

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358

Web: www.mrt-cert.com

Report No.: 2306RSU028-U3 Report Version: V02 Issue Date: 2024-01-23

RF MEASUREMENT REPORT

FCC ID: Q9DAPEX0674579

Applicant: Hewlett Packard Enterprise Company

Product: ACCESS POINT

Model No.: APEX0674, APEX0675, APEX0677, APEX0679

Brand Name: HPE aruba networking

Hewlett Packard Enterprise

FCC Classification: Digital Transmission System (DTS)

FCC Rule Part(s): Part 15 Subpart C (Section 15.247)

Result: Complies

Received Date: 2023-06-15

Test Date: 2023-08-08 ~ 2023-12-29

Reviewed By:

Jame Yuan

Approved By:

Robin Wu

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Template Version:0.0 1 of 33

Revision History

Report No.	Version	Description	Issue Date	Note
2306RSU028-U3	V01	Initial Report 2023-12-29		Invalid
2306RSU028-U3	V02	Update Antenna Gain	2024-01-23	Valid

CONTENTS

Des	cription		Page
1.	Gene	ral Information	5
	1.1.	Applicant	5
	1.2.	Manufacturer	5
	1.3.	Testing Facility	5
	1.4.	Product Information	6
	1.5.	Radio Specification under Test	7
	1.6.	Working Frequencies	7
	1.7.	Antenna Details	8
	1.8.	Description of Operating Paths	10
2.	Test C	Configuration	11
	2.1.	Test Mode	11
	2.2.	Test System Connection Diagram	11
	2.3.	Test Software	12
	2.4.	Applied Standards	12
	2.5.	Test Environment Condition	12
3.	Anten	nna Requirements	13
4.	Meası	uring Instrument	14
5.	Decis	ion Rules and Measurement Uncertainty	15
	5.1.	Decision Rules	15
	5.2.	Measurement Uncertainty	15
6.	Test F	Result	16
	6.1.	Summary	16
	6.2.	6dB Bandwidth Measurement	17
	6.2.1.	Test Limit	17
	6.2.2.	Test Procedure	17
	6.2.3.	Test Setting	17
	6.2.4.	Test Setup	17
	6.2.5.	Test Result	17
	6.3.	Output Power Measurement	18
	6.3.1.	Test Limit	18
	6.3.2.	Test Procedure	18
	6.3.3.	Test Setting	18
	6.3.4.	Test Setup	18
	6.3.5.	Test Result	18
	6.4.	Power Spectral Density Measurement	19

6.4.1.	Test Limit	19
6.4.2.	Test Procedure	19
6.4.3.	Test Setting	19
6.4.4.	Test Setup	19
6.4.5.	Test Result	20
6.5.	Conducted Band Edge and Out-of-Band Emissions Measurement	21
6.5.1.	Test Limit	21
6.5.2.	Test Procedure	21
6.5.3.	Test Settitng	21
6.5.4.	Test Setup	22
6.5.5.	Test Result	22
6.6.	Radiated Spurious Emission Measurement	23
6.6.1.	Test Limit	23
6.6.2.	Test Procedure	23
6.6.3.	Test Setting	23
6.6.4.	Test Setup	25
6.6.5.	Test Result	26
6.7.	Radiated Restricted Band Edge Measurement	27
6.7.1.	Test Limit	27
6.7.2.	Test Procedure	28
6.7.3.	Test Setting	28
6.7.4.	Test Setup	29
6.7.5.	Test Result	29
6.8.	AC Conducted Emissions Measurement	30
6.8.1.	Test Limit	30
6.8.2.	Test Setup	30
6.8.3.	Test Result	30
Appendix A	A – Test Result	31
Appendix E	3 – Test Setup Photograph	32
Appendix (C – EUT Photograph	33

1. General Information

1.1. Applicant

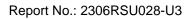
Hewlett Packard Enterprise Company 6280 America Center Drive, San Jose CA 95002, United States

1.2. Manufacturer

Hewlett Packard Enterprise Company 6280 America Center Drive, San Jose CA 95002, United States

