

EMC Test Report

Application for FCC Grant of Equipment Authorization Canada Certification Class II Permissive Change/Reassessment

Innovation, Science and Economic Development Canada RSS-Gen Issue 5 / RSS-247 Issue 2 FCC Part 15, Subpart E

Model: APIN0555

IC CERTIFICATION #: 4675A-APIN0555

FCC ID: Q9DAPIN0555

APPLICANT: Aruba, a Hewlett Packard Enterprise company

3333 Scott Blvd.

Santa Clara, CA 95054

TEST SITE(S): National Technical Systems

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-4 and 2845B-7

PROJECT NUMBER: PR075848

REPORT DATE: July 2, 2020

RE ISSUED DATE: July 28, 2020

FINAL TEST DATES: October 16, 17, 25, 29, December 3 and 5, 2018

TOTAL NUMBER OF PAGES: 71

This report and the information contained herein represent the results of testing of only those articles / products identified in this document and selected by the client. The tests were performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it present any statement whatsoever as to its merchantability or fitness of the test article or similar products, for a particular purpose. This report shall not be reproduced except in full without written approval from NTS.

VALIDATING SIGNATORIES

PROGRAM MGR

David W. Bare Chief Engineer

TECHNICAL REVIEWER:

David W. Bare Chief Engineer

FINAL REPORT PREPARER:

David Guidotti

Senior Technical Writer

QUALITY ASSURANCE DELEGATE

Gary Izard

Quality Assurance Representative

REVISION HISTORY

Rev# Date Comments Modified By July 2, 2020 First release 1 July 28, 2020 Added plots for power and bandwidth dwb

TABLE OF CONTENTS

VALIDATING SIGNATORIES	
REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	6
OBJECTIVE	6
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES	
MEASUREMENT UNCERTAINTIES	11
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENTEUT INTERFACE PORTS	
EUT OPERATION	
PROPOSED MODIFICATION DETAILS	
GENERAL	
SOFTWARE	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	15
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	16
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS ANTENNAS	
ANTENNAS AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	18
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTSSPECIFICATION LIMITS AND SAMPLE CALCULATIONS	22
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	23
FCC 15.407 (A) OUTPUT POWER LIMITS	
OUTPUT POWER LIMITS –LELAN DEVICES.	
SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	26
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	28
APPENDIX R TEST DATA	30

END	OF	REPORT	

SCOPE

An electromagnetic emissions test has been performed on the Aruba, a Hewlett Packard Enterprise company model APIN0555, pursuant to the following rules:

RSS-GEN Issue 5 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15, Subpart E requirements for UNII Devices

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems test procedures:

ANSI C63.10-2013

FCC General UNII Test Procedures KDB789033

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

National Technical Systems is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Aruba, a Hewlett Packard Enterprise company model APIN0555 complied with the requirements of the following regulations:

RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Aruba, a Hewlett Packard Enterprise company model APIN0555 and therefore apply only to the tested sample. The sample was selected and prepared by Tian Wang-Mendez of Aruba, a Hewlett Packard Enterprise company.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

OPERATION IN THE 5.15 – 5.25 GHZ BAND – ACCESS POINTS

FCC Rule Part		Description	Measured Value / Comments	Limit / Requirement	Result	
15.407 (a) (1) (ii)		Output Power	ax80+80: 103.0 mW	30 dBm EIRP <= 4W	Complies	
15.407 (a) (1) (i), (ii) or (iii)		Power Spectral Density	ax80+80: 1.9 mW/MHz	17 dBm/MHz	Complies	
15.407(b) (1) /		Spurious Emissions above 1GHz	52.9 dBµV/m @ 5130.6 MHz (-1.1 dB)	Refer to the limits section (p23) for restricted bands, all others -27 dBm/MHz EIRP	Complies	

OPERATION IN THE 5.15 – 5.25 GHZ BAND

Rule Part Description RSS-247 6.2.1 Indoor operation only R RSS-247 6.2.1 (1) 99% Bandwidth axi		Measured Value / Comments	Limit / Requirement	Result	
		Refer to user's manual	N/A	Complies	
		ax80+80: 156.48 MHz	N/A – limits output power if < 20MHz	N/A	
		ax80+80: 103.7 mW	23 dBm (200 mW)	Complies	
	RSS-247 6.2.1 (1)	Power Spectral Density	ax80+80: 2.2 mW/MHz	10 dBm/MHz	Complies
	RSS-247 6.2.1 (2)	Spurious Emissions above 1GHz	52.9 dBµV/m @ 5130.6 MHz (-1.1 dB)	Refer to the limits section (p23) for restricted bands, all others -27 dBm/MHz EIRP 26 dBc in 5.25-5.35 GHz band	Complies

Report Date: July 2, 2020, Re-Issued Date: July 28, 2020

OPERATION IN THE 5.25 – 5.35 GHZ BAND

Note: The device is restricted to indoor use only, therefore the spectral density of spurious emissions in the 5.15 – 5.25 GHz band were limited to the power spectral limits for intentional signals detailed in FCC 15.407(b)(2) and RSS 247 6.2.2 (2) i) b

XSS 247 0.2.2 (2) 1) 0					
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth		N/A – limits output power if < 20MHz	N/A
	RSS-247 6.2.2 (1)	99% Bandwidth	ax80+80: 156.48 MHz	N/A – limits EIRP if < 20MHz	N/A
15.407(a) (2)	RSS-247 6.2.1 (2)	Output Power	ax80+80: 103.8 mW	24 dBm (250 mW) EIRP <= 1W	Complies
15.407(a) (2) RSS-247 6.2.2 (1) Power Spectral De		Power Spectral Density	ax80+80: 2.2 mW/MHz	11 dBm/MHz	Complies
15.407(b) (2) / 15.209	RSS-247 6.2.2 (2)	Spurious Emissions above 1GHz	52.9 dBµV/m @ 5130.6 MHz (-1.1 dB)	Refer to the limits section (p23) for restricted bands, all others -27 dBm/MHz EIRP	Complies

OPERATION IN THE 5.47 – 5.725 GHZ BAND

FCC Rule Part	Description		Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth	> 20MHz for all modes	N/A – limits output power if < 20MHz	N/A
		99% Bandwidth	ax80+80: 156.6 MHz	N/A – limits EIRP if < 20MHz	N/A
15.407(a) (2) Output Power		24 dBm ax80+80: 185.2 mW (250 mW) EIRP <= 1W		Complies	
15.407(a) (2) Power Spectral Density		ax80+80: 3.7 mW/MHz	11 dBm/MHz	Complies	
15.407(b) (3) / Spurious Emissions above 1GHz			68.2 dBµV/m @ 5469.6 MHz (-0.1 dB)	Refer to the limits section (p23) for restricted bands, all others -27 dBm/MHz EIRP	Complies

REQUIREMENTS FOR ALL U-NII/LELAN BANDS

REQUIREMENTS FOR ALL U-NII/LELAN BANDS							
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result		
15.407	RSS-247 6.1	Modulation	System uses OFDM techniques	Digital modulation is required	Complies		
15.407(b) (6) / 15.209	RSS-247 6.2.1 (2)	Spurious Emissions below 1GHz	No change from original filing	Refer to page 25	Complies		
15.31 (m)	RSS-247 6.4 (1) RSS-Gen 6.9	Channel Selection	Emissions tested at outermost and middle channels in each band	Device was tested on the top, bottom and center channels in each band	N/A		
15.407 (c)	RSS-247 6.4 (2)	Operation in the absence of information to transmit	No change from original filing	Device shall automatically discontinue operation in the absence of information to transmit	Complies		
15.407 (g)		Frequency Stability	No change from original filing	Signal shall remain within the allocated band	Complies		
15.407 (h1)	RSS-247 6.2.2 (1) 6.2.3 (1)	Transmit Power Control	No change from original filing	The U-NII device shall have the capability to operate with a mean EIRP value lower than 24dBm (250mW)	Complies		
15.407 (h2)	RSS-247 6.3	Dynamic frequency Selection (device with radar detection)	Refer to separate test report, reference FR075848-24	Threshold -62dBm (- 64dBm if eirp > 200mW) Channel Availability Check > 60s Channel closing transmission time < 260ms Channel move time < 10s Non occupancy period > 30minutes	Complies		
	RSS-247 6.4 (5)	User manual information	No change from original filing	Warning regarding Tilt angle for EIRP compliance, Indoor use for 5150-5250 MHz band and Radar are primary user of some bands	Complies		

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS						
FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)	
15.203	-	RF Connector	No change from original filing	Unique or integral antenna required	Complies	
15.407 (b) (6)	RSS-Gen Table 4	AC Conducted Emissions	No change from original filing	Refer to page 23	Complies	
		Refer to MPE calculations in separate exhibit, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies		
-	RSS-Gen 6.8	User Manual	No change from original filing	Statement for products with detachable antenna	Complies	
-	RSS-Gen 8.4	User Manual	No change from original filing	Statement for all products	Complies	

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dDu\//m	25 to 1000 MHz	± 3.6 dB
Natiated emission (field strength)	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dΒμV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS GENERAL

The Aruba, a Hewlett Packard Enterprise company model APIN0555 is an enterprise grade Wi-Fi Access Point with two radios (one for 5 GHz bands and a second for 2.4 GHz bands). In addition, it incorporates a Bluetooth Low Energy (BLE) and ZigBee radio. Since the EUT could be placed in any position during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 56VDC, 0.6A.

The samples were received on October 12, 2018 and tested on October 16, 17, 25, 29, December 3 and 5, 2018. The following samples were used:

Company	Model	Description	Serial Number	FCC ID
Aruba	APIN0555	Wi-Fi Access Point	CNGFK9Y02N	Q9DAPIN0555
Aruba	APIN0555	Wi-Fi Access Point	CNGFK9Y005	Q9DAPIN0555

OTHER EUT DETAILS

The following EUT details should be noted:

Maximum antenna gains for internal antennas (details in test results):

2.4GHz: 4.3dBi max 5GHz: 5.8dBi max BLE/ZigBee: 4.5dBi

The Aruba APIN0555 802.11ax mode does not support partial RU configurations.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 26 cm wide by 26 cm deep by 5.5 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
		AC Adapter		

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
Dell	LatitudeE5440	Laptop	TS-0000342	-
Microsemi	PD-9001GR/AT/AC	POE adapter	None	-

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To		Cable(s)	
TOIL	Connected 10	Description	Shielded or Unshielded	Length(m)
AC Adapter	Mains	Two wire	Unshileded	1.3
POE adapter	Laptop	Cat 6	Unshileded	4
POE adapter	Mains	Three wire	Unshileded	1.3

EUT OPERATION

During emissions testing the EUT was set to transmit continuously in the 2.4 GHz and 5 GHz bands on the selected channel at the stated power level. Both Wi-Fi and BLE or ZigBee were transmitting.

PROPOSED MODIFICATION DETAILS

GENERAL

This section details the modifications to the Aruba, a Hewlett Packard Enterprise company model APIN0555 being proposed. All performance and construction deviations from the characteristics originally reported to the FCC are addressed.

