

FCC Test Report (WLAN)

Report No.: RF150226E05E-1

FCC ID: 4104A-QCA9008TBD1

Test Model: QCA9008-TBD1

Received Date: May 23, 2017

Test Date: June 02 to 03, 2017

Issued Date: June 07, 2017

Applicant: Qualcomm Atheros, Inc.

Address: 1700 Technology Drive, San Jose, CA 95110

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

Test Location (1): E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin

Chu Hsien 307, Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: RF150226E05E-1 Page No. 1 / 66 Report Format Version:6.1.2 Reference No.: 170523E03

Table of Contents

R	eleas	se Control Record	. 3
1		Certificate of Conformity	. 4
2		Summary of Test Results	. 5
	2.1	Modification Record	. 5
3		General Information	. 6
	3.1 3.2 3.3 3.3.1 3.4 3.4.1 3.5	Description of Support Units	10 11 13 14 14 15
4		Test Types and Results	16
	4.1.3 4.1.4 4.1.5 4.1.7 4.2.1 4.2.3 4.2.3 4.2.4 4.2.5 4.2.5 4.2.6	Test Setup	16 16 17 18 18 19 43 44 45 46 46 47 48
5		Pictures of Test Arrangements	53
6		Appendix A – Radiated Emission Measurement	54
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Limits of Radiated Emission Measurement. Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results	55 56 56 57 57 58
Α	ppen	dix B – Information on the Testing Laboratories	66

Release Control Record

Issue No.	Description	Date Issued
RF150226E05E-1	Original release.	June 07, 2017

Report No.: RF150226E05E-1 Reference No.: 170523E03 Page No. 3 / 66 Report Format Version:6.1.2

1 Certificate of Conformity

Product: 802.11abgn/ac/ad+BT module

Brand: Qualcomm Atheros

Test Model: QCA9008-TBD1

Sample Status: ENGINEERING SAMPLE

Applicant: Qualcomm Atheros, Inc.

Test Date: June 02 to 03, 2017

Standard: 47 CFR FCC Part 15, Subpart E (Section 15.407)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :		, Date:	June 07, 2017

Claire Kuan / Specialist

May Chen / Manager

Report No.: RF150226E05E-1 Reference No.: 170523E03

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)							
FCC Clause	Test Item	Result	Remarks				
15.407(a)(1/2/ 3)	Max Average Transmit Power	Pass	Meet the requirement of limit.				

NOTE:

1. This report is prepared for FCC Class II change. Only Max Average Transmit Power Measurement was presented in this test report.

2.1 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	802.11abgn/ac/ad+BT module
Brand	Qualcomm Atheros
Test Model	QCA9008-TBD1
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	3.3Vdc from host equipment
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode and VHT (20/40) mode in 2.4GHz
Modulation Technology	DSSS,OFDM
Transfer Rate	802.11b: up to 11Mbps 802.11a/g: up to 54Mbps 802.11n: up to 300Mbps 802.11ac: up to 866.7Mbps
Operating Frequency	For 15.407 5.18 ~ 5.24GHz, 5.26 ~ 5.32GHz, 5.50 ~ 5.72GHz, 5.745 ~ 5.825GHz For 15.247 2.412 ~ 2.472GHz
Number of Channel	For 15.407 25 for 802.11a, 802.11n (HT20), 802.11ac (VHT20) 12 for 802.11n (HT40), 802.11ac (VHT40) 6 for 802.11ac (VHT80) For 15.247 13 for 802.11b/g, 802.11n (HT20), VHT20 9 for 802.11n (HT40), VHT40
Output Power	For 15.407 802.11a: 69.281mW 802.11ac (VHT20): 72.767mW 802.11ac (VHT40): 56.034mW 802.11ac (VHT80): 35.575mW For 15.247 802.11b: 279.918mW 802.11g: 422.415mW VHT20: 424.648mW VHT40: 401.871mW
Antenna Type	See item 3.2
Antenna Connector	See item 3.2
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. This report is prepared for FCC Class II change. The difference compared with the Report No.: RF150226E05-1 design is as the following information:

◆ Add one new antenna as following table:

Original									
Transmitter Circuit	Brand	Model	Ant. Type	2.4GHz Gain with cable loss (dBi)	5GHz Gain with cable loss (dBi)	2.4GHz Cable Loss (dBi)	5GHz Cable Loss (dBi)	Connecto Type	Cable Length (mm)
Chain (0)	WNC	81-EBJ15.005	PIFA	3.00	5.15~5.35GHz: 2.56 5.47~5.725GHz: 4.76 5.725~5.85GHz: 4.76	1.15	5.15~5.35GHz 1.70 5.47~5.725GH 1.74 5.725~5.85GH 1.79	z: IPEX	300
Chain (1)	WNC	81-EBJ15.005	PIFA	3.62	5.15~5.35GHz: 3.08 5.47~5.725GHz: 3.31 5.725~5.85GHz: 2.42	1.15	5.15~5.35GHz 1.70 5.47~5.725GH 1.74 5.725~5.85GH 1.79	z: IPEX	300
Newly Transmitter Circuit	ansmitter Brand Model		Ant. Type	2.4GHz Gain with cable loss (dBi)		5GHz Gain with Co		Cable Length (mm)	
Chain (0)	INPAQ DAM-J7-H-DL-065-10-34		Dipole	1.94		1.37		625	
Chain (1)	INPAQ	DAM-J7-H-DL-065-10	-34	Dipole	1.94		1.37	SMA RP Plug	625

Note: 1. Above antenna gains of antenna are Total (H+V).

- 2. According to above condition, only Max Average Transmit Power test items need to be performed. And all data were verified to meet the requirements.
- 3. There are Bluetooth technology and WLAN (2.4GHz, 5GHz & 60GHz) technology used for the EUT.