1.3. Testing Facility

\boxtimes	Test Site - MRT	Suzhou Laborator	у						
	Laboratory Location (Suzhou - Wuzhong)								
	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China								
	Laboratory Loca	tion (Suzhou - SIF	')						
	4b Building, Liando U Valley, No.200 Xingpu Rd., Shengpu Town, Suzhou Industrial Park, China								
	Laboratory Accr	editations							
	A2LA: 3628.01		CNAS	S: L10551					
	FCC: CN1166		ISED:	CN0001					
	l vooi	□R-20025	□G-20034	□C-20020	□T-20020				
	VCCI:	□R-20141	□G-20134	□C-20103	□T-20104				
\boxtimes	Test Site – MRT Shenzhen Laboratory								
	Laboratory Loca	tion (Shenzhen)							
	1G, Building A, Ju	ınxiangda Building,	Zhongshanyuan Roa	d West, Nanshan Di	strict, Shenzhen, China				
	Laboratory Accr	editations							
	A2LA: 3628.02		CNAS	: L10551					
	FCC: CN1284		ISED:	CN0105					
	Test Site - MRT	Taiwan Laboratory	1						
	Laboratory Loca	tion (Taiwan)							
	No. 38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)								
	Laboratory Accr	editations							
	TAF: 3261								
	FCC: 291082, TW	/3261	ISED:	TW3261					



1.4. Product Information

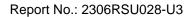
Product Name	ACCESS POINT		
Model No.	APEX0674, APEX0675, APEX0677, APEX0679		
	Radiated Sample		
	APEX0674: CNQQLWY018		
	APEX0675: CNQNLWZ040		
Serial No.	APEX0677: CNQQLX0005		
	APEX0679: CNQQLX1011		
	Conducted Sample		
	DVJ35C0025		
Software Version	MT code V.102		
Wi-Fi Specification	802.11a/b/g/n/ac/ax		
Bluetooth Specification	BLE only		
Zigbee Specification	802.15.4		
GNSS Specification	GPS, Galileo, BDS, GLONASS		
Antenna Information	Refer to Section 1.7		
Working Voltage	PoE Injector Input		
Operating Temperature	-40 ~ 70 °C		
Operating Environment	Outdoor Use		

Remark:

- 1, The information of EUT was provided by the manufacturer, and the accuracy of the information shall be the responsibility of the manufacturer.
- 2, The difference between four models is that the EUT use different antenna and appearance, other hardware and software are the same. Each model has its own power parameter value.

1.5. Radio Specification under Test

Frequency Range	802.11b/g/n-HT20/ax-HE20: 2412 ~ 2	462MHz	
	802.11n-HT40/ax-HE40: 2422 ~ 2452		
Channel Number	802.11b/g/n-HT20/ax-HE20: 11		
	802.11n-HT40/ax-HE40: 7		
Type of Modulation	802.11b: DSSS		
	802.11g/n: OFDM		
	802.11ax: OFDMA		
Data Rate	802.11b: 1/2/5.5/11Mbps		
	802.11g: 6/9/12/18/24/36/48/54Mbps		
	802.11n: up to 300Mbps		
	802.11ax: up to 574Mbps		
Channel Puncturing Function	☐ Supported		
Support RU		☐ Partial RU	


1.6. Working Frequencies

802.11b/g/n-HT20/ax-HE20

Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	02	2417 MHz	03	2422 MHz
04	2427 MHz	05	2432 MHz	06	2437 MHz
07	2442 MHz	08	2447 MHz	09	2452 MHz
10	2457 MHz	11	2462 MHz		

802.11n-HT40/ax-HE40

Channel	Frequency	Channel	Frequency	Channel	Frequency
03	2422 MHz	04	2427 MHz	05	2432 MHz
06	2437 MHz	07	2442 MHz	08	2447 MHz
09	2452 MHz		-		

1.7. Antenna Details

APEX0675

Polarization	Frequency Band	30 Degree Ant Gain (dBi)	Directional Gain (dBi)			
	(GHz)		For Power	For PSD		
Wi-Fi Internal Antenna (2*2 MIMO)						
	2.4 ~ 2.5		3.8	3.8		
Omni (Note 1)	5.15 ~ 5.85	-2.16	5.7	5.7		
Bluetooth / ZigBee Internal Antenna						
Omni	2.4 ~ 2.5	3.8				

