

REPORT ON THE CERTIFICATION TESTING OF AN IRIDIUM SATELLITE LLC
9602SB TRANSCEIVER
WITH RESPECT TO
FCC RULES CFR 47, PART 25
AND
FCC RULES CFR 47, PART 15

TEST REPORT NO: TTR-002027WUS1-2

COPY NO: 1

ISSUE NO: 2

FCC ID: Q639602-SB

REPORT ON THE CERTIFICATION TESTING OF AN IRIDIUM SATELLITE LLC 9602SB TRANSCEIVER WITH RESPECT TO FCC RULES CFR 47, PART 25 AND FCC RULES CFR 47, PART 15

testing regulatory and compliance

APPROVED BY: J CHARTERS
RADIO PRODUCT

MANAGER

IVIANAGE

DATE:

Distribution:

Copy Nos: 1. Iridium Satellite LLC

2. TCB: TRaC Global

1st December 2011

TRaC Global

THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE

CONTENTS

CERTIFI	CATE OF	CONFORMITY & COMPLIANCE		Р	AGE 4			
APPLICA					5			
EQUIPM	ENT TES	T CONDITIONS			6			
TESTS F			6					
		RIPTION & STANDARDS REFERENCES			7			
TEST RE	SULTS -	- Transmitter						
RF (Output Po	wer - Conducted			8			
Emis	ssions Lin	nitations - Conducted			9			
Spu	rious Emi	ssions - Conducted			10			
Spu	rious Emi			11				
Fred	uency St	ability -Temperature			12			
Fred	uency St	ability -Voltage			13			
TEST RE	SULTS -	- Unintentional Radiator						
Spu	rious Emi	ssions - Radiated			14			
Con	ducted Er	missions –AC Powerline Conduction			15			
				A	NNEX			
PHOTOG	SRAPHS				Α			
APPLICA	NT'S SU	BMISSION OF DOCUMENTATION LIST			В			
TEST EC	UIPMEN	T LIST			С			
EQUIPM	ENT CAL	IBRATION			D			
MEASUF	REMENT	UNCERTAINTY			Е			
DUTY CY	/CLE				F			
EMISSIC	NS LIMIT	TATIONS			G			
TRANSM	IITTER S	PURIOUS EMISSIONS – Conducted			Н			
TRANSM	IITTER S	PURIOUS EMISSIONS – Radiated			I			
FREQUE	NCY STA	ABILITY – Temperature			J			
FREQUE	NCY STA	ABILITY – Voltage			K			
UNINTE	NTIONAL	RADIATED EMISSIONS			L			
CONDUC	CTED EM	ISSIONS – AC POWERLINE CONDUCTION			М			
Notes:	1.	Component failure during test	YES	[]		NO	[X]	
	2.	If Yes, details of failure:						

3. The facilities used for the testing of the product contain in this report are FCC Listed.

FCC IDENTITY:

CERTIFICATE OF CONFORMITY & COMPLIANCE

PURPOSE OF TEST:	Certification
TEST SPECIFICATION:	FCC Rules CFR 47, Part 25 & Part 15
TEST RESULT:	Compliant to Specification
ITU EMISSIONS DESIGNATOR	41K7Q7D
EQUIPMENT UNDER TEST:	9602SB Transceiver
EQUIPMENT TYPE:	Satellite Communications Module
PEAK OUTPUT POWER (EIRP):	4.39dBW, 2.74W
MEAN OUTPUT POWER (EIRP):	-5.97dBW, 0.25W
CHANNEL SPACING:	41.667 kHz
NUMBER OF CHANNELS:	252 (240 Transmit Channels)
MODULATION TYPE:	Q7D
POWER SOURCE(s): testing reg	u _{+5Vdc} and compliance
TEST DATE(s):	19 th October 2011 – RF Output power 25 th October – 5 th November 2010 – All other tests
APPLICANT:	Iridium Satellite LLC
ADDRESS:	6707 Democracy Blvd. Suite 300 Bethesda United States of America MD 20817
TESTED BY:	D WINSTANLEY
	John Charters
APPROVED BY:	J CHARTERS RADIO PRODUCT MANAGER

Q639602-SB

APPLICANT'S SUMMARY

EQUIPMENT UNDER TEST (EUT): 9602SB Transceiver **EQUIPMENT TYPE:** Satellite Communications Module PURPOSE OF TEST: Certification FCC Rules CFR 47, Part 25 & Part 15 TEST SPECIFICATION(s): TEST RESULT: COMPLIANT Yes No APPLICANT'S CATEGORY: **MANUFACTURER IMPORTER** DISTRIBUTOR TEST HOUSE **AGENT** APPLICANT'S CONTACT PERSON(s): Donna Bethea-Murphy E-mail address: donna.bethea-murphyl@iridium.com APPLICANT: Iridium Satellite LLC ADDRESS: 6707 Democracy Blvd. Suite 300 Bethesda United States of America MD 20817 TEL: +1 301 571 6277 FAX: +1 301 571 6250 MANUFACTURER: Iridium Satellite LLC **DEVELOPMENT AGENT:** Cambridge Consultants Limited DEVELOPMENT AGENTS CONTACT PERSON(s): Ms M Campbell E-mail address: marion.campbell@cambridgeconsultants.com ADDRESS: Science Park Milton Road Cambridge CB4 4DW United Kingdom TEL: +44 (0)1223 420024 +44 (0)1223 423373 FAX: EUT(s) COUNTRY OF ORIGIN: **United States** TEST LABORATORY: TRaC Global, Pendle Place 19th October 2011 – RF Output power TEST DATE(s): 25th October – 5th November 2010 – All other tests TTR-002027WUS1-2 TEST REPORT No:

EQUIPMENT TEST / EXAMINATIONS REQUIRED

1.	TEST/EXAMINATION	FCC Part 2	FCC Part 25	APPLICABILITY	RESULT
	RF Power Output	-	25.204 (a)	YES	PASS
	Emissions Limitations	-	25.202 (f)	YES	PASS
	Spurious Emissions at Antenna Terminals	2.1051	25.202 (f) 25.213	YES	PASS
	Protection of the Radio Navigation Satellite Service	-	25.216(c) 25.216(f)	YES	PASS
	Spurious Emissions Radiated	2.1053	25.202 (f) 25.213	YES	PASS
	Frequency Stability Temperature	2.1055	25.202 (d)	YES	PASS
	Frequency Stability Voltage	2.1055	25.202 (d)	YES	PASS

Note: The 9602SB Transceiver is subject to FCC Part 25 & Part 2 for FCC Certification for units marketed within the United States. The above tests, as specified in FCC Part 2, with limits as defined in FCC Part 25 were performed on the 9602SB Transceiver.

2.	Product Use:	Satellite Telephone an	d Data C	ommunications
3.	Emission Designator:	41k7Q7D		
4.	Temperatures:	Ambient (Tnom)		20°C
5.	Supply Voltages:	Vnom		+5Vdc
	Note: Vnom voltages are as stated above	ve unless otherwise show	wn on the	test report page
6.	Equipment Category:	Single channel Two channel Multi-channel	[] [] [X]	
7.	Channel spacing:	Narrowband Wideband	[X] []	41.667 kHz
8.	Test Location:	TRaC Global Pendle Place Hull	[X] []	
9.	Modifications made during test program	No modifications were	performe	ed.

Product Description

The satellite communications module consists of an L-Band Transceiver (LBT) capable of simultaneous transmit and receive (duplex) operation covering the frequency range of 1616MHz to 1626.5MHz. The frequency accesses used for duplex channels are organised into sub-bands each of which contains eight frequency accesses. Each sub-band, therefore occupies 333.33 kHz (i.e. 8x41.667kHz). Up to 30 sub-bands containing 240 frequency accesses may be used for duplex channels.