4. The EUT incorporates a 2T2R function.

	2.4	4GHz Band	
MODULATION MODE	DATA RATE (MCS)	TX & RX CONF	GURATION
802.11b	1 ~ 11Mbps	2TX	2RX
802.11g	6 ~ 54Mbps	2TX	2RX
000 44 m (UT20)	MCS 0~7	2TX	2RX
802.11n (HT20)	MCS 8~15	2TX	2RX
000 44 ·· (UT 40)	MCS 0~7	2TX	2RX
802.11n (HT40)	MCS 8~15	2TX	2RX
VUTOO	MCS 0~8, Nss=1	2TX	2RX
VHT20	MCS 0~8, Nss=2	2TX	2RX
VIIIT 40	MCS 0~9, Nss=1	2TX	2RX
VHT40	MCS 0~9, Nss=2	2TX	2RX
		GHz Band	
MODULATION MODE	DATA RATE (MCS)	TX & RX CONF	GURATION
802.11a	6 ~ 54Mbps	2TX	2RX
802.11n (HT20)	MCS 0~7	2TX	2RX
602.1111 (11120)	MCS 8~15	2TX	2RX
802.11n (HT40)	MCS 0~7	2TX	2RX
602.1111 (П140)	MCS 8~15	2TX	2RX
802.11ac (VHT20)	MCS 0~8, Nss=1	2TX	2RX
002.11ac (VH120)	MCS 0~8, Nss=2	2TX	2RX
902 44aa (VUT40)	MCS 0~9, Nss=1	2TX	2RX
802.11ac (VHT40)	MCS 0~9, Nss=2	2TX	2RX
902 44ee (\/UT00\	MCS 0~9, Nss=1	2TX	2RX
802.11ac (VHT80)	MCS 0~9, Nss=2	2TX	2RX

Note: The modulation and bandwidth are similar for 802.11n mode for 20MHz (40MHz) and 802.11ac mode for 20MHz (40MHz), therefore investigated worst case to representative mode in test report. (Final test mode refer section 3.3.1)

5. The EUT was pre-tested under the following modes:

Test Mode	Data rate
Mode A	400ns GI
Mode B	800ns GI

From the above modes, the worst case was found in **Mode B**. Therefore only the test data of the mode was recorded in this report.

6. WLAN/BT coexistence mode:

◆ 2x2 WLAN + BT:

- ➤ 5GHz 802.11a/an (or 11ac) transmit concurrent with BT.
- ➤ 2.4GHz: timely shared coexistence. (2.4GHz & BT technology can't transmit at same time.)
- > 2.4GHz & 5GHz technology can't transmit at same time.

7. The emission (conducted & radiated emission) of the simultaneous operation (WiFi <5GHz> & Bluetooth) have been evaluated and no non-compliance found. The detail combinations of transmitters / frequencies / modes as below table

Mode	Available Channel	Tested Channel	Modulation Technology
5 GHz (802.11a)	36 to 165	157	OFDM
+ Bluetooth (GFSK)	0 to 78	0	FHSS

8. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Antenna

The antenna gain was declared by client; please refer to the following table:

Original									
Transmitter Circuit	Brand	Model	Ant. Type	2.4GHz Gain with cable loss (dBi)	5GHz Gain with cable loss (dBi)	2.4GHz Cable Loss (dBi)	5GHz Cable Loss (dBi)	Connector Type	Cable Length (mm)
Chain (0)	WNC	81-EBJ15.005	PIFA	3.00	5.15~5.35GHz: 2.56 5.47~5.725GHz: 4.76 5.725~5.85GHz: 4.76	1.15	5.15~5.35GHz 1.70 5.47~5.725GHz 1.74 5.725~5.85GHz 1.79	:: IPEX	300
Chain (1)	WNC	81-EBJ15.005	PIFA	3.62	5.15~5.35GHz: 3.08 5.47~5.725GHz: 3.31 5.725~5.85GHz: 2.42	1.15	5.15~5.35GHz 1.70 5.47~5.725GH: 1.74 5.725~5.85GH: 1.79	:: IPEX	300
Newly Transmitter Circuit	ransmitter Brand Model		Ant. Type	2.4GHz Gain with cable loss (dBi)		5GHz Gain with Co		Cable Length (mm)	
Chain (0)	INPAQ	PAQ DAM-J7-H-DL-065-10-34		Dipole	1.94		1.37		625
Chain (1)	INPAQ	DAM-J7-H-DL-065-10	-34	Dipole	1.94		1.37	Plug SMA RP Plug	625

Note: 1. Above antenna gains of antenna are Total (H+V).

For testing, we select the highest gain on each frequency band for calculation and testing The detail information as below:

Transmitter Circuit	Brand	Model	Ant. Type	2.4GHz Gain with cable loss (dBi)	5GHz Gain with cable loss (dBi)	2.4GHz Cable Loss (dBi)	5GHz Cable Loss (dBi)	Connector Type	Cable Length (mm)
Chain (0)+(1)	WNC	81-EBJ15.005	PIFA	3.62	5.15~5.35GHz: 3.08 5.47~5.725GHz: 4.76 5.725~5.85GHz: 4.76	1.15	5.15~5.35GHz: 1.70 5.47~5.725GHz: 1.74 5.725~5.85GHz: 1.79	IPEX	300

3.3 Description of Test Modes

FOR 5180 ~ 5240MHz

4 channels are provided for 802.11a, 802.11ac (VHT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

2 channels are provided for 802.11ac (VHT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency
42	5210MHz

FOR 5260 ~ 5320MHz

4 channels are provided for 802.11a, 802.11ac (VHT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
52	5260 MHz	60	5300 MHz
56	5280 MHz	64	5320 MHz

2 channels are provided for 802.11ac (VHT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency
54	5270 MHz	62	5310 MHz

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency
58	5290MHz

FOR 5500 ~ 5720MHz

12 channels are provided for 802.11a, 802.11ac (VHT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
100	5500 MHz	124	5620 MHz
104	5520 MHz	128	5640 MHz
108	5540 MHz	132	5660 MHz
112	5560 MHz	136	5680 MHz
116	5580 MHz	140	5700 MHz
120	5600 MHz	144	5720 MHz

6 channels are provided for 802.11ac (VHT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency
102	5510 MHz	126	5630 MHz
110	5550 MHz	134	5670 MHz
118	5590 MHz	142	5710 MHz

3 channels are provided for 802.11ac (VHT80):

Channel	Frequency	Channel	Frequency
106	5530MHz	138	5690 MHz
122	5610 MHz		

Note: The listed channels in the DFS band (5250~5350MHz and 5470~5725MHz) are passive scan only.