SOFTWARE

The operating software was modified to allow operation in 80+80 bandwidth mode and in Tri-Radio mode. RF testing for Tri-Radio mode was included in previous C3PC application (See NTS report FR-075848.05-C3PC Rev 1). However this mode was never enabled in previously released software.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 6.2 of RSS-GEN, NTS has been recognized as an accredited test laboratory by the Commission and Innovation, Science and Economic Development Canada. A description of the facilities employed for testing is maintained by NTS.

Site	Company / Registration Numbers		Location	
Site	FCC	Canada	Location	
Chamber 4		2845B	41039 Boyce Road	
Chambar 7	US1031	(Wireless Test	Fremont,	
Chamber 7		Lab #US0027)	CA 94538-2435	

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS EMI Test Software (rev 2.10)

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

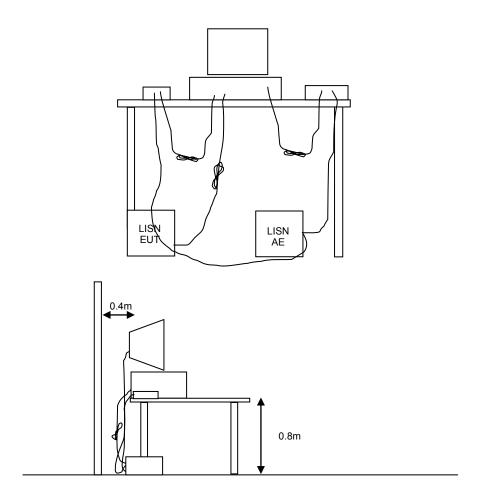
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters for testing below 1 GHz and 1.5m for testing above 1 GHz. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.


TEST PROCEDURES

EUT AND CABLE PLACEMENT

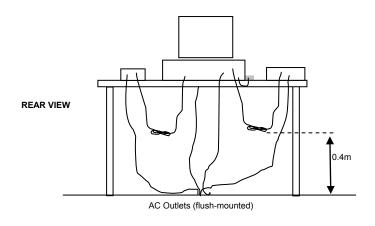
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

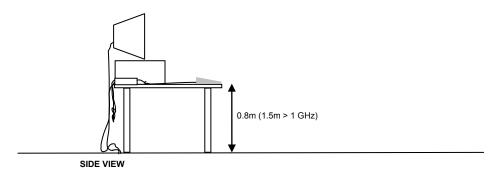
CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

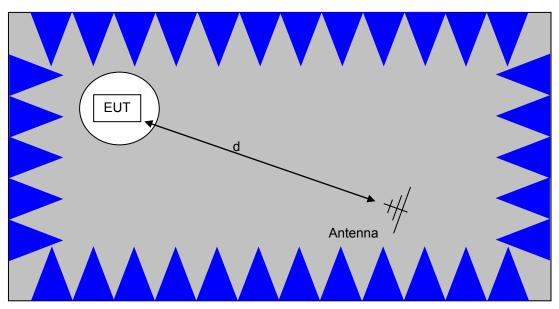
Figure 1 Typical Conducted Emissions Test Configuration

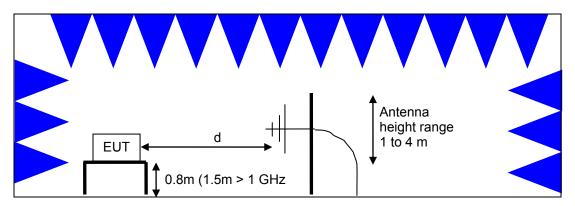
RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

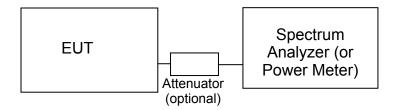
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.205 and RSS-Gen Table 7

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. For the 5250-5350 and 5470-5725 MHz bands, where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 – 5250	1Watt (30 dBm)	17 dBm/MHz
5250-5350 and 5470-5725	250 mW (24 dBm)	11 dBm/MHz
5725–5850	1 Watt (30 dBm)	30 dBm/500kHz
5925–6425 and 6525–6875	1Watt (30 dBm)	17 dBm/MHz
6425–6525 and 6875–7125	250 mW (24 dBm)	11 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band may use antennas of any gain without this limitation.

OUTPUT POWER LIMITS – LELAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 247. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral Density
(MHz)		
5150 – 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 – 5350 and 5470 - 5725	250 mW (24 dBm)2	11 dBm/MHz
3230 - 3330 and 3470 - 3723	1W (30dBm) eirp	TT dBITI/IVITIZ
5725 – 5850	1 Watt (30 dBm)	30 dBm/500kHz
5725 - 5050	4W eirp	30 UDIII/300KHZ

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band may use antennas with any gain without this limitation.

² If EIRP exceeds 500mW the device must employ TPC

SPURIOUS EMISSIONS LIMITS - UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-Gen general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS-Gen general limits. All other signals have a limit of -27dBm/MHz, which is field strength of 68.3dBuV/m/MHz at a distance of 3m. For devices operating in the 5725-5850 MHz band under the LELAN/UNII rules, the limit within 5 MHz of the allocated band slopes from 27 dBm/MHz to 15.6 dBm/MHz, from 5 MHz to 25 MHz from the allocated band slopes from 15.6 dBm/MHz to 10 dBm/MHz, from 25 MHz to 75 MHz from the allocated band slopes from 10 dBm/MHz to -27 dBm/MHz and for more than 75 MHz from the allocated band is -27dBm/MHz.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter
d
where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Manufacturer	<u>Description</u> - Band Edge, 16-Oct-18	<u>Model</u>	Asset #	<u>Calibrated</u>	Cal Due
EMCO Rohde & Schwarz	Antenna, Horn, 1-18GHz EMI Test Receiver, 20 Hz- 40 GHz	3115 ESI 40	868 2493	7/9/2018 3/22/2018	7/9/2020 3/22/2019
Radiated Emissions National Technical Systems	- Band Edge, 17-Oct-18 NTS EMI Software (rev 2.10)	N/A	0		N/A
National Technical Systems	NTS Capture Analyzer Software (rev 3.8)	N/A	0		N/A
EMCO Rohde & Schwarz	Antenna, Horn, 1-18GHz EMI Test Receiver, 20 Hz- 40 GHz	3115 ESI 40	868 2493	7/9/2018 3/22/2018	7/9/2020 3/22/2019
Radiated Spurious E	Emissions, 1000 - 18,000 MF	lz, 25-Oct-18			
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	0		N/A
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	9/18/2018	9/18/2020
Hewlett Packard	Spectrum Ánalyzer (SA40) Blue 9 kHz - 40 GHz	8564E (84125C)	1393	12/8/2017	12/8/2018
Micro-Tronics	Band Reject Filter, 2400- 2500 MHz	BRM50702-02	1683	4/18/2018	4/18/2019
Micro-Tronics	Band Reject Filter, 5150- 5350 MHz 12GHz	BRC50703-02	1729	4/18/2018	4/18/2019
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB 7	1756	7/7/2018	7/7/2019
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	8/30/2018	8/30/2019
Radiated Spurious E	Emissions, 1-18 GHz, 29-Oc	t-18			
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	0		N/A
Hewlett Packard	EMĆ Spectrum Analyzer, 9 KHz-26.5 GHz	8593EM	1141	1/25/2018	1/25/2019
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	9/18/2018	9/18/2020
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	10/8/2018	10/8/2020
Hewlett Packard	Spectrum Analyzer (SA40) Blue 9 kHz - 40 GHz	8564E (84125C)	1393	12/8/2017	12/8/2018
Micro-Tronics	Band Reject Filter, 2400- 2500 MHz	BRM50702-02	1683	4/18/2018	4/18/2019
Micro-Tronics	Band Reject Filter, 5470- 5725 MHz	BRC50704-02	1730	6/20/2018	6/20/2019
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	8/30/2018	8/30/2019
Micro-Tronics	Band Reject Filter, 2400- 2500 MHz 18GHz	BRM50702-02	2238	5/1/2018	5/1/2019

Manufacturer Micro-Tronics	<u>Description</u> Band Reject Filter, 5470- 5725 MHz	Model BRC50704-02	<u>Asset #</u> 2240	<u>Calibrated</u> 8/17/2018	<u>Cal Due</u> 8/17/2019
Micro-Tronics	Band Reject Filter, 5725- 5875 MHz	BRC50705-01	2738	8/18/2018	8/18/2019
Radiated Emissions	1,000 - 12,000 MHz, 29-Oct	-18			
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	0		N/A
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	10/8/2018	10/8/2020
Hewlett Packard	Spectrum Analyzer (SA40) Blue 9 kHz - 40 GHz	8564E (84125C)	1393	12/8/2017	12/8/2018
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	8/30/2018	8/30/2019
Micro-Tronics	Band Reject Filter, 2400- 2500 MHz 18GHz	BRM50702-02	2238	5/1/2018	5/1/2019
Micro-Tronics	Band Reject Filter, 5725- 5875 MHz	BRC50705-01	2738	8/18/2018	8/18/2019
Radio Antenna Port	(Power and Spurious Emiss	sions) 03-Dec-18			
Rohde & Schwarz	Signal Analyzer 20 Hz - 26.5 GHz	FSQ26	2327	6/25/2018	6/25/2019
Radio Antenna Port	(Power and Spurious Emiss	sions) 05-Dec-18			
Rohde & Schwarz	Signal Analyzer 20 Hz - 26.5 GHz	FSQ26	2327	6/25/2018	6/25/2019
Rohde & Schwarz	Open Switch and Control Unit with integrated power meter	OSP120 with OSP-B157 module	3000	5/1/2018	5/1/2019

Appendix B Test Data

 $TL075848\text{-RA-FCC} \quad Pages \ 31-70$

Client: Aruba, a Hewlett Packard Enterprise company	PR Number:	PR075848
Product APIN0555	T-Log Number:	TL075848-RA-FCC
System Configuration: -	Project Manager:	Christine Krebill
Contact: Mark Hill	Project Engineer:	David Bare
Emissions Standard(s): FCC §15.247 & §15.407	Class:	
Immunity Standard(s): -	Environment:	Radio

EMC Test Data

For The

Aruba, a Hewlett Packard Enterprise company

Product

APIN0555

Date of Last Test: 6/15/2020

Client: Aruba, a Hewlett Packard Enterprise company		Job Number:	PR075848
Model:	ADINOSES	T-Log Number:	TL075848-RA-FCC
	APINU000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

RSS-247 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements

Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 22-24 °C

Rel. Humidity: 38-41 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

Sample S/N: CNGFK9Y02N (BLE) & CNGFK9Y005 (Zigbee)

Driver: P4 V0.4.5

Antenna: Internal 8 antennas for 5 GHz radio and 4 antennas for 2.4 GHz radio (5GHz radio may also use 4 antennas

but with 3 dB higher power and can operate in both lower and upper 5 GHz bands simutaneously). Tests performed with 8 antennas at the 4 antenna power levels. Tests performed with 4 antennas at the target power.