Standard References

GHz"

47 CFR 2 10-1-03 Edition	Code of Federal Regulations, Title 47, Part 2, "Frequency allocations and Radio Telemetry Matters; General Rules and Regulations"
47 CFR 25 10-1-03 Edition	Code of Federal Regulations, Title 47, Part 25,"Satellite Communications" Subpart C, "Technical Matters"
47 CFR 15 20-09-07 Edition	Code of Federal Regulations, Title 47, Part 15,"Radio Frequency Devices" Subpart B, "Unintentional Radiators"
C63.4-2003	American National Standards Institute (ANSI), "Methods of Measurement of Radio Noise Emissions from Low Voltage Electrical and Electronic Equipment in the Range 9 kHz to 40

COMPLIANCE TESTS

TRANSMITTER TESTS

RF OUTPUT POWER - CONDUCTED - PART 25.204 (a)

Ambient temperature = 18°C Radio Laboratory

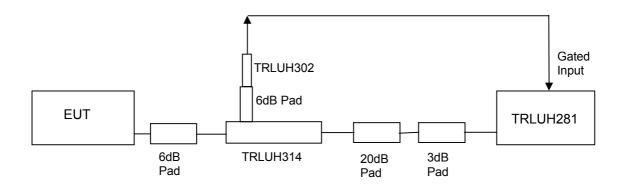
Relative humidity = 57%Supply voltage = +5Vdc

Channel number = See test results

See Annex C for full list of test equipment

The test setup was as per the above diagram. The unit was tested on four channels .The unit was put into test mode and set to operate at maximum power and with a random modulating signal using test commands sent from a PC via the TIC PCB. The antenna gain, included in the table below, represents the highest gain of any antennas that are used with this system.

Frequency MHz	Level at Power Meter dBm	Attenuator and cable loss dB	Antenna Gain dB	Mean Carrier Power EIRP dBm	Duty Cycle Factor dB	Peak Carrier Power EIRP (dBm)	Peak Carrier Power EIRP (dBW)	Limit dBW
Channel 1	-19.98	41.00	3	24.02	10.36	34.38	4.38	40
Channel 75	-19.98	41.00	3	24.02	10.36	34.38	4.38	40
Channel 150	-19.97	41.00	3	24.03	10.36	34.39	4.39	40
Channel 240	-19.97	41.00	3	24.03	10.36	34.39	4.39	40


Notes:

- 1. Duty Cycle Factor = $10 \times \log (1/X)$ Where X = (Ton / Tframe). See Annex E for duty cycle plots
- 2. Correction Factor for dBm to dBW = -30dB
- 3. Antenna gain of 3dBi is the worst case gain over an isotropic antenna

EMISSIONS LIMITATIONS - CONDUCTED - PART 25.202 (f)

Ambient temperature = 20°C Radio Laboratory

Relative humidity = 77%Supply voltage = +5Vdc

See Annex C for full list of test equipment

The test setup was as per the above diagram. The unit was tested on four channels .The unit was put into test mode and set to operate at maximum power and with a random modulating signal using test commands sent from a PC via the TIC PCB.

To enable an average measurement to be taken the gated input trigger of the spectrum analyser was used.

The Spurious limit is as follows:

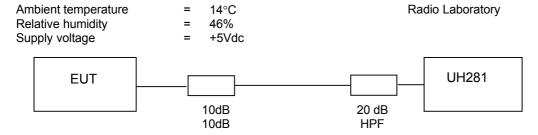
On any frequency removed from the assigned frequency by the following percentage of the authorised bandwidth

±50% - 100% -25 dBc ±100% - 250 % -35 dBc

> ±250% At least 43 + 10 log PdB

 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$

Where the Authorised Bandwidth = 41.667 kHz


Note

1. The 3 kHz to 4 kHz bandwidth correction, cable and attenuator losses and antenna gain have been taken into account in the Ref level offset figure.

The 9602SB Transceiver was found to comply with the limits

See plots in Annex G.

SPURIOUS EMISSIONS - CONDUCTED - PART 25.202 (f) & 25.216

For measurements between 1559 MHz and the band edge of 1610MHz the same test setup, as per emissions limitations test was used. For measurements below 1559 MHz and above the band edge of 1628.5MHz the above test setup was used. 10 dB and 20 dB attenuators were used for measurements below 3GHz and 10dB attenuator and high pass filter for measurements above 3GHz.

See Annex C for full list of test equipment

The test setup was as per the above diagram. The unit was tested on two channels .The unit was put into test mode and set to operate at maximum power and with a random modulating signal using test commands sent from a PC via the TIC PCB.

The Spurious limit was calculated as follows:

On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

At least 43 + 10 log (P)dB

 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$

RESULTS

Frequency Range (MHz)	Ch N°	Freq. of Emission	Spectrum Analyser Level (dBm)	Attenuator & Cable Losses (dB)	Spurious Emission Level (dBm)	Limit dBm
30MHz – 1559MHz		No Sign	ificant emissions w	ithin 20 dB of the l	_imit	-13
1559MHz – 1605MHz	1 240 240 1	1565.384 1575.579 1593.970 1600.745	-84.75 -84.66 -83.60 -81.53	30.6 30.6 30.6 30.6	-54.15 (Note 7) -54.06 (Note 7) -53.00 (Note 7) -50.93 (Note 7)	-40 (note 6)
1605MHz – 1610MHz	1 240	1605.000 1605.000	-84.94 -84.98	30.6 30.6	-54.34 -54.38	-40 (Note 4)
1628.5MHz – 16.3 GHz	1 240 1 240 1 240 1 240	3231.552 3251.859 4847.846 4877.805 6464.491 6503.687 8080.640 8129.954	-51.27 -54.03 -49.68 -48.93 -55.88 -56.55 -57.23 -57.72	12.7 12.8 14.7 13.7 12.8 13.6 14.6	-38.57 -41.23 -34.98 -35.23 -43.08 -42.95 -42.63 -43.12	-13 -13 -13 -13 -13 -13 -13

Notes:

- 1. Emissions Checked up to 10 times Fc
- 2. Reference level offset of Scan plots in Annex H already have approximate attenuator losses taken into account
- 3. Average measurement in a carrier on state were taken in the bands 1599MHz to 1605MHz and 1605MHz -1610MHz. All other scans were peak hold for worst case.
- 4. -40 to -10 Linearly interpolated in dBm Vs frequency offset.
- 5. Correction Factor for dBm to dBW = -30dB.
- 6. This limit reduces to -50 dBm for discrete emissions of less than 700Hz bandwidth.
- 7. Spurious level meets the -50 dBm requirement.

The 9602SB Transceiver was found to comply with the limits. See Annex H for plots

SPURIOUS EMISSIONS - RADIATED - PART 25.202 (f) & 25.216

Ambient temperature = 18°C
Relative humidity = 54%
Conditions = OATS
Supply voltage = +5Vdc
Supply Frequency = N/A

See Annex C for full list of test equipment

The test setup was as per the above diagram. The unit was tested on two channels .The unit was put into test mode and set to operate at maximum power and with a tone modulating signal using test commands sent from a PC via the TIC PCB. The unit was mounted on a turntable and rotated through 360⁰ to find the worst case emission.

The Spurious limit was calculated as follows:

On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

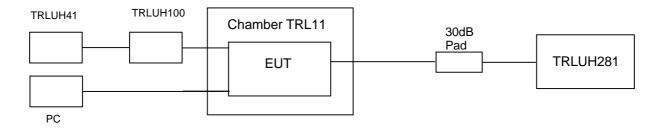
At least 43 + 10 log PdB

 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$

RESULTS

FREQUENCY RANGE	CHANNEL NUMBER	FREQ. (MHz)	ERP/EIRP (dBm)	LIMIT (dBm)				
100kHz – 1559MHz	No Significan	No Significant Emissions within 20 dBs of the Limit						
1559MHz – 1605MHz	No Significan	No Significant Emissions within 20 dBs of the Limit						
1605MHz – 1610MHz	No Significan	No Significant Emissions within 20 dBs of the Limit						
	1	3232.051	-42.08	-13				
	240	3252.046	-42.15	-13				
1628.5MHz - 16.3 GHz	1	4848.124	-32.38	-13				
10.0 0112	240	4877.896	-34.21	-13				
	1	6463.974	-34.62	-13				
	240	6503. 915	-33.10	-13				

Notes:


- 1. Emissions Checked up to 10 times Fc.
- 2. Scan plots of channels 1 & 240 with receive antenna in annex H.
- 3. The unit was mounted on a turntable and rotated through 360⁰ and in 3 orthogonal planes to find the worst case emission.
- 4. -40 to -10 Linearly interpolated in dBm Vs frequency offset.
- 5. Correction Factor for dBm to dBW = -30dB.
- 6. This limit reduces to -50 dBm for discrete emissions of less than 700Hz bandwidth.

The 9602SB Transceiver was found to comply with the limits. See annex H for plots

FREQUENCY STABILITY - CONDUCTED - TEMPERATURE - PART 25.202 (d)

Ambient temperature = 20°C Radio Laboratory

Relative humidity = 54%Supply voltage = +5Vdc

See Annex C for full list of test equipment

The test setup was as per the above diagram. The unit was tested on four channels .The unit was put into test mode and set to operate at maximum power and with a tone modulating signal using test commands sent from a PC via the TIC PCB. The Analyser was set to max hold.