FOR 5745 ~ 5825MHz:

5 channels are provided for 802.11a, 802.11ac (VHT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
149	5745MHz	161	5805MHz
153	5765MHz	165	5825MHz
157	5785MHz		

2 channels are provided for 802.11ac (VHT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency
151	5755MHz	159	5795MHz

1 channel is provided for 802.11ac (VHT80):

<u> </u>	, ,
Channel	Frequency
155	5775MHz

Report No.: RF150226E05E-1 Page No. 12 / 66 Report Format Version:6.1.2

Reference No.: 170523E03

3.3.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE	APPLICABLE TO	DESCRIPTION
MODE	APCM	DESCRIPTION
-	√	-

Where APCM: Antenna Port Conducted Measurement

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

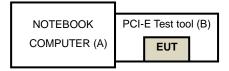
Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
802.11a		36 to 48	36, 40, 48	OFDM	BPSK	6
802.11ac (VHT20)	5400 5040	36 to 48	36, 40, 48	OFDM	BPSK	6.5
802.11ac (VHT40)	5180-5240	38 to 46	38, 46	OFDM	BPSK	13.5
802.11ac (VHT80)		42	42	OFDM	BPSK	29.3
802.11a		52 to 64	52, 60, 64	OFDM	BPSK	6
802.11ac (VHT20)	5000 5000	52 to 64	52, 60, 64	OFDM	BPSK	6.5
802.11ac (VHT40)	5260-5320	54 to 62	54, 62	OFDM	BPSK	13.5
802.11ac (VHT80)		58	58	OFDM	BPSK	29.3
802.11a		100 to 140	100, 116, 140	OFDM	BPSK	6
802.11ac (VHT20)	5500 5700	100 to 140	100, 116, 140	OFDM	BPSK	6.5
802.11ac (VHT40)	5500-5700	102 to 134	102, 110, 134	OFDM	BPSK	13.5
802.11ac (VHT80)		106 to 122	106, 122	OFDM	BPSK	29.3
802.11a		149 to 165	149, 157, 165	OFDM	BPSK	6
802.11ac (VHT20)	5745-5825	149 to 165	149, 157, 165	OFDM	BPSK	6.5
802.11ac (VHT40)		151 to 159	151, 159	OFDM	BPSK	13.5
802.11ac (VHT80)		155	155	OFDM	BPSK	29.3

Test Condition:

Applicable To	Environmental Conditions	Input Power (System)	Tested By	
APCM 25deg. C, 60%RH		120Vac, 60Hz	Anderson Chen	

Report No.: RF150226E05E-1 Page No. 13 / 66 Report Format Version:6.1.2

Reference No.: 170523E03


3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID	Remark
Α	NOTEBOOK COMPUTER	Lenovo	0769	NA	NA	Supplied by Client
В	PCI-E Test tool	Qualcomm Atheros	NA	NA	NA	Supplied by Client

NOTE: All power cords of the above support units are non-shielded (1.8 m).

3.4.1 Configuration of System under Test

Report No.: RF150226E05E-1 Reference No.: 170523E03

3.5 General Description of Applied Standard

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart E (15.407)
KDB 789033 D02 General UNII Test Procedure New Rules v01r03
KDB 662911 D01 Multiple Transmitter Output v02r01
ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

Report No.: RF150226E05E-1 Reference No.: 170523E03

4 Test Types and Results

4.1 Transmit Power Measurement

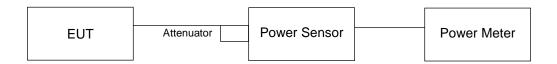
4.1.1 Limits of Transmit Power Measurement

Operation Band		EUT Category	Limit
U-NII-1		Outdoor Access Point	1 Watt (30 dBm) (Max. e.i.r.p ≤ 125mW(21 dBm) at any elevation angle above 30 degrees as measured from the horizon)
0-1411-1		Fixed point-to-point Access Point	1 Watt (30 dBm)
		Indoor Access Point	1 Watt (30 dBm)
	√	Mobile and Portable client device	250mW (24 dBm)
U-NII-2A	√		250mW (24 dBm) or 11 dBm+10 log B*
U-NII-2C	√		250mW (24 dBm) or 11 dBm+10 log B*
U-NII-3	√		1 Watt (30 dBm)

^{*}B is the 26 dB emission bandwidth in megahertz

Per KDB 662911 Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;


Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = $5 \log(N_{ANT}/N_{SS})$ dB or 3 dB, whichever is less for 20-MHz channel widths with $N_{ANT} \ge 5$.


For power measurements on all other devices: Array Gain = $10 \log(N_{ANT}/N_{SS})$ dB.

4.1.2 Test Setup

FOR POWER OUTPUT MEASUREMENT

FOR 26dB OCCUPIED BANDWIDTH

Report No.: RF150226E05E-1 Page No. 16 / 66 Report Format Version:6.1.2

Reference No.: 170523E03

4.1.3 Test Instruments

DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	OLIVIAL NO.	DATE	UNTIL
Power meter Anritsu	ML2495A	1014008	May 11, 2017	May 10, 2018
Power sensor Anritsu	MA2411B	0917122	May 11, 2017	May 10, 2018
Spectrum Analyzer R&S	FSV40	100964	June 28, 2016	June 27, 2017

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. Tested date: June 02 to 03, 2017

4.1.4 Test Procedure

FOR AVERAGE POWER MEASUREMENT

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

FOR 26dB OCCUPIED BANDWIDTH

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.1.5 Deviation from Test Standard

No deviation.

