

Test Report Issue Date
May 12, 2009

<u>Test Report Serial No.</u> 050509Q9S-T965-S90U

Description of Test(s)

Specific Absorption Rate

RF Exposure Categor

General Population

SAR TEST REPORT (FCC/IC)

RF EXPOSURE EVALUATION SPECIFIC ABSORPTION RATE NORTHFIELD TELECOMMUNICATIONS, INC. MANUFACTURER / APPLICANT D/B/A ADVANCED WIRELESS COMMUNICATIONS **DEVICE UNDER TEST (DUT)** PORTABLE FM UHF PUSH-TO-TALK (PTT) RADIO TRANSCEIVER **DEVICE FREQUENCY RANGE(S)** 460.0 - 462.5375 MHz 462.7375 - 467.5375 MHz 467.7375 - 470.0 MHz **DEVICE MODEL(S) AWR391V2** 4651A-AWR391V2 FCC ID: **Q9SAWR391V2** IC: **DEVICE IDENTIFIER(S) APPLICATION TYPE** Certification FCC 47 CFR §2.1093 STANDARD(S) APPLIED **Health Canada Safety Code 6** FCC OET Bulletin 65, Supplement C (01-01) FCC Mobile & Portable RF Exposure Procedures (KDB 447498 D01 v03r03) PROCEDURE(S) APPLIED **Industry Canada RSS-102 Issue 2 IEEE 1528-2003** IEC 62209-1:2005 **RF EXPOSURE CATEGORY General Population / Uncontrolled** RF EXPOSURE EVALUATION(S) Face-held & Body-worn DATE(S) OF EVALUATION(S) May 05, 2009 **TEST REPORT SERIAL NO.** 050509Q9S-T965-S90U **TEST REPORT REVISION NO.** Revision 1.0 **Initial Release** May 12, 2009 **Testing Performed By Test Report Prepared By TEST REPORT SIGNATORIES** Jonathan Hughes **Sean Johnston** Celltech Labs Inc. Celltech Labs Inc. **Celltech Compliance Testing and Engineering Lab TEST LAB AND LOCATION** 21-364 Lougheed Road, Kelowna, B.C. V1X 7R8 Canada Tel.: 250-765-7650 Fax: 250-765-7645 **TEST LAB CONTACT INFO.** info@celltechlabs.com www.celltechlabs.com **TEST LAB ACCREDITATION(S)** Test Lab Certificate No. 2470.01

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	/2 IC: 465			1A-AWR391V2	APPENDED TO
Model(s):	AWR39	1V2	DUT:	Portable FM UI	HF PTT Radi	Fr	eq. Ra	nge:	460 - 470 MHz	ACHANCES WINELESS	
2009 Celltech L	_abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.									

Date(s) of Evaluation
May 05, 2009

Test Report Serial No. 050509Q9S-T965-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

		RATION OI EXPOSUR									
Test Lab Information	Name	CELLTECH L	ABS I	NC.							
rest Lab information	Address	21-364 Lough	need Ro	oad, Kelowna,	B.C. V1X 7	R8 Car	nada				
Applicant Information	Name			COMMUNICA WIRELESS CO			3				
	Address	20809 Kensin	igton B	lvd., Lakeville,	MN 55044	United	States				
Standard(s) Applied	FCC	47 CFR §2.10	93								
Standard(s) Applied	IC	Health Canad	Canada Safety Code 6								
	FCC	OET Bulletin	OET Bulletin 65, Supplement C (Edition 01-01)								
	FCC	Mobile & Port	Mobile & Portable RF Exposure Procedures (KDB 447498 D01 v03r03)								
Procedure(s) Applied	IC	RSS-102 Issu	RSS-102 Issue 2								
	IEEE	1528-2003									
	IEC 62209-1:2005 egory Portable General Population / Uncontrolled Environment										
Device RF Exposure Category	Portable	General Popu	ılation /	Uncontrolled	Environmer	nt					
	FCC ID:	Q9SAWR391	V2								
Device Identifier(s)	IC:	4651A-AWR3	891V2								
Device identifier(3)	Model(s)	AWR391V2									
	Serial No.	20090323001 (Identical Prototype)									
Device Description	Portable FM	UHF Push-To-	Talk (P	TT) Radio Trar	nsceiver (Bu	ısiness	Band)				
Transmit Frequency Range(s)	460.0 - 462.5	375 MHz (B1)	462.7	375 - 467.5375	MHz (B2)	467.7	7375 - 470.0 MHz (B3)				
Max. RF Output Power Tested	1 Watt		30.0	dBm		Cond	lucted				
Antenna Type(s) Tested	Fixed Externa	al (Non-detacha	able)								
Battery Type(s) Tested	Lithium-ion		3.7 V	'	830 mAh		Model: AWB-391				
	Lanyard		Mode	el: AWL391	contai	ns met	allic component(s)				
Body-worn Accessories Tested	Magnetic Clo	thing Clip	Mode	el: AWM-391	contai	ns met	allic component(s)				
	Belt-Clip Hols	ster Swivel	Mode	el: AWHOL-39	l contai	ns met	allic component(s)				
Audio Accessories Tested	Earbud Head	set	Mode	el: AWEH391							
Max. SAR Level(s) Evaluated	Face-held	0.660 W/kg	1g	50% duty cyc	de Gene	ral Pop	ulation / Uncontrolled				
INIAN. OAIT LEVEI(3) LVAIIAATEU	Body-worn	1.39 W/kg	1g	50% duty cyc	de Gene	ral Pop	ulation / Uncontrolled				
FCC/IC Spatial Peak SAR Limit	Head/Body	1.6 W/kg	1g	50% duty cyc	de Gene	ral Pop	ulation / Uncontrolled				

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6 for the General Population / Uncontrolled Exposure environment. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), Industry Canada RSS-102 Issue 2, IEEE Standard 1528-2003 and IEC International Standard 62209-1:2005. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results and statements contained in this report pertain only to the device(s) evaluated.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

Test Report Approved By

Sean Johnston

Celltech Labs Inc.

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	IC:	465	1A-AWR391V2	APPROVED TO	
Model(s):	AWR39	1V2	DUT:	Portable FM UI	HF PTT Radi	PTT Radio Transceiver			nge:	460 - 470 MHz	AGNANCES WINELESS
2009 Celltech L	O Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								Page 2 of 47		

Test Report Issue Date
May 12, 2009

<u>Test Report Serial No.</u> 050509Q9S-T965-S90U

<u>Description of Test(s)</u> Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

ACAMICUS MENTICAS

Page 3 of 47

TABLE OF CONTENTS	
1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	4
3.0 SAR EVALUATION POWER THRESHOLDS FOR PTT DEVICES	5
4.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES	5
5.0 MEASUREMENT SUMMARY	6
6.0 DETAILS OF SAR EVALUATION	7
7.0 EVALUATION PROCEDURES	7
8.0 SYSTEM PERFORMANCE CHECK	8
9.0 SIMULATED EQUIVALENT TISSUES	9
10.0 SAR LIMITS	9
11.0 ROBOT SYSTEM SPECIFICATIONS	10
12.0 PROBE SPECIFICATION (ET3DV6)	11
13.0 SIDE PLANAR PHANTOM	11
14.0 VALIDATION PLANAR PHANTOM	11
15.0 DEVICE HOLDER	11
16.0 TEST EQUIPMENT LIST	12
17.0 MEASUREMENT UNCERTAINTIES	13
18.0 REFERENCES	14
APPENDIX A - SAR MEASUREMENT DATA	15
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	27
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	30
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	33
APPENDIX E - DIPOLE CALIBRATION (FCC KDB 250418) & PROBE CALIBRATION	47

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391\	/2	IC:	4651A-AWR391V2		
Model(s):	AWR39	1V2	DUT:	Portable FM UI	HF PTT Radi	o Transceiver	F	req. Ra	nge:	460 - 470 MHz	
2009 Celltech I	abs Inc.	This	document is	s not to be reproduced	d in whole or in p	part without the prior	writt	en permis	ssion of	Celltech Labs Inc.	