APEX0677

Polarization	Frequency Band	30 Degree Ant Gain	Directional Gain (dBi)		30 Degree Ant Gain Directional Gain (dB		
	(GHz)	(dBi)	For Power	For PSD			
Wi-Fi Internal Antenna (2*	Wi-Fi Internal Antenna (2*2 MIMO)						
	2.4 ~ 2.5		5.2	5.2			
Omni (Note 1)	5.15 ~ 5.85	6.5	6.5	6.5			
Bluetooth / ZigBee Internal Antenna							
Omni	2.4 ~ 2.5	6.3					

APEX0679

Polarization	Frequency Band	30 Degree Ant Gain	CDD Directional Gain (dBi)				
	(GHz)	(dBi)	For Power	For PSD			
Wi-Fi Internal Antenna (2*	Wi-Fi Internal Antenna (2*2 MIMO)						
Omni (Note 1) 2.4 ~ 2.5 6.1 6.1							
Switch on							
Omni (Note 1)	5.15 ~ 5.85	7.7	7.7	7.7			
Switch off							
Omni (Note 1)	5.15 ~ 5.85	10.5	10.5	10.5			
Bluetooth / ZigBee Internal Antenna							
Omni	2.4 ~ 2.5		6.6				

^{1,} These antennas are cross polarized design, the detail refer to antenna specification. Directional gain calculation refer to KDB 662911 section F)2)c).

- 2, The antenna gain and directional gain refer to the manufacturer's antenna specification.
- 3, For APEX0679 5GHz antenna, it has one switch that allows the antenna to work at different antenna array.

APEX0674

Polarization	Model No.	Frequency Band	Max	30 Degree	BF Gain	CDD Dir	ectional
		(GHz)	Peak	Ant Gain	(dBi)	Gain	(dBi)
			Gain	(dBi)		For	For
			(dBi)			Power	PSD
Wi-Fi External Antenna Li	st (2*2 MIMO)						
Omni	ANT-2x2-256O-6	2.4 ~ 2.5	3.0		3.0	3.0	3.0
Omni	AN1-2X2-250U-6	5.15 ~ 5.85	6.0	-3.0	6.0	6.0	6.0
Omni	ANT-2x2-56O-10	5.15 ~ 5.85	7.0	2.4	7.0	7.0	7.0
Directional (Note 1)	ANT-2x2-56D30-14	5.15 ~ 5.85	11.0	6.4	11.0	11.0	11.0
Omni (Note 1)	ANT-2x2-2005	2.4 ~ 2.5	5.0		5.0	5.0	5.0
Directional (Note 1)	ANT-2x2-2714	2.4 ~ 2.5	14.0		14.0	14.0	14.0
Directional (Note 1)	ANT-2x2-2314	2.4 ~ 2.5	14.0		14.00	14.0	14.00
Omni (Note 1)	ANT-2x2-5005	5.15 ~ 5.85	5.0	0.0	5.0	5.0	5.0
Omni (Note 1)	ANT-2x2-5010	5.15 ~ 5.85	10.0	0.0	10.0	10.0	10.0
Directional (Note 1)	ANT-3x3-5712	5.15 ~ 5.85	11.5	1.5	11.5	11.5	11.5
Directional (Note 1)	ANT-4x4-5314	5.15 ~ 5.85	14.0	6.0	14.0	14.0	14.0
Directional (Note 1)	ANT 474 D707	2.4 ~ 2.5	7.5		7.5	7.5	7.5
Directional (Note 1)	ANT-4x4-D707	5.15 ~ 5.85	7.5	5.0	7.5	7.5	7.5
Directional (Note 4)	ANIT ANA DOOR	2.4 ~ 2.5	7.5		7.5	7.5	7.5
Directional (Note 1)	ANT-4x4-D608	5.15 ~ 5.85	7.5	4.5	7.5	7.5	7.5
Directional (Nata 4)	ANIT 4×4 D400	2.4 ~ 2.5	5.0		5.0	5.0	5.0
Directional (Note 1)	ANT-4x4-D100	5.15 ~ 5.85	5.0	4.0	5.0	5.0	5.0
Bluetooth / ZigBee Interna	al Antenna						
Omni	2.4 -	- 2.5			5.0		

Note:

- These antennas are cross polarized design, the detail refer to antenna specification. Directional gain calculation refer to KDB 662911 section F)2)c).
- 2. The antenna gain and directional gain refer to the manufacturer's antenna specification.
- 3. Low gain antenna (ANT-2x2-256O-6) was selected to perform all RF testing that can got maximum power setting, high gain antenna (ANT-2x2-2005 & ANT-2x2-2314) was selected to perform radiated spurious emission and band edge testing. High gain antenna power setting will be reduced according to difference value of antenna gain declared by applicant.