4.1.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

Report No.: RF150226E05E-1 Page No. 18 / 66 Report Format Version:6.1.2

Reference No.: 170523E03

4.1.7 Test Result

802.11a

POWER OUTPUT

Chan.	Chan. Freq.	Average P	ower (dBm)	Total Power	Total Power	Limit (dBm)	Pass / Fail
	(MHz)	Chain 0	Chain 1	(mW)	(dBm)		
36	5180	12.00	13.68	39.184	15.93	29.91	Pass
40	5200	15.10	15.22	65.625	18.17	29.91	Pass
48	5240	15.18	15.57	69.019	18.39	29.91	Pass
52	5260	15.31	15.48	69.281	18.41	23.91	Pass
60	5300	15.34	15.21	67.387	18.29	23.91	Pass
64	5320	11.99	12.26	32.639	15.14	23.91	Pass
100	5500	11.16	11.38	26.802	14.28	22.14	Pass
120	5600	15.01	15.28	65.425	18.16	22.23	Pass
140	5700	10.97	10.96	24.977	13.98	22.06	Pass
*144 (UNII-2c Band)	5720	10.79	11.20	25.178	14.01	22.23	Pass
*144 (UNII-3 Band)	5720	3.87	4.20	5.068	7.05	28.23	Pass
149	5745	13.11	12.85	39.739	15.99	28.23	Pass
157	5785	15.74	15.02	69.266	18.41	28.23	Pass
165	5825	14.14	14.04	51.293	17.10	28.23	Pass

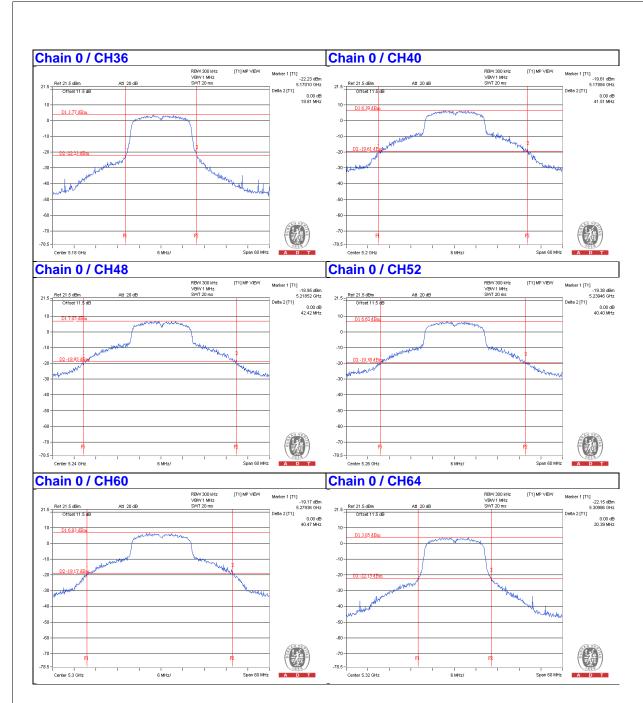
- NOTE: 1. 5150~5250MHz: Directional gain = 3.08dBi + 10log(2) = 6.09dBi > 6dBi , therefore the limit needs to reduce, so the power limit shall be reduced to "Determined Conducted Limit-(6.09-6)"
 - 2. 5250~5350MHz: Directional gain = 3.08dBi + 10log(2) = 6.09dBi > 6dBi, therefore the limit needs to reduce, so the power limit shall be reduced to "Determined Conducted Limit-(6.09-6)"
 - 3. $5470 \sim 5725$ MHz: Directional gain = 4.76dBi + $10\log(2) = 7.77$ dBi > 6dB, therefore the limit needs to reduce, so the power limit shall be reduced to 24-(7.77-6).
 - * Test was performed in accordance with Measurement follow FCC KDB 789033 UNII test procedure Method SA-1 and use spectrum analyzer test.

The Total Power for the straddle channel:

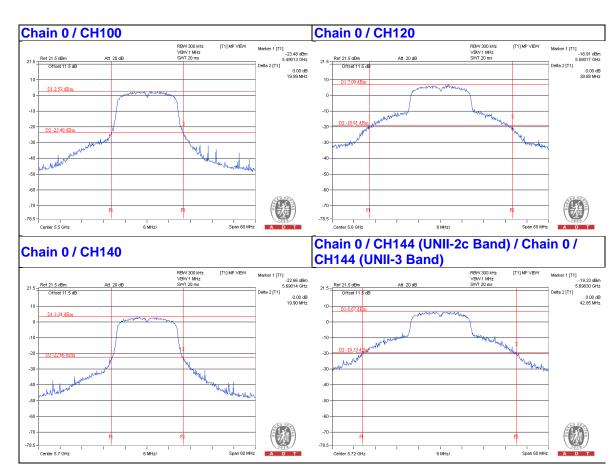
	Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)			
	*144	5720	30.246	14.81			
Ν	Note: The total power was calculated through formula and record the value for reference only.						