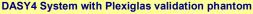
Test Report Issue Date
May 12, 2009

Test Report Serial No. 050509Q9S-T965-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
General Population




1.0 INTRODUCTION

This measurement report demonstrates compliance of the Advanced Wireless Communications Model: AWR391V2 Portable FM UHF PTT Radio Transceiver with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C (Edition 01-01) (see reference [3]), IC RSS-102 Issue 2 (see reference [4]), IEEE Standard 1528-2003 (see reference [5]) and IEC International Standard 62209-1:2005 (see reference [6]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for Head and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

DASY4 System with Plexiglas side planar phantom

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	/2 IC	: 46	1A-AWR391V2	Afficial
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	F PTT Radio Transceiver		Range:	460 - 470 MHz	APPART LE
2009 Celltech I	abs Inc.	This	document is	s not to be reproduced	d in whole or in p	part without the prior	written pe	ermission o	Celltech Labs Inc.	Page 4 of 47

Date(s) of Evaluation
May 05, 2009

Test Report Issue Date | Description of Test(s)

May 12, 2009 | Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

3.0 SAR EVALUATION POWER THRESHOLDS FOR PTT DEVICES

The power thresholds and operating conditions listed in the table below are used to determine SAR test requirements for PTT radios required to comply with the general population and occupational exposure limit. SAR is required for PTT devices with maximum output power greater than these thresholds. SAR evaluation is also required for separation distances smaller than those listed in the table below.

Test Report Serial No.

050509Q9S-T965-S90U

(FCC KDB 447498 D0	er Thresholds for PTT I 1 v03r03 Section 5)b)i) Exposure Procedures	Measured RF Conducted Output Power						
Exposure Conditions	General Population P mW	Occupational P mW	100% PTT Duty Cycle	50% PTT Duty Cycle				
Held to face d ≥ 2.5 cm	250	1250						
Body-worn d <u>></u> 1.5 cm	200	1000	1 Watt	0.5 Watts				
Body-worn d <u>></u> 1.0 cm	150	750						
duty factor, is compa	output power, corresponding the with these thresholds. In between the user and the power thresholds.							

4.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within ± 50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within ± 100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, ± 25 MHz < 300 MHz and ± 50 MHz ≥ 300 MHz, require additional steps (per FCC KDB 450824 D01 v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [8]).

Probe Calibration Freq.	Device Measurement Freq.	Frequency Interval	±50 MHz ≥ 300 MHz
	461.58 MHz	11.58 MHz	< 50 MHz
450 MHz	465.56 MHz	15.56 MHz	< 50 MHz
	470.03 MHz	20.03 MHz	< 50 MHz

The probe calibration and measurement frequency interval is < 50 MHz; therefore the additional steps are not required for this evaluation.

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	Q9SAWR391V2			IA-AWR391V2	(SIC)	
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Freq. Range:		nge: 460 - 470 MHz			
2009 Celltech L	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.									Page 5 of 47		

Test Report Issue Date
May 12, 2009

Description of Test(s)
Specific Absorption Rate

Test Report Serial No.

050509Q9S-T965-S90U

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

5.0 MEASUREMENT SUMMARY

						SA	R EV	ALU	JATION	RESUL	TS					
Test Type	Band	Freq.	Ch.		Accesso	ories	_		vice nce to Phantom	DUT Position to Planar	DUT Start Cond. Power	Measure 1g (W		SAR Drift During Test	Scaled with d 1g (W	roop
. , po										Phantom		Duty (Ť		Duty (1
		MHz		Body-v	vorn	Audio	DL	JT	Antenna		dBm	100%	50%	dB	100%	50%
Face	2	465.56	3				2.5	cm	2.9 cm	Front Side	30.0	1.26	0.630	-0.200	1.32	0.660
Body	2	465.56	3	Lanya	ard I	Earbud-Mic	0.0	cm	0.7 cm	Front Side	30.0	1.53	0.765	-0.003	1.53	0.766
Body	2	465.56	3	Lanya		Earbud-Mic	0.0	cm	0.1 cm	Back Side	30.0	1.83	0.915	-0.069	1.86	0.930
Body	2	465.56	3	Magne Clothi Clir	ng I	Earbud-Mid	0.6	cm	0.7 cm	Back Side	30.0	P 1.50S 1.12	0.750	-0.475	P 1.67S 1.25	0.837 0.625
Body	2	465.56	3	Belt-C Holster	lip ,	Earbud-Mic	2.0	cm	2.0 cm	Back Side	30.0	0.669	0.335	-0.032	0.674	0.337
Body	2	465.56	3 Belt-Clip Holster P2 ⁷ Earbud-Mic					cm	1.0 cm	Back Side	30.0	1.07	0.535	-0.321	1.15	0.576
Body	2	465.56	3	Belt-C Holster	P3 ⁷	Earbud-Mic	2.0	cm	2.0 cm	Back Side	30.0	0.764	0.382	-0.047	0.772	0.386
Body	1	461.58	2	Lanya	ard I	Earbud-Mic	0.0	cm	0.1 cm	Back Side	30.0	2.21	1.11	0.015	2.21	1.11
Body	3	470.03	4	Lanya	ard I	Earbud-Mic	0.0	cm	0.1 cm	Back Side	30.0	2.39	1.20	-0.667	2.79	1.39
		SA	R LIMI	Γ(S)			Н	EAD 8	BODY	SPA	ATIAL PEA	K	RF	EXPOSU	RE CATEGO	DRY
FCC	47 CFR	2.1093	Hea	lth Cana	da Safet	ty Code 6		1.6 V	N/kg	averag	ed over 1	gram	Gene	ral Populat	tion / Uncor	ntrolled
	asuremer				5, 2009			May 05, 2009 Measu						Head	Body	Unit
Meas	sured Flu	id Freq.	450.7		Hz Head		450	470 MHz Body				Temperatu			24.0	°C
Diele	ectric Cor	istant ε _r	43.5	Farget <u>+</u> 5%	Meas. 44.5	Dev. +2.3%	56.7	Targe <u>+</u> 5		-0.9%		Fluid Temperature			22.5 101.1	°C kPa
				rarget	Meas.	Dev.		Targe			•	e Humidity		101.1 35	35	%
Condu	uctivity σ	(mho/m)	0.87	<u>+</u> 5%	0.90	+3.5%	0.94	<u>+</u> 5		-4.3%		Kg/m³)			1000	
Notes	•															
1.	Detailed	l measure	ment d	ata and	plots sh	nowing the	maxin	num S	SAR location	on of the DI	UT are sho	own in App	pendix /	A .		
2.	re-evalu	ated at th	e lowe	r and up	per fre	quency ba	ands (E	Band	1 and Ban	and 2). Th d 3). The ET Bulletin	transmiss	ion bands	of the	DUT are I	ess than 1	0 MHz;
3.		a scan evally charge							Li-ion batt	ery. After	the area s	can was o	complet	ed the ba	ttery was re	eplaced
4.	scaled S	SAR resul	ts as s	hown in	the ab	ove test o	data ta	ble. Î	A SAR-ver	e SAR droc sus-Time o Test Plots).	droop eva					
5.	cycle) v		ansmit	key cor	nstantly	depresse				nuous trans device th						
6.	Fluid De	epth: <u>></u> 15	cm													
7.	Dalt Clin	Swivel P	ocition	1 = 0 dc	arees	Rel	t-Clin S	Swivel	Position 2	= -90 degre	200	Belt-Clip S	Swivel F	Position 3	- 00 dogra	ΔC

Applicant:	Advan	Advanced Wireless Communications				Q9SAWR391V	2 IC:	465	1A-AWR391V2	ATRANTA
Model(s):	AWR39	WR391V2 DUT: Portable FM U			HF PTT Radio	o Transceiver	Freq. R	ange:	ADDRESS S	
2009 Celltech L	abs Inc. This document is not to be reproduced				d in whole or in p	part without the prior	written pern	ission of	Celltech Labs Inc.	Page 6 of 47

Test Report Issue Date

May 12, 2009

Specific

<u>Test Report Serial No.</u> 050509Q9S-T965-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category

General Population

Test Lab Certificate No. 2470.01

6.0 DETAILS OF SAR EVALUATION

The Advanced Wireless Communications Model: AWR391V2 Portable FM UHF PTT Radio Transceiver was compliant for localized Specific Absorption Rate (General Population / Uncontrolled Exposure) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix D.