1.8. Description of Operating Paths

Filter	Specification	Remark	
Wi-Fi			
Filter 1#	Band Pass Filter (2412-2472)	Allowing any transmission on all channels	
Filter 2#	Band Pass Filter (2402-2447)	Allowing any transmission on 20MHz channels 1 thru 6	
		and 40MHz channel 3.	
Filter 3#	Band Pass Filter (2452-2472)	Allowing any transmission on 20MHz channel 11	
Bluetooth /	ZigBee		
Filter 4#	Band Pass Filter (2402-2480)	Allowing any transmission on all channels	
Filter 5#	Band Pass Filter (2402-2430)	Allowing transmission on BLE channels 37 (2402MHz)	
		and 38 (2426MHz) and Zigbee channel 11 (2405MHz)	
Filter 6#	Band Pass Filter (2478-2482)	Allowing transmission on BLE channel 39 (2480MHz) and	
		Zigbee channel 26(2480MHz)	
Note 1: ZigBee and BLE can't work simultaneously.			

Note 2: Detail can refer to technical document.

Working Mode

Bluetooth	Remark
Filter 4#	Filter 1# or Filter 4# work alone
Filter 6#	Transmission simultaneously
Filter 5#	Transmission simultaneously
	Filter 4# Filter 6#

Note: Filter groups on the 2.4GHz Wi-Fi and BLE/Zigbee outputs to prevent reverse IMD when both 2.4GHz Wi-Fi and BLE/Zigbee are transmitting simultaneously

2. Test Configuration

2.1. Test Mode

Mode 1: Transmit by	/ 802 11h	Nee-1 (1Mh	ns) CDD Mo	nde
יוווטטע זו. וומווטוווו טי	y 00∠. I I D	INSS= I (I IVID		Jue

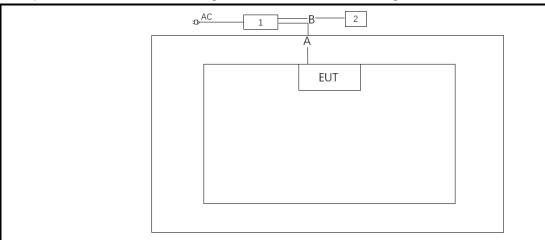
Mode 2: Transmit by 802.11g _Nss=1 (6Mbps) _ CDD Mode

Mode 3: Transmit by 802.11n-HT20 _Nss=1 (MCS0) _ CDD Mode

Mode 4: Transmit by 802.11n-HT40 _Nss=1 (MCS0) _ CDD Mode

Mode 5: Transmit by 802.11ax-HE20 _Nss=1 (MCS0) _ CDD Mode

Mode 6: Transmit by 802.11ax-HE40 _Nss=1 (MCS0) _ CDD Mode


Note:

- 1. All modes of operation and data rates were investigated, so all RF test requirements shall be executed at the worst data rate.
- 2. For beamforming operation, manufacturer automatically backs power down based on CDD power.

 Therefore, only the CDD mode was evaluated in this report

2.2. Test System Connection Diagram

The device was tested per the guidance ANSI C63.10: 2013 was used to reference the appropriate EUT setup for radiated emissions testing and AC line conducted testing.

Cabl	е Туре	Cable Spec.	Length
Α	LAN Cable	Non-Shielding, Cat 5e	1.5m
В	LAN Cable	Non-Shielding, Cat 5e	>10.0m
Produ	uct	Manufacturer	Model No.
1	PoE Injector	MICROCHIP	PD-9001GR/AT/AC
2	Notebook	Dell	Latitude 5491

2.3. Test Software

The test utility software used during testing was "QSPR", and the version was 5.0.