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848	
Model: APIN0555	T-Log Number: TL075848-RA-FCC	
Widdel. AFIIN0000	Project Manager: Christine Krebill	
Contact: Mark Hill	Project Coordinator: David Bare	
Standard: FCC §15.247 & §15.407	Class: N/A	

Summary of Results

Summary of Results				
Run#	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2), (3) RSS-247 6.2	Pass	ax80+80: 103.0 mW
1	Power, 5250 - 5350MHz	15.407(a) (1), (2), (3) RSS-247 6.2	Pass	ax80+80: 103.8 mW
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2), (3) RSS-247 6.2	Pass	ax80+80: 1.9 mW/MHz
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2), (3) RSS-247 6.2	Pass	ax80+80: 2.2 mW/MHz
1	99% Bandwidth	RSS-247 (Information only)	Pass	ax80+80: 156.48 MHz

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033 D01

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)	
11ax80+80	MCS0	0.950	Yes	5.401	0.22	0.45	185	5 GHz only

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
Model: APIN0555	T-Log Number: TL075848-RA-FCC
Wodel. AFIN0333	Project Manager: Christine Krebill
Contact: Mark Hill	Project Coordinator: David Bare
Standard: FCC §15.247 & §15.407	Class: N/A

Run #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems

Date of Test: 12/3/2018 0:00 Config. Used: 1 (Zigbee EUT setup)

Test Engineer: Rafael Varelas Config Change: None Test Location: FT Lab #4a EUT Voltage: PoE

Constant Duty Cycle < 98%. Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, Span > OBW, # of points in sweep ≥ 2*span/RBW, RMS detector, trace average 100 traces (at least 100 traces, increase the number to get true average), power averaging on and power integration over the OBW. Tthe measurements were adjusted by adding the Pwr Cor Factor in dB. This is based on 10log(1/x), where x is the duty cycle. (method SA-2 of ANSI C63.10)

Note 2: Measured using the same analyzer settings used for output power.

For RSS-247 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that the measured value exceeds the average by more than 3dB.

Note 4: 99% Bandwidth measured in accordance with C63.10 - RB between 1-5 % of OBW and VB ≥ 3*RB, Span between 1.5 and 5 times OBW.

For MIMO systems the total output power and total PSD are calculated from the sum of the powers of the individual chains (in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain and the EIRP is the product of the effective gain and total power.

Antenna Gain Information

Note 5:

intomia ot										
Freq			Antenna Gain (dBi) / Chain					Dir G	Dir G	
rieq	1	2	3	4	5	6	7	8	(PWR)	(PSD)
5150-5250	5.5	3.7	5.3	2.9	4.3	4.5	5.8	3.9	5.3	11.3

8x8 mode uses 4 V and 4 H polarized antennas, directional gain used is the highest of the two.

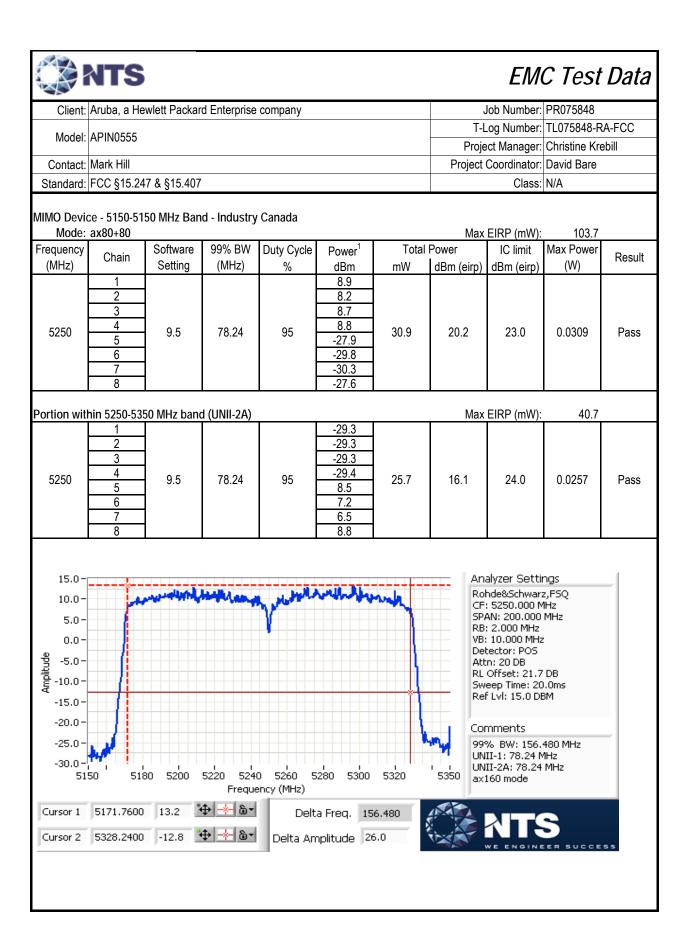
4x4 mode uses 2 V and 2 H polarized antennas, directional gain used is the highest of the two.

Legacy modes operate on all chains

Power for BF mode is reduced by 3 dB so effective antenna gain does not change

CDD active for single stream modes

For devices that support CDD modes


Min # of spatial streams: 1
Max # of spatial streams: 8

array gain associated with beamforming with 2 antennas (3dB), and the array gain associated with CDD with two antennas

FCC UNII-1	Limits	Pwr	PSD
	Outdoor AP	30	17
Χ	Indoor AP	30	17
	Station (e.g. Client)	24	11
	Outdoor AP (>30° Elv.)	21	-

(3dB for PSD and 0 dB for power)

Client:	Aruba, a He	wlett Packard Enterp		Job Number:	: PR075848				
Model:	APIN0555							: TL075848-RA-FCC	
								Christine Krebill	
	Mark Hill	7 0 045 407				Project		David Bare	
Standard:	FCC §15.24	7 & §15.407					Class:	N/A	
		50 MHz and 5250-5	350 MHz Bands -	FCC					
Mode: requency	ax80+80	Software	Duty Cycle	Power	Total	Max Power ¹	EIRP (mW):	345.8 Max Power	
(MHz)	Chain	Setting	%	dBm	mW	dBm	dBm	(W)	Resul
	1	J T T T	,,	14.4		QBIII	42	(/	
	3			12.9 14.0					
5250	4	14.5	05	14.1	103.0	20.4	20.0	0.402	Daga
5250	5	14.5	95	-23.1	103.0	20.1	30.0	0.103	Pass
	6 7			-25.8 -26.6					
	8		-	-22.2					
Portion wit	hin 5250-53 ⁵	50 MHz band (UNII-2	2Δ)			Max	EIRP (mW):	348.5	
Ortion Wit	1	John I Sana (Simi)		-23.9		l liles		0.10.0	
	3			-24.4 -24.0					
5250	4	14.5	95	-24.3	103.8	20.2	24.0	0.104	Pass
5250	5	14.5	95	14.6	103.0	20.2	24.0	0.104	F 455
	<u>6</u> 7			13.3 12.6					
	8			14.8					
C=t	Analyzer Setti								
CF: 5200	· ·	0.0-					— Ç≱ P	ITS	1
	0.000 MHz	-5.0-	_		<u>*</u>	V		-	1
VB: 3.000	MHz	-10.0-				V			1
Detector: Attn: 20 [)B	-15.0 -							1
RL Offset: Sweep Tii	21.7 DB me: 20.0ms								1
Ref Lvl: 1	5.0 DBM 100 sweeps	-20.0 -							1
Amp corr	: 0.0dB	튪 -25.0 -							1
Bin size: 1	.60 KMZ	-30.0						1	1
Highest PS	SD SD	-35.0 -							
-3.5	dBm/1.000 N	4Hz -40.0-							
		-45.0-							
	er Span		440						
Power Ov		-50.0 -¦ 5150.0 5:	160.0 518	i 80.0	5200.0	5220.	52	40.0 5250.0	
Power Ov 25,345	mw								

Cilent.	Aruba, a He	wlett Packard E	interprise company				b Number: PR075848		
Model:	APIN0555					T-Log Number: TL075848-RA-FCC Project Manager: Christine Krebill			
Contact:	Mark Hill					-	: Manager: Christine Roordinator: David Bare		
	FCC §15.24	7 & \$15.407				1 TOJOCE OF	Class: N/A		
010	J. 2 2 3 . 2 . 2 .								
	PSD - FCC ax80+80								
Frequency	Chain	Software	Duty Cycle	PSD	Total	PSD ¹	FCC Limit	Result	
(MHz)		Setting	%	dBm/MHz	mW/MHz	dBm/MHz	dBm/MHz	Result	
	2	_		-3.3 -4.7					
	3	_		-3.5					
5250	4	14.5	95	-3.6	1.8	2.6	11.7	Pass	
	5 6	_		-18.9 -22.5					
	7	_		-23.5					
	8			-18.3					
ortion wit	hin 5250-535	60 MHz band (L	JNII-2A)						
	2	_		-21.4 -22.0					
	3	_		-22.0					
5250	4	14.5	95	-21.7	2.2	3.4	6.2	Pass	
0200	5 6	11.0		-2.1 -3.6	2.2	0.1	0.2	1 400	
	7	_		-3.8					
				-2.1					
	8			- Z. I					
				-2.1	•				
_	Analyzer Setti	ngs 0.0 –		-2.1			(NTS		
CF: 5200. SPAN: 10	Analyzer Setti 000 MHz 0.000 MHz	ngs 0.0 –		-2.1		V	(NTS		
CF: 5200. SPAN: 10 RB: 1.000 VB: 3.000	Analyzer Setti 000 MHz 0.000 MHz MHz MHz MHz	-5.0		-2.1	*	V	○NTS		
CF: 5200. SPAN: 10 RB: 1.000 VB: 3.000 Detector:	Analyzer Setti 000 MHz 0,000 MHz MHz MHz RMS	-5.0 - -10.0 -		72.1	*	V	() NTS		
CF: 5200. SPAN: 10 RB: 1.000 VB: 3.000 Detector: Attn: 20 E RL Offset:	Analyzer Setti .000 MHz .0.000 MHz MHz MHz RMS DB : 21.7 DB	-5.0		-2.1		V	₩TS		
CF: 5200. SPAN: 10 RB: 1.000 VB: 3.000 Detector: Attn: 20 [RL Offset: Sweep Tii Ref Lvl: 1	Analyzer Setti 000 MHz 0,000 MHz MHz MHz RMS 221.7 DB me: 20.0ms 5.0 DBM	-5.0 - -10.0 -		72.1		V	(NTS		
CF: 5200. SPAN: 10 RB: 1.000 VB: 3.000 Detector: Attn: 20 [RL Offset: Sweep Tin Ref Lvl: 1 Pwr avg: Amp corr	Analyzer Setti 000 MHz 0.000 MHz MHz MHz RMS DB 121.7 DB me: 20.0ms 5.0 DBM 100 sweeps 1.00 sweeps	-5.0 - -10.0 - -15.0 - -20.0 -		-2.1		V	₩TS		
CF: 5200. SPAN: 10 RB: 1.000 VB: 3.000 Detector: Attn: 20 I RL Offset: Sweep Tir Ref Lvl: 1 Pwr avg:	Analyzer Setti 000 MHz 0.000 MHz MHz MHz RMS DB 121.7 DB me: 20.0ms 5.0 DBM 100 sweeps 1.00 sweeps	-5.0 - -10.0 - -15.0 -		72.1		V	(NTS		
CF: 5200. SPAN: 10 RB: 1.000 VB: 3.000 Detector: Attn: 20 E RL Offset: Sweep Ti Ref Lvl: 1 Pwr avg: Amp corr Bin size: 1	Analyzer Setti 000 MHz 0,000 MHz MHz MHz RMS DB 121.7 DB me: 20.0ms 5.0 DBM 100 sweeps 10.0dB	-5.0 - -10.0 - -15.0 - -20.0 - -25.0 - -30.0 -		-2.1		V	NTS		
CF: 5200. SPAN: 10 RB: 1.000 VB: 3.000 Detector: Attn: 20 E RL Offset: Sweep Tir Ref Lvl: 1 Pwr avg: Amp corr Bin size: 1 Highest PS	Analyzer Setti 000 MHz 0,000 MHz MHz MHz RMS DB 121.7 DB me: 20.0ms 5.0 DBM 100 sweeps 10.0dB	-5.0 - -10.0 - -15.0 - -20.0 - -25.0 - -30.0 - -35.0 -		72.1		V	(NTS		
CF: 5200. SPAN: 10 RB: 1.000 VB: 3.000 Detector: Attn: 20 E RL Offset: Sweep Tir Ref Lvl: 1 Pwr avg: Amp corr Bin size: 1 Highest PS	Analyzer Setti .000 MHz .0.000 MHz MHz MHz RMS .08 : 21.7 DB me: 20.0ms 5.0 DBM 100 sweeps : 0.0dB .60 kHz	-5.0 - -10.0 - -15.0 - -20.0 - -25.0 - -30.0 - -35.0 -		-2.1		V	(NTS		
CF: 5200. SPAN: 10 RB: 1.000 VB: 3.000 Detector: Attn: 20 E RL Offset: Sweep Tir Ref Lvl: 1 Pwr avg: Amp corr Bin size: 1	Analyzer Setti .000 MHz .0.000 MHz MHz MHz RMS .08 : 21.7 DB me: 20.0ms 5.0 DBM 100 sweeps : 0.0dB .60 kHz	-5.0 - -10.0 - -15.0 - -20.0 - -25.0 - -30.0 - -35.0 -		-2.1		V	(NTS		
CF: 5200. SPAN: 10 RB: 1.000 VB: 3.000 Detector: Attn: 20 E RL Offset: Sweep Tir Ref Lvl: 1 Pwr avg: Amp corr Bin size: 1	Analyzer Setti .000 MHz 0.000 MHz MHz MHz RMS DB : 21.7 DB me: 20.0ms 5.0 DBM 100 sweeps : 0.0dB .60 kHz dBm/1.000 N	-5.010.015.020.025.030.035.045.050.0 -	.0 5160.0 5	180.0	5200.0	5220.0	NTS 5240.0 5250		