Report No.: RF150226E05E-1 Reference No.: 170523E03

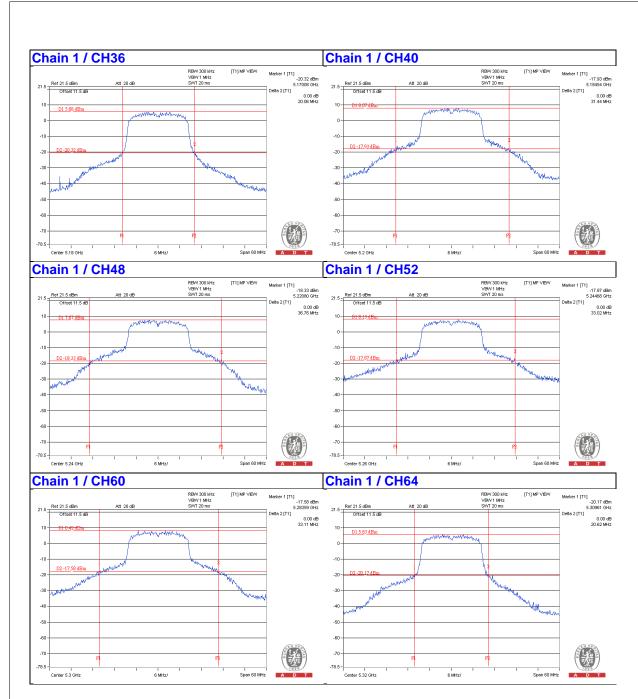
Page No. 19 / 66

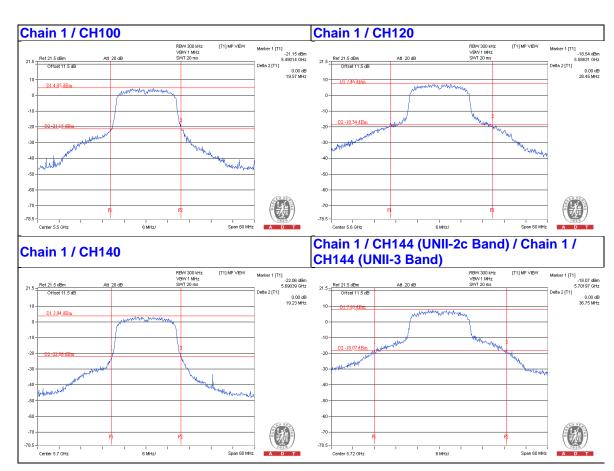

26dB OCCUPIED BANDWIDTH

Channel	Frequency (MHz)	26dBc Bandwidth (MHz)		
Ghamei	1 requeries (wii 12)	Chain 0	Chain 1	
36	5180	19.81	20.06	
40	5200	41.51	31.44	
48	5240	42.42	36.76	
52	5260	40.40	33.02	
60	5300	40.47	33.11	
64	5320	20.39	20.62	
100	5500	19.99	19.57	
120	5600	39.88	28.45	
140	5700	19.90	19.23	
144 (UNII-2c Band)	5720	26.70	23.03	


Note: For U-NII-2A, U-NII-2C Band output power limitation is determined based on 26dBc bandwidth

	Power Limit = 11dBm + 10logB < U-NII-2A, U-NII-2C >								
Channel Number	Freq.(MHz)	Min. B(MHz)	Determined Conducted Limit (dBm)						
52	5260	33.02	26.18 > 24						
60	5300	33.11	26.19 > 24						
64	5320	20.39	24.09 > 24						
100	5500	19.57	23.91 < 24						
120	5600	28.45	25.54 > 24						
140	5700	19.23	23.83 < 24						
144 (UNII-2c Band)	5720	23.03	24.62 > 24						




NOTE:

For CH144 (UNII-2c Band) = 5725MHz - Marker 1

NOTE:

For CH144 (UNII-2c Band) = 5725MHz - Marker 1

For Reference only – Power meter value

The power value was measured by power meter with average sensor.

Chan		Chan. Freq.	Average Power (dBm)		Total Power	Total Power	
	Chan.	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	
	144	5720	15.21	15.36	67.545	18.30	

Note: The total power was calculated through formula and record the value for reference only.

802.11ac (VHT20)

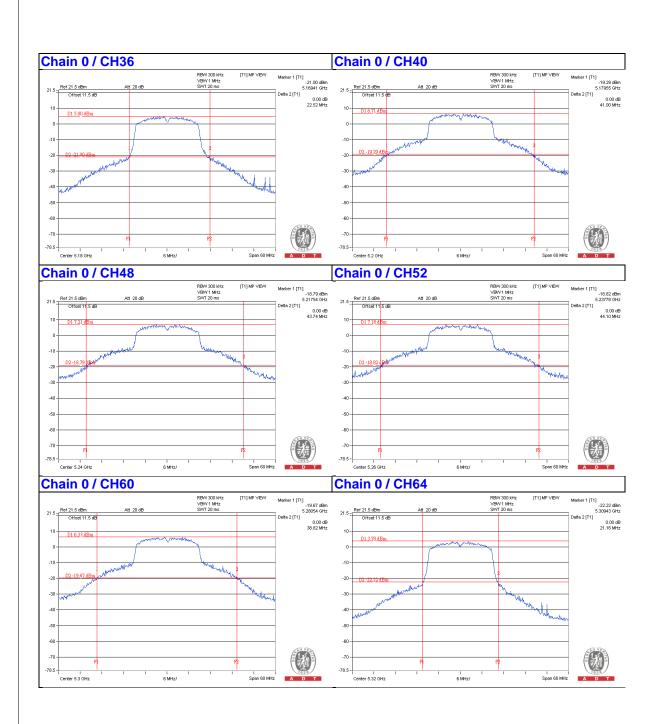
POWER OUTPUT

Chan.	Chan. Freq.	Average P	ower (dBm)	Total Power	Total Power	Limit (dBm)	Pass / Fail
Griam	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	Z (32)	1 400 / 1 411
36	5180	12.58	13.58	40.916	16.12	29.91	Pass
40	5200	15.32	15.48	69.359	18.41	29.91	Pass
48	5240	15.34	15.62	70.673	18.49	29.91	Pass
52	5260	15.32	15.88	72.767	18.62	23.91	Pass
60	5300	15.03	15.10	64.201	18.08	23.91	Pass
64	5320	11.57	12.68	32.89	15.17	23.91	Pass
100	5500	11.00	11.44	26.521	14.24	22.23	Pass
120	5600	15.02	15.48	67.087	18.27	22.23	Pass
140	5700	12.51	11.98	33.6	15.26	22.23	Pass
*144 (UNII-2c Band)	5720	10.44	11.05	23.801	13.77	22.23	Pass
*144 (UNII-3 Band)	5720	3.82	4.52	5.241	7.19	28.23	Pass
149	5745	12.98	11.52	34.052	15.32	28.23	Pass
157	5785	15.78	14.58	66.552	18.23	28.23	Pass
165	5825	13.69	13.40	45.266	16.56	28.23	Pass