Final power setting please refer to operational description.

2.4. Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15.247
- KDB 558074 D01v05r02
- KDB 662911 D01v02r01
- ANSI C63.10-2013

2.5. Test Environment Condition

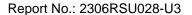
Ambient Temperature	15 ~ 35°C
Relative Humidity	20 ~ 75%RH

3. Antenna Requirements

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

Conclusion:


The product is defined as the professional installation of equipment by the manufacturer, there is no necessary to comply with the requirement of §15.203.

4. Measuring Instrument

Instrument	Manufacturer	Model No.	Asset No.	Cali. Interval	Cali. Due Date	Test Site
USB Power Sensor	Keysight	U2021XA	MRTSUE06446	1 year	2024-05-23	WZ-SR5
Signal Analyzer	Keysight	N9010B	MRTSUE06457	1 year	2024-05-23	WZ-SR5
Attenuator	MVE	MVE2213	MRTSUE11082	1 year	2024-06-08	WZ-SR5
Attenuator	MVE	MVE2213	MRTSUE11082	1 year	2024-06-08	WZ-SR5
Thermohygrometer	testo	608-H1	MRTSUE06402	1 year	2024-05-31	WZ-SR5
Shielding Room	HUAMING	WZ-SR5	MRTSUE06442	N/A	N/A	WZ-SR5
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2024-12-17	WZ-AC1
Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06023	1 year	2024-08-09	WZ-AC1
Preamplifier	Agilent	83017A	MRTSUE06076	1 year	2024-05-07	WZ-AC1
TRILOG Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2024-06-09	WZ-AC1
Anechoic Chamber	TDK	WZ-AC1	MRTSUE06212	1 year	2024-04-20	WZ-AC1
Thermohygrometer	testo	608-H1	MRTSUE06403	1 year	2024-05-31	WZ-AC1
Signal Analyzer	Keysight	N9010B	MRTSUE06607	1 year	2024-10-23	WZ-AC1
Thermohygrometer	testo	608-H1	MRTSUE11039	1 year	2024-10-25	WZ-AC1
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2024-09-17	WZ-AC1
Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06597	1 year	2024-11-04	WZ-AC1
Preamplifier	EMCI	EMC184045SE	MRTSUE06640	1 year	2024-01-12	WZ-AC1
Two-Line V-Network	R&S	ENV216	MRTSUE06002	1 year	2024-05-23	WZ-SR2
Shielding Room	MIX-BEP	WZ-SR2	MRTSUE06215	5 years	2026-12-20	WZ-SR2
Thermohygrometer	testo	608-H1	MRTSUE06404	1 year	2024-05-31	WZ-SR2
EMI Test Receiver	R&S	ESR3	MRTSUE06909	1 year	2024-09-27	WZ-SR2

Software	Version	Function
EMI Software	V3.0.0	EMI Test Software
Controller_MF 7802	2.03C	RE Antenna & Turntable
BenchVue Power Meter	2018.1	Power

5. Decision Rules and Measurement Uncertainty

5.1. Decision Rules

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4: 2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.2. Measurement Uncertainty

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement

The maximum measurement uncertainty is evaluated as:

9kHz~150kHz: 3.58dB 150kHz~30MHz: 3.20dB

Radiated Emission Measurement

The maximum measurement uncertainty is evaluated as:

Coaxial: 9kHz~30MHz: 2.61dB

Coplanar: 9kHz~30MHz: 2.62dB

Horizontal: 30MHz~200MHz: 3.79dB

200MHz~1GHz: 3.91dB 1GHz~40GHz: 4.99dB

Vertical: 30MHz~200MHz: 4.06dB

200MHz~1GHz: 5.21dB 1GHz~40GHz: 4.90dB

Spurious Emissions, Conducted

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

2.2dB

Output Power

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

1.4dB

Power Spectrum Density

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

2.2dB

Occupied Bandwidth

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

2.7%

6. Test Result

6.1. Summary

FCC Section(s)	Test Description	Test Condition	Verdict
15.247(a)(2)	6dB Bandwidth		Pass
15.247(b)(3)	Output Power		Pass
15.247(e)	Power Spectral Density	Conducted	Pass
15.247(d)	Band Edge / Out-of-Band Emissions		Pass
15.205	General Field Strength (Restricted Bands	Dedicted	Pass
15.209	and Radiated Emission)	Radiated	
15.207	AC Conducted Emissions	Line Conducted	Door
15.207	150kHz - 30MHz	Line Conducted	Pass

Notes:

- The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer.
 The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 2. For radiated emission tests, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst-case emissions.