- 1. The DUT was evaluated in a face-held configuration with the front of the radio placed parallel to the planar phantom. A 2.5 cm spacing was maintained between the front of the DUT and the planar phantom.
- 2. The DUT was tested in a body-worn configuration with the customer-supplied lanyard accessory attached to the radio. The DUT was evaluated consecutively with the front side and back side of the radio placed parallel to, and touching, the planar phantom. The lanyard accessory supports operation of the radio when worn around the neck.
- 3. The DUT was tested in a body-worn configuration with the adhesive section of the metal magnetic clothing clip accessory mounted to the back side of the radio placed parallel to the outer surface of the planar phantom. The back side of the radio with magnetic clothing clip was magnetically attached to the non-adhesive section of the metal magnetic clothing clip and the non-adhesive section of the metal magnetic clothing clip was touching the planar phantom. The adhesive and non-adhesive sections of the magnetic clothing clip accessory provided a combined spacing of 0.6 cm from the back side of the radio to the planar phantom.
- 4. The DUT was tested in a body-worn configuration with the radio placed inside the belt-clip holster swivel accessory. The back side of the belt-clip holster swivel accessory was touching the planar phantom and provided a 2.0 cm spacing from the back side of the radio to the planar phantom. The DUT with belt-clip holster swivel accessory was evaluated in (3) alternate test configurations (see footnote 7 page 6 for configuration description).
- The body-worn SAR evaluations were performed with the customer-supplied earbud headset audio accessory connected to the headset jack on the DUT.
- 6. The average conducted power levels of the DUT referenced in this report were measured by Timco Engineering prior to the SAR evaluations on the test sample used for the SAR evaluations.
- 7. The fluid temperature was measured prior to and after the SAR evaluations to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.
- 8. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).

7.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	Advan	Advanced Wireless Communications				Q9SAWR391V	2	IC:	4651A-AWR391V2		(SIC)
Model(s):	AWR39	91V2	DUT:	Portable FM UHF PTT Radio Transceiver Freq. Range: 460 - 470 MHz				460 - 470 MHz			
2009 Celltech L	_abs Inc.	s Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 7 of 47			

Test Report Issue Date
May 12, 2009

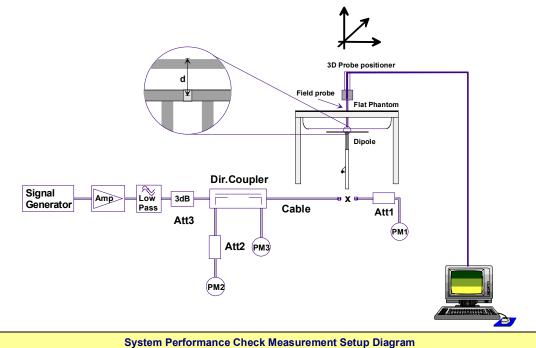
Test Report Serial No. 050509Q9S-T965-S90U

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
General Population

Test Report Revision No.


Rev. 1.0 (Initial Release)

8.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations a daily system check was performed using a Plexiglas planar phantom and 450 MHz dipole (see Appendix B for system performance check test plot) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [5]) and IEC International Standard 62209-1:2005 (see reference [6]). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C for measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ from the system validation target SAR value (see Appendix E for system validation target SAR value listed on page 10 of the dipole calibration report).

			S	YSTEM	PERF	ORMA	NCE CH	ECK E	VALU	ATION					
Equiv. Tissue				Dielectric Constant _{Er}				Conductivity σ (mho/m)			Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.
Freq. (MHz)	Sys. Val. Target	Meas.	Dev.	Sys. Val. Target	Meas.	Dev.	Sys. Val. Target	Meas.	Dev.	(Kg/m²)	(°C)	(°C)	(cm)	(%)	(kPa)
Head 450	1.22 ±10%	1.27	+4.1%	43.8 ±5%	45.3	+3.5%	0.86 ±5%	0.89	+3.5%	1000	24.0	22.8	≥ 15	35	101.1
1.	The targe	t SAR va	alue is re	eferenced	from the	System	Validation	perforn	ned by (Celltech	Labs Inc	. (see Ap	pendix	E).	
2.	The target	t dielecti	ric parar	neters are	reference	ed from	n the Syste	m Valida	ation pe	rformed	by Cellte	ch Labs	Inc. (se	e Append	lix E).
3.		e fluid temperature was measured prior to and after the system performance check to ensure the temperature remained nin +/-2°C of the fluid temperature reported during the dielectric parameter measurements.													
4.	The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).											sing a			
	Freq. (MHz) Head 450 1. 2. 3.	Freq. (MHz) Sys. Val. Target Head 1.22 ±10% 1. The targe 2. The targe 3. The fluid within +/-2	Tissue (W/kg) Freq. (MHz) Head 1.22 1.27 1. The target SAR va 2. The target dielectric par within +/-2°C of the	Equiv. Tissue (W/kg) Freq. (MHz) Sys. Val. Target Meas. Dev. Head 1.22 1.27 +4.1% 1. The target SAR value is recommended to the fluid temperature was within +/-2°C of the fluid temperature. The dielectric parameters of the fluid temperature was within +/-2°C of the fluid temperature.	Equiv. Tissue SAR 1g (W/kg) Dielect (W/kg)	Equiv. Tissue SAR 1g (W/kg) Dielectric Cons εr Freq. (MHz) Sys. Val. Target Meas. Dev. Target Meas. Head 450 ±10% 1.27 +4.1% 43.8 ±5% 45.3 1. The target SAR value is referenced from the 2. The target dielectric parameters are referenced within +/-2°C of the fluid temperature reported within +/-2°C of the fluid temperature reported the simulated 4 The dielectric parameters of the simulated	Equiv. Tissue SAR 1g (W/kg) Dielectric Constant ε _r Freq. (MHz) Sys. Val. Target Meas. Dev. Sys. Val. Target Meas. Dev. Head 450 1.22 ±10% 1.27 ±4.1% 43.8 ±5% 45.3 ±3.5% 1. The target SAR value is referenced from the System 2. 2. The target dielectric parameters are referenced from the System 3. 3. The fluid temperature was measured prior to and within ±1-2°C of the fluid temperature reported during 1. 4. The dielectric parameters of the simulated tissue	Equiv. Tissue SAR 1g (W/kg) Dielectric Constant ε _r Cor σ (W/kg) Freq. (MHz) Sys. Val. Target Meas. Dev. Sys. Val. Target Dev. Sys. Val. Target Head 450 1.22 ±10% 1.27 ±4.1% 43.8 ±5% 45.3 ±3.5% ±3.5% 0.86 ±5% 1. The target SAR value is referenced from the System Validation 2. The target dielectric parameters are referenced from the System Validation 3. The fluid temperature was measured prior to and after the swithin +/-2°C of the fluid temperature reported during the dielectric parameters of the simulated tissue mixture was measured to the simulated tissue mixture was measure	Equiv. Tissue SAR 1g (W/kg) Dielectric Constant ε _r Conductivit σ (mho/m) Freq. (MHz) Sys. Val. Target Meas. Dev. Sys. Val. Target Meas. 0.86 ±5% 0.89 1. The target SAR value is referenced from the System Validation performs 2. The target dielectric parameters are referenced from the System Validation The fluid temperature was measured prior to and after the system parameters within +/-2°C of the fluid temperature reported during the dielectric parameters of the simulated tissue mixture were measured prior to an approximate the system parameters of the simulated tissue mixture were measured prior to an approximate the system parameters of the simulated tissue mixture were measured prior to an approximate the system parameters are referenced from the	Equiv. TissueSAR 1g (W/kg)Dielectric Constant εrConductivity σ (mho/m)Freq. (MHz)Sys. Val. TargetMeas.Dev.Sys. Val. TargetMeas.Dev.Head 4501.22 ±10%1.27 ±4.1%43.8 ±5%45.3 ±3.5%0.86 ±5%0.89 ±3.5%1.The target SAR value is referenced from the System Validation performed by 0.2.2.The target dielectric parameters are referenced from the System Validation performed within ±7-2°C of the fluid temperature reported during the dielectric parameter of the simulated tissue mixture were measured prior to an an after the system performed within ±7-2°C of the fluid temperature reported during the dielectric parameter of the simulated tissue mixture were measured prior to an after the system performance of the simulated tissue mixture were measured prior to an after the system performance of the simulated tissue mixture were measured prior to an after the system performance of the simulated tissue mixture were measured prior to an after the system performance of the simulated tissue mixture were measured prior to an after the system performance of the simulated tissue mixture were measured prior to an after the system performance of the simulated tissue mixture were measured prior to an after the system performance of the simulated tissue mixture were measured prior to an after the system performance of the simulated tissue mixture were measured prior to an after the system performance of the simulated tissue mixture were measured prior to an after the system performance of the simulated tissue mixture were measured prior to an after the system performance of the simulated tissue mixture were measured prior to an after the system performance of the simulated tissue mixture were measured prior to an after the system performance of the simulated tissue mixture were measured prior to an after	Equiv. Tissue SAR 1g	Tissue (W/kg) ε _r σ (mho/m) ρ ρ (Kg/m³) Amb. Temp. (Kg/m³) P ρ (Kg/m³) Freq. (MHz) Target Meas. Dev. Sys. Val. Target Meas. Dev. Target Meas. Dev. Sys. Val. Target Meas. Dev. Sys. Val. Target Meas. Dev. Target Meas. Target Meas. Dev. Target Meas. Target Meas. De	Equiv. Tissue SAR 1g	Equiv. Tissue	Equiv. Tissue SAR 1g

