

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.: 2306RSU028-U4 Report Version: V02 Issue Date: 2024-01-23

RF MEASUREMENT REPORT

FCC ID: Q9DAPEX0674579

Applicant: Hewlett Packard Enterprise Company

Product: ACCESS POINT

Model No.: APEX0674, APEX0675, APEX0677, APEX0679

Brand Name: HPE aruba networking

Hewlett Packard Enterprise

FCC Classification: Unlicensed National Information Infrastructure (NII)

FCC Rule Part(s): Part 15 Subpart E (Section 15.407)

Result: Complies

Received Date: 2023-06-15

Test Date: 2023-07-25 ~ 2023-12-26

Reviewed By:

Jame Yuan

Approved By:

Robin Wu

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB789033. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Template Version:0.0 1 of 39

Revision History

Report No.	Version	Description	Issue Date	Note
2306RSU028-U4	V01	Initial Report	2023-12-28	Invalid
2306RSU028-U4	V02	Update Antenna Gain	2024-01-23	Valid

CONTENTS

Des	cription		Page
1.	Gener	al Information	6
	1.1.	Applicant	6
	1.2.	Manufacturer	6
	1.3.	Testing Facility	6
	1.4.	Product Information	7
	1.5.	Radio Specification under Test	8
	1.6.	Working Frequencies	9
	1.7.	Antenna Details	10
2.	Test C	Configuration	12
	2.1.	Test Mode	12
	2.2.	Test System Connection Diagram	13
	2.3.	Test Software	13
	2.4.	Applied Standards	14
	2.5.	Test Environment Condition	14
3.	Anten	na Requirements	15
4.	Measu	uring Instrument	16
5.	Decisi	ion Rules and Measurement Uncertainty	17
	5.1.	Decision Rules	17
	5.2.	Measurement Uncertainty	17
6.	Test R	Result	18
	6.1.	Summary	18
	6.2.	26dB & 99% Bandwidth Measurement	19
	6.2.1.	Test Limit	19
	6.2.2.	Test Procedure	19
	6.2.3.	Test Setting	19
	6.2.4.	Test Setup	20
	6.2.5.	Test Result	20
	6.3.	6dB Bandwidth Measurement	21
	6.3.1.	Test Limit	21
	6.3.2.	Test Procedure	21
	6.3.3.	Test Setting	21
	6.3.4.	Test Setup	21
	6.3.5.	Test Result	21
	6.4.	Output Power Measurement	22
	6.4.1.	Test Limit	22

6.4.2.	Test Procedure	22
6.4.3.	Test Setting	22
6.4.4.	Test Setup	22
6.4.5.	Test Result	22
6.5.	Transmit Power Control Measurement	23
6.5.1.	Test Limit	23
6.5.2.	Test Procedure	23
6.5.3.	Test Setting	23
6.5.4.	Test Setup	23
6.5.5.	Test Result	23
6.6.	Power Spectral Density Measurement	24
6.6.1.	Test Limit	24
6.6.2.	Test Procedure	24
6.6.3.	Test Setting	24
6.6.4.	Test Setup	25
6.6.5.	Test Result	25
6.7.	Frequency Stability Measurement	26
6.7.1.	Test Limit	26
6.7.2.	Test Procedure	26
6.7.3.	Test Setup	26
6.7.4.	Test Result	27
6.8.	Radiated Spurious Emission Measurement	28
6.8.1.	Test Limit	28
6.8.2.	Test Procedure	28
6.8.3.	Test Setting	28
6.8.4.	Test Setup	30
6.8.5.	Test Result	31
6.9.	Radiated Restricted Band Edge Measurement	32
6.9.1.	Test Limit	32
6.9.2.	Test Procedure	34
6.9.3.	Test Setting	34
6.9.4.	Test Setup	35
6.9.5.	Test Result	35
6.10.	AC Conducted Emissions Measurement	36
6.10.1.	Test Limit	36
6.10.2.	Test Setup	36
6.10.3.	Test Result	36
Appendix A	- Test Result	37
Appendix B	- Test Setup Photograph	38
	· I · · · · · · · · · · · · · · · · · ·	

Appendix C – EUT Photograph39

1. General Information

1.1. Applicant

Hewlett Packard Enterprise Company 6280 America Center Drive, San Jose CA 95002, United States

1.2. Manufacturer

Hewlett Packard Enterprise Company 6280 America Center Drive, San Jose CA 95002, United States