RESULTS

TEMP	Frequency (MHz)							
°C	Channel 1	Channel 75	Channel 150	Channel 240				
+60	1616.02071	1619.10405	1622.22904	1625.97904				
+50	1616.02063	1619.10399	1622.22894	1625.97900				
+40	1616.02057	1619.10390	1622.22890	1625.97889				
+30	1616.02051	1619.10384	1622.22885	1625.97884				
+20	1616.02059	1619.10393	1622.22892	1625.97893				
+10	1616.02050	1619.10383	1622.22881	1625.97875				
0	1616.02017	1619.10348	1622.22847	1625.97845				
-10	1616.02047	1619.10377	1622.22876	1625.97876				
-20	1616.02063	1619.10396	1622.22896	1625.97898				
-30	1616.02025	1619.10358	1622.22860	1625.97866				


Notes: 1.Limit ± 10ppm (See Annex J for frequency stability plots verses limit)

The 9602SB Transceiver was found to comply with the limits

FREQUENCY STABILITY - CONDUCTED - VOLTAGE - PART 25.202 (d)

Ambient temperature = 20°C Radio Laboratory

Relative humidity = 62% Supply voltage = +5Vdc

See Annex C for full list of test equipment

The test setup was as per the above diagram. The unit was tested on four channels .The unit was put into test mode and set to operate at maximum power and with a tone modulating signal using test commands sent from a PC via the MAMBO Box. The Analyser was set to max hold.

RESULTS

VOLTAGE	Frequency (MHz)							
%	Channel 1	Channel 75	Channel 150	Channel 240				
85	1616.02104	1619.10436	1622.22937	1625.97935				
90	1616.02104	1619.10435	1622.22937	1625.97935				
95	1616.02102	1619.10435	1622.22937	1625.97935				
100	1616.02101	1619.10436	1622.22937	1625.97936				
105	1616.02100	1619.10436	1622.22936	1625.97935				
110	1616.02100	1619.10436	1622.22936	1625.97935				
115	1616.02101	1619.10435	1622.22936	1625.97935				

Notes: 1.Limit ± 10ppm (See Annex K for plots verses limit)

The 9602SB Transceiver was found to comply with the limits

UNINTENTIONAL TRANSMITTER TESTS

UNINTENTIONAL TRANSMITTER SPURIOUS EMISSIONS - RADIATED - PART 15.109

Ambient temperature = 18° C(<1GHz) 3m measurements <1GHz [X] Relative humidity = 54% (<1GHz), 1m measurements >1GHz [X] Conditions = Alternative Test Site 3m extrapolated from 1m [X]

Supply voltage = +5Vdc

	FREQ. (MHz)	MEAS Rx (dBµV)	CABLE LOSS (dB)	ANT FACT. (dB/m)	PRE AMP (dB)	FIELD ST'GH (dBµV/m)	EXTRAP FACT (dB)	FIELD ST'GH (µV/m)	LIMIT (µV/m)
0.009MHz - 0.49MHz									
0.49MHz - 1.705MHz									
1.705MHz - 30MHz									
30MHz - 88MHz			No Signif	icant Emiss	ions With	nin 20 dB of tl	ne limit.		
88MHz - 216MHz									
216MHz - 960MHz									
960MHz - 1GHz									
1GHz - 16.3GHz	1399.078 1409.083	58.72 58.13	26.21 26.21	1.6 1.6	37.0 37.0	49.93 49.34	9.54 9.54	104.59 97.72	500 500
	0.0091	MHz to 0.4	9 MHz		2400/f	(kHz) μV/m	@ 300m		
	0.49 M	Hz to 1.70	5 MHz		24000/f	(kHz) μV/m	@ 30m		
	1.705	MHz to 30	MHz			30μV/m	@ 30m		
Limits	30M	1Hz to 88M	1Hz			100µV/m	@ 3m		
Limits	88M	Hz to 216	ИНz	150μV/m @ 3m 200μV/m @ 3m 500μV/m @ 3m					
	216M	1Hz to 960	MHz						
	960	MHz to 10	SHz						
	1GF	lz to 16.30	SHz			500μV/m	@ 3m		

Notes: 1 Emissions were searched to: (x) 1000MHz inclusive, as per Part 15.33a

2 Extrapolation of 9.54 dB as per Part 15.

- Receiver detector <1GHz = CISPR, Quasi-Peak, 120kHz bandwidth
- 4 Receiver detector >1GHz = Average, 1MHz resolution bandwidth
- 5 Only emissions within 20 dB of the limit are recoded.
- 6 See annex L for emissions plots

Test Method: 1 As per Radio – Noise Emissions, ANSI C63.4: 2003

- 2 Measuring distances as Notes 1 to 4 above
- 3 EUT 0.8 metre above ground plane
- 4 Emissions maximised by rotation of EUT, on an automatic turntable. Raising and lowering the receiver antenna between 1m & 4m. Horizontal and vertical polarisations, of the receive antenna. EUT orientation in three orthagonal planes.

Maximum results recorded.

RECEIVER TESTS

CONDUCTED EMISSIONS – AC POWER LINE Part 15.107

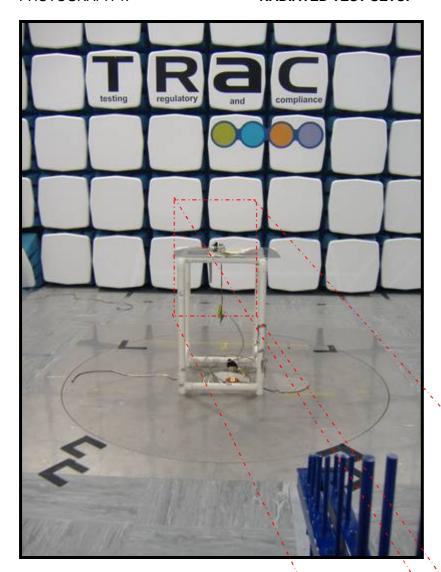
SIGNIFICANT EMISSIONS

FREQUENCY (MHz)	MEASUREMENT RECEIVER READING (dBµV)	VER DETECTOR CONDUCTOR (L or N)		LIMIT (dBµV)
	No Significar	nt Emissions Within 10 d	B of the Limit	

Notes:

See attached plots annex M
 EUT in normal operation mode.
 Worst case result recorded.

Test Method: 1 As per Radio – Noise Emissions, ANSI C63.4: 2003


The test equipment used for the Transmitter Conducted Emissions – AC Power Line Part 15.207 test was:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
RECEIVER	ROHDE & SCHWARZ	ESHS 10	830051/001	UH03	
LISN/AMN	ROHDE & SCHWARZ	ESH3-Z5	863906/018	UH05	x
RECEIVER	ROHDE & SCHWARZ	ESHS 10	841429/012	UH187	x
LISN/AMN	ROHDE & SCHWARZ	ESH3-Z5	8407 31/015	UH195	

ANNEX A PHOTOGRAPHS

PHOTOGRAPH 1.

RADIATED TEST SETUP

TOP OVERVIEW

CONNECTOR OVERVIEW

ANNEX B APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

a.	ТСВ	- -	APPLICATION FEE	[X]
b.	AGENT'S LETTER OF AUTHORISATION	-		[X]
C.	MODEL(s) vs IDENTITY	-		[]
d.	ALTERNATIVE TRADE NAME DECLARATION(s)	-		[]
e.	LABELLING	- - -	PHOTOGRAPHS DECLARATION DRAWINGS	[X] [] []
f.	TECHNICAL DESCRIPTION	-		[X]
g.	BLOCK DIAGRAMS	- - -	Tx Rx PSU AUX	[X] [] []
h.	CIRCUIT DIAGRAMS	- - -	Tx Rx PSU AUX	[] [] []
i.	COMPONENT LOCATION	- - -	Tx Rx PSU AUX	[] [] []
j.	PCB TRACK LAYOUT	- - -	Tx Rx PSU AUX	[] [] []
k.	BILL OF MATERIALS	- - -	Tx Rx PSU AUX	[] [] []
l.	USER INSTALLATION / OPERATING INSTRUCTIONS	-		[X]