450 MHz Validation Dipole Setup

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	/2	IC:	465	1A-AWR391V2	ARTHUR THE
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	rer Freq. Range: 460 - 470 M			460 - 470 MHz	ADMINITED BY
2009 Celltech I	abs Inc.	nc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 8 of 47			

Date(s) of Evaluation
May 05, 2009

Test Report Serial No. 050509Q9S-T965-S90U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

9.0 SIMULATED EQUIVALENT TISSUES

The simulated tissue mixtures consisted of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide was added and visual inspection made to ensure air bubbles were not trapped during the mixing process. The fluid was prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

		SIMULATED TI	SSUE MIXTURES		
	Water		38.56 %		52.00 %
	Sugar		56.32 %		45.65 %
INGREDIENT	Salt	450 MHz Head Tissue Mixture	3.95 %	450 MHz Body Tissue Mixture	1.75 %
	HEC		0.98 %		0.50 %
	Bactericide		0.19 %		0.10 %

10.0 SAR LIMITS

	SAR RF EXPOSU	RE LIMITS		
FCC 47 CFR 2.1093	Health Canada Safety Code 6	(General Population / Uncontrolled Exposure)	(Occupational / Controlled Exposure)	
Spatial Average (ave	raged over the whole body)	0.08 W/kg	0.4 W/kg	
Spatial Peak (avera	ged over any 1 g of tissue)	1.6 W/kg	8.0 W/kg	
Spatial Peak (hands/wrist	s/feet/ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg	

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	/2	IC:	4651A-AWR391V2		A THE STREET
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	Transceiver Freq. Range: 460 - 470 MH				460 - 470 MHz	
2009 Celltech L	abs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 9 of 47			

Date(s) of Evaluation
May 05, 2009

<u>Test Report Serial No.</u> 050509Q9S-T965-S90U

Description of Test(s)
Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

11.0 ROBOT SYSTEM SPECIFICATIONS

<u>Specifications</u>	
Positioner	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability	0.02 mm
No. of axis	6
Data Acquisition Electronic (DAE) System
Cell Controller	
Processor	AMD Athlon XP 2400+
Clock Speed	2.0 GHz
Operating System	Windows XP Professional
Data Converter	
Features	Signal Amplifier, multiplexer, A/D converter, and control logic
Software	Measurement Software: DASY4, V4.7 Build 44
Software	Postprocessing Software: SEMCAD, V1.8 Build 171
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock
DASY4 Measurement Server	
Function	Real-time data evaluation for field measurements and surface detection
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface
E-Field Probe	
Model	ET3DV6
Serial No.	1590
Construction	Triangular core fiber optic detection system
Frequency	10 MHz to 6 GHz
Linearity	± 0.2 dB (30 MHz to 3 GHz)
Evaluation Phantom	
Туре	Side Planar Phantom
Shell Material	Plexiglas
Bottom Thickness	2.0 mm ± 0.1 mm
Inner Dimensions	72.6 cm (L) x 20.3 cm (W) x 20.3 cm (H)
Validation Phantom (≤ 450MHz)	
Туре	Planar Phantom
Shell Material	Plexiglas
Bottom Thickness	6 mm ± 0.1 mm
Inner Dimensions	83.5 cm (L) x 36.9 cm (W) x 21.8 cm (H)

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	/2	IC:	465	1A-AWR391V2	ATTENDED TO
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	eiver Freq. Range: 460 - 470 N			460 - 470 MHz	ADMINITE WINELLS
2009 Celltech L	_abs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 10 of 47		

Test Report Issue Date
May 12, 2009

<u>Test Report Serial No.</u> 050509Q9S-T965-S90U

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

12.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core;

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In head simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz) Directivity: \pm 0.2 dB in head tissue (rotation around probe axis)

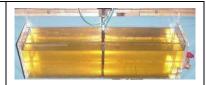
± 0.4 dB in head tissue (rotation normal to probe axis)

Dynamic Range: 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB

Surface Detect: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces

Dimensions: Overall length: 330 mm; Tip length: 16 mm;

Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm


Application: General dosimetry up to 3 GHz; Compliance tests of mobile phone

ET3DV6 E-Field Probe

13.0 SIDE PLANAR PHANTOM

The side planar phantom is constructed of Plexiglas material with a 2.0 mm shell thickness for face-held and body-worn SAR evaluations of portable radio transceivers. The side planar phantom is mounted on the side of the DASY4 compact system table.

Plexiglas Side Planar Phantom

14.0 VALIDATION PLANAR PHANTOM

The validation planar phantom is constructed of Plexiglas material with a 6.0 mm shell thickness for system validations at 450MHz and below. The validation planar phantom is mounted to the table of the DASY4 compact system.

Plexiglas Validation Planar Phantom

15.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	/2	IC:	4651A-AWR391V2		ATTO ATT D
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Fr	Freq. Range: 460 - 470 MHz			
2009 Celltech I	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 11 of 47		

Test Report Issue Date

May 12, 2009

Spe

<u>Test Report Serial No.</u> 050509Q9S-T965-S90U

<u>Description of Test(s)</u> Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

16.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE	CALIBRATION
USED	DESCRIPTION	ACCET NO.	OLIVIAL IVO.	CALIBRATED	DUE DATE
х	Schmid & Partner DASY4 System	-	-	-	-
х	-DASY4 Measurement Server	00158	1078	CNR	CNR
х	-Robot	00046	599396-01	CNR	CNR
х	-DAE4	00019	353	28Apr09	28Apr10
х	-ET3DV6 E-Field Probe	00017	1590	21Jul08	21Jul09
х	-Celltech 450 MHz Validation Dipole	00024	136	19Jan09	19Jan10
х	-Plexiglas Side Planar Phantom	00156	161	CNR	CNR
х	-Plexiglas Validation Planar Phantom	00157	137	CNR	CNR
х	HP 85070C Dielectric Probe Kit	00033	US39240170	CNR	CNR
х	Gigatronics 8652A Power Meter	00007	1835272	23Apr08	21Jul09
х	Gigatronics 80701A Power Sensor	00014	1833699	23Apr08	21Jul09
х	HP 8753ET Network Analyzer	00134	US39170292	28Apr08	28Apr10
х	HP 8648D Signal Generator	00005	3847A00611	CNR	CNR
х	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Abbr.	CNR = Calibration Not Required	•			

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	/2	IC: 4651A-AWR391V2			Arthur art Fig
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Fr	Freq. Range: 460 - 470		460 - 470 MHz	AMANCED THE SECOND
2009 Celltech	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 12 of 47			