	NTS						EMC Test	Data	
	Aruba, a He	wlett Packard En	terprise company			Job Number: PR075848 T-Log Number: TL075848-RA-FCC Project Manager: Christine Krebill			
Contact:	Mark Hill								
	FCC §15.24	7 & 815 407				Project Coordinator: David Bare Class: N/A			
Standard.	1 00 310.24	7 & §15.407					Old33. IN/A		
5150-5250 I Mode:	PSD - IC ax80+80								
Frequency (MHz)	Chain	Software Setting	Duty Cycle %	dBm/MHz	Total mW/MHz	PSD ¹ dBm/MHz	IC Limit dBm/MHz	Result	
5250	1 2 3 4 5 6 7 8	9.5	95	-8.7 -9.4 -9.0 -8.8 -24.5 -27.9 -28.9 -24.0	0.5	-3.0	-1.3	Pass	
Portion wit	hin 5250-535	50 MHz band (UN	III-2A)	1 07.2	T	T T			
5250	3 4 5 6 7 8	9.5	95	-27.3 -27.2 -27.3 -27.5 -8.0 -9.4 -9.9 -8.0	0.6	-2.2	6.2	Pass	
Spectrum /	Analyzer Setti 000 MHz	ngs -5.0 -			Ţ		() NTS	1	
	0.000 MHz MHz	-10.0-						ı	
Detector: Attn: 20 D RL Offset:	B	-15.0 -						ı	
Sweep Tir Ref Lvl: 19	me: 20.0ms 5.0 DBM							1	
Pwr avg: Amp corr Bin size: 1		-25.0 - # -30.0 -						ı	
		-35.0-					1	1	
Highest PS		AT THE SECOND							
-8.7	dBm/1.000 N	4Hz -40.0 -							
Power Ov. 7.762 8.9		-50.0-	5160.0 5	180.0 Fre	5200.0 equency (MH	5220.0 z)	5240.0 5250.0		
2	720720		9% Bandwidth, Po					0	

Client:	Aruba, a He	wlett Packard Ente	rprise company			Job	Number: PR0758	348	
			1 F- J				Number: TL0758		
Model:	APIN0555					Project Manager: Christine Krebill			
Contact:	Mark Hill					Project Coordinator: David Bare			
Standard:	FCC §15.24	7 & §15.407					Class: N/A		
	PSD - FCC ac80+80	ac80+	80 mode tested to	o demonstrate	e PSD is sam	ne as for ax80+8	80 mode		
requency	Chain	Software	Duty Cycle	PSD		PSD ¹	FCC Limit	Resu	
(MHz)		Setting	%	dBm/MHz	mW/MHz	dBm/MHz	dBm/MHz	1,000	
5250	1 2 3 4 5 6 7 8	14.5	95.3	-3.5 -4.0 -3.3 -3.4 -28.7 -31.6 -32.6 -28.5	1.9	2.8	11.7	Pass	
ortion wit	1 2 3 4 5 6	0 MHz band (UNII	-2A) 95.3	-30.3 -30.0 -30.1 -30.2 -2.7 -3.3	2.2	3.4	6.2	Pas	
CF: 5200.	0.000 MHz	ngs 0.0-		-3.7 -1.9	<u> </u>		NTS		
Ref Lvl: 1	RMS DB : 21.7 DB me: 20.0ms 5.0 DBM 100 sweeps : 0.0dB	-10.0 - -15.0 - -20.0 - 							
Highest P9 -3,5	5D dBm/1.000 N	-45.0							
		-50.0 -¦	5160.0 5	180.0	5200.0	5220.0	5240.0 52		

Client:	Aruba, a He	ewlett Packard Ent	erprise company			Job	Number: PR075848	3	
Model:	APIN0555		· · · · · · · · · · · · · · · · · · ·			T-Log Number: TL075848-RA-FCC			
	Mark Hill					Project Manager: Christine Krebill Project Coordinator: David Bare			
		47 & §15.407				Project Co	Class: N/A	e .	
Otandara.	1 00 310.2	17 4 310.101					01000. 14/71		
150-5250 Mode:	PSD - IC ac80+80								
requency		Software	Duty Cycle		Total		IC Limit	Resul	
(MHz)	1	Setting	%	dBm/MHz -8.6	mW/MHz	dBm/MHz	dBm/MHz		
	2			-9.0					
	3 4	1		-8.3 -8.4					
5250	5	9.5	95.3	-35.0	0.6	-2.2	-1.3	Pass	
	<u>6</u> 7			-36.6 -37.5					
	8			-33.8					
Portion wit	hin 5250-53	50 MHz band (UN	II-2A)						
	2			-34.6 -34.6					
	3			-34.3					
5250	4	9.5	95.3	-34.5	0.7	-1.5	6.2	Pass	
	<u>5</u>			-7.9 -7.8					
	7 8			-8.2					
	0			-6.4					
Spectrum /	Analyzer Sett	ings -5.0-					⊘ NTS		
CF: 5200. SPAN: 10	000 MHz 0.000 MHz	-10.0-				\/~~ \	WE ENSINEER SUCCES	•	
RB: 1.000 VB: 3.000		-15.0-	f f			V			
Detector: Attn: 20 D									
RL Offset:		-20.0 -							
Ref Lvl: 1		-25.0 -							
Amp corr Bin size: 1	: 0.0dB	튵 -30.0 -							
DII 1 2156: 1	100 KH2	-35.0 -							
Highest PS	SD SD	-40.0-							
-7.9	dBm/1.000	MHz -45.0 -							
		-50.0							
		-55.0 -							
					5000	F220 0	5240.0 5250	0	
		5150.0	5160.0 51	180.0	5200.0 quency (MH	5220.0	3270.0 3230	.0	

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848
Model: APIN0555	T-Log Number: TL075848-RA-FCC
Wodel. APIN0555	Project Manager: Christine Krebill
Contact: Mark Hill	Project Coordinator: David Bare
Standard: FCC §15.247 & §15.407	Class: N/A

RSS-247 (LELAN) and FCC 15.407(UNII) **Antenna Port Measurements** Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 21-23 °C

38-42 % Rel. Humidity:

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

Sample S/N: CNGFK9Y02N (BLE) & CNGFK9Y005 (Zigbee)

Driver: P4 V0.4.5

Antenna: Internal 8 antennas for 5 GHz radio and 4 antennas for 2.4 GHz radio (5GHz radio may also use 4 antennas

but with 3 dB higher power and can operate in both lower and upper 5 GHz bands simutaneously). Tests performed with 8 antennas at the 4 antenna power levels. Tests performed with 4 antennas at the target power.

Client: Aruba, a Hewlett Packard Enterprise company	Job Number: PR075848	
Model: APIN0555	T-Log Number: TL075848-RA-FCC	
Widdel. AFIIN0000	Project Manager: Christine Krebill	
Contact: Mark Hill	Project Coordinator: David Bare	
Standard: FCC §15.247 & §15.407	Class: N/A	

Summary of Results

Run#	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5470 - 5725MHz	15.407(a) (1), (2), (3) RSS-247 6.2	Pass	ax80+80: 185.2 mW
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2), (3) RSS-247 6.2	Pass	ax80+80: 3.7 mW/MHz
1	Max EIRP 5470 - 5725MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP ≥ 200mW (23dBm) DFS threshold		EIRP = 23.2 dBm (207.8 mW)
1	26dB Bandwidth	15.407 (Information only)	-	> 20MHz for all modes
1	99% Bandwidth	RSS-247 (Information only)	N/A	ax80+80: 156.6 MHz

Procedure Comments:

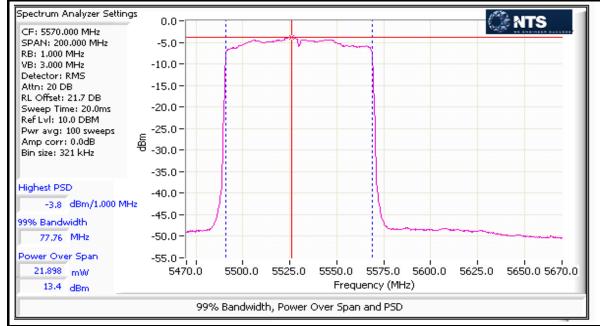
Measurements performed in accordance with FCC KDB 789033 D01