ANNEX C TEST EQUIPMENT LIST

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No
TEMP CHAMBER	SHARTREE	TCC 125-815P	CS 203	11
ATTENUATOR	BIRD	8308-200	N/A	103
ATTENUATOR	SHUNER	68030.17.A	N/A	135
HORN	EMCO	3115	9010-3580	138
HORN	EMCO	3115	9010-3581	139
SIGNAL GENERATOR	MARCONI	2042	119388/080	176
BICONE ANTENNA	CHASE	VHA 9103 balu	TRL193	193
LOG PERIODIC	CHASE	UPA6108	1061	203
ATTENUATOR	BIRD	8304-100-N	N/A	222
ATTENUATOR	BIRD	8304-0600N	N/A	246
TEMP INDICATOR	FLUKE	52 SERIES II	74700044	426
PRE AMPLIFIER	AGILENT	8449B	2118	572
LOG PERIODIC	SCHWARZBECK	UHALP 9108	AC2404C/1	UH28
BICONE ANTENNA	SCHWARZBECK	VHBA 9123	N/A	UH29
MULTIMETER	AVOMeter	M3004	M3270006	UH41
PSU	THANDAR	PL32QMD	044749	UH100
POWER METER	MARCONI	6960B	951206/006	UH096
RECEIVER	R&S	ESVS10	841431/014	UH186
RECEIVER	R&S	ESHS10	841429/012	UH187
LISN	R&S	ESH3-Z5.831.5518.52	8407 31/015	UH195
BILOG ANTENNA	YORK	CBL611/A	1618	UH191
POWER SENSOR	MARCONI	6924	236997/010	UH129
POWER METER	R&S	NRP	100001	UH266
POWER SENSOR	R&S	NRP-Z11	100004	UH267
SPECTRUM ANALYSER	R&S	FSU 46	200034	UH281
ATTENUATOR	HP	11708A	37341	UH287
CRYSTAL DETECTOR	HP	8472A	1822Z00897	UH302
DIRECTIONAL COUPLER	SINGER	117310	26	UH314
PRE AMPLIFIER	WATKINS JOHNSON	6201-69	2740	UH372
ATTENUATOR	BIRD	2-18A-MFN-06	N/A	REF 901
ATTENUATOR	BIRD	2-18A-MFN-06	N/A	REF902
HIGH PASS FILTER	AFL	N/A	N/A	N/A

ANNEX D TEST EQUIPMENT CALIBRATION

Equipment u	used for testing on 19 th Octobe	er 2011			
REF	Equipment		Last Cal	Calibration	Due For
Number	Туре	Manufacturer	Calibration	Period	Calibration
UH096	Power meter	Marconi	11/11/2010	12	11/11/2011
UH129	Power Sensor	Marconi	11/11/2010	12	11/11/2011
N/A	20 dB Attenuator	N/A		Calibrate In Use	
N/A	20 dB Attenuator	N/A		Calibrate In Use	
Equipment us	sed for testing between 25 th O	ctober and 5 th Novembe	er 2010		
REF	Equipment		Last Cal	Calibration	Due For
Number	Туре	Manufacturer	Calibration	Period	Calibration
UH028	Log Periodic Ant	Schwarbeck	14/08/2009	24	14/08/2011
UH029	Bicone Antenna	Schwarbeck	13/08/2009	24	13/08/2011
UH041	Multimeter	AVOmeter	25/01/2010	12	25/01/2011
UH100	PSU	Thandar		Calibrated Multin	
UH122	Oscilloscope	Tektronix	18/12/2009	24	18/12/2011
UH186	Receiver	R&S	10/12/2009	12	10/12/2010
UH187	Receiver	R&S	10/12/2009	12	10/12/2010
UH191	Bilog	York	01/10/2008	24	01/10/2010
UH195	LISN	R&S	27/01/2010	12	27/01/2011
UH266	Power Meter	R&S	26/01/2010	12	26/01/2011
UH267	Power Sensor	R&S	26/01/2010	12	26/01/2011
UH281	Spectrum Analyser	R&S	29/01/2010	12	29/01/2011
UH287	Attenuator	HP		Calibrate in Use)
UH291	K-Type Cable	Succoflex	15/07/2009	24	15/07/2011
UH293	K-Type Cable	Megaphase	15/07/2009	24	15/07/2011
UH302	Crystal Detector	HP	F	or Information O	nly
UH314	Bi-Directional Coupler	Narda		Calibrate In Use)
UH372	Pre Amplifier	Watkins Johnson	19/03/2009	24	19/03/2011
L011	Temperature Chamber	Shartree	Use Calib	rated Temperatu	re Indicator
L103	Attenuator	Bird	Calibrate in Use)
L135	Attenuator	Shuner		Calibrate in Use)
L138	1-18GHz Horn	EMCO	10/09/2009	24	10/09/2011
L139	1-18GHz Horn	EMCO	17/08/2009	24	17/08/2011
L176	Signal Generator	Marconi	23/06/2009	24	23/06/2011
L193	Bicone Antenna	Chase	06/05/2008	24	06/05/2010
L203	Log Periodic Ant	Chase	06/05/2008	24	06/05/2010
L222	Attenuator	Bird		Calibrate In Use)
L246	Attenuator	Bird		Calibrate In Use)
L426	Temperature Indicator	Fluke	25/01/2010	12	25/01/2011
L572	Pre Amp	Agilent	15/07/2009	24	15/07/2011
REF901	Attenuator	Bird		Calibrate In Use	
REF901	Attenuator	Bird		Calibrate In Use)
N/A	High Pass Filter	BSC	04/12/2009	12	04/12/2010

ANNEX E MEASUREMENT UNCERTAINTY

Radio Testing – General Uncertainty Schedule Radio Testing – General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95% confidence where no required test level exists.

[1] Adjacent Channel Power

Uncertainty in test result = 1.86dB

[2] Carrier Power

Uncertainty in test result (Power Meter) = **1.08dB**Uncertainty in test result (Spectrum Analyser) = **2.48dB**

[3] Effective Radiated Power

Uncertainty in test result = 4.71dB

[4] Spurious Emissions

Uncertainty in test result = 4.75dB

[5] Maximum frequency error

Uncertainty in test result (Power Meter) = **0.113ppm**Uncertainty in test result (Spectrum Analyser) = **0.265ppm**

[6] Radiated Emissions, field strength OATS 14kHz-18GHz Electric Field

Uncertainty in test result (14kHz - 30MHz) = 4.8dB, Uncertainty in test result (30MHz - 1GHz) = 4.6dB, Uncertainty in test result (1GHz - 18GHz) = 4.7dB

[7] Frequency deviation

Uncertainty in test result = 3.2%

[8] Magnetic Field Emissions

Uncertainty in test result = 2.3dB

[9] Conducted Spurious

Uncertainty in test result – Up to 8.1GHz = **3.31dB**Uncertainty in test result – 8.1GHz – 15.3GHz = **4.43dB**Uncertainty in test result – 15.3GHz – 21GHz = **5.34dB**Uncertainty in test result – Up to 26GHz = **3.14dB**

[10] Channel Bandwidth

Uncertainty in test result = 15.5%

[11] Amplitude and Time Measurement – Oscilloscope

Uncertainty in overall test level = 2.1dB, Uncertainty in time measurement = 0.59%, Uncertainty in Amplitude measurement = 0.82%

[12] Power Line Conduction

Uncertainty in test result = 3.4dB

[13] Spectrum Mask Measurements

Uncertainty in test result = 2.59% (frequency)
Uncertainty in test result = 1.32dB (amplitude)

[14] Adjacent Sub Band Selectivity

Uncertainty in test result = 1.24dB

[15] Receiver Blocking - Listen Mode, Radiated

Uncertainty in test result = 3.42dB

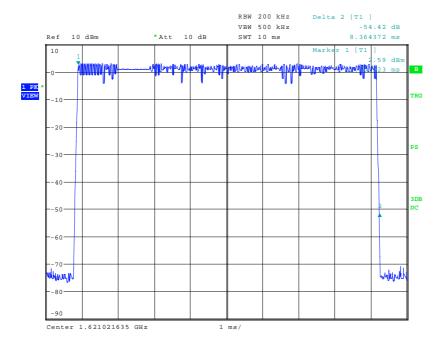
[16] Receiver Blocking - Talk Mode, Radiated