3. For different filter configurations, some assessment tests are as follows.

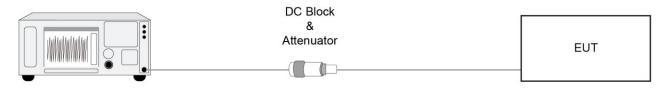
Test Items	Filter 4#	Filter 5#	Filter 6#
6dB Bandwidth	•		
Output Power	•	•	•
Power Spectral Density	•		
Band Edge / Out-of-Band Emissions	•	•	•
Radiated Spurious Emission	•	•	•
Radiated Band Edge	•	•	•
AC Conducted Emissions 150kHz - 30MHz	•		

6.2. 6dB Bandwidth Measurement

6.2.1. Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

6.2.2. Test Procedure


ANSI C63.10 - 2013 - Section 11.8

6.2.3. Test Setting

- The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. Set RBW = 100 kHz
- 3. VBW \geq 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = Max hold
- 6. Sweep = Auto couple
- 7. Allow the trace to stabilize.

6.2.4. Test Setup

Spectrum Analyzer

6.2.5. Test Result

Refer to Appendix A.2.

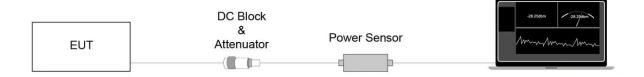
6.3. Output Power Measurement

6.3.1. Test Limit

The maximum output power shall be less 1 Watt (30dBm).

The conducted output power limit specified in paragraph FCC Part 15.247(b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs FCC Part 15.247(b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

6.3.2. Test Procedure


ANSI C63.10 - 2013 - Section 11.9.2.3.2

6.3.3. Test Setting

Average Power Measurement

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.

6.3.4. Test Setup

6.3.5. Test Result

Refer to Appendix A.3.

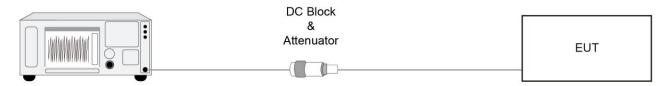
6.4. Power Spectral Density Measurement

6.4.1. Test Limit

The maximum permissible power spectral density is 8dBm in any 3 kHz band.

The same method of determining the conducted output power shall be used to determine the power spectral density.

6.4.2. Test Procedure


ANSI C63.10 - 2013 - Section 11.10.5

6.4.3. Test Setting

- 1. Measure the duty cycle (x) of the transmitter output signal.
- 2. Set instrument center frequency to DTS channel center frequency.
- 3. Set span to at least 1.5 times the OBW.
- 4. RBW = 10 kHz.
- 5. VBW = 30 kHz.
- 6. Detector = RMS.
- 7. Ensure that the number of measurement points in the sweep $\ge 2 x \text{ span/RBW}$.
- 8. Sweep time = auto couple.
- 9. Don't use sweep triggering. Allow sweep to "free run".
- 10. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 11. Use the peak marker function to determine the maximum amplitude level.
- 12. Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time. If measured value exceeds requirement specified by regulatory agency, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

6.4.4. Test Setup

Spectrum Analyzer

6.4.5. Test Result

Refer to Appendix A.4.

6.5. Conducted Band Edge and Out-of-Band Emissions Measurement

6.5.1. Test Limit

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100 kHz bandwidth per the PSD procedure.

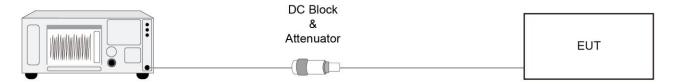
6.5.2. Test Procedure

ANSI C63.10-2013 - Section 11.11

6.5.3. Test Settitng

Reference level measurement

- 1. Set instrument center frequency to DTS channel center frequency
- 2. Set the span to ≥ 1.5 times the DTS bandwidth
- 3. Set the RBW = 100 kHz
- 4. Set the VBW ≥ 3 x RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize


Emission level measurement

- 1. Set the center frequency and span to encompass frequency range to be measured
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

6.5.4. Test Setup

Spectrum Analyzer

6.5.5. Test Result

Refer to Appendix A.5.

