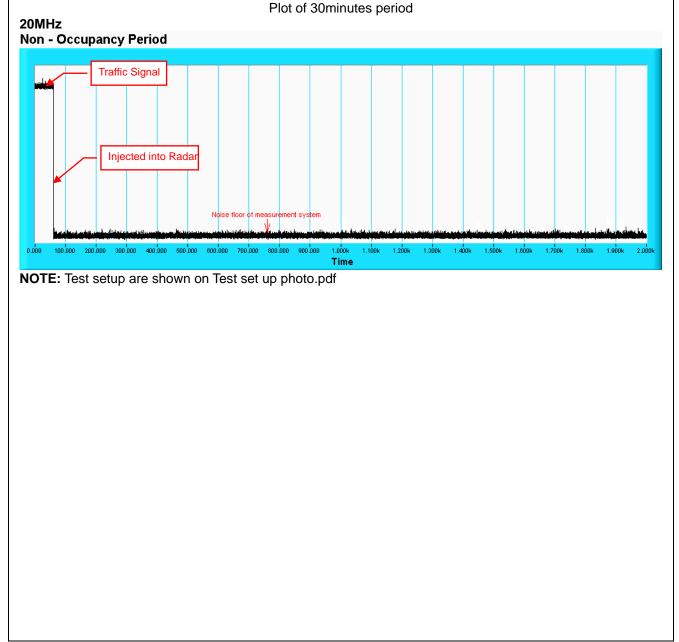


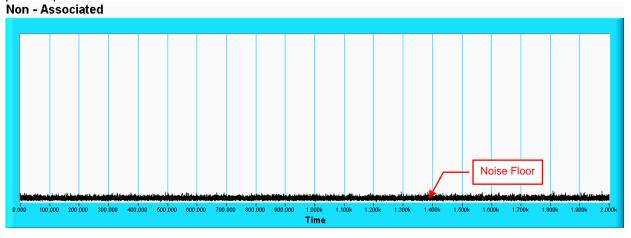
6.2.3 Non-Occupancy Period


Associate test:


During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.

1) EUT (Client) links with master on 5500MHz.


2) Client plays specified files via master.


4) 5500MHz has been monitored in 30 minutes period. In this period, no any transmission occurs.

6.2.4 Non-Associated Test

Master was off.

During the 30 minutes observation time, The UUT did not make any transmissions in the DFS band after UUT power up.

6.2.5 Non-Co-Channel Test

The UUT was investigated after radar was detected and confirmed that no co-channel operation with radars.

7. Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@bureauveritas.com Web Site: http://ee.bureauveritas.com.tw

The address and road map of all our labs can be found in our web site also.

--- END ---