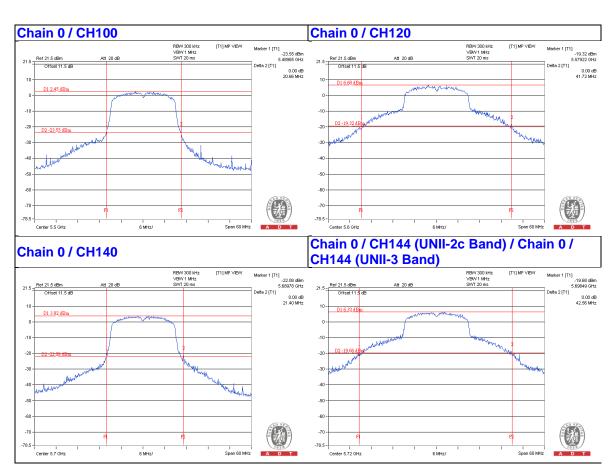
- NOTE: 1. 5150~5250MHz: Directional gain = 3.08dBi + 10log(2) = 6.09dBi > 6dBi , therefore the limit needs to reduce, so the power limit shall be reduced to "Determined Conducted Limit-(6.09-6)"
 - 2. 5250~5350MHz: Directional gain = 3.08dBi + 10log(2) = 6.09dBi > 6dBi, therefore the limit needs to reduce, so the power limit shall be reduced to "Determined Conducted Limit-(6.09-6)"
 - 3. 5470~5725MHz: Directional gain = 4.76dBi + 10log(2) = 7.77dBi > 6dB, therefore the limit needs to reduce, so the power limit shall be reduced to 24-(7.77-6).
 - * Test was performed in accordance with Measurement follow FCC KDB 789033 UNII test procedure Method SA-1 and use spectrum analyzer test.

The Total Power for the straddle channel:

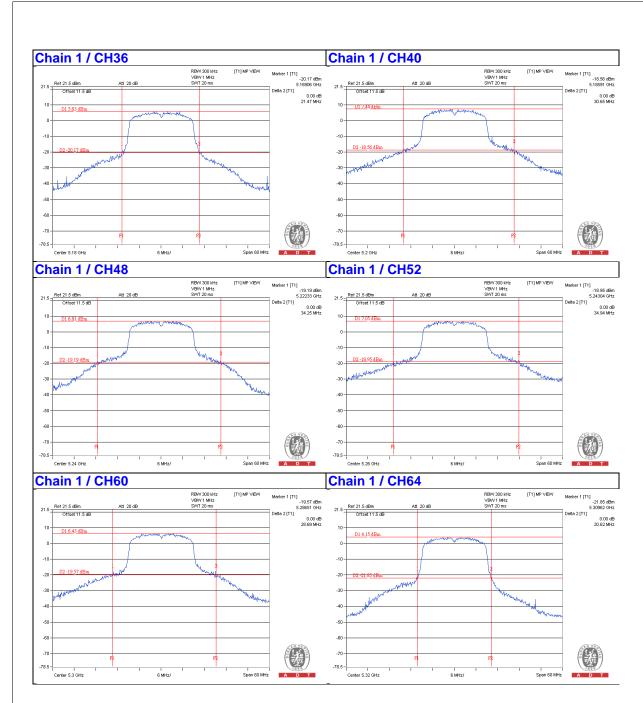
Chan. Chan. Freq. (MHz)		Average Power (mW)	Average Power (dBm)				
	*144 5720		29.042	14.63			
1	Note: The total power was calculated through formula and record the value for reference only.						

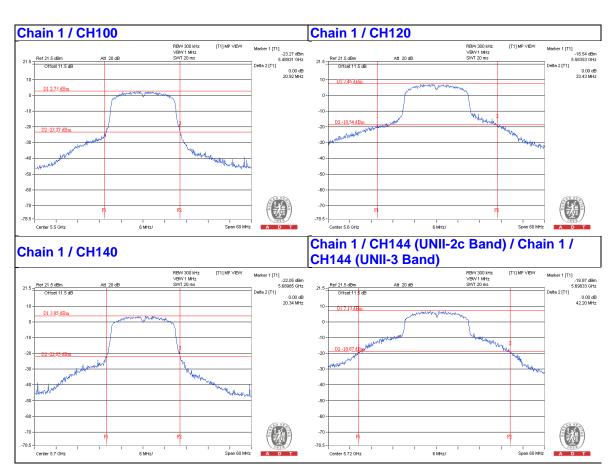

26dB OCCUPIED BANDWIDTH

Channel	Frequency (MHz)	26dBc Bandwidth (MHz)	
Onarmor	1 requeries (wii 12)	Chain 0	Chain 1
36	5180	22.52	21.47
40	5200	41.00	30.65
48	5240	43.74	34.25
52	5260	44.10	34.94
60	5300	38.82	28.69
64	5320	21.16	20.62
100	5500	20.66	20.92
120	5600	41.72	33.43
140	5700	21.40	20.34
144 (UNII-2c Band)	5720	26.51	26.67


Note: For U-NII-2A, U-NII-2C Band output power limitation is determined based on 26dBc bandwidth

Power Limit = 11dBm + 10logB < U-NII-2A, U-NII-2C >			
Channel Number	Freq.(MHz)	Min. B(MHz)	Determined Conducted Limit (dBm)
52	5260	34.94	26.43 > 24
60	5300	28.69	25.57 > 24
64	5320	20.62	24.14 > 24
100	5500	20.66	24.15 > 24
120	5600	33.43	26.24 > 24
140	5700	20.34	24.08 > 24
144 (UNII-2c Band)	5720	26.51	25.23 > 24




NOTE:

For CH144 (UNII-2c Band) = 5725MHz - Marker 1

NOTE:

For CH144 (UNII-2c Band) = 5725MHz - Marker 1

For Reference only – Power meter value

The power value was measured by power meter with average sensor.