1.3. Testing Facility

\boxtimes	Test Site – MRT Suzhou Laboratory							
Laboratory Location (Suzhou - Wuzhong)								
D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China								
	Laboratory Location (Suzhou - SIP)							
	4b Building, Liando	o U Valley, No.200	Xingpu Rd., Shengpu	ı Town, Suzhou Indu	strial Park, China			
	Laboratory Accre	ditations						
	A2LA: 3628.01		CNAS	i: L10551				
	FCC: CN1166		ISED:	CN0001				
	VCCI	□R-20025	☐G-20034	□C-20020	□T-20020			
	VCCI:	□R-20141	□G-20134	□C-20103	□T-20104			
\boxtimes	Test Site - MRT S	Shenzhen Laborat	ory					
	Laboratory Locat	ion (Shenzhen)						
	1G, Building A, Jur	nxiangda Building,	Zhongshanyuan Roa	d West, Nanshan Di	strict, Shenzhen, China			
	Laboratory Accre	ditations						
	A2LA: 3628.02		CNAS	: L10551				
	FCC: CN1284		ISED:	CN0105				
	Test Site – MRT Taiwan Laboratory							
	Laboratory Location (Taiwan)							
	No. 38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)							
	Laboratory Accre	ditations						
	TAF: 3261							
FCC: 291082, TW3261 ISED: TW3261								

1.4. Product Information

Product Name	ACCESS POINT	
Model No.	APEX0674, APEX0675, APEX0677, APEX0679	
	Radiated Sample	
	APEX0674: CNQQLWY018	
	APEX0675: CNQNLWZ040	
Serial No.	APEX0677: CNQQLX0005	
	APEX0679: CNQQLX1011	
	Conducted Sample	
	DVJ35C0025	
Software Version	MT code V.102	
Wi-Fi Specification	802.11a/b/g/n/ac/ax	
Bluetooth Specification	BLE only	
Zigbee Specification	802.15.4	
GNSS Specification	GPS, Galileo, BDS, GLONASS	
Antenna Information	Refer to Section 1.7	
Power Type	PoE Injector Input	
Operating Environment	Outdoor Use	
Wi-Fi Specification Bluetooth Specification Zigbee Specification GNSS Specification Antenna Information Power Type	MT code V.102 802.11a/b/g/n/ac/ax BLE only 802.15.4 GPS, Galileo, BDS, GLONASS Refer to Section 1.7 PoE Injector Input	

Remark:

- 1, The information of EUT was provided by the manufacturer, and the accuracy of the information shall be the responsibility of the manufacturer.
- 2, The difference between four models is that the EUT use different antenna and appearance, other hardware and software are the same. Each model has its own power parameter value.

1.5. Radio Specification under Test

Frequency Range	For 802.11a/n-HT20/ac-VHT20/ax-HE	20:	
	5180~5240MHz, 5260~5320MHz, 5500~5720MHz, 5745~5825MHz		
	For 802.11n-HT40/ac-VHT40/ax-HE40:		
	5190~5230MHz, 5270~5310MHz, 551	0~5710MHz, 5755~5795MHz	
	For 802.11ac-VHT80/ax-HE80:		
	5210MHz, 5290MHz, 5530MHz, 5610 MHz, 5690MHz, 5775MHz		
Type of Modulation	802.11a/n/ac: OFDM		
	802.11ax: OFDMA		
Data Rate	802.11a: 6/9/12/18/24/36/48/54Mbps		
	802.11n: up to 300Mbps		
	802.11ac: up to 866.6Mbps		
	802.11ax: up to 1201Mbps		
Channel Puncturing Function	☐ Supported		
Support RU	⊠ Full RU	☐ Partial RU	

1.6. Working Frequencies

802.11a/n-HT20/ac-VHT20/ax-HE20

Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180 MHz	40	5200 MHz	44	5220 MHz
48	5240 MHz	52	5260 MHz	56	5280 MHz
60	5300 MHz	64	5320 MHz	100	5500 MHz
104	5520 MHz	108	5540 MHz	112	5560 MHz
116	5580 MHz	120	5600 MHz	124	5620 MHz
128	5640 MHz	132	5660 MHz	136	5680 MHz
140	5700 MHz	144	5720 MHz	149	5745 MHz
153	5765 MHz	157	5785 MHz	161	5805 MHz
165	5825 MHz	-			

802.11n-HT40/ac-VHT40/ax-HE40

Channel	Frequency	Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz	54	5270 MHz
62	5310 MHz	102	5510 MHz	110	5550MHz
118	5590 MHz	126	5630 MHz	134	5670 MHz
142	5710 MHz	151	5755 MHz	159	5795 MHz