Test Report Issue Date
May 12, 2009

<u>Test Report Serial No.</u> 050509Q9S-T965-S90U

Description of Test(s)
Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

17.0 MEASUREMENT UNCERTAINTIES

	UNCERT	AINTY BUD	GET FOR D	EVICE EVAL	UATIO	NC			
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration (450 MHz)	E.2.1	6.65	Normal	1	1	1	6.65	6.65	∞
Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	∞
Boundary Effect	E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	∞
Response Time	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	Rectangular	1.732050808	1	1	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞
Probe Positioning wrt Phantom Shell	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞
Extrapolation, interpolation & integration algorithms for max. SAR evaluation	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	2.9	Normal	1	1	1	2.9	2.9	12
Device Holder Uncertainty	E.4.1	3.6	Normal	1	1	1	3.6	3.6	8
SAR Drift Measurement	6.6.2	5	Rectangular	1.732050808	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measured)	E.3.3	4.3	Normal	1	0.64	0.43	2.8	1.8	8
Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measured)	E.3.3	2.3	Normal	1	0.6	0.49	1.4	1.1	∞
Combined Standard Uncertainty	•		RSS				11.43	11.09	
Expanded Uncertainty (95% Confidence	e Interval)		k=2				22.86	22.17	
Measurement Uncertainty Ta	able in acco	ordance with IE	EE Standard 1	528-2003 and IE	C Inter	nationa	al Standard 622	209-1:2005	

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	/2	IC:	465	ATTEN ATTEN	
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Fr	Freq. Range: 460 - 470		460 - 470 MHz	ADMINISTRATION OF THE PARTY OF
2009 Celltech I	ch Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 13 of 47			

Test Report Issue Date Des May 12, 2009 Speci

<u>Test Report Serial No.</u> 050509Q9S-T965-S90U

Description of Test(s)

Specific Absorption Rate

RF Exposure Categor

General Population

18.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.
- [2] Health Canada "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada "Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 2: November 2005.
- [5] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] IEC International Standard 62209-1:2005 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures."
- [7] Federal Communications Commission, Office of Engineering and Technology "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01 v03r03: January 2009.
- [8] Federal Communications Commission, Office of Engineering and Technology "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz 3 GHz"; KDB 450824 D01 v01r01: January 2007.

Date(s) of Evaluation
May 05, 2009

<u>Test Report Serial No.</u> 050509Q9S-T965-S90U

Description of Test(s)
Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

APPENDIX A - SAR MEASUREMENT DATA

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	/2	IC:	465	(suc)	
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Fr	Freq. Range: 460 - 470 M		460 - 470 MHz	AMANCH WRELES
2009 Celltech I	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 15 of 47			

Date(s) of Evaluation
May 05, 2009

Test Report Issue Date | Description of Test(s) |
May 12, 2009 | Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Date Tested: 05/05/2009

Face-held SAR - 465.56 MHz (Band 2)

DUT: Advanced Wireless AWR391V2; Type: Portable FM UHF PTT Radio Transceiver; Serial: 20090323001

Test Report Serial No.

050509Q9S-T965-S90U

Ambient Temp: 24°C; Fluid Temp: 22.8°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

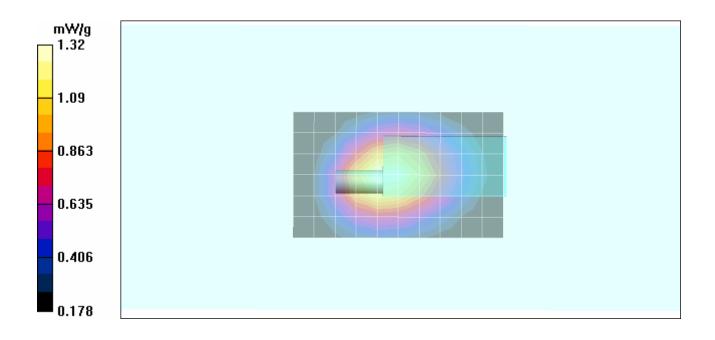
Frequency: 465.56 MHz; Duty Cycle: 1:1

Medium: HSL450 Medium parameters used: f = 465.56 MHz; σ = 0.9 mho/m; ϵ_r = 44.5; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.66, 7.66, 7.66); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Face-held SAR - 2.5 cm Spacing from Front of DUT to Planar Phantom

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.32 mW/g

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

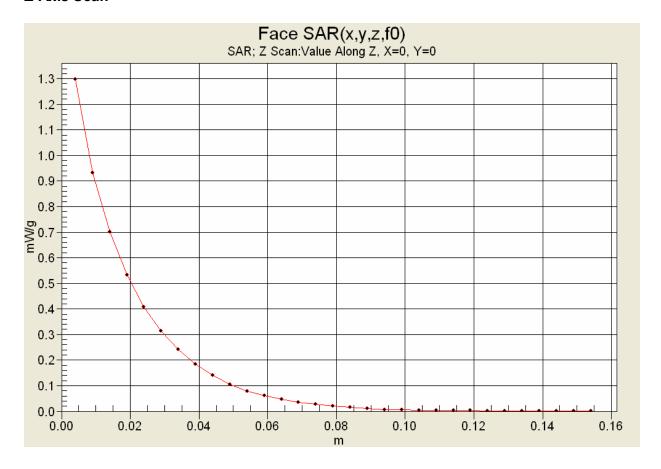
Reference Value = 39.4 V/m; Power Drift = -0.200 dB

Peak SAR (extrapolated) = 1.79 W/kg

SAR(1 g) = 1.26 mW/g; SAR(10 g) = 0.902 mW/g

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	/2	IC:	465	1A-AWR391V2	Arthur art Fig
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Freq. Range: 46			460 - 470 MHz	
2009 Celltech L	09 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								Page 16 of 47		

Test Report Issue Date | Description of Test(s)


May 12, 2009 | Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Z-Axis Scan

Test Report Serial No.

050509Q9S-T965-S90U

Date(s) of Evaluation
May 05, 2009

Test Report Issue Date Description of Test(s)

May 12, 2009 Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Date Tested: 05/05/2009

Body-worn SAR - 465.56 MHz (Band 2) - Front Side of DUT with Lanyard Accessory Audio Accessory: Ear-bud Microphone

DUT: Advanced Wireless AWR391V2; Type: Portable FM UHF PTT Radio Transceiver; Serial: 20090323001

Test Report Serial No.

050509Q9S-T965-S90U

Ambient Temp: 24°C; Fluid Temp: 22.8°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

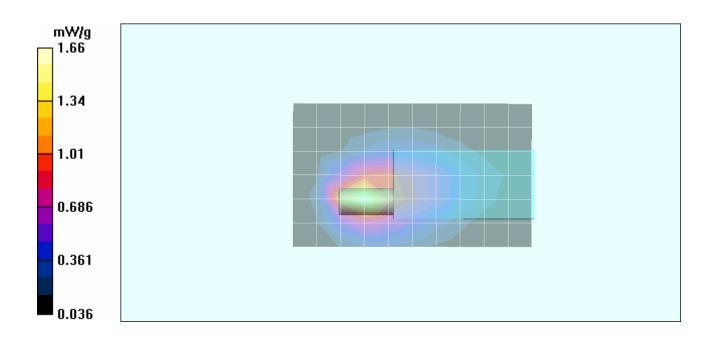
Frequency: 465.56 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 465.56 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 56.2$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(8.27, 8.27, 8.27); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - Front Side of DUT Touching Planar Phantom (with Lanyard Accessory)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

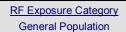

Maximum value of SAR (measured) = 1.59 mW/g

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 31.6 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 4.12 W/kg

SAR(1 g) = 1.53 mW/g; SAR(10 g) = 0.800 mW/g Maximum value of SAR (measured) = 1.66 mW/g


Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	/2	IC:	465	1A-AWR391V2	Arthur par Fig
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Freq. Range: 46			460 - 470 MHz	
2009 Celltech L	109 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								Page 18 of 47		

Date(s) of Evaluation
May 05, 2009

Test Report Issue Date | Description of Test(s) |
May 12, 2009 | Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

Date Tested: 05/05/2009

Body-worn SAR - 465.56 MHz (Band 2) - Back Side of DUT with Lanyard Accessory Audio Accessory: Ear-bud Microphone

DUT: Advanced Wireless AWR391V2; Type: Portable FM UHF PTT Radio Transceiver; Serial: 20090323001

Test Report Serial No.