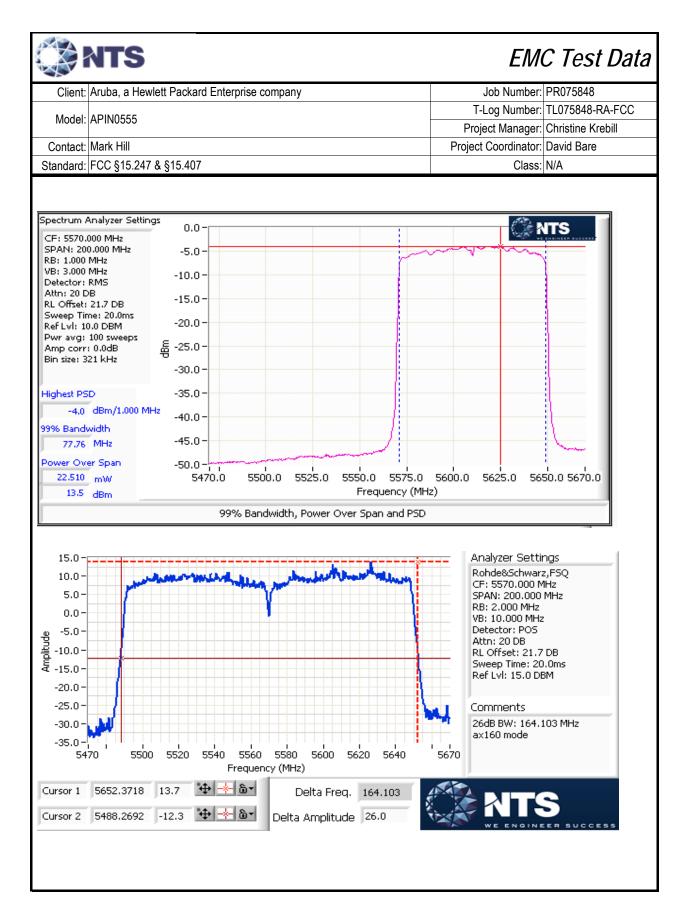
Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)	
11ax80+80	MCS0	0.950	Yes	5.401	0.2	0.4	185	5 GHz only

For devices that support CDD modes Min # of spatial streams: 1 Max # of spatial streams:

	NTS							EM	C Test	Data	
Client:	Aruba, a Hev	vlett Packard	d Enterprise	company			J	ob Number:	PR075848		
Madali	ADIMOSES						T-L	og Number:	TL075848-F	RA-FCC	
Model:	APIN0555						Proje	ct Manager:	Christine Kr	ebill	
Contact:	Mark Hill						Project Coordinator: David Bare				
Standard:	FCC §15.247	' & §15.407						Class:	N/A		
I Te	ndwidth, Out Date of Test: est Engineer: I	12/5/2018 0: Roy Zheng FT Lab #4a	00		C Cor E	onfig. Used: ofig Change: UT Voltage:	None PoE				
Note 1:	Constant Dut MHz, Span > traces, increa measuremen ANSI C63.10	OBW, # of ase the numbers were adjust)	points in swe ber to get tru sted by add	eep ≥ 2*spar ue average), ing YY dB.	n/RBW, RMS power avera This is based	sample dete ging on and p on 10log(1/x	ector, trace a power integra	verage 100 ation over th	traces (at lea e OBW. Tth	ıst 100 e	
Note 2:	Measured us						- (OD)M I	\/D - 0*DD	0	4.5 1	
Note 3:	99% Bandwid 5 times OBW		d in accorda	ince with C6	3.10 - RB be	tween 1-5 %	of OBW and	VB ≥ 3*KB	, Span betwe	en 1.5 and	
Note 4:	mode of the lathe limits is the chain. If the the EIRP is the time the the the the the the the the the th	ne highest gasignals are on the product of the prod	ain of the incoherent the	dividual chair n the effectiv	ns and the El ve antenna g	RP is the sur	m of the prod	ucts of gain	and power of	n each	
AUGUIA (14					(101) (01 1						
			F	Antenna Gair	n (dBi) / Chai	n			Dir G	Dir G	
Freq	1	2	3	Antenna Gair 4	(dBi) / Chai 5	n 6	7	8	Dir G (PWR)	Dir G (PSD)	
Freq		2 3.4			r		7 5.4	8 3.6			
Freq 5470-5725 8x8 mode 4x4 mode Legacy m Power for	1 3.2 e uses 4 V and e uses 2 V and nodes operate r BF mode is r ve for single s	3.4 d 4 H polariz d 2 H polariz on all chain educed by 3 tream mode	3 2.8 ed antennas ed antennas s dB so effects	3.6 s, directional s, directional stive antenna	4.5 gain used is gain used is gain does n	3.3 the highest of the highest of change	5.4 of the two.	3.6	(PWR) 0.5	(PSD) 9.3	
Freq 5470-5725 8x8 mode 4x4 mode Legacy m Power for	a uses 4 V and a uses 2 V and a uses 3 V and a uses 5 V and a uses 5 V and a uses 5 V and a uses 6 V and a uses 7 V and a uses 8 V and a uses 8 V and a uses 9 V and a uses	3.4 d 4 H polariz d 2 H polariz on all chain educed by 3 tream mode: rming mode c Delay Dive ed.	3 2.8 ed antennas ed antennas s dB so effects supported, rsity (or Cyc	4 3.6 s, directional s, directional tive antenna Multichain Le lic Shift Dive	4.5 gain used is gain used is gain does n egacy = 802. rsity) modes	6 3.3 the highest of the highest of change 11 legacy da supported, S	5.4 of the two. of the two. ta rates supplectorized / X	3.6 orted for mu pol = anteni	(PWR) 0.5 ultichain trans	9.3 smissions,	
Freq 5470-5725 8x8 mode 4x4 mode Legacy m Power for CDD activ	a uses 4 V and e uses 2 V and e uses	3.4 d 4 H polariz d 2 H polariz on all chain educed by 3 tream mode: rming mode c Delay Dive ed. = total gain 2911. Depe	3 2.8 ed antennas ed antennas s dB so effects supported, rsity (or Cyc	3.6 s, directional s, directional stive antenna Multichain Le lic Shift Dive sy Gain) for permodes sup	4.5 gain used is gain used is gain does n egacy = 802. rsity) modes ower calculator ported, the A	6 3.3 the highest of	5.4 of the two. of the two. ta rates supplectorized / X SD) = total g	orted for mupol = antenu	(PWR) 0.5 ultichain transpas are sector calculations	9.3 smissions, prized or based on	
Freq 5470-5725 8x8 mode 4x4 mode Legacy m Power for CDD activ	a uses 4 V and a uses 2 V and a use 5 V and a use 6 V and a use 6 V and a use 7 V and a use 8 V and a use 8 V and a use 9 V a	3.4 d 4 H polariz d 2 H polariz on all chain educed by 3 tream mode: rming mode c Delay Dive ed. = total gain 2911. Depe	3 2.8 ed antennas ed antennas s dB so effects supported, rsity (or Cyc	4 3.6 s, directional s, directional tive antenna Multichain Le lic Shift Dive ly Gain) for per modes sup	4.5 gain used is gain used is gain does n egacy = 802. rsity) modes ower calculation ported, the A	6 3.3 the highest of the highest of change 11 legacy dar supported, Sations; GA (Parray Gain va	5.4 of the two. of the two. ta rates supplectorized / X SD) = total glue for power	orted for mupol = antenu	(PWR) 0.5 ultichain transpas are sector calculations	9.3 smissions, prized or based on	

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINOSES	T-Log Number:	TL075848-RA-FCC
wodei.	APINU000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A


MIMO Device - 5470-5725 MHz Band - FCC Only


Mode:	ax80+80						Max	EIRP (mW):	207.8	
Frequency	Chain	Software	26dB BW	Duty Cycle	Power ¹	Total I	Power	FCC Limit	Max Power	Result
(MHz)	Cilalii	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Nesuit
	1				13.4					
	2				12.3					
	3				13.2					
5570	4	14	164.1	95.0	13.7	185.2	22.7	24.0	0.185	Pass
3370	5	17	104.1	33.0	13.6	100.2	22.1	24.0	0.103	1 433
	6				13.6					
	7				13.9					
	8				13.5					

5470-5725 PSD - FCC Only

Mode: ax80+80

Frequency	Chain	Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit		Result
(MHz)	Ondin	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	resuit
	1				-3.8					
	2		95.0		-4.8	-4.2 -3.5	5.7	7.7		
	3				-4.2					
5570	4	14		05.0	-3.5					Pass
3370	5	14		95.0	-3.1					F 033
	6				-2.9					
	7				-2.8					
	8				-4.0					

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AF 1110555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

RSS-247 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature: 24.8 °C

39 % Rel. Humidity:

Summary of Results

ourminar y	or results								
Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin		
160MHz Ba	ndwith Mode	S							
		50 -	14.5	14.5	Restricted Band Edge		52.9 dBµV/m @ 5130.0		
17	ac80+80, BLE	5250MHz	14.5	14.5	at 5150 MHz		MHz (-1.1 dB)		
		50 -	14.5	14.5	Restricted Band Edge	15.209	51.5 dBµV/m @ 5352.1		
		5250MHz	14.5	14.5	at 5350 MHz	13.209	MHz (-2.5 dB)		
		114 -	115	14.0	Restricted Band Edge		52.7 dBµV/m @ 5450.0		
18		5570MHz	14.5	14.0	at 5460 MHz		MHz (-1.3 dB)		
		114 -	115	14.0	Band Edge 5460 - 5470	15E	68.2 dBµV/m @ 5469.6		
		5570MHz	14.5	14.0	MHz	19E	MHz (-0.1 dB)		

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold 50 traces. (method VB of KDB 789033)

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)	
BLE	1 Mb/s	0.65	Yes	0.424	1.9	3.8	2358	
ZigBee	-	0.43	Yes	0.858	3.7	7.4	1166	2 kHz
11a	6 MB/s	0.92	Yes	1.437	0.3	0.7	696	1 kHz
ac20	MCS0	0.95	Yes	5.474	0.2	0.5	183	200 Hz
ax20	MCS0	0.96	Yes	5.452	0.2	0.4	183	200 Hz
ax40	MCS0	0.96	Yes	5.297	0.2	0.4	189	200 Hz
ax80	MCS0	0.96	Yes	5.401	0.2	0.4	185	200 Hz
ax80+80	MCS0	0.95	Yes	5.401	0.2	0.4	185	200 Hz

Sample Notes

Sample S/N: CNGFK9Y02N (BLE)

Driver: P4 V0.4.5

Antenna: Internal 8 antennas for 5 GHz radio and 4 antennas for 2.4 GHz radio (5GHz radio may also use 4 antennas but

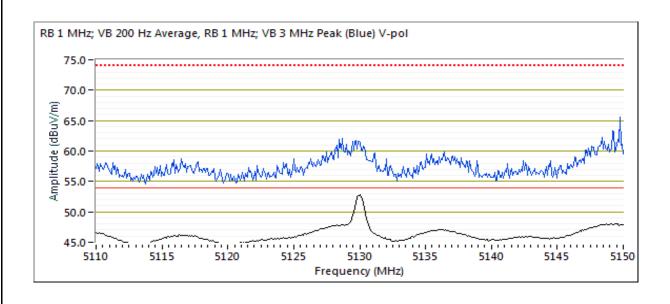
with 3 dB higher power and can operate in both lower and upper 5 GHz bands simutaneously). Tests performed

with 8 antennas at the 4 antenna power levels. Tests performed with 4 antennas at the target power.