Uncertainty in test result = 3.36dB

[17] Receiver Blocking – Talk Mode, Conducted

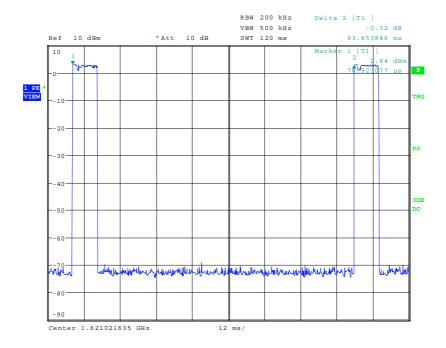
Uncertainty in test result = 1.24dB

[18] Receiver Threshold


Uncertainty in test result = 3.23dB

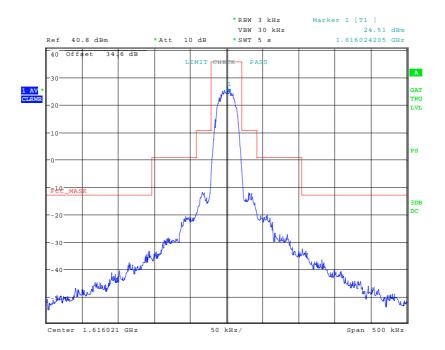
[19] Transmission Time Measurement

Uncertainty in test result = 7.98%

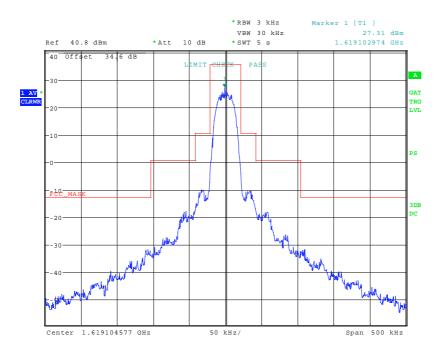

ANNEX F DUTY CYCLE

Duty Cycle Plots

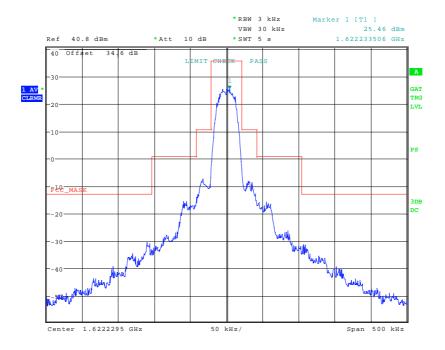
Date: 27.OCT.2010 18:01:35


 $T_{on} = 8.36 mS$

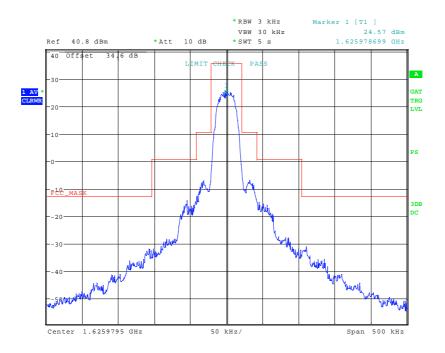
Date: 27.OCT.2010 18:03:27


 $T_{frame} = 90.00 \text{mS}$

ANNEX G EMISSIONS LIMITATIONS


Date: 27.OCT.2010 12:31:26

Channel 1

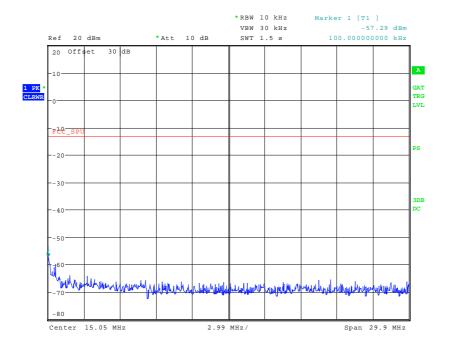

Date: 27.OCT.2010 12:42:21

Channel 75

Date: 27.OCT.2010 12:45:34

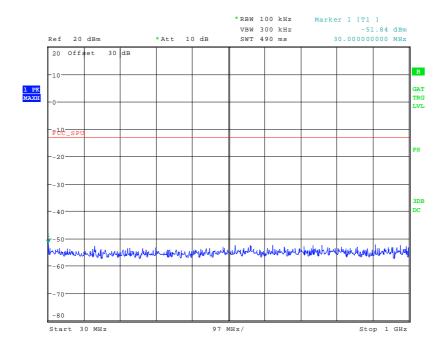
Channel 150

Date: 27.OCT.2010 12:50:47


Channel 240

ANNEX H

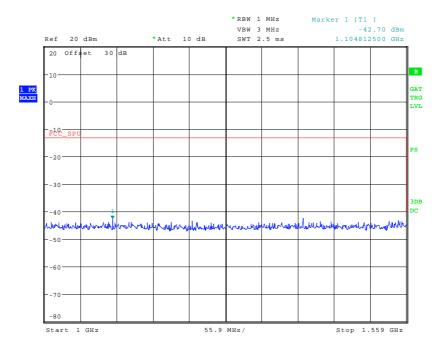
TRANSMITTER SPURIOUS EMISSIONS - Conducted