050509Q9S-T965-S90U

Ambient Temp: 24°C; Fluid Temp: 22.8°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

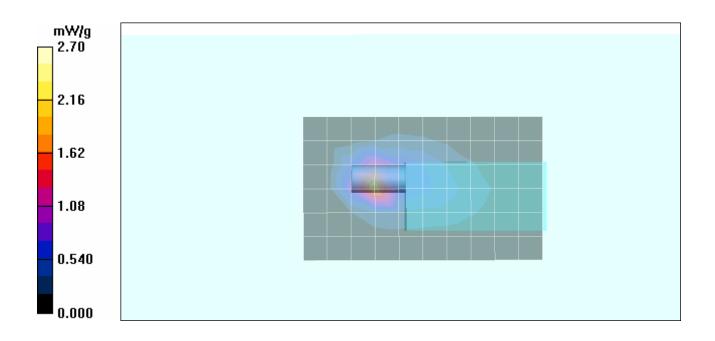
Frequency: 465.56 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 465.56 MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 56.2$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(8.27, 8.27, 8.27); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - Back Side of DUT Touching Planar Phantom (with Lanyard Accessory)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.87 mW/g

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 23.3 V/m; Power Drift = -0.069 dB

Peak SAR (extrapolated) = 6.20 W/kg

SAR(1 g) = 1.83 mW/g; SAR(10 g) = 0.714 mW/g Maximum value of SAR (measured) = 2.70 mW/g

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	2	IC:	4651A-AWR391V2		Artico del Vist	
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Freq. Range: 460 -			460 - 470 MHz		
2009 Celltech L	ch Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.								Page 19 of 47			

Date(s) of Evaluation
May 05, 2009

Test Report Issue Date | Description of Test(s) |
May 12, 2009 | Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

Date Tested: 05/05/2009

Body-worn SAR - 465.56 MHz (Band 2) - Back of DUT with Magnetic Clothing Clip Accessory Audio Accessory: Ear-bud Microphone

Test Report Serial No.

050509Q9S-T965-S90U

DUT: Advanced Wireless AWR391V2; Type: Portable FM UHF PTT Radio Transceiver; Serial: 20090323001

Ambient Temp: 24°C; Fluid Temp: 22.8°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

Frequency: 465.56 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 465.56 MHz; σ = 0.9 mho/m; ϵ_r = 56.2; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590: ConvF(8.27, 8.27, 8.27): Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 0.6 cm Magnetic Clothing Clip Spacing from Back Side of DUT to Planar Phantom

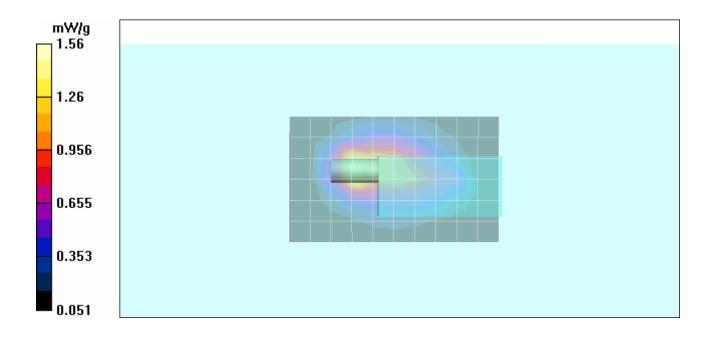
Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.33 mW/g

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 30.5 V/m; Power Drift = -0.475 dB

Peak SAR (extrapolated) = 3.98 W/kg


SAR(1 g) = 1.5 mW/g; SAR(10 g) = 0.798 mW/g Maximum value of SAR (measured) = 1.56 mW/g

Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 30.5 V/m; Power Drift = -0.475 dB

Peak SAR (extrapolated) = 2.45 W/kg

SAR(1 g) = 1.12 mW/g; SAR(10 g) = 0.685 mW/g Maximum value of SAR (measured) = 1.24 mW/g

Applicant:	Advan	vanced Wireless Communications FO		FCC ID:	Q9SAWR391V2		IC:	4651A-AWR391V2		ATTEN ATTEN	
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Fre	Freq. Range:		460 - 470 MHz	
2009 Celltech L	_abs Inc.	nc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 20 of 47		

Date(s) of Evaluation	
May 05, 2009	

Test Report Issue Date | Description of Test(s)

May 12, 2009 | Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Date Tested: 05/05/2009

Body-worn SAR - 465.56 MHz (Band 2) - Back Side of DUT with Belt-Clip Holster Accessory (0°) Audio Accessory: Ear-bud Microphone

Test Report Serial No.

050509Q9S-T965-S90U

DUT: Advanced Wireless AWR391V2; Type: Portable FM UHF PTT Radio Transceiver; Serial: 20090323001

Ambient Temp: 24°C; Fluid Temp: 22.8°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

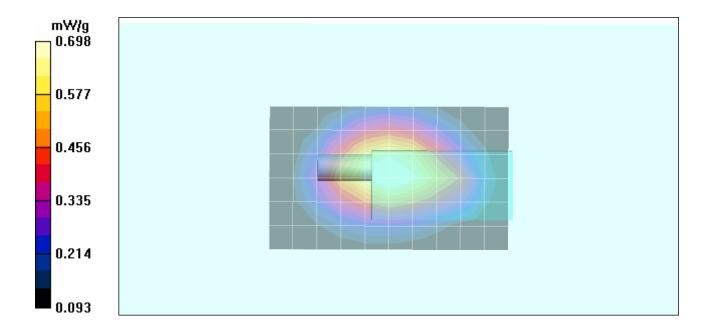
Frequency: 465.56 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 465.56 MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 56.2$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(8.27, 8.27, 8.27); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 2.0 cm Belt-Clip Holster Spacing (0° Swivel Position) from Back Side of DUT to Planar Phantom

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.770 mW/g

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 26.3 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 0.991 W/kg

SAR(1 g) = 0.669 mW/g; SAR(10 g) = 0.471 mW/gMaximum value of SAR (measured) = 0.698 mW/g

Applicant:	Advan	vanced Wireless Communications		FCC ID:	Q9SAWR391V2		IC:	4651A-AWR391V		ATTENDED TO	
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Freq. Range:		nge:	460 - 470 MHz	
2009 Celltech L	abs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 21 of 47		

Date(s) of Evaluation
May 05, 2009

Test Report Issue Date Description of Test(s)

May 12, 2009 Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Date Tested: 05/05/2009

Body-worn SAR - 465.56 MHz (Band 2) - Back Side of DUT with Belt-Clip Holster Accessory (-90°) Audio Accessory: Ear-bud Microphone

Test Report Serial No.

050509Q9S-T965-S90U

DUT: Advanced Wireless AWR391V2; Type: Portable FM UHF PTT Radio Transceiver; Serial: 20090323001

Ambient Temp: 24°C; Fluid Temp: 22.8°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

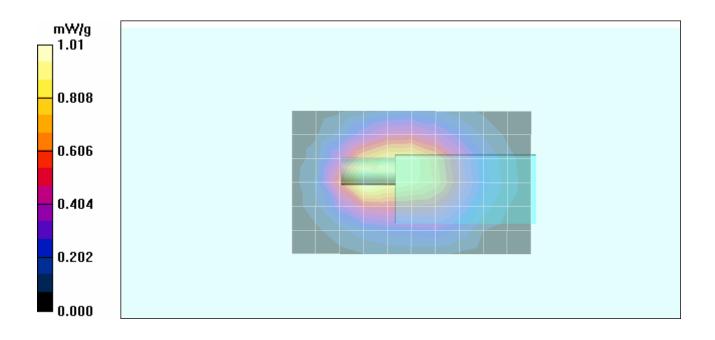
Frequency: 465.56 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 465.56 MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 56.2$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(8.27, 8.27, 8.27); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 2.0 cm Belt-Clip Holster Spacing (-90° Swivel Position) from Back Side of DUT to Planar Phantom

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.01 mW/g

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 31.0 V/m; Power Drift = -0.321 dB

Peak SAR (extrapolated) = 2.41 W/kg

SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.583 mW/g

Applicant:	Advan	anced Wireless Communications F		FCC ID:	Q9SAWR391V2		IC:	465	1A-AWR391V2	ATTENDED TO	
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Freq. Range:		nge:	460 - 470 MHz	
2009 Celltech L	_abs Inc.	nc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 22 of 47		

Date(s) of Evaluation
May 05, 2009

Test Report Issue Date | Description of Test(s)

May 12, 2009 | Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Date Tested: 05/05/2009

Body-worn SAR - 465.56 MHz (Band 2) - Back Side of DUT with Belt-Clip Holster Accessory (90°) Audio Accessory: Ear-bud Microphone

Test Report Serial No.