Measurement Specific Notes:

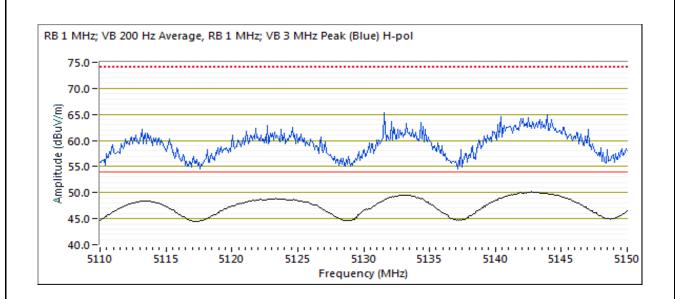
	I.
	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
Note 1:	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Per KDB 789033 2) c) (i), compliance can be
	demonstrated by meeting the average and peak limits of 15.209, as an alternative.
Note 3:	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
	peak detector, linear averaging, auto sweep, max hold 50*1/DC traces (method VB of KDB 789033)
Note 4:	Emission has a duty cycle < 98%, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power averaging, auto
NOLE 4.	sweep, trace average 100*1/DC traces, measurement corrected by Pwr correction factor (method AD of KDB 789033)
Note 5:	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final
Note 5:	measurements.

	Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
	Model:	ADIMOSES	T-Log Number:	TL075848-RA-FCC
		AFIN0333	Project Manager:	Christine Krebill
	Contact:	Mark Hill	Project Coordinator:	David Bare
	Standard:	FCC §15.247 & §15.407	Class:	N/A

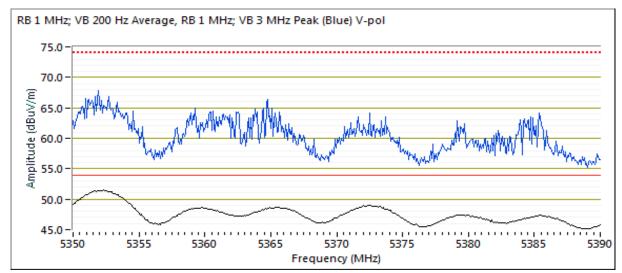

Run #17: Radiated Bandedge Measurements, 5150-5350 MHz

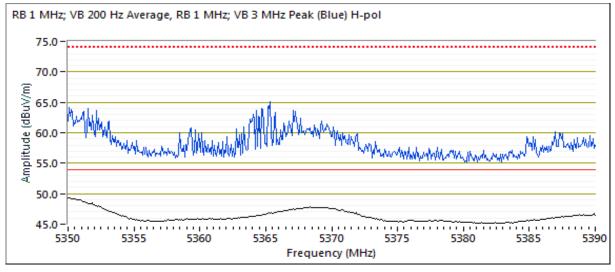
Date of Test: 10/16/2018 Config. Used: 1
Test Engineer: Deniz Demirci Config Change: None

Test Location: Fremont Chamber #7 EUT Voltage: POE & 110 V, 60 Hz


Channel: 50 - 5250 MHz Tx Chain: 8x8 Mode: ax160

orod Will Build Edge Olyndi Nadiated Freid Otterigti										
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5130.040	52.9	V	54.0	-1.1	Avg	296	1.6	Note 3 - POS; RB 1 MHz; VB: 200 Hz		
5142.630	50.2	Н	54.0	-3.8	Avg	299	1.5	Note 3 - POS; RB 1 MHz; VB: 200 Hz		
5143.510	66.5	Η	74.0	-7.5	PK	299	1.5	POS; RB 1 MHz; VB: 3 MHz		
5129.170	63.0	V	74.0	-11.0	PK	296	1.6	POS; RB 1 MHz; VB: 3 MHz		


Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINOSES	T-Log Number:	TL075848-RA-FCC
	AFINOSSS	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

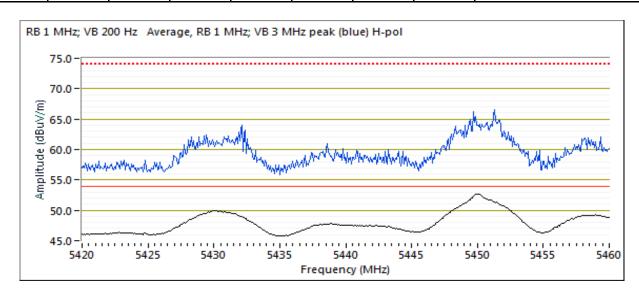


Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINOSES	T-Log Number:	TL075848-RA-FCC
	AFINOSSS	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

\boldsymbol{y}								
Frequency	Level	Pol	FCC [*]	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5352.130	51.5	V	54.0	-2.5	Avg	286	1.6	Note 3 - POS; RB 1 MHz; VB: 200 Hz
5350.790	68.9	V	74.0	-5.1	PK	286	1.6	POS; RB 1 MHz; VB: 3 MHz
5350.240	49.3	Н	54.0	-4.7	Avg	295	1.5	Note 3 - POS; RB 1 MHz; VB: 200 Hz
5350.450	65.7	Н	74.0	-8.3	PK	295	1.5	POS; RB 1 MHz; VB: 3 MHz

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

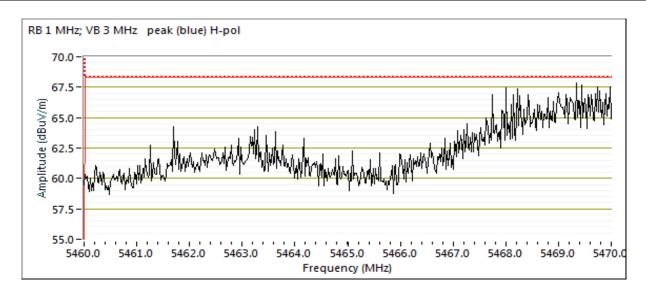
Run #18: Radiated Bandedge Measurements, 5470-5725MHz


Date of Test: 10/17/2018 Config. Used: 1
Test Engineer: Deniz Demirci Config Change: None

Test Location: Fremont Chamber #7 EUT Voltage: POE & 110 V, 60 Hz

Channel: 114 - 5570 MHz Note: Channel 114 not used in Canada

Tx Chain: 8x8
Mode: ax160 & BLE


	\boldsymbol{j}								
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5450.040	52.7	Н	54.0	-1.3	Avg	302	1.5	Note 3 - POS; RB 1 MHz; VB: 200 Hz	
5451.290	65.7	Η	74.0	-8.3	PK	302	1.5	POS; RB 1 MHz; VB: 3 MHz	
5449.920	52.1	V	54.0	-1.9	Avg	304	1.8	Note 3 - POS; RB 1 MHz; VB: 200 Hz	
5449.680	62.6	V	74.0	-11.4	PK	304	1.8	POS; RB 1 MHz; VB: 3 MHz	

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	APINU000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

on one in a garage or great managed more of one or great								
Frequency	Level	Pol	15.E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5469.640	68.2	Η	68.3	-0.1	PK	50	1.5	POS; RB 1 MHz; VB: 3 MHz
5463.230	68.0	V	68.3	-0.3	PK	64	1.8	POS; RB 1 MHz; VB: 3 MHz

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AF 1110555	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

RSS-247, FCC 15.247 and FCC 15.407 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:

20-24 °C

Rel. Humidity:

35-45 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	NTS
Client:	Aruba, a He

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Summary of Results

Run #	Mode	Channel	Target Powers	Power Settings	Test Performed	Limit	Result / Margin		
Scans on "center" channel in all five OFDM modes to determine the worst case mode (8x8 in 5 GHz bands and 4x4 in 2.4 GHz band).									
	a / g	6 & 40	15 / 20	20 /20			45.9dBµV/m @ 20798.9MHz (-8.1dB)		
	ax20	6 & 40	20 / 20	20 /20		FCC 15.209/ 15.247 / 15 E	43.9dBµV/m @ 20798.2MHz (-10.1dB)		
1	ax40	6 & 38	20 / 20	20 / 20	Radiated Emissions, 1 - 40 GHz		39.1 dBµV/m @ 20758.5MHz (-14.9dB)		
	ax80 / b	6 & 42	20 / 20	20 / 20			48.0 dBμV/m @ 7216.2 MHz (-6.0 dB)		
	ac160 (80+80) / b	6 & 50	14.5 / 20	14.5 / 20			34.3 dBµV/m @ 22675.2MHz (-19.7dB)		
Scane on "c	enter" chann	al in all five (OFDM modes	to determin	a the worst case mode (8	v8 in 5 CHz hands and 1	v4 in 2.4 GHz hand)		

Scans on "center" channel in all five OFDM modes to determine the worst case mode (8x8 in 5 GHz bands and 4x4 in 2.4 GHz band).

ac160 mode	ac160 mode performed in Run 1.									
	g /a	6 & 116	20 / 12	20 / 20			44.1 dBµV/m @ 22320.7 MHz (-9.9 dB)			
	ax20	6 & 116	20 / 14.5	20 / 20	Radiated Emissions, 1 - 40 GHz	FCC 15.209/ 15.247 / 15 E	42.8dBµV/m @ 22321.4MHz (-11.2dB)			
6	ax40	6 & 110	20 / 14.5	20 / 20			50.1 dBµV/m @ 11100.0 MHz (-3.9 dB)			
	ax80 / b	6 & 122	20 / 14.5	20 / 20			44.4 dBµV/m @ 11220.0 MHz (-9.6 dB)			
	ax160 (80+80) / b	6 & 114	20 / 14.5	20 / 20			34.5 BµV/m @ 22440.0MHz (-19.5dB)			

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold 50 traces. (method VB of KDB 789033)

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)	
BLE	1 Mb/s	0.65	Yes	0.424	1.9	3.8	2358	3 kHz
ZigBee	-	0.43	Yes	0.858	3.7	7.4	1166	2 kHz
11b	1 Mb/s	0.78	Yes	0.667	1.1	2.2	1499	2 kHz
11g	6 Mb/s	0.92	Yes	1.437	0.4	0.7	696	1 kHz
11a	6 Mb/s	0.92	Yes	1.437	0.3	0.7	696	1 kHz
ax20	MCS0	0.96	Yes	5.485	0.2	0.3	182	200 Hz
ax40	MCS0	0.96	Yes	5.401	0.2	0.4	185	200 Hz
ax80	MCS0	0.96	Yes	5.401	0.2	0.4	185	200 Hz
ax80+80	MCS0	0.95	Yes	5.401	0.2	0.4	185	200 Hz

Sample Notes

Sample S/N: CNGFK9Y02N (BLE) & CNGFK9Y005 (Zigbee)

Driver: P4 V0.4.5

Antenna: Internal 8 antennas for 5 GHz radio and 4 antennas for 2.4 GHz radio (5GHz radio may also use 4 antennas but with 3 dB higher power and can operate in both lower and upper 5 GHz bands simutaneously). Tests performed with 8 antennas at the 4 antenna power levels. Tests performed with 4 antennas at the target power.