802.11ac-VHT80/ax-HE80

Channel	Frequency	Channel	Frequency	Channel	Frequency
42	5210 MHz	58	5290 MHz	106	5530 MHz
122	5610 MHz	138	5690 MHz	155	5775 MHz

1.7. Antenna Details

APEX0675

Polarization	Frequency Band	30 Degree Ant Gain	Directional Gain (dBi)		
	(GHz)	(dBi)	For Power	For PSD	
Wi-Fi Internal Antenna (2*2 MIMO)					
Omni (Note 1)	2.4 ~ 2.5		3.8	3.8	
	5.15 ~ 5.85	-2.16	5.7	5.7	
Bluetooth / ZigBee Interna	Bluetooth / ZigBee Internal Antenna				
Omni	2.4 ~ 2.5	3.8			

APEX0677

Polarization	Frequency Band	30 Degree Ant Gain	Directional Gain (dBi)		
	(GHz)	(dBi)	For Power	For PSD	
Wi-Fi Internal Antenna (2*2 MIMO)					
Omni (Note 1)	2.4 ~ 2.5		5.2	5.2	
	5.15 ~ 5.85	6.5	6.5	6.5	
Bluetooth / ZigBee Internal Antenna					
Omni	2.4 ~ 2.5	6.3			

APEX0679

Polarization	Frequency Band	30 Degree Ant Gain	CDD Directional Gain (dBi)			
	(GHz)	(dBi)	For Power	For PSD		
Wi-Fi Internal Antenna (2*2 MIMO)						
Omni (Note 1)	2.4 ~ 2.5		6.1	6.1		
Switch on	Switch on					
Omni (Note 1)	5.15 ~ 5.85	7.7	7.7	7.7		
Switch off						
Omni (Note 1)	5.15 ~ 5.85	10.5	10.5	10.5		
Bluetooth / ZigBee Interna	Bluetooth / ZigBee Internal Antenna					
Omni	2.4 ~ 2.5	6.3				

^{1,} These antennas are cross polarized design, the detail refer to antenna specification. Directional gain calculation refer to KDB 662911 section F)2)c).

- 2, The antenna gain and directional gain refer to the manufacturer's antenna specification.
- 3, For APEX0679 5GHz antenna, it has one switch that allows the antenna to work at different antenna array.

APEX0674

Polarization	Model No.	Frequency Band	Max	30 Degree	BF Gain	CDD Dir	ectional
		(GHz)	Peak	Ant Gain	(dBi)	Gain	(dBi)
			Gain	(dBi)		For	For
			(dBi)			Power	PSD
Wi-Fi External Antenna Li	st (2*2 MIMO)						
Omni	ANT-2x2-256O-6	2.4 ~ 2.5	3.0		3.0	3.0	3.0
Onlin	ANT-2X2-2500-0	5.15 ~ 5.85	6.0	-3.0	6.0	6.0	6.0
Omni	ANT-2x2-56O-10	5.15 ~ 5.85	7.0	2.4	7.0	7.0	7.0
Directional (Note 1)	ANT-2x2-56D30-14	5.15 ~ 5.85	11.0	6.4	11.0	11.0	11.0
Omni (Note 1)	ANT-2x2-2005	2.4 ~ 2.5	5.0		5.0	5.0	5.0
Directional (Note 1)	ANT-2x2-2714	2.4 ~ 2.5	14.0		14.0	14.0	14.0
Directional (Note 1)	ANT-2x2-2314	2.4 ~ 2.5	14.0		14.00	14.0	14.00
Omni (Note 1)	ANT-2x2-5005	5.15 ~ 5.85	5.0	0.0	5.0	5.0	5.0
Omni (Note 1)	ANT-2x2-5010	5.15 ~ 5.85	10.0	0.0	10.0	10.0	10.0
Directional (Note 1)	ANT-3x3-5712	5.15 ~ 5.85	11.5	1.5	11.5	11.5	11.5
Directional (Note 1)	ANT-4x4-5314	5.15 ~ 5.85	14.0	6.0	14.0	14.0	14.0
Directional (Note 1)	ANT-4x4-D707	2.4 ~ 2.5	7.5		7.5	7.5	7.5
Directional (Note 1)	ANT-4X4-D707	5.15 ~ 5.85	7.5	5.0	7.5	7.5	7.5
Directional (Note 4)	ANIT ANA DOOR	2.4 ~ 2.5	7.5		7.5	7.5 7.5	7.5
Directional (Note 1)	ANT-4x4-D608	5.15 ~ 5.85	7.5	4.5	7.5	7.5	7.5
Directional (Note 4)	ANIT ANA DAGG	2.4 ~ 2.5	5.0		5.0	5.0	5.0
Directional (Note 1)	ANT-4x4-D100	5.15 ~ 5.85	5.0	4.0	5.0	5.0	5.0
Bluetooth / ZigBee Interna	al Antenna						
Omni	2.4 -	- 2.5			5.0		