TRANSMITTER SPURIOUS EMISSIONS - Conducted

Channel 1

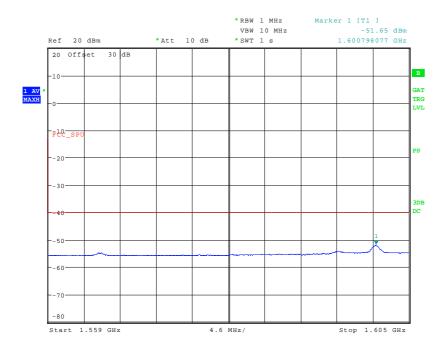
Date: 1.NOV.2010 13:18:18

100 kHz - 30MHz



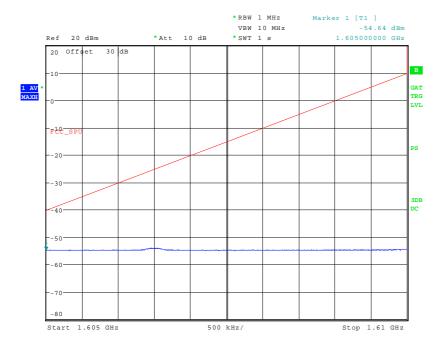
Date: 1.NOV.2010 13:18:44

30MHz - 1000MHz

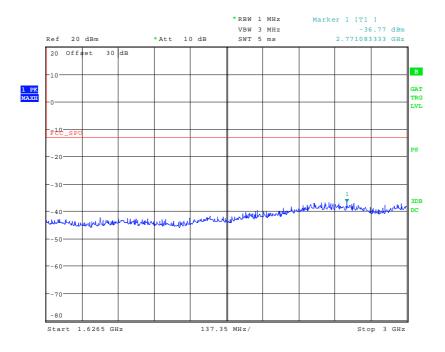

TRANSMITTER SPURIOUS EMISSIONS - Conducted

Channel 1

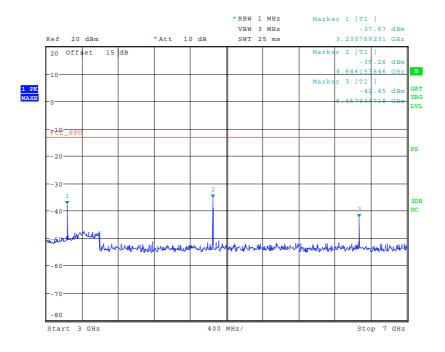
Date: 1.NOV.2010 13:19:12


1000MHz - 1559MHz

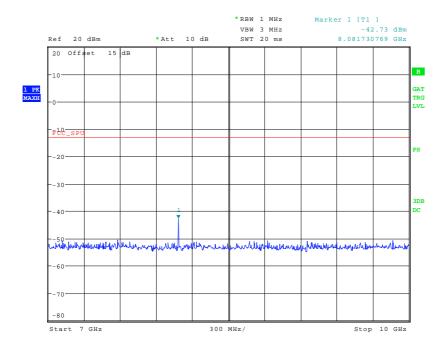
Date: 1.NOV.2010 13:20:10


1559MHz - 1605MHz

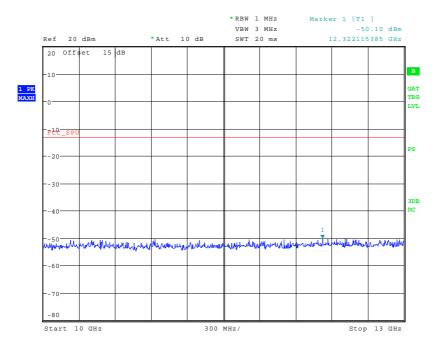
Channel 1


Date: 1.NOV.2010 13:21:13

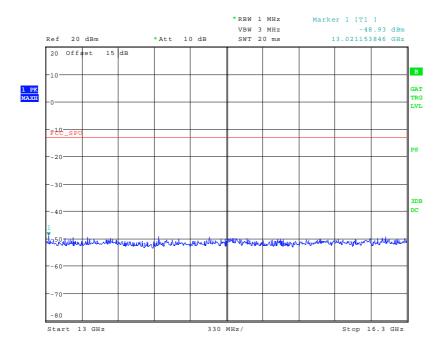
1605MHz - 1610MHz


Date: 1.NOV.2010 13:17:42

1626.5MHz - 3000MHz

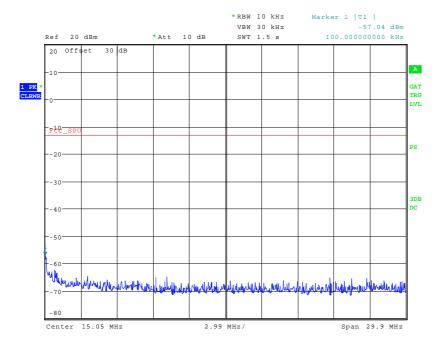

Date: 1.NOV.2010 14:32:13

3GHz - 7GHz

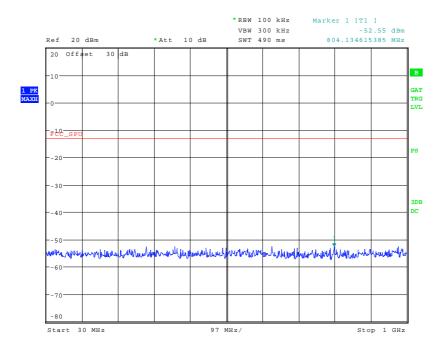

Date: 1.NOV.2010 14:32:28

7GHz – 10GHz

Date: 1.NOV.2010 14:32:40

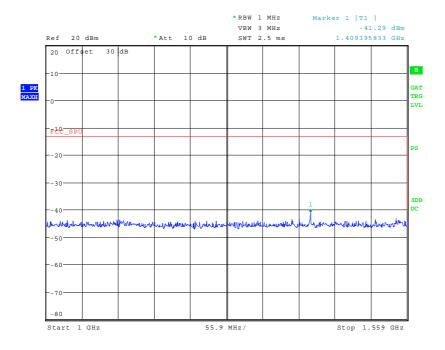

10GHz - 13 GHz

Date: 1.NOV.2010 14:33:19

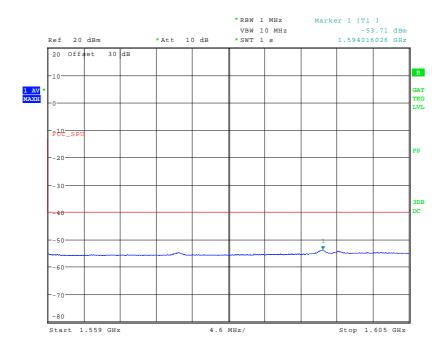

13GHz - 16.3GHz

Channel 240

Date: 1.NOV.2010 13:12:54

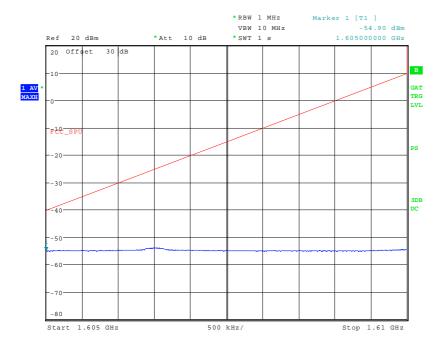

100 kHz - 30MHz

Date: 1.NOV.2010 13:13:37

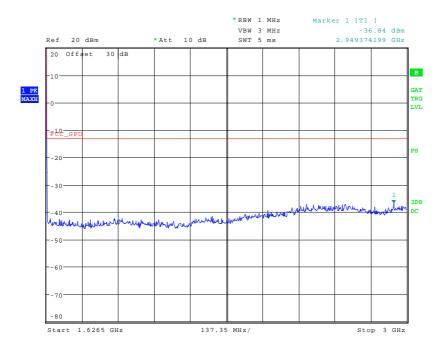

30MHz - 1000MHz

Channel 240

Date: 1.NOV.2010 13:14:08

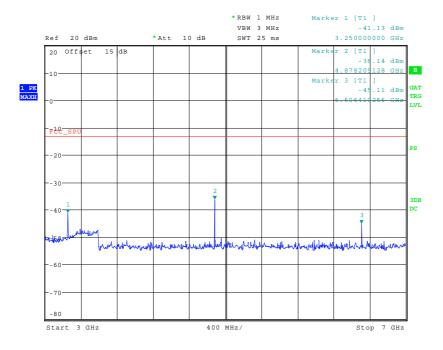

1000MHz - 1559MHz

Date: 1.NOV.2010 13:15:01

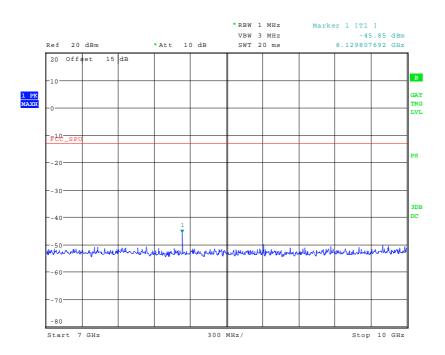

1559MHz - 1605MHz

Channel 240

Date: 1.NOV.2010 13:15:38

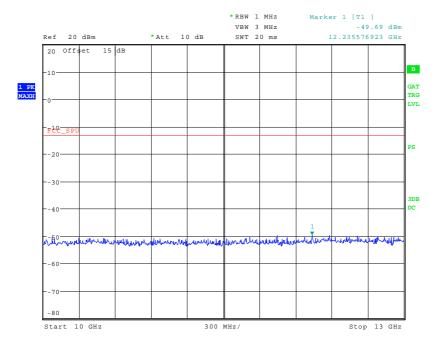

1605MHz - 1610MHz