Chan. Freq. (MHz)		Average Power (dBm)		Total Power	Total Power
		Chain 0	Chain 1	(mW)	(dBm)
144	5720	15.08	15.13	64.795	18.12

Note: The total power was calculated through formula and record the value for reference only.

802.11ac (VHT40)

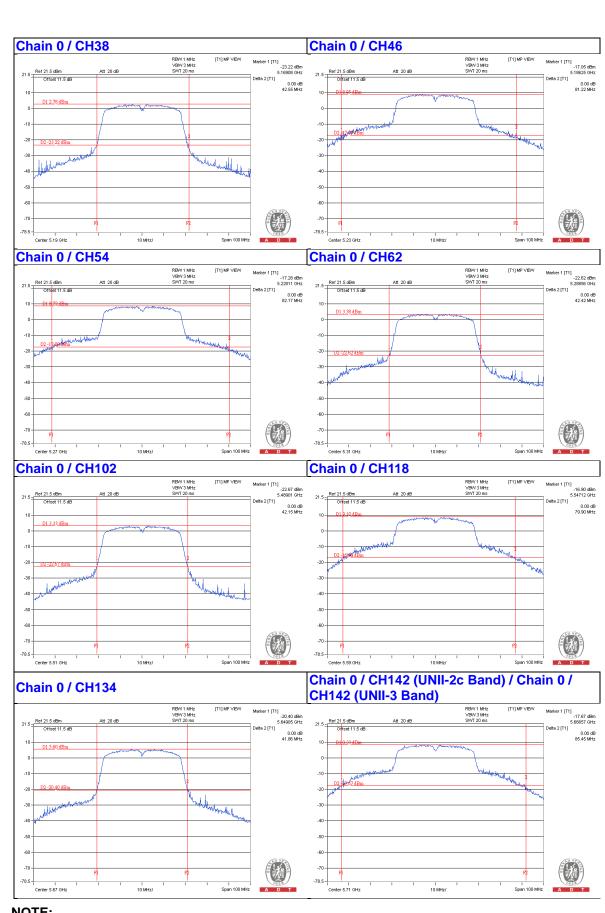
POWER OUTPUT

Chan	Chan. Freq.	Average Power (dBm)		Total Power	Total Power	Limit (dBm)	Pass / Fail
Crian.	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	Lillill (dBill)	r ass / r all
38	5190	8.65	9.68	16.618	12.21	29.91	Pass
46	5230	14.28	14.66	56.034	17.48	29.91	Pass
54	5270	14.00	14.38	52.535	17.20	23.91	Pass
62	5310	9.54	10.74	20.853	13.19	23.91	Pass
102	5510	8.38	9.00	14.83	11.71	22.23	Pass
118	5590	14.28	14.10	52.496	17.20	22.23	Pass
134	5670	11.52	12.03	30.15	14.79	22.23	Pass
*142 (UNII-2c Band)	5710	10.43	10.87	23.259	13.67	22.23	Pass
*142 (UNII-3 Band)	5710	-1.70	-1.05	1.4613	1.65	28.23	Pass
151	5755	9.34	8.48	15.637	11.94	28.23	Pass
159	5795	13.43	13.06	42.259	16.26	28.23	Pass

- NOTE: 1. 5150~5250MHz: Directional gain = 3.08dBi + 10log(2) = 6.09dBi > 6dBi , therefore the limit needs to reduce, so the power limit shall be reduced to "Determined Conducted Limit-(6.09-6)"
 - 2. 5250~5350MHz: Directional gain = 3.08dBi + 10log(2) = 6.09dBi > 6dBi, therefore the limit needs to reduce, so the power limit shall be reduced to "Determined Conducted Limit-(6.09-6)"
 - 3. 5470~5725MHz: Directional gain = 4.76dBi + 10log(2) = 7.77dBi > 6dB, therefore the limit needs to reduce, so the power limit shall be reduced to 24-(7.77-6).
 - * Test was performed in accordance with Measurement follow FCC KDB 789033 UNII test procedure Method SA-1 and use spectrum analyzer test.

The Total Power for the straddle channel:

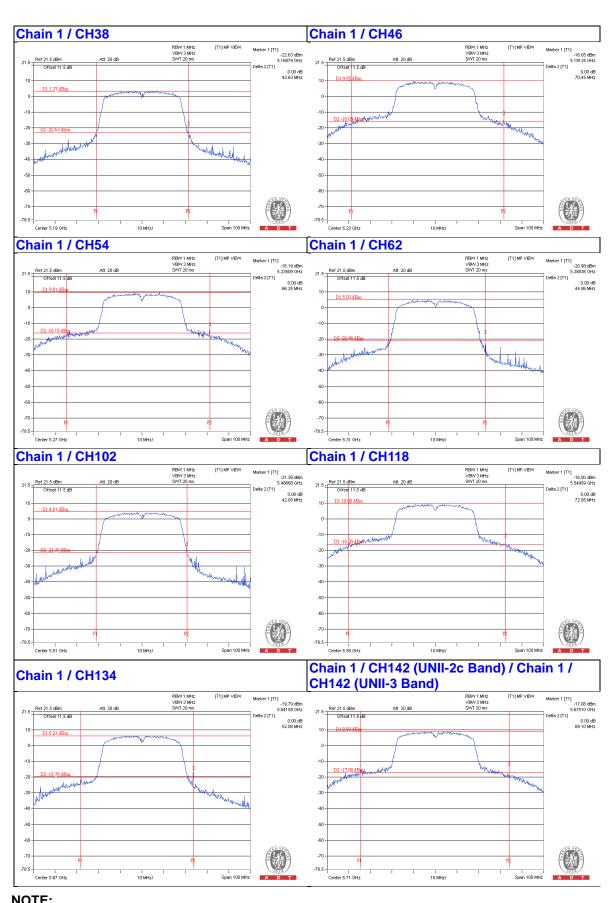
Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)	
*142	5710	24.7203	13.93	
Note: The total power was calculated through formula and record the value for reference only.				