Note:

- These antennas are cross polarized design, the detail refer to antenna specification. Directional gain calculation refer to KDB 662911 section F)2)c).
- 2. The antenna gain and directional gain refer to the manufacturer's antenna specification.
- 3. Low gain antenna (ANT-2x2-5005) was selected to perform all RF testing that can got maximum power setting, high gain antenna (ANT-2x2-5010& ANT-4x4-5314) was selected to perform radiated spurious emission and band edge testing. High gain antenna power setting will be reduced according to difference value of antenna gain declared by applicant.

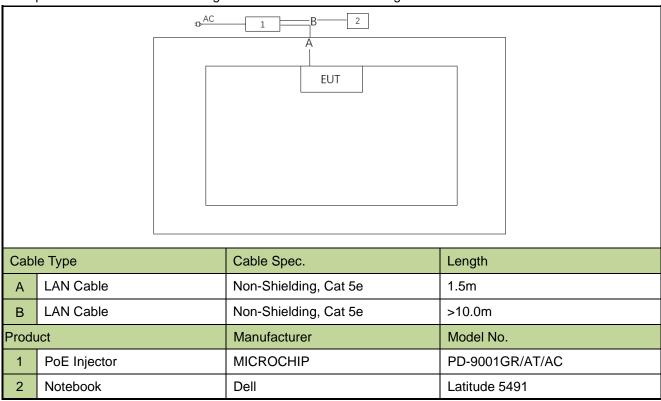
2. Test Configuration

2.1. Test Mode

Mode 1: Transmit by	, 202 11a	Noc-1	(6Mhne)	CDD Mode
WOULD IN HAIRSHILL D	v 00∠.11a	INSS=I	COUNDO	CDD Mode

- Mode 2: Transmit by 802.11ac-VHT20_N_{SS}=1 (MCS0) _ CDD Mode
- Mode 3: Transmit by 802.11ac-VHT40_Nss=1 (MCS0) _ CDD Mode
- Mode 4: Transmit by 802.11ac-VHT80_Nss=1 (MCS0) _ CDD Mode
- Mode 5: Transmit by 802.11ax-HE20_N_{SS}=1 (MCS0) _ CDD Mode
- Mode 6: Transmit by 802.11ax-HE40_Nss=1 (MCS0) _ CDD Mode
- Mode 7: Transmit by 802.11ax-HE80_Nss=1 (MCS0) _ CDD Mode

Note:


- 1. All modes of operation and data rates were investigated, so all RF test requirements shall be executed at the worst data rate.
- 2. 802.11n and 802.11ac have same modulation type and same power value, so we only show 802.11ac test data in report.
- 3. For beamforming operation, manufacturer automatically backs power down based on CDD power.

 Therefore, only the CDD mode was evaluated in this report

2.2. Test System Connection Diagram

The device was tested per the guidance ANSI C63.10: 2013 was used to reference the appropriate EUT setup for radiated emissions testing and AC line conducted testing.

2.3. Test Software

The test utility software used during testing was "QQSPR", and the version was 5.0.

Final power setting please refer to operational description.

2.4. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15.407
- KDB 789033 D02v02r01
- KDB 662911 D01v02r01
- ANSI C63.10-2013

2.5. Test Environment Condition

Ambient Temperature	15 ~ 35°C
Relative Humidity	20 ~ 75%RH

3. Antenna Requirements

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

Conclusion:

The product is defined as the professional installation of equipment by the manufacturer, there is no necessary to comply with the requirement of §15.203.