Date: 1.NOV.2010 13:17:03

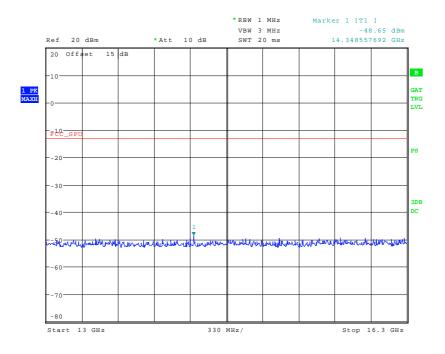

1626.5MHz - 3000MHz

Channel 240

Date: 1.NOV.2010 14:35:08


3GHz - 7GHz

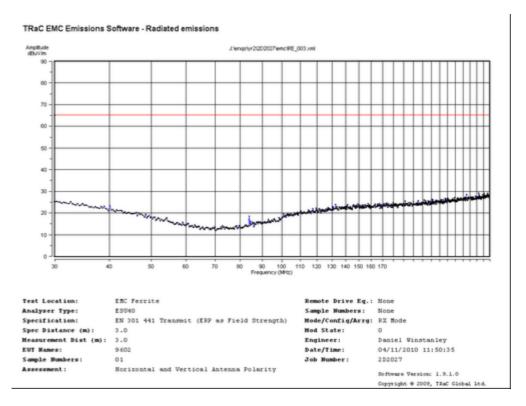
Date: 1.NOV.2010 14:34:45


7GHz – 10GHz

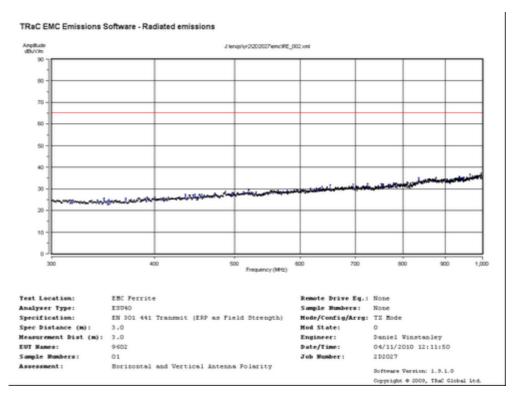
Channel 240

Date: 1.NOV.2010 14:34:29

10GHz - 13 GHz

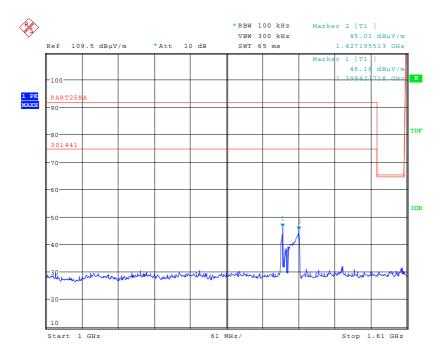


Date: 1.NOV.2010 14:34:03

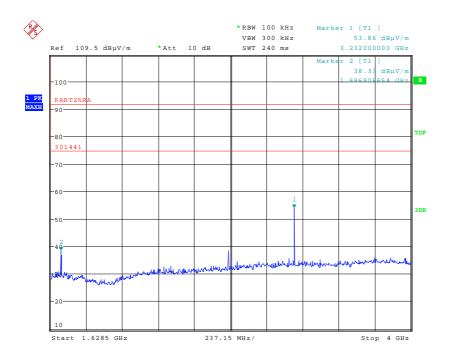

13GHz - 16.3GHz

ANNEX I

TRANSMITTER SPURIOUS EMISSIONS - Radiated


30MHz - 300MHz

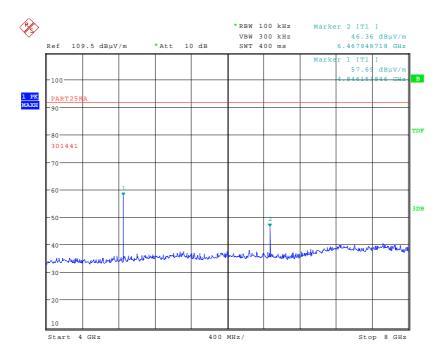
300MHz - 1000MHz


TRANSMITTER SPURIOUS EMISSIONS - Radiated

Channel 1

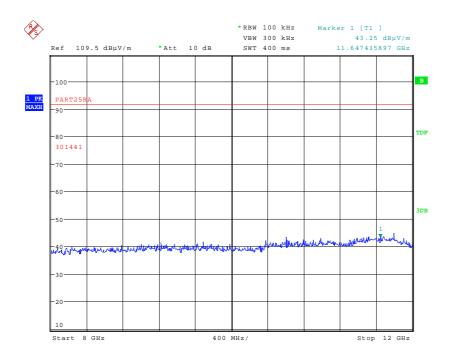
Date: 29.OCT.2010 09:25:53

1000MHz - 1610MHz

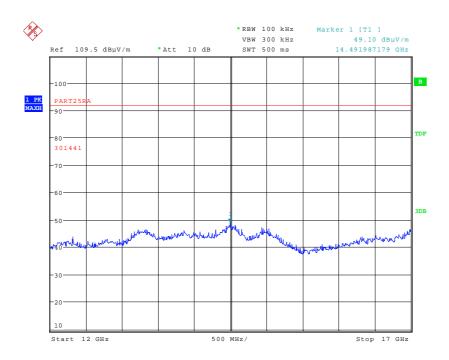


Date: 29.OCT.2010 09:27:59

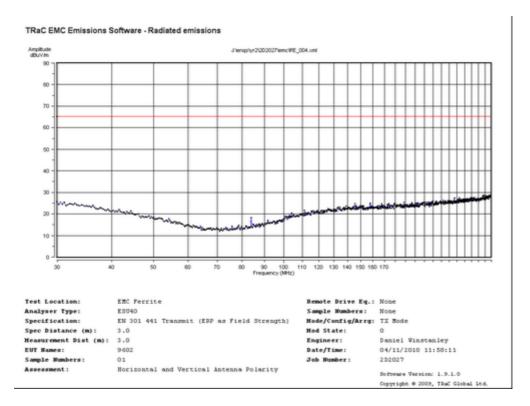
1626.5MHz - 4000MHz


TRANSMITTER SPURIOUS EMISSIONS - Radiated

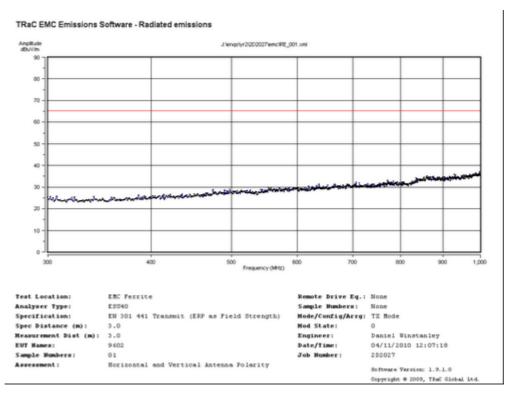
Channel 1


Date: 29.OCT.2010 09:29:38

4GHz - 8GHz

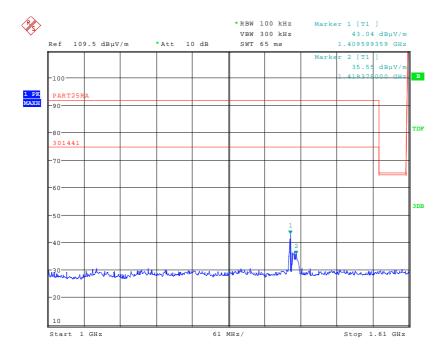

Date: 29.OCT.2010 09:31:53

8GHz - 12GHz

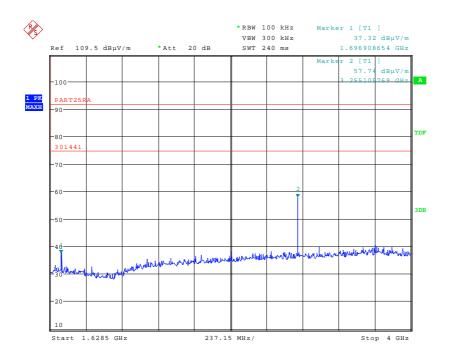


Date: 29.OCT.2010 09:31:29

13GHz - 16.3GHz


30MHz - 300MHz

300MHz - 1000MHz


TRANSMITTER SPURIOUS EMISSIONS - Radiated

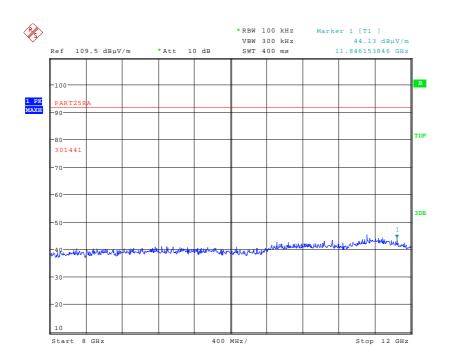
Channel 240

Date: 29.OCT.2010 09:41:31

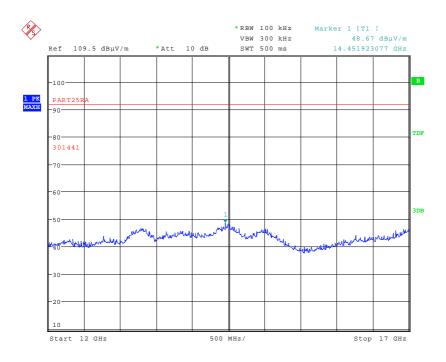
1000MHz - 1610MHz

Date: 29.OCT.2010 09:48:07

1626.5MHz - 4000MHz


TRANSMITTER SPURIOUS EMISSIONS - Radiated

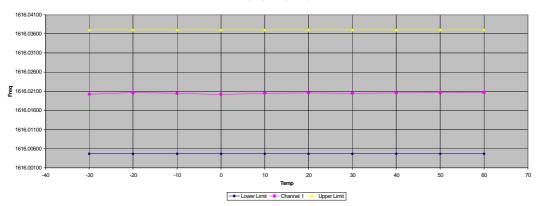