6.6. Radiated Spurious Emission Measurement

6.6.1. Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209				
Frequency	Field Strength	Measured Distance		
[MHz]	[uV/m]	[Meters]		
0.009 - 0.490	2400/F (kHz)	300		
0.490 - 1.705	24000/F (kHz)	30		
1.705 - 30	30	30		
30 - 88	100	3		
88 - 216	150	3		
216 - 960	200	3		
Above 960	500	3		

6.6.2. Test Procedure

ANSI C63.10 - 2013 - Section 11.11 & 11.12

ANSI C63.10 - 2013 - Section 6.3 (General Requirements)

ANSI C63.10 - 2013 - Section 6.4 (Standard test method below 30MHz)

ANSI C63.10 - 2013 - Section 6.5 (Standard test method above 30MHz to 1GHz)

ANSI C63.10 - 2013 - Section 6.6 (Standard test method above 1GHz)

6.6.3. Test Setting

Table 1 - RBW as a function of frequency

Frequency	RBW
9 ~ 150 kHz	200 ~ 300 Hz
0.15 ~ 30 MHz	9 ~ 10 kHz
30 ~ 1000 MHz	100 ~ 120 kHz
> 1000MHz	1MHz

Quasi-Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as specified in Table 1
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

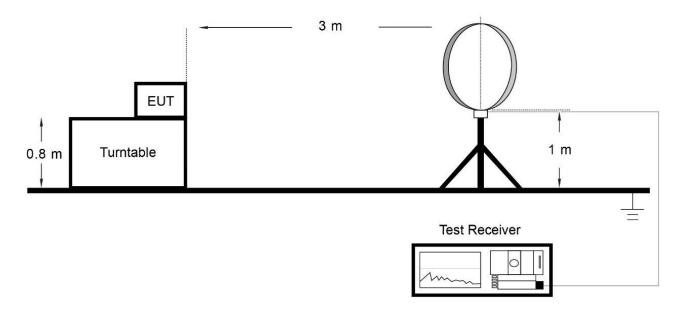
Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

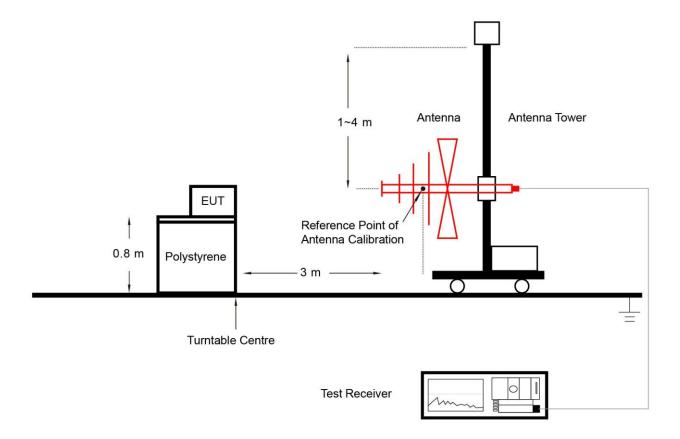
Average Measurements above 1GHz (Method VB)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW; If the EUT is configured to transmit with duty cycle ≥ 98%, set VBW = 10 Hz.

If the EUT duty cycle is < 98%, set VBW $\ge 1/T$. T is the minimum transmission duration.