4. Measuring Instrument

Instrument	Manufacturer	Model No.	Asset No.	Cali. Interval	Cali. Due Date	Test Site
USB Power Sensor	Keysight	U2021XA	MRTSUE06446	1 year	2024-05-23	WZ-SR5
Signal Analyzer	Keysight	N9010B	MRTSUE06457	1 year	2024-05-23	WZ-SR5
Attenuator	MVE	MVE2213	MRTSUE11082	1 year	2024-06-08	WZ-SR5
Attenuator	MVE	MVE2213	MRTSUE11082	1 year	2024-06-08	WZ-SR5
Thermohygrometer	testo	608-H1	MRTSUE06402	1 year	2024-05-31	WZ-SR5
Shielding Room	HUAMING	WZ-SR5	MRTSUE06442	N/A	N/A	WZ-SR5
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2024-12-17	WZ-AC1
Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06023	1 year	2024-08-09	WZ-AC1
Preamplifier	Agilent	83017A	MRTSUE06076	1 year	2024-05-07	WZ-AC1
TRILOG Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2024-06-09	WZ-AC1
Anechoic Chamber	TDK	WZ-AC1	MRTSUE06212	1 year	2024-04-20	WZ-AC1
Thermohygrometer	testo	608-H1	MRTSUE06403	1 year	2024-05-31	WZ-AC1
Signal Analyzer	Keysight	N9010B	MRTSUE06607	1 year	2024-10-23	WZ-AC1
Thermohygrometer	testo	608-H1	MRTSUE11039	1 year	2024-10-25	WZ-AC1
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2024-09-17	WZ-AC1
Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06597	1 year	2024-11-04	WZ-AC1
Preamplifier	EMCI	EMC184045SE	MRTSUE06640	1 year	2024-01-12	WZ-AC1
Two-Line V-Network	R&S	ENV216	MRTSUE06002	1 year	2024-05-23	WZ-SR2
Shielding Room	MIX-BEP	WZ-SR2	MRTSUE06215	5 years	2026-12-20	WZ-SR2
Thermohygrometer	testo	608-H1	MRTSUE06404	1 year	2024-05-31	WZ-SR2
EMI Test Receiver	R&S	ESR3	MRTSUE06909	1 year	2024-09-27	WZ-SR2

Software	Version	Function
EMI Software	V3.0.0	EMI Test Software
Controller_MF 7802	2.03C	RE Antenna & Turntable
BenchVue Power Meter	2018.1	Power

5. Decision Rules and Measurement Uncertainty

5.1. Decision Rules

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4: 2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.2. Measurement Uncertainty

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement

The maximum measurement uncertainty is evaluated as:

9kHz~150kHz: 3.58dB 150kHz~30MHz: 3.20dB

Radiated Emission Measurement

The maximum measurement uncertainty is evaluated as:

Coaxial: 9kHz~30MHz: 2.61dB
Coplanar: 9kHz~30MHz: 2.62dB
Horizontal: 30MHz~200MHz: 3.79dB

200MHz~1GHz: 3.91dB 1GHz~40GHz: 4.99dB

Vertical: 30MHz~200MHz: 4.06dB

200MHz~1GHz: 5.21dB 1GHz~40GHz: 4.90dB

Spurious Emissions, Conducted

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

2.2dB

Output Power

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

1.4dB

Power Spectrum Density

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

2.2dB

Occupied Bandwidth

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

2.7%

6. Test Result

6.1. Summary

FCC Section(s)	Test Description	Test Condition	Verdict	
15.407(a)	26dB Bandwidth		Pass	
15.407(e)	6dB Bandwidth		Pass	
15.407(a)(1)(ii), (2), (3)(i)	Maximum Conducted Output Power		Pass	
15.407(h)(1)	Transmit Power Control	Conducted	Pass	
15.407(g)	Frequency Stability		Pass	
15.407(a)(1)(ii), (2), (3)(i),	Pools Power Spectral Density		Doos	
(12)	Peak Power Spectral Density		Pass	
15.407(b)(1), (2), (3), (4)(i)	Undesirable Emissions		Pass	
15 205 15 200	General Field Strength Limits	Radiated		
15.205, 15.209	(Restricted Bands and Radiated	Radiated	Pass	
15.407(b)(8), (9), (10)	Emission Limits)			
15 207	AC Conducted Emissions	Line Conducted	Pass	
15.207	150kHz - 30MHz	Line Conducted	F 455	

Remark:

- The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer.
 The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 2. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst-case emissions.

6.2. 26dB & 99% Bandwidth Measurement

6.2.1. Test Limit

N/A

6.2.2. Test Procedure

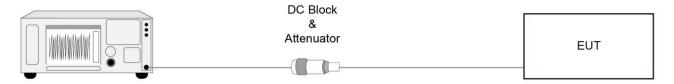
KDB 789033 D02v02r01- Section II)C)1) (26dB Bandwidth)

KDB 789033 D02v02r01- Section II)D) (99% Bandwidth)

6.2.3. Test Setting

26dB Bandwidth

- 1. The analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth
- 2. RBW = approximately 1% of the emission bandwidth.
- 3. VBW > RBW
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- Measure the maximum width of the emission that is 26 dB down from the maximum of the emission.
 Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.