Measurement Specific Notes:

Note 1:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
Note 1.	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).
Note 2	Emission in non-restricted band, but limit of 15.209 used.
Note 3:	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
Note 3.	peak detector, linear averaging, auto sweep,max hold 50*1/DC traces (method VB of KDB 789033)
	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
Note 4:	peak detector, linear averaging, auto sweep, trace average 100 traces, measurement corrected by linear voltage correction
	factor
Note 5:	-20 dB correction factor was used for ZigBee as 10% operational duty cycle
Note 6:	Digital device emission, class A limit extrapolated to 3m applied, peak reading vs peak or average limit.

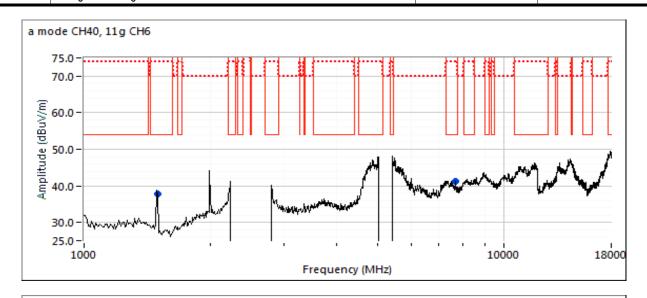
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

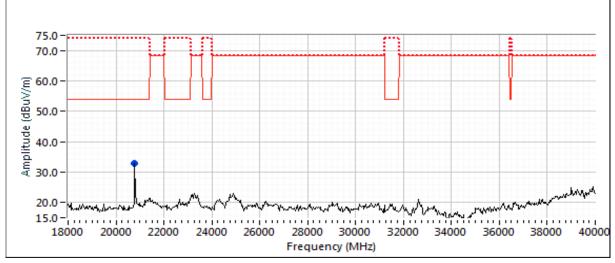
Run #1, Radiated Spurious Emissions, 1,000 - 40,000 MHz. Operation in the 5150-5250 MHz Band

Date of Test: 10/25/2018 Config. Used: 1
Test Engineer: M. Birgani Config Change: None

Test Location: Fremont Chamber #4 EUT Voltage: POE & 110 V, 60 Hz

Run #1a: Center Channel


Channel, Mode, Chain, Level: 6, g, 4, 20 Channel, Mode, Chain, Level: 40, a, 8, 20

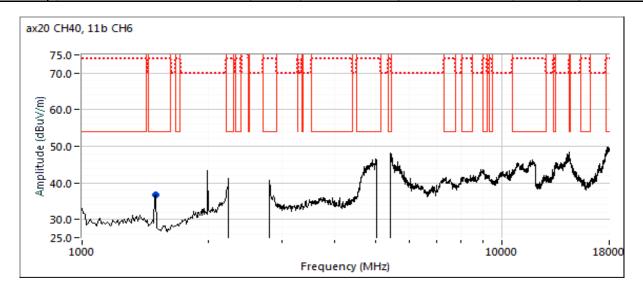

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
20798.900	45.9	V	54.0	-8.1	AVG	338	1.1	RB 1 MHz;VB 1 kHz, note 3
20798.550	57.8	V	74.0	-16.2	PK	338	1.1	RB 1 MHz;VB 3 MHz;Peak
20799.660	41.9	Н	54.0	-12.1	AVG	32	1.2	RB 1 MHz;VB 1 kHz, note 3
20800.320	54.5	Н	74.0	-19.5	PK	32	1.2	RB 1 MHz;VB 3 MHz;Peak
7644.350	36.8	V	54.0	-17.2	AVG	224	1.0	RB 1 MHz;VB 10 Hz;Peak
7644.850	49.5	V	74.0	-24.5	PK	224	1.0	RB 1 MHz;VB 3 MHz;Peak
1500.010	36.1	V	60.0	-23.9	AVG	180	1.0	RB 1 MHz;VB 10 Hz;Peak
1499.950	40.5	V	80.0	-39.5	PK	180	1.0	RB 1 MHz;VB 3 MHz;Peak

	Scans made between 18 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there
Note.	were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
Note 2.	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINIOSES	T-Log Number:	TL075848-RA-FCC
	AFIIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madal	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei:	APINU000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #1b: Center Channel


Date of Test: 10/25/2018 Config. Used: 1
Test Engineer: M. Birgani Config Change: None

Test Location: Fremont Chamber #4 EUT Voltage: POE & 110 V, 60 Hz

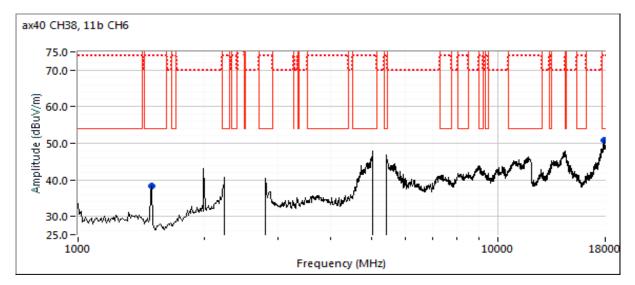
Channel, Mode, Chain, Level: 6, b, 4, 20 Channel, Mode, Chain, Level: 40, ax20, 8, 20

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
20798.180	43.9	V	54.0	-10.1	AVG	336	1.2	RB 1 MHz;VB 300 Hz
20798.780	58.7	V	74.0	-15.3	PK	336	1.2	RB 1 MHz;VB 3 MHz;Peak
1500.010	40.4	V	54.0	-13.6	PK	206	1.0	RB 1 MHz;VB 3 MHz;Peak

Note:	Scans made between 18 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there
Note.	were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
Note 2:	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #1c: Center Channel

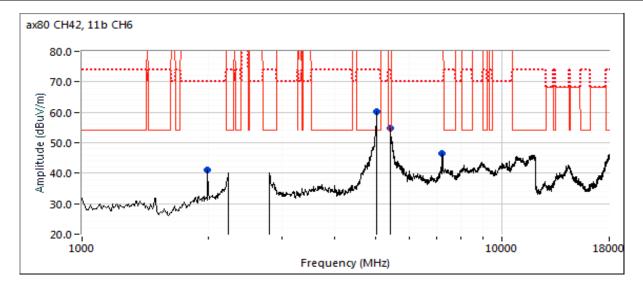

Date of Test: 10/25/2018 Config. Used: 1
Test Engineer: M. Birgani Config Change: None

Test Location: Fremont Chamber #4 EUT Voltage: POE & 110 V, 60 Hz

Channel, Mode, Chain, Level: 6, b, 4, 20 Channel, Mode, Chain, Level: 38, ax40, 8, 20

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
20758.480	39.1	V	54.0	-14.9	AVG	338	1.2	RB 1 MHz;VB 300 Hz; note 3
20759.830	53.6	V	74.0	-20.4	PK	338	1.2	RB 1 MHz;VB 3 MHz;Peak
1500.010	40.4	V	54.0	-13.6	PK	206	1.0	RB 1 MHz;VB 3 MHz;Peak

	Scans made between 18 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there
Note.	were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
Note 2.	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).


Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Madal	APIN0555	T-Log Number:	TL075848-RA-FCC
iviodei:	APINU000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #1d: Center Channel

Channel, Mode, Chain, Level: 6, b, 4, 20 Channel, Mode, Chain, Level: 42, ax80, 8, 20

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7216.200	48.0	Н	54.0	-6.0	Avg	53	2.0	VB 3 kHz, VAVG 100, note 2, 3
7216.550	53.0	Н	74.0	-21.0	PK	53	2.0	RB 1 MHz;VB 3 MHz;Peak
20839.770	38.4	V	54.0	-15.6	AVG	338	1.2	RB 1 MHz;VB 300 Hz; note 3
20838.560	52.4	V	74.0	-21.6	PK	338	1.2	RB 1 MHz;VB 3 MHz;Peak
2000.000	41.2	V	60.0	-18.8	Peak	196	1.5	Note 6
5041.670	60.3	Н			Peak	300	2.0	See bandedge measurements.
5416.670	54.8	Н			Peak	46	1.5	See bandedge measurements.

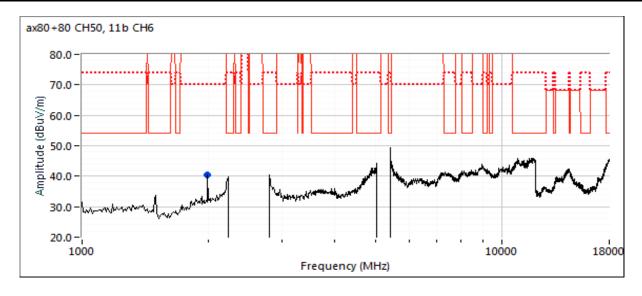
Noto:	Scans made between 18 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there
	were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
Note 2:	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #1e: Center Channel

Channel: 6 & 50 Wi-Fi Mode: ac80+80 / b
Tx Chain: 8 (5GHz), 4 (2.4 GHz) Data Rate: MCS0 / 1Mb/s

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
22675.230	34.3	٧	54.0	-19.7	AVG	347	1.1	RB 1 MHz;VB 300 Hz; note 3
22689.930	47.0	٧	74.0	-27.0	PK	347	1.1	RB 1 MHz;VB 3 MHz;Peak
2000.000	40.4	٧	60.0	-19.6	Peak	269	1.5	Note 6


Note:

Scans made between 18 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.

Note 1:

For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

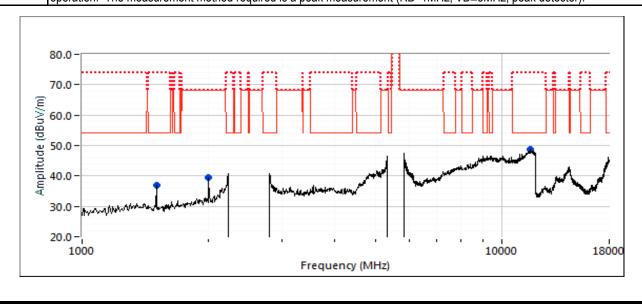
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFINU333	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #6, Radiated Spurious Emissions, 1,000 - 40,000 MHz. Operation in the 5470-5725 MHz Band

Date of Test: 10/29/18 Config. Used: 1
Test Engineer: John Caizzi Config Change: none

Test Location: Chamber 4 EUT Voltage: PoE & 120V / 60Hz

Run #6a: Center Channel


Channel: 6 & 116 Wi-Fi Mode: g, a Power: 20 / 12

Tx Chain: 8 (5GHz), 4 (2.4 GHz)

Data Rate:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11694.250	42.3	٧	54.0	-11.7	Avg	88	2.5	VB 1 kHz, note 3
11696.480	53.3	٧	74.0	-20.7	PK	88	2.5	RB 1 MHz;VB 3 MHz;Peak
22320.720	44.1	٧	54.0	-9.9	AVG	28	1.0	RB 1 MHz;VB 1 kHz; note 3
22321.060	57.4	٧	74.0	-16.6	PK	28	1.0	RB 1 MHz;VB 3 MHz;Peak
1500.000	36.9	V	60.0	-23.1	Peak	63	1.0	Note 6
2000.000	39.4	V	60.0	-20.6	Peak	345	1.0	Note 6

