MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388

Web: www.mrt-cert.com

Report No.: 2003TW0002-U6 Report Version: Issue Date: 04-20-2020

RF Exposure Evaluation Declaration

FCC ID: Q9DAPEX057457

APPLICANT: Hewlett Packard Enterprise Company

Application Type: Certification

Product: ACCESS POINT

Model No.: APEX0574, APEX0575, APEX0577

Trademark:

Hewlett Packard Enterprise

Digital Transmission System (DTS) **FCC Classification:**

Unlicensed National Information Infrastructure (UNII)

Paddy Chen (Paddy Chen) Reviewed By:

Approved By:

(Chenz Ker)

3261

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2003TW0002-U6	Rev. 01	Initial report	04-20-2020	Valid

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name:	ACCESS POINT		
Model No.:	APEX0574, APEX0575, APEX0577		
Wi-Fi Specification:	302.11a/b/g/n/ac/ax		
Bluetooth Specification:	v4.2 single mode		
Zigbee Specification:	802.15.4		
Operating Temperature	-40 ~ 65 °C		
Power Type	POE input		
Operating Environment	Outdoor Use		

Note: The difference between three models is that EUT use different antenna and appearance, other hardware and software are the same. Each model has its own power parameter value.

Page Number: 3 of 10

1.2. Antenna Description

Model No.: APEX0574

Antenna	Antenna	Frequenc	Model No.	Max	30	BF Dir	CDD D	ir Gain
No.	Туре	y Band		Peak	Degree	Gain	(dl	Bi)
		(GHz)		Gain	Ant Gain	(dBi)	For	For
				(dBi)	(dBi)		Power	PSD
Wi-Fi Extern	al Antenna L	ist (2.4GHz 2°	*2 MIMO, 5GHz 4*4	MIMO)				
1 (Note 3)	Omni	2.4	ANT-2x2-2005	5.0	N/A	5.0	5.0	5.0
2 (Note 3)	Omni	5	ANT-2x2-5005	5.0	0	8.01	5.0	8.01
3 (Note 3)	Omni	5	ANT-2x2-5010	10.0	0	13.01	10.0	13.01
4 (Note 3)	Directional	2.4	ANT-2x2-2314	14.0	N/A	14.0	14.0	14.0
5 (Note 3)	Directional	5	ANT-3x3-5712	11.5	1.5	14.51	11.5	14.51
6 (Note 3)	Directional	5	ANT-4x4-5314	14.0	6.0	17.01	14.0	17.01
7 (Note 3)	Directional	5	MT-484052/NV H	16.0	3.0	19.01	16.0	19.01
Q (Note 2)	Directional	2.4	ANT-3x3-D608	7.5	N/A	10.51	7.5	10.51
8 (Note 3)	Directional	5	ANT-3X3-D006	7.5	4.5	10.51	7.5	10.51
0 (Note 2)	Directional	2.4	ANT-3x3-D100	5.0	N/A	8.01	5.0	8.01
9 (Note 3)	Directional	5	ANT-3X3-D100	5.0	4.0	8.01	5.0	8.01
Bluetooth Internal Antenna								
PC	СВ		2.4			4.2		

Model No.: APEX0577

Antenna Type	Frequency Band	Max Peak Gain	30 Degree Ant Gain	BF Dir Gain	CDD Di	
	(GHz)	(dBi)	(dBi)	(dBi)	For Power	For PSD
Wi-Fi Internal Antenna List (2.4GHz 2*2 MIMO, 5GHz 4*4 MIMO)						
Directional (Note 3)	2.4	6.8	N/A	6.80	6.8	6.80
Directional (Note 3)	5	5.6	5.6	8.60	5.6	8.60
Bluetooth Internal Antenna						
РСВ	2.4			8.4		

Antenna Type	Frequency Band	Max Peak Gain	30 Degree Ant Gain	BF Dir Gain	CDD Di	
	(GHz)	(dBi)	(dBi)	(dBi)	For Power	For PSD
Wi-Fi Internal Antenna List (2.4GHz 2*2 MIMO, 5GHz 4*4 MIMO)						
Omni (Note 3)	2.4	3.4	N/A	3.4	3.4	3.4
Omni (Note 3)	5	5.0	-2.7	8.0	5.0	8.0
Bluetooth Internal Antenna						
РСВ	2.4	6.0				

Note:

1. The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated.

For CDD transmissions, directional gain is calculated as follows, N_{ANT} = 2 or 4, N_{SS} = 1.

If all antennas have the same gain, G_{ANT} , Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

- · For power spectral density (PSD) measurements on all devices,
 - Array Gain = $10 \log (N_{ANT}/N_{SS}) dB = 3.01$;
- For power measurements on IEEE 802.11 devices,
 - Array Gain = 0 dB for $N_{ANT} \le 4$;
- 2. The EUT also supports Beam Forming mode, and the Beam Forming support 802.11n/ac/ax, not include 802.11a/b/g.
 - Directional gain = G_{ANT} + BF Gain, BF Gain was declared by the applicant.
- 3. These antennas have Cross-Polarized design, the detail see the antenna specification.