99% Bandwidth

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. RBW = 1% to 5% of the OBW
- 3. VBW \geq 3 × RBW
- 4. Span = 1.5 times to 5 times the OBW
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Allow the trace to stabilize
- 8. Use the 99% power bandwidth function of the instrument.

6.2.4. Test Setup

Spectrum Analyzer

6.2.5. Test Result

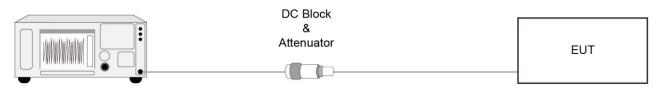
Refer to Appendix A.2.

6.3. 6dB Bandwidth Measurement

6.3.1. Test Limit

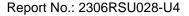
The minimum 6dBbandwidth shall be at least 500 kHz.

6.3.2. Test Procedure


KDB 789033 D02v02r01- Section II)C)2)

6.3.3. Test Setting

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. RBW = 100 kHz.
- 3. $VBW \ge 3 \times RBW$.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize.
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


6.3.4. Test Setup

Spectrum Analyzer

6.3.5. Test Result

Refer to Appendix A.3.

6.4. Output Power Measurement

6.4.1. Test Limit

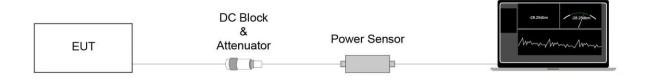
For an outdoor access point operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm).

If transmitting antennas of directional gain greater than 6dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

6.4.2. Test Procedure


KDB 789033D02v02r01- Section II)E)3)b) Method PM-G

6.4.3. Test Setting

Average Power Measurement

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.

6.4.4. Test Setup

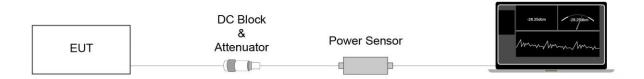
6.4.5. Test Result

Refer to Appendix A.4.

6.5. Transmit Power Control Measurement

6.5.1. Test Limit

The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm.


6.5.2. Test Procedure

KDB 789033 D02v01- Section II)E)3)b) Method PM-G

6.5.3. Test Setting

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

6.5.4. Test Setup

6.5.5. Test Result

Device supports TPC mechanism, details refer to the operational description.

6.6. Power Spectral Density Measurement

6.6.1. Test Limit

For the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

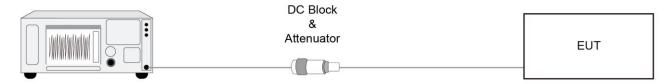
For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

If transmitting antennas of directional gain greater than 6dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

6.6.2. Test Procedure

KDB 789033 D02v02r01-Section II)F)


6.6.3. Test Setting

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire 26dB EBW of the signal.
- 3. RBW = 1MHz (510kHz, if measurement bandwidth of Maximum PSD is specified in 500 kHz)
- 4. $VBW = 3 \times RBW$
- 5. Number of sweep points ≥ 2 × (span / RBW)
- 6. Detector = power averaging (Average)
- 7. Sweep time = auto
- 8. Trigger = free run
- 9. Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed to ensure that the average accurately represents the true average over the on and off periods of the transmitter.
- 10. Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- 11. Add 10*log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission). For example, add 10*log(1/0.25) = 6 dB if the duty cycle is 25 percent.

6.6.4. Test Setup

Spectrum Analyzer

6.6.5. Test Result

Refer to Appendix A.5.

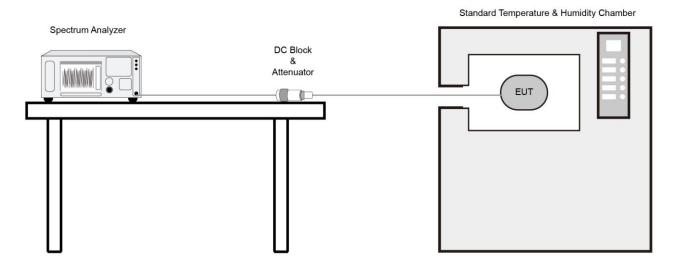
6.7. Frequency Stability Measurement

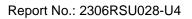
6.7.1. Test Limit

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

6.7.2. Test Procedure

Frequency Stability Under Temperature Variations:


The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to highest. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C decreased per stage until the lowest temperature reached.