Channel 240


Date: 29.OCT.2010 09:43:40

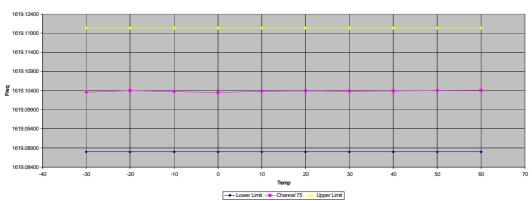
4GHz - 8GHz

Date: 29.OCT.2010 09:44:02

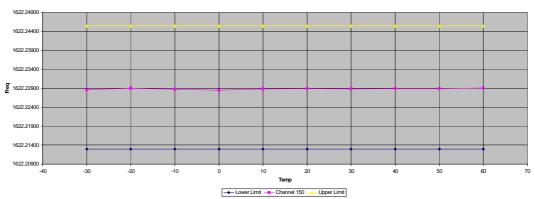
8GHz - 12GHz

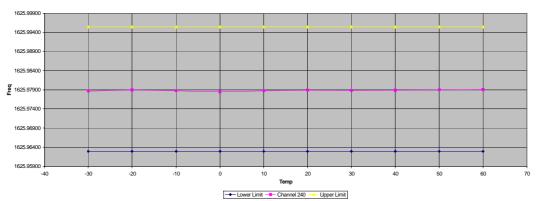


Date: 29.OCT.2010 09:44:48

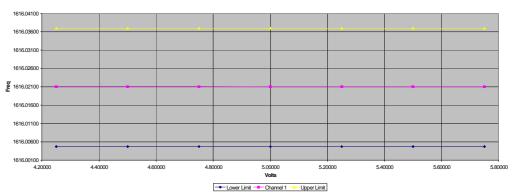

13GHz - 16.3GHz

ANNEX J FREQUENCY STABILITY – Temperature

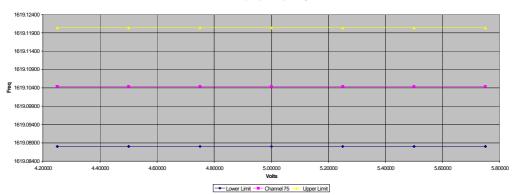

Channel 1 Frequency Stability - Temperature


Channel 75 Frequency Stability - Temperature

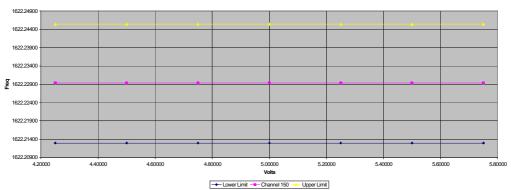
Channel 150 Frequency Stability - Temperature

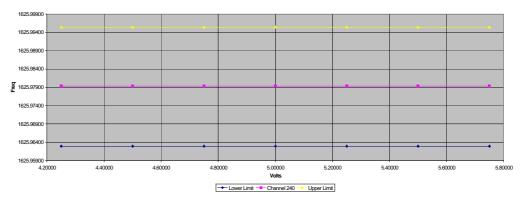


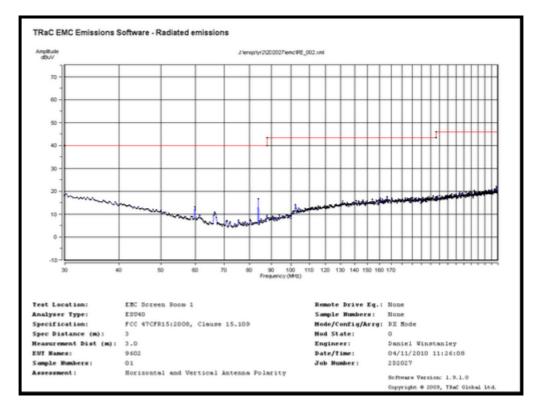
Channel 240 Frequency Stability - Temperature

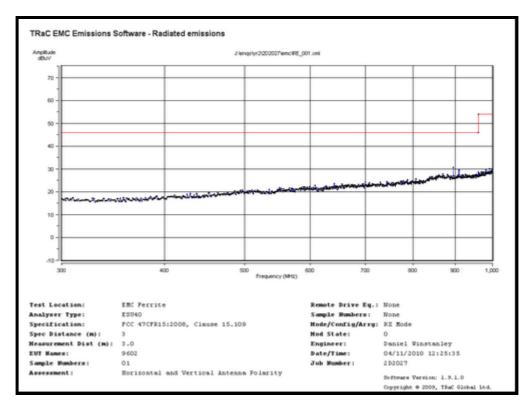


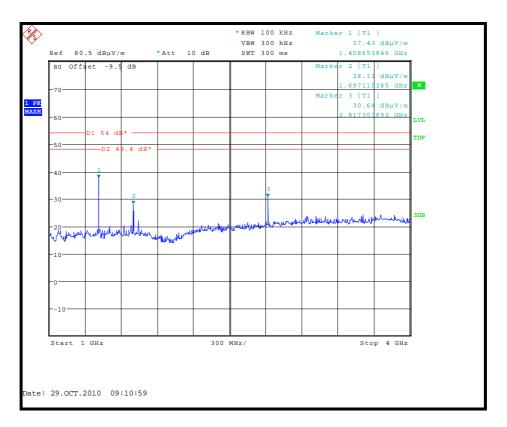
ANNEX K FREQUENCY STABILITY – Voltage

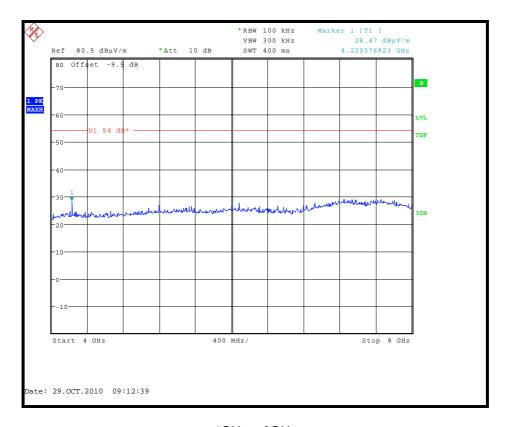

Channel 1 Frequency Stability - Voltage

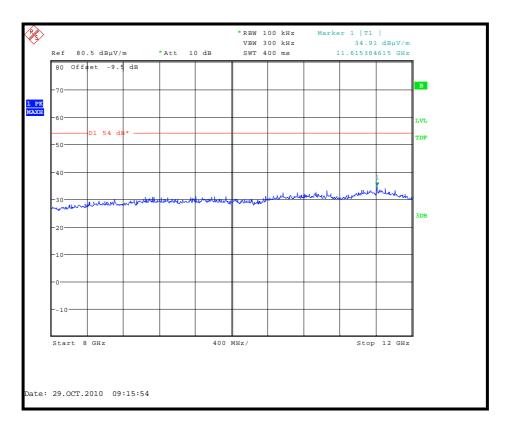

Channel 75 Frequency Stability - Voltage

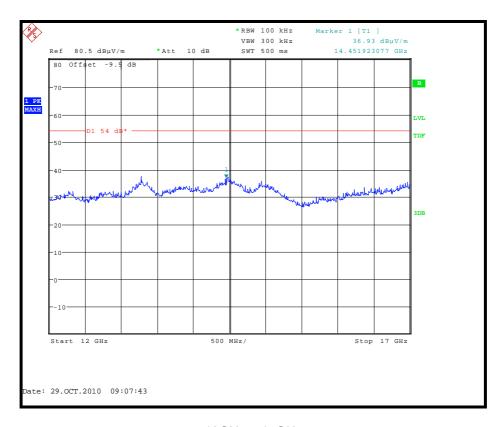

Channel 150 Frequency Stability - Voltage


Channel 240 Frequency Stability - Voltage

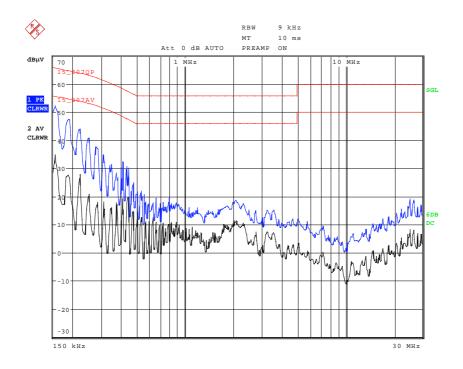

ANNEX L UNINTENTIONAL TRANSMITTER SPURIOUS EMISSIONS – Radiated


30MHz - 300MHz

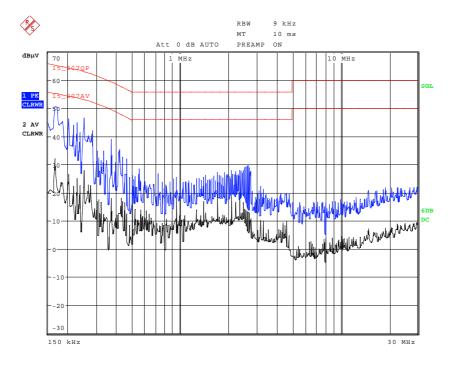

300MHz - 1000MHz


1GHz – 4GHz

4GHz - 8GHz



8GHz - 12GHz


12GHz – 17GHz

ANNEX M CONDUCTED EMISSIONS – AC POWERLINE CONDUCTION

Date: 5.NOV.2010 16:24:06

Normal Operation - Receive

Date: 5.NOV.2010 16:34:50

Transmit Mode