050509Q9S-T965-S90U

DUT: Advanced Wireless AWR391V2; Type: Portable FM UHF PTT Radio Transceiver; Serial: 20090323001

Ambient Temp: 24°C; Fluid Temp: 22.8°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

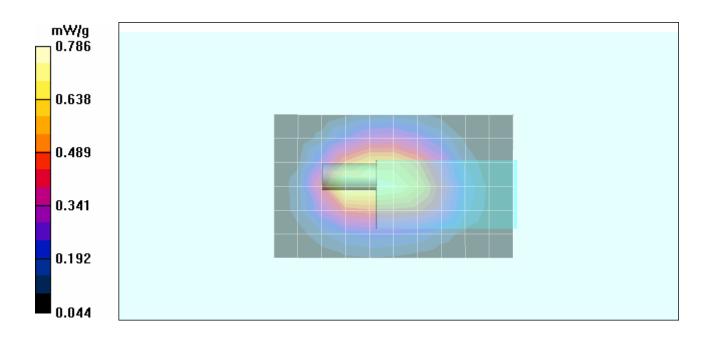
Frequency: 465.56 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 465.56 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 56.2$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(8.27, 8.27, 8.27); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 2.0 cm Belt-Clip Holster Spacing (90° Swivel Position) from Back Side of DUT to Planar Phantom

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.755 mW/g

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 24.6 V/m; Power Drift = -0.047 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.764 mW/g; SAR(10 g) = 0.510 mW/g Maximum value of SAR (measured) = 0.786 mW/g

Applicant:	Advan	dvanced Wireless Communications		FCC ID:	Q9SAWR391V2		IC:	4651	IA-AWR391V2	ATTER ATTER	
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Free	Freq. Range:		460 - 470 MHz	
2009 Celltech L	_abs Inc.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						Page 23 of 47			

Date(s) of Evaluation
May 05, 2009

Test Report Issue Date | Description of Test(s) |
May 12, 2009 | Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Date Tested: 05/05/2009

Body-worn SAR - 461.58 MHz (Band 1) - Back Side of DUT with Lanyard Accessory Audio Accessory: Ear-bud Microphone

DUT: Advanced Wireless AWR391V2; Type: Portable FM UHF PTT Radio Transceiver; Serial: 20090323001

Test Report Serial No.

050509Q9S-T965-S90U

Ambient Temp: 24°C; Fluid Temp: 22.8°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

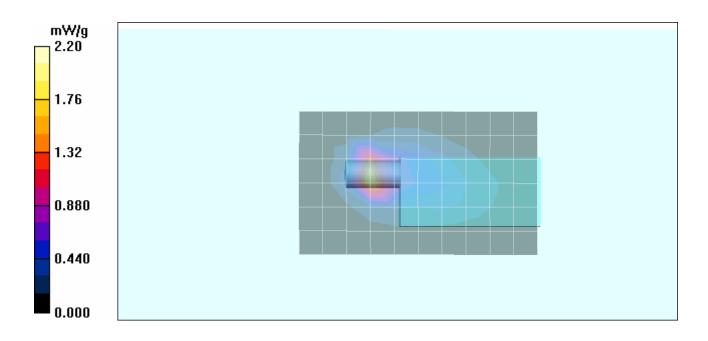
Frequency: 461.58 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 461.58 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 56.2$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(8.27, 8.27, 8.27); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - Back Side of DUT Touching Planar Phantom (with Lanyard Accessory)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.60 mW/g

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 22.8 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 11.0 W/kg

SAR(1 g) = 2.21 mW/g; SAR(10 g) = 0.784 mW/g Maximum value of SAR (measured) = 2.20 mW/g

Applicant:	Advan	dvanced Wireless Communications			FCC ID:	Q9SAWR391V	2	IC: 4651A-AWR39			ATTEN ATTEN
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Fre	Freq. Range:		460 - 470 MHz	
2009 Celltech L	_abs Inc.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						Page 24 of 47			

Date(s) of Evaluation
May 05, 2009

<u>Test Report Serial No.</u> 050509Q9S-T965-S90U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Date Tested: 05/05/2009

Body-worn SAR - 470.03 MHz (Band 3) - Back Side of DUT with Lanyard Accessory Audio Accessory: Ear-bud Microphone

DUT: Advanced Wireless AWR391V2; Type: Portable FM UHF PTT Radio Transceiver; Serial: 20090323001

Ambient Temp: 24°C; Fluid Temp: 22.8°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

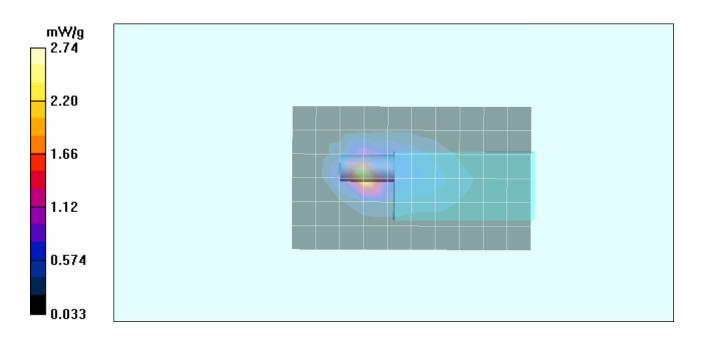
Frequency: 470.03 MHz; Duty Cycle: 1:1

Medium: M450 Medium parameters used: f = 470.03 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 56.2$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(8.27, 8.27, 8.27); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Side Planar; Type: Plexiglas; Serial: 161
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - Back Side of DUT Touching Planar Phantom (with Lanyard Accessory)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 2.31 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.5 V/m; Power Drift = -0.667 dB

Peak SAR (extrapolated) = 6.47 W/kg

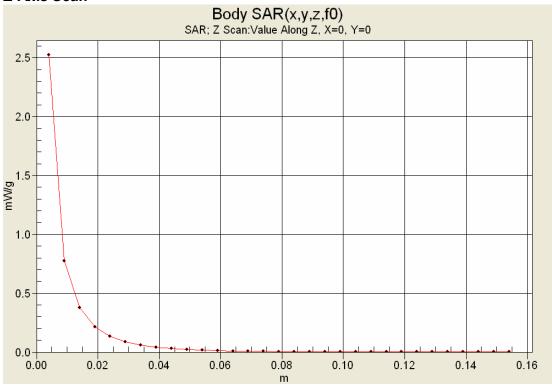
SAR(1 g) = 2.39 mW/g; SAR(10 g) = 0.937 mW/g Maximum value of SAR (measured) = 2.74 mW/g

Applicant:	Advan	vanced Wireless Communications		FCC ID:	Q9SAWR391V2		IC:	4651A-AWR391V2		Arthur are a	
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Freq. Range:		nge:	460 - 470 MHz	
2009 Celltech L	_abs Inc.								Page 25 of 47		

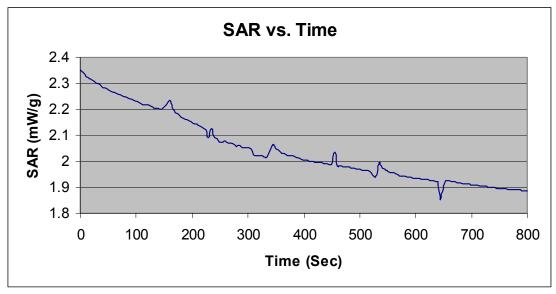
Test Report Issue Date | Description of Test(s)

May 12, 2009 | Specific Absorption Rate

Test Report Serial No.