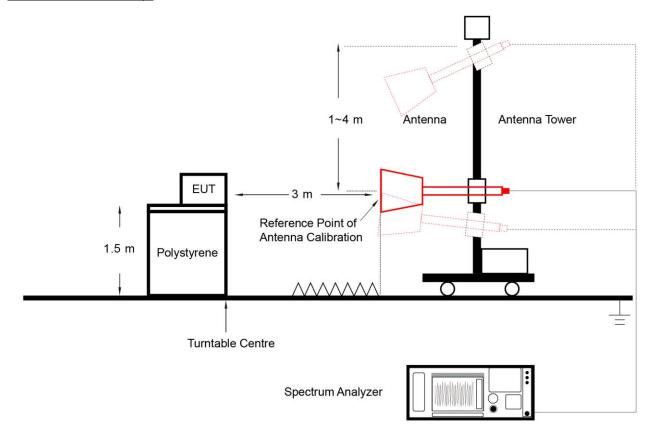

802.11b	750Hz	802.11n-HT20	200Hz	802.11ax-HE20	200Hz
802.11g	510Hz	802.11n-HT40	200Hz	802.11ax-HE20	200Hz

- 4. Detector = Peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize



6.6.4. Test Setup

Below 30MHz Test Setup:



Below 1GHz Test Setup:

Above 1GHz Test Setup:

6.6.5. Test Result

Refer to Appendix A.6.

6.7. Radiated Restricted Band Edge Measurement

6.7.1. Test Limit

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209				
Frequency	Field Strength	Measured Distance		
[MHz]	[uV/m]	[Meters]		
0.009 - 0.490	2400/F (kHz)	300		
0.490 - 1.705	24000/F (kHz)	30		
1.705 - 30	30	30		
30 - 88	100	3		
88 - 216	150	3		
216 - 960	200	3		
Above 960	500	3		

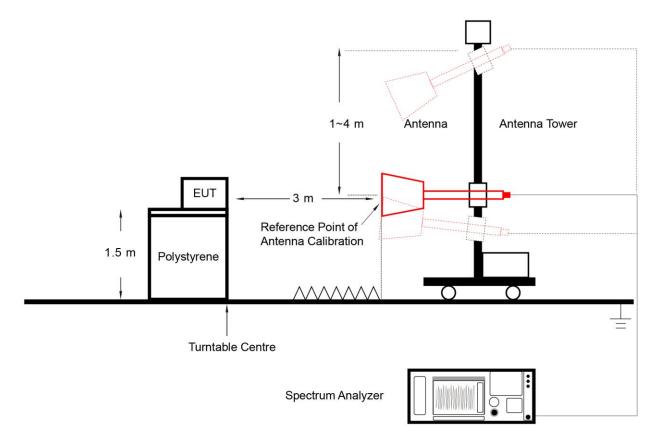
6.7.2. Test Procedure

ANSI C63.10-2013 Section 6.3 & 6.6 & 11.13

6.7.3. Test Setting

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize


Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW ≥ 1/T

802.11b	750Hz	802.11n-HT20	200Hz	802.11ax-HE20	200Hz
802.11g	510Hz	802.11n-HT40	200Hz	802.11ax-HE20	200Hz

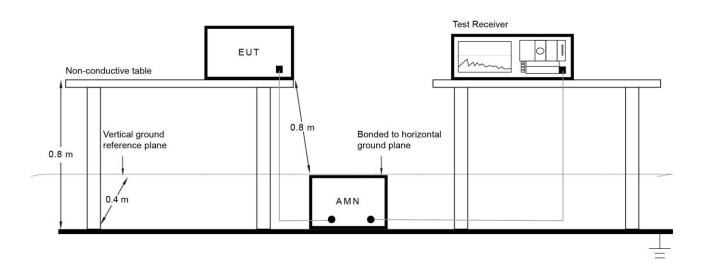
- 4. As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode
- 5. Detector = Peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Allow max hold to run for at least 50 times (1/duty cycle) traces

6.7.4. Test Setup

6.7.5. Test Result

Refer to Appendix A.7.

6.8. AC Conducted Emissions Measurement


6.8.1. Test Limit

FCC Part 15 Subpart C Paragraph 15.207 Limits				
Frequency	QP	AV		
(MHz)	(dBuV)	(dBuV)		
0.15 - 0.50	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30	60	50		

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

6.8.2. Test Setup

6.8.3. Test Result

Refer to Appendix A.8.

Appendix A – Test Result

Refer to "Annex C - DTS Test Data" file

Appendix B – Test Setup Photograph

Refer to "2306RSU028-UT" file.

Appendix C – EUT Photograph

Refer to "2306RSU028-UE" file.

______ The End