Frequency Stability Under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, recordthe maximum frequency change.

6.7.3. Test Setup

6.7.4. Test Result

Refer to Appendix A.6.

6.8. Radiated Spurious Emission Measurement

6.8.1. Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

F	FCC Part 15 Subpart C Paragraph 15.209					
Frequency [MHz]	Field Strength [uV/m]	Measured Distance [Meters]				
0.009 - 0.490	2400/F (kHz)	300				
0.490 - 1.705	24000/F (kHz)	30				
1.705 - 30	30	30				
30 - 88	100	3				
88 - 216	150	3				
216 - 960	200	3				
Above 960	500	3				

6.8.2. Test Procedure

KDB 789033 D02v02r01- Section II)G)

6.8.3. Test Setting

Table 1 - RBW as a function of frequency

Frequency	RBW	
9 ~ 150 kHz	200 ~ 300 Hz	
0.15 ~ 30 MHz	9 ~ 10 kHz	
30 ~ 1000 MHz	100 ~ 120 kHz	
> 1000MHz	1MHz	

Quasi-Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as specified in Table 1
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

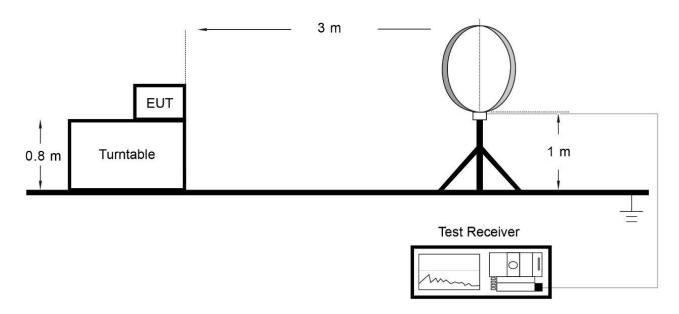
Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

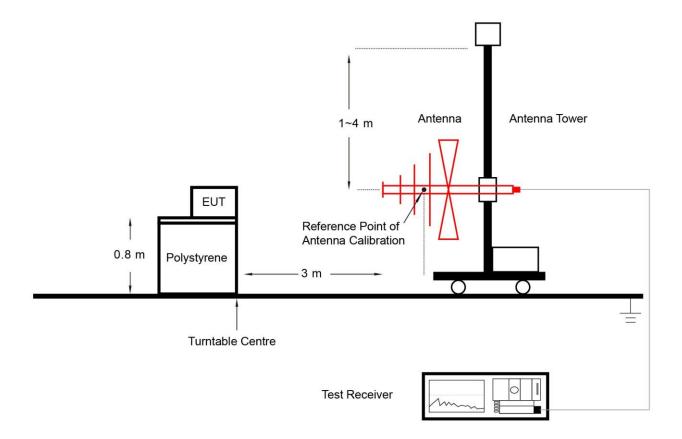
Average Measurements above 1GHz (Method VB)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW; If the EUT is configured to transmit with duty cycle ≥ 98%, set VBW = 10 Hz.

If the EUT duty cycle is < 98%, set VBW \geq 1/T. T is the minimum transmission duration.

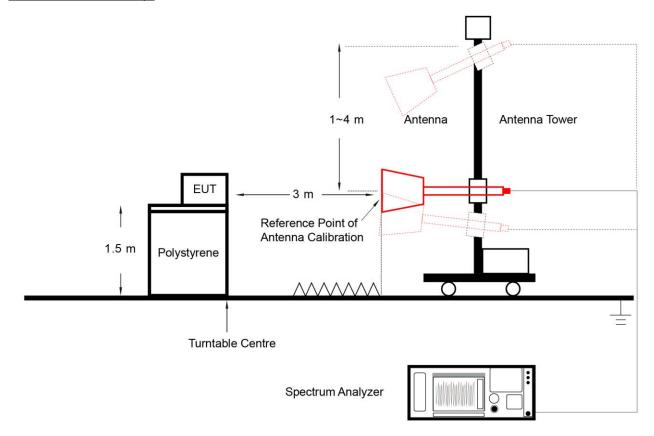

802.11a	VBW = 750Hz	802.11ax-HE20	VBW = 100Hz
802.11ac-VHT20	VBW = 100Hz	802.11ax-HE40	VBW = 200Hz
802.11ac-VHT40	VBW = 200Hz	802.11ax-HE80	VBW = 200Hz
802.11ac-VHT80	VBW = 200Hz		

- 4. Detector = Peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize



6.8.4. Test Setup

Below 30MHz Test Setup:



Below 1GHz Test Setup:

Above 1GHz Test Setup:

6.8.5. Test Result

Refer to Appendix A.7.