050509Q9S-T965-S90U

Test Report Revision No. Rev. 1.0 (Initial Release)


RF Exposure Category
General Population

Z-Axis Scan

SAR-versus-Time Droop Evaluation Body-worn - Back Side with Lanyard Channel 4 - 470.03 MHz

Start SAR: 2.35017 mW/g

End SAR: 1.88648 mW/g (-0.954 dB) SAR after 340s: 2.06638 mW/g (-0.559 dB)

340s = Zoom Scan Duration

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	/2	IC: 4	651A-AWR391V2	ATTIONNET
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Fred	Freq. Range: 460 - 470 MH		ADMINITED
2009 Celltech L	_abs Inc.	This	document is	s not to be reproduced	d in whole or in p	part without the prior	written	permission	of Celltech Labs Inc.	Page 26 of 47

Date(s) of Evaluation
May 05, 2009

<u>Test Report Serial No.</u> 050509Q9S-T965-S90U

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	/2	IC:	465	1A-AWR391V2	Arthur art vit
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Fr	Freq. Range:		460 - 470 MHz	
2009 Celltech I	abs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 27 of 47				

Date(s) of Evaluation
May 05, 2009

Test Report Issue Date | Description of Test(s) |
May 12, 2009 | Specific Absorption Rate

Test Report Serial No.

050509Q9S-T965-S90U

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Date Tested: 05/05/2009

System Performance Check - 450 MHz Dipole - HSL

DUT: Dipole 450 MHz; Asset: 00024; Serial: 136; Calibration: 01/19/2009

Ambient Temp: 24°C; Fluid Temp: 22.8°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

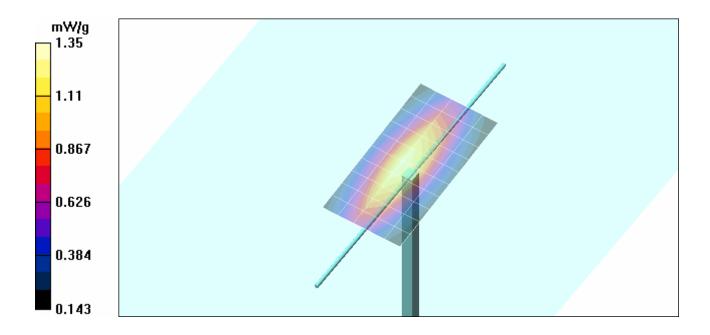
Communication System: CW Forward Conducted Power: 250 mW Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450 Medium parameters used: f = 450 MHz; σ = 0.89 mho/m; ε_r = 45.3; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(7.66, 7.66, 7.66); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 22/04/2008
- Phantom: Validation Planar; Type: Plexiglas; Serial: TE#137
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 450 MHz Dipole

Area Scan (6x11x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 1.30 mW/g

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 39.5 V/m; Power Drift = -0.007 dB

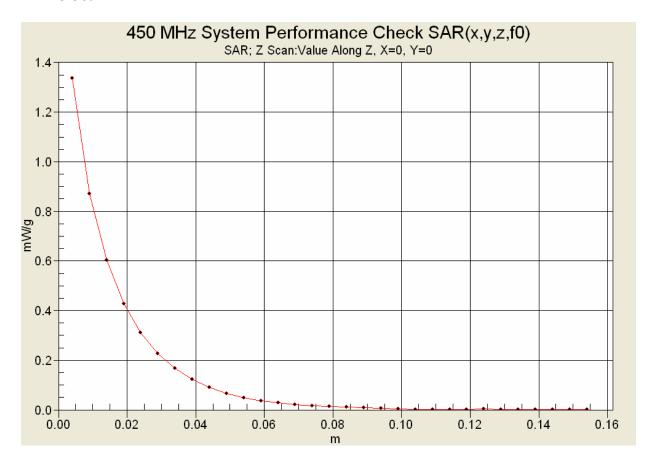
Peak SAR (extrapolated) = 2.01 W/kg

SAR(1 g) = 1.27 mW/g; SAR(10 g) = 0.836 mW/g Maximum value of SAR (measured) = 1.35 mW/g

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	2	IC:	465	1A-AWR391V2	ATTEN ATTEN
Model(s):	AWR39	91V2	DUT:	Portable FM UI	HF PTT Radi	o Transceiver	Fre	Freq. Range: 460		460 - 470 MHz	
2009 Celltech L	Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							Page 28 of 47			

Date(s) of Evaluation
May 05, 2009

Test Report Issue Date | Description of Test(s)


May 12, 2009 | Specific Absorption Rate

Test Report Revision No. Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

Z-Axis Scan

Test Report Serial No.

050509Q9S-T965-S90U

Date(s) of Evaluation
May 05, 2009

<u>Test Report Serial No.</u> 050509Q9S-T965-S90U

<u>Description of Test(s)</u> Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	/2	IC:	465	1A-AWR391V2	ATTENDATE OF
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Fr	Freq. Range: 460 - 470 MHz		ADMINISTRATION	
2009 Celltech I	_abs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 30 of 47			

Date(s) of Evaluation
May 05, 2009

Test Report Issue Date | Description of Test(s)

May 12, 2009 | Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

450 MHz System Performance Check & 465 MHz DUT Evaluation (Head)

Test Report Serial No.

050509Q9S-T965-S90U

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
05/May/2009
Frequency (GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

Freq	FCC_eH	IFCC_sl	Test_e	Test_s
0.3500	44.70	0.87	47.48	0.78
0.3600	44.58	0.87	46.91	0.79
0.3700	44.46	0.87	46.78	0.83
0.3800	44.34	0.87	46.42	0.82
0.3900	44.22	0.87	46.20	0.83
0.4000	44.10	0.87	46.52	0.85
0.4100	43.98	0.87	46.08	0.86
0.4200	43.86	0.87	46.12	0.86
0.4300	43.74	0.87	45.78	0.85
0.4400	43.62	0.87	45.74	0.88
0.4500	43.50	0.87	45.33	0.89
0.4600	43.45	0.87	45.30	0.89
0.4700	43.40	0.87	44.89	0.90
0.4800	43.34	0.87	44.35	0.92
0.4900	43.29	0.87	44.68	0.91
0.5000	43.24	0.87	44.26	0.94
0.5100	43.19	0.87	44.06	0.94
0.5200	43.14	0.88	44.04	0.95
0.5300	43.08	0.88	43.86	0.96
0.5400	43.03	0.88	43.95	0.96
0.5500	42.98	0.88	43.56	0.98

Applicant:	Advan	ced W	ireless Co	ommunications	FCC ID:	Q9SAWR391V	/2	IC:	465	1A-AWR391V2	Arthur are to	
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	Fr	Freq. Range:		460 - 470 MHz	ADMINISTRATION	
2009 Celltech L	abs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 31 of 47						

Date(s) of Evaluation
May 05, 2009

Test Report Issue Date | Description of Test(s)

May 12, 2009 | Specific Absorption Rate

Test Report Revision No.
Rev. 1.0 (Initial Release)

RF Exposure Category
General Population

465 MHz DUT Evaluation (Body)

Test Report Serial No.

050509Q9S-T965-S90U

Celltech Labs Inc.
Test Result for UIM Dielectric Parameter
05/May/2009
Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

Freq	FCC_eB	FCC_sB	Test_e	Test_s
0.3500	57.70	0.93	57.81	0.81
0.3600	57.60	0.93	57.55	0.82
0.3700	57.50	0.93	57.64	0.84
0.3800	57.40	0.93	57.30	0.85
0.3900	57.30	0.93	57.95	0.84
0.4000	57.20	0.93	57.87	0.87
0.4100	57.10	0.93	57.64	0.87
0.4200	57.00	0.94	57.07	0.88
0.4300	56.90	0.94	57.57	0.87
0.4400	56.80	0.94	57.60	0.88
0.4500	56.70	0.94	57.22	0.90
0.4600	56.66	0.94	57.21	0.90
0.4700	56.62	0.94	56.15	0.90
0.4800	56.58	0.94	56.51	0.92
0.4900	56.54	0.94	57.15	0.92
0.5000	56.51	0.94	56.89	0.94
0.5100	56.47	0.94	56.16	0.95
0.5200	56.43	0.95	56.43	0.94
0.5300	56.39	0.95	56.18	0.95
0.5400	56.35	0.95	56.55	0.96
0.5500	56.31	0.95	55.78	0.97

Applicant:	: Advanced Wireless Communications				FCC ID:	Q9SAWR391V2 IC:		IC:	4651A-AWR391V2		ATTENDA OF THE
Model(s):	AWR39	91V2	DUT:	Portable FM U	HF PTT Radi	o Transceiver	er Freq. Range:		460 - 470 MHz	ADMINIST STREET	
2009 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 32 of 47					