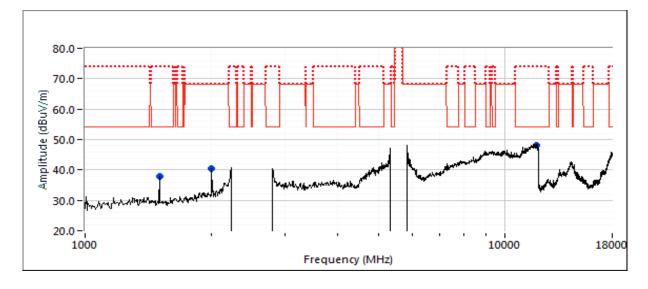
Noto	Scans made between 18 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there
Note:	were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
ハロヤマン・	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINOSES	T-Log Number:	TL075848-RA-FCC
	AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #6b: Center Channel

Channel: 6 & 116 Wi-Fi Mode: ax20 / ax20 Power: 20 /20

Tx Chain: 8 (5GHz), 4 (2.4 GHz) Data Rate: MCS0


Frequency	Level	Pol	15.209) / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11890.500	41.9	Н	54.0	-12.1	Avg	316	2.0	VB 300 Hz, note 3.
11889.990	53.3	Н	74.0	-20.7	PK	316	2.0	RB 1 MHz;VB 3 MHz;Peak
22321.440	42.8	V	54.0	-11.2	VAVG	28	1.2	RB 1 MHz;VB 300 Hz; note 3
22321.160	57.4	V	74.0	-16.6	PK	28	1.2	RB 1 MHz;VB 3 MHz;Peak
1500.000	37.8	V	60.0	-22.2	Peak	165	1.0	Note 6
2000.000	40.3	V	60.0	-19.7	Peak	175	1.5	Note 6

Note:

Scans made between 18 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.

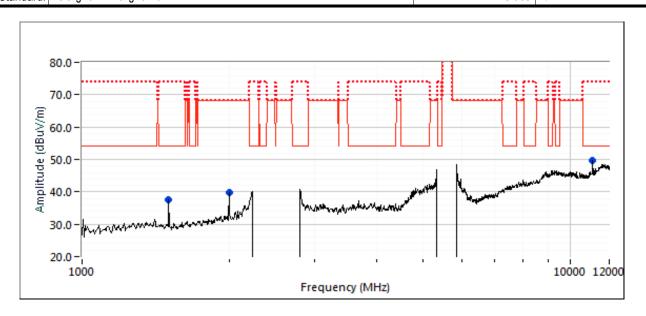
Note 1: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

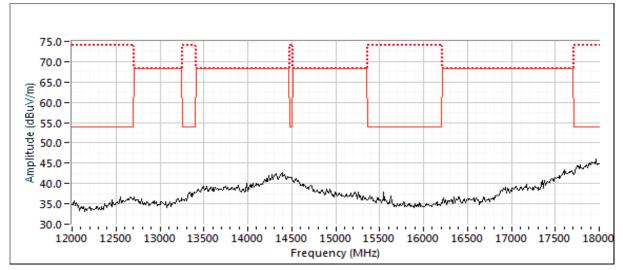
For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	VDIVIOREE	T-Log Number:	TL075848-RA-FCC
	AF 11100000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #6c: Center Channel

Channel: 6 & 110 Wi-Fi Mode: 11ax40, b


Tx Chain: 8 (5GHz), 4 (2.4 GHz) Data Rate: 1 Mb/s & MCS0

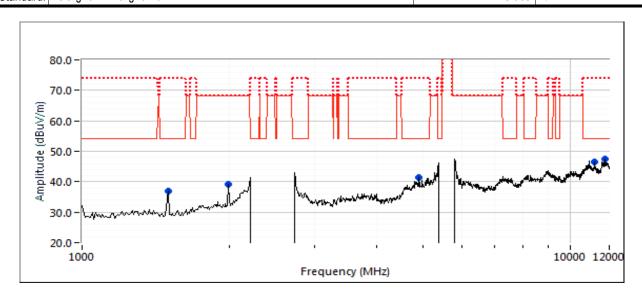

Frequency	Level	Pol	15.209) / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11099.950	50.1	V	54.0	-3.9	Avg	29	1.9	VB 300 Hz, note 3.
11099.780	55.8	V	74.0	-18.2	PK	29	1.9	RB 1 MHz;VB 3 MHz;Peak
22192.400	37.4	V	54.0	-16.6	Avg	32	1.0	VB 300 Hz, note 3.
22193.500	50.8	V	74.0	-23.2	PK	32	1.0	RB 1 MHz;VB 3 MHz;Peak
1500.000	37.5	V	60.0	-22.5	Peak	78	1.0	Note 6
2000.000	39.9	V	60.0	-20.1	Peak	145	1.5	Note 6

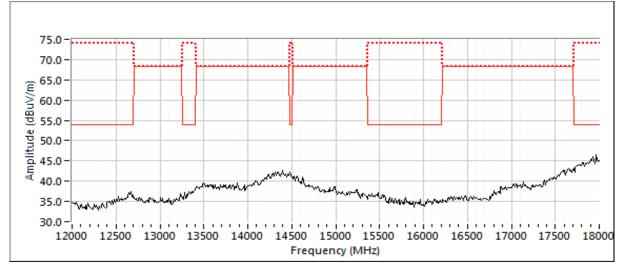
Note:	Scans made between 18 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there
Note.	were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
I Ν∩τΔ ソ・ I	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINOSES	T-Log Number:	TL075848-RA-FCC
	AFINOSSS	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #6d: Center Channel


Channel: 6 & 122 Wi-Fi Mode: ax80 / b Note: Channel 122 not used in Canada


		45.000	1455				To .
Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
36.8	Н	60.0	-23.2	Peak	205	2.0	Note 6
39.1	٧	60.0	-20.9	Peak	150	1.5	Note 6
37.4	Н	54.0	-16.6	Avg	30	2.0	VB 3 kHz, note 3
46.8	Н	74.0	-27.2	PK	30	2.0	RB 1 MHz;VB 3 MHz;Peak
44.4	٧	54.0	-9.6	Avg	146	1.5	VB 3 kHz, note 3
52.4	٧	74.0	-21.6	PK	146	1.5	RB 1 MHz;VB 3 MHz;Peak
37.8	٧	54.0	-16.2	Avg	3	1.0	VB 3 kHz, note 3
51.2	٧	74.0	-22.8	PK	3	1.0	RB 1 MHz;VB 3 MHz;Peak
	36.8 39.1 37.4 46.8 44.4 52.4 37.8	dBμV/m v/h 36.8 H 39.1 V 37.4 H 46.8 H 44.4 V 52.4 V 37.8 V	dBμV/m v/h Limit 36.8 H 60.0 39.1 V 60.0 37.4 H 54.0 46.8 H 74.0 44.4 V 54.0 52.4 V 74.0 37.8 V 54.0	dBμV/m v/h Limit Margin 36.8 H 60.0 -23.2 39.1 V 60.0 -20.9 37.4 H 54.0 -16.6 46.8 H 74.0 -27.2 44.4 V 54.0 -9.6 52.4 V 74.0 -21.6 37.8 V 54.0 -16.2	dBμV/m v/h Limit Margin Pk/QP/Avg 36.8 H 60.0 -23.2 Peak 39.1 V 60.0 -20.9 Peak 37.4 H 54.0 -16.6 Avg 46.8 H 74.0 -27.2 PK 44.4 V 54.0 -9.6 Avg 52.4 V 74.0 -21.6 PK 37.8 V 54.0 -16.2 Avg	dBμV/m v/h Limit Margin Pk/QP/Avg degrees 36.8 H 60.0 -23.2 Peak 205 39.1 V 60.0 -20.9 Peak 150 37.4 H 54.0 -16.6 Avg 30 46.8 H 74.0 -27.2 PK 30 44.4 V 54.0 -9.6 Avg 146 52.4 V 74.0 -21.6 PK 146 37.8 V 54.0 -16.2 Avg 3	dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 36.8 H 60.0 -23.2 Peak 205 2.0 39.1 V 60.0 -20.9 Peak 150 1.5 37.4 H 54.0 -16.6 Avg 30 2.0 46.8 H 74.0 -27.2 PK 30 2.0 44.4 V 54.0 -9.6 Avg 146 1.5 52.4 V 74.0 -21.6 PK 146 1.5 37.8 V 54.0 -16.2 Avg 3 1.0

	Scans made between 18 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there
	were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.
	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

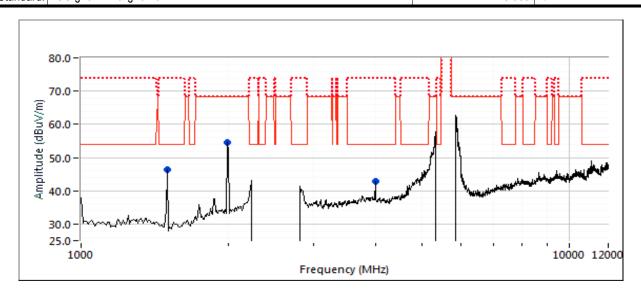
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINOSES	T-Log Number:	TL075848-RA-FCC
	AFINOSS	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

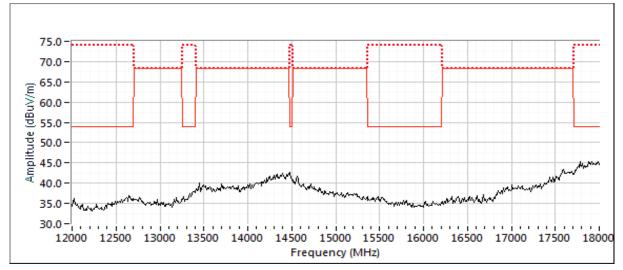
Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADIMORES	T-Log Number:	TL075848-RA-FCC
	AFIN0000	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

Run #6e: Center Channel

Channel: 6 & 114 Wi-Fi Mode: ax80+80 / b Note: Channel 114 not used in Canada

Tx Chain: 8 (5GHz), 4 (2.4 GHz)


Data Rate: 1 Mb/s & MCS0


Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
22439.970	34.5	V	54.0	-19.5	Avg	3	1.0	VB 3 kHz, note 3
22298.000	47.5	V	74.0	-26.5	PK	3	1.0	RB 1 MHz;VB 3 MHz;Peak
1500.000	46.3	V	60.0	-13.7	Peak	109	1.3	Note 6
1991.670	54.6	Н	60.0	-5.4	Peak	90	1.0	Note 6
4000.000	42.9	Н	60.0	-17.1	Peak	107	1.3	Note 6

	Scans made between 18 - 40 GHz with the measurement antenna moved around the EUT 30 from the device indicated there
	were no significant emissions in this frequency range other than the 4th harmonic of the 5GHz fundamental.
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m) for emissions related to UNII
	operation. The measurement method required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector).

Client:	Aruba, a Hewlett Packard Enterprise company	Job Number:	PR075848
Model:	ADINOSES	T-Log Number:	TL075848-RA-FCC
	AFINOSS	Project Manager:	Christine Krebill
Contact:	Mark Hill	Project Coordinator:	David Bare
Standard:	FCC §15.247 & §15.407	Class:	N/A

End of Report

This page is intentionally blank and marks the last page of this test report.