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field Power Density Aver		Average Time		
(MHz)	Strength (V/m)	Strength (A/m) (mW/cm²)		(Minutes)		
(A) Limits for Occupational/ Control Exposures						
300-1500	-	f/300		6		
1500-100,000	1		5	6		
	(B) Limits for Gene	ral Population/ Unco	ntrolled Exposures			
300-1500	-	f/1500		6		
1500-100,000		1		30		

f= Frequency in MHz

Calculation Formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

2.2. Test Result of RF Exposure Evaluation

Product	ACCESS POINT
Test Item	RF Exposure Evaluation

Antenna Gain: Refer to clause 1.2.

Maximum EIRP for each model

Test Mode	Frequency Band (MHz)	Max Conducted Power (dBm)	Antenna Gain (dBi)	Max EIRP (dBm)	
	(APEX0574	()	(==)	
Bluetooth-LE	2402 ~ 2480	8.00	4.2	12.20	
ZigBee	2405 ~ 2480	8.50	4.2	12.70	
802.11b/g/n/ax	2412 ~ 2462	27.00	5.0	32.00	
	5180 ~ 5320,				
802.11a/n/ac/ax	5500 ~ 5720,	30.00	5.0	35.00	
	5745 ~ 5825				
APEX0575					
Bluetooth-LE	2402 ~ 2480	8.00	6.0	14.00	
ZigBee	2405 ~ 2480	8.50	6.0	14.50	
802.11b/g/n/ax	2412 ~ 2462	27.00	3.4	30.40	
	5180 ~ 5320,				
802.11a/n/ac/ax	5500 ~ 5720,	30.00	5.0	35.00	
	5745 ~ 5825				
		APEX0577	,		
Bluetooth-LE	2402 ~ 2480	8.00	8.4	16.40	
ZigBee	2405 ~ 2480	8.50	8.4	16.90	
802.11b/g/n/ax	2412 ~ 2462	27.00	6.8	33.80	
	5180 ~ 5320,				
802.11a/n/ac/ax	5500 ~ 5720,	30.00	5.6	35.60	
	5745 ~ 5825				

Note: Power tolerance was considered for conducted power assessment.

Test Mode	Frequency Band	Maximum EIRP	Power Density at	Limit
	(MHz)	(dBm)	R = 20 cm	(mW/cm ²)
			(mW/cm ²)	
Bluetooth-LE	2402 ~ 2480	12.20	0.0033	1
ZigBee	2405 ~ 2480	12.70	0.0037	1
802.11b/g/n	2412 ~ 2462	32.00	0.3153	1
	5180 ~ 5320,			
802.11a/n/ac/ax	5500 ~ 5720,	35.00	0.6291	1
	5745 ~ 5825			

CONCULISON:

Wi-Fi 2.4GHz & Wi-Fi 5GHz & Bluetooth-LE or ZigBee can transmit simultaneously.

The max Power Density at R (20 cm) = $0.0037 \text{mW/cm}^2 + 0.3153 \text{mW/cm}^2 + 0.6291 \text{mW/cm}^2 = 0.9481 \text{mW/cm}^2 < 1 \text{mW/cm}^2$.

Therefore, the Min Safety Distance is 20cm.

Test Mode	Frequency Band	Maximum EIRP	Power Density at	Limit
	(MHz)	(dBm)	R = 20 cm	(mW/cm ²)
			(mW/cm ²)	
Bluetooth-LE	2402 ~ 2480	14.00	0.0050	1
ZigBee	2405 ~ 2480	14.50	0.0056	1
802.11b/g/n	2412 ~ 2462	30.40	0.2181	1
	5180 ~ 5320,			
802.11a/n/ac/ax	5500 ~ 5720,	35.00	0.6291	1
	5745 ~ 5825			

CONCULISON:

Wi-Fi 2.4GHz & Wi-Fi 5GHz & Bluetooth-LE or ZigBee can transmit simultaneously.

The max Power Density at R (20 cm) = 0.0056mW/cm² + 0.2181mW/cm² + 0.6291mW/cm² = 0.8529mW/cm² < 1mW/cm².

Therefore, the Min Safety Distance is 20cm.

Test Mode	Frequency Band	Maximum EIRP	Power Density at	Limit	Power Density at
	(MHz)	(dBm)	R = 20 cm	(mW/cm ²)	R = 23 cm
			(mW/cm ²)		(mW/cm ²)
Bluetooth-LE	2402 ~ 2480	16.40	0.0087	1	0.0066
ZigBee	2405 ~ 2480	16.90	0.0097	1	0.0074
802.11b/g/n	2412 ~ 2462	33.80	0.4772	1	0.3609
	5180 ~ 5320,				
802.11a/n/ac/ax	5500 ~ 5720,	35.60	0.7223	1	0.5462
	5745 ~ 5825				

CONCULISON:

Wi-Fi 2.4GHz & Wi-Fi 5GHz & Bluetooth-LE or ZigBee can transmit simultaneously.

The max Power Density at R (20 cm) = $0.0097 \text{mW/cm}^2 + 0.4772 \text{mW/cm}^2 + 0.7223 \text{mW/cm}^2 = 1.2093 \text{mW/cm}^2 > 1 \text{mW/cm}^2$.

The max Power Density at R $(23 \text{ cm}) = 0.0074 \text{mW/cm}^2 + 0.3609 \text{mW/cm}^2 + 0.5462 \text{mW/cm}^2 = 0.9145 \text{mW/cm}^2 < 1 \text{mW/cm}^2$.

Therefore, the Min Safety Distance is 23cm.

The End	
ine Ena	