6.9. Radiated Restricted Band Edge Measurement

6.9.1. Test Limit

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

Frequency	Frequency	Frequency	Frequency
(MHz)	(MHz)	(MHz)	(GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

For 15.407(b) requirement:

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of –27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Refer to KDB 789033 D02v02r01 G)2)c), as specified in § 15.407(b), emissions above 1000 MHz that are outside of the restricted bands are subject to a maximum emission limit of -27 dBm/MHz (or -17 dBm/MHz as specified in § 15.407(b)(4)). However, an out-of-band emission that complies with both the peak and average limits of § 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz maximum emission limit.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209					
Frequency	Frequency Field Strength				
[MHz]	[uV/m]	[Meters]			
0.009 - 0.490	2400/F (kHz)	300			
0.490 - 1.705	24000/F (kHz)	30			
1.705 - 30	30	30			
30 - 88	100	3			
88 - 216	150	3			
216 - 960	200	3			
Above 960	500	3			

6.9.2. Test Procedure

KDB 789033 D02v02r01- Section II)G)

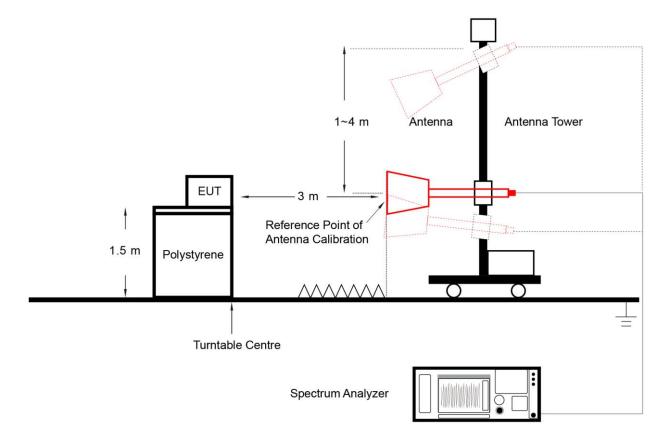
6.9.3. Test Setting

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = Peak
- 5. Sweep time = Auto couple
- 6. Trace mode = Max hold
- 7. Trace was allowed to stabilize

Average Measurements above 1GHz (Method VB)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW; if the EUT is configured to transmit with duty cycle ≥ 98%, set VBW = 10Hz


If the EUT duty cycle is < 98%, set VBW ≥ 1/T. T is the minimum transmission duration

802.11a	VBW = 750Hz	802.11ax-HE20	VBW = 100Hz
802.11ac-VHT20	VBW = 100Hz	802.11ax-HE40	VBW = 200Hz
802.11ac-VHT40	VBW = 200Hz	802.11ax-HE80	VBW = 200Hz
802.11ac-VHT80	VBW = 200Hz		

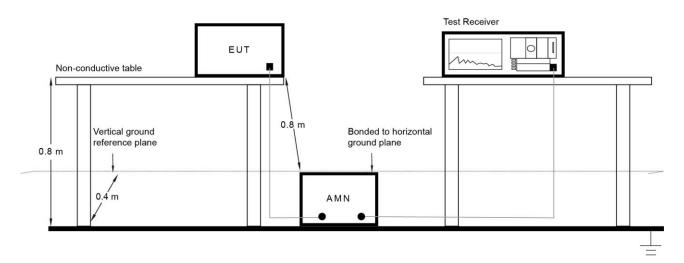
- 4. Detector = Peak
- 5. Sweep time = Auto
- 6. Trace mode = Max hold
- 7. Trace was allowed to stabilize

6.9.4. Test Setup

6.9.5. Test Result

Refer to Appendix A.8.

6.10. AC Conducted Emissions Measurement


6.10.1. Test Limit

FCC Part 15.207 Limits		
Frequency	QP	AV
(MHz)	(dBuV)	(dBuV)
0.15 - 0.50	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30	60	50

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

6.10.2. Test Setup

6.10.3. Test Result

Refer to Appendix A.9.

Appendix A – Test Result

Refer to "Annex D-UNII Test Data" file.

Appendix B – Test Setup Photograph

Refer to "2306RSU028-UT" file.

Appendix C – EUT Photograph

Refer to "2306RSU028-UE" file.

_____ The End