26dB OCCUPIED BANDWIDTH

Channel	Frequency (MHz)	26dBc Bandwidth (MHz)		
Chamor	1 requestoy (Wir 12)	Chain 0	Chain 1	
38	5190	42.55	42.63	
46	5230	81.22	70.45	
54	5270	82.17	66.25	
62	5310	42.42	44.86	
102	5510	42.15	42.05	
118	5590	79.90	72.85	
134	5670	41.86	52.08	
142 (UNII-2c Band)	5710	58.43	49.90	

Note: For U-NII-2A, U-NII-2C Band output power limitation is determined based on 26dBc bandwidth

Power Limit = 11dBm + 10logB < U-NII-2A, U-NII-2C >				
Channel Number	Freq.(MHz)	Min. B(MHz)	Determined Conducted Limit (dBm)	
54	5270	66.25	29.21 > 24	
62	5310	42.42	27.27 > 24	
102	5510	42.05	27.23 > 24	
110	5550	72.85	29.62 > 24	
134	5670	41.86	27.21 > 24	
142 (UNII-2c Band)	5710	49.90	27.98 > 24	



NOTE:

For CH142 (UNII-2c Band) = 5725MHz - Marker 1

NOTE:

For CH142 (UNII-2c Band) = 5725MHz - Marker 1

For Reference only – Power meter value

The power value was measured by power meter with average sensor.

Chan	Chan. Freq.	Average Power (dBm)		Total Power	Total Power (dBm)
Chan. (MHz)	Chain 0	Chain 1	(mW)		
142	5710	14.17	14.28	52.914	17.24

Note: The total power was calculated through formula and record the value for reference only.

802.11ac (VHT80)

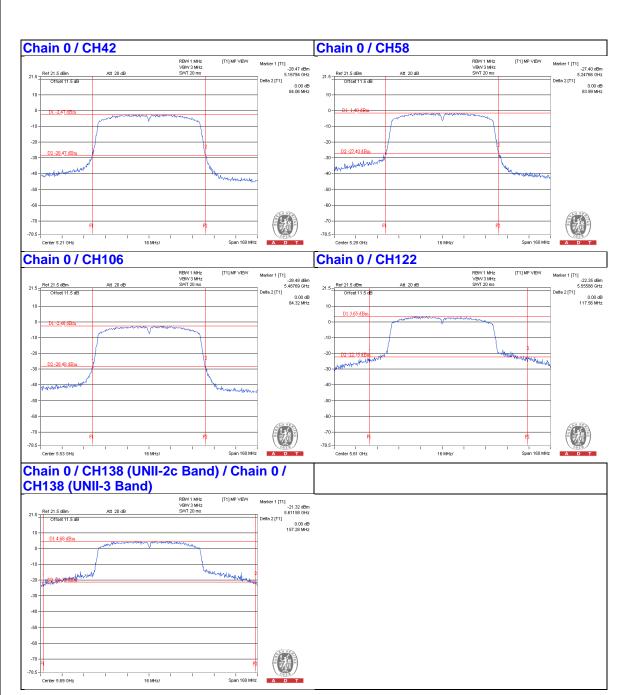
POWER OUTPUT

Chan C	Chan. Chan. Freq. (MHz) Chain 0	Average Power (dBm)		Total Power	Total Power	Limit (dBm)	Pass / Fail
Grian.		Chain 0	Chain 1	(mW)	(dBm)	Limit (dbin)	rass/raii
42	5210	6.77	8.21	11.375	10.56	29.91	Pass
58	5290	7.70	9.08	13.979	11.45	23.91	Pass
106	5530	6.82	7.18	10.032	10.01	22.23	Pass
122	5610	12.18	12.80	35.575	15.51	22.23	Pass
*138 (UNII-2c Band)	5690	9.62	9.24	17.557	12.44	22.23	Pass
*138 (UNII-3 Band)	5690	-5.66	-6.89	0.4762	-3.22	28.23	Pass
155	5775	8.29	8.05	13.128	11.18	28.23	Pass

- **NOTE:** 1. $5150 \sim 5250 \text{MHz}$: Directional gain = $3.08 \text{dBi} + 10 \log(2) = 6.09 \text{dBi} > 6 \text{dBi}$, therefore the limit needs to reduce, so the power limit shall be reduced to "Determined Conducted Limit-(6.09-6)"
 - 2. 5250~5350MHz: Directional gain = 3.08dBi + 10log(2) = 6.09dBi > 6dBi, therefore the limit needs to reduce, so the power limit shall be reduced to "Determined Conducted Limit-(6.09-6)"
 - 3. 5470~5725MHz: Directional gain = 4.76dBi + 10log(2) = 7.77dBi > 6dB, therefore the limit needs to reduce, so the power limit shall be reduced to 24-(7.77-6).
 - * Test was performed in accordance with Measurement follow FCC KDB 789033 UNII test procedure Method SA-1 and use spectrum analyzer test.

The Total Power for the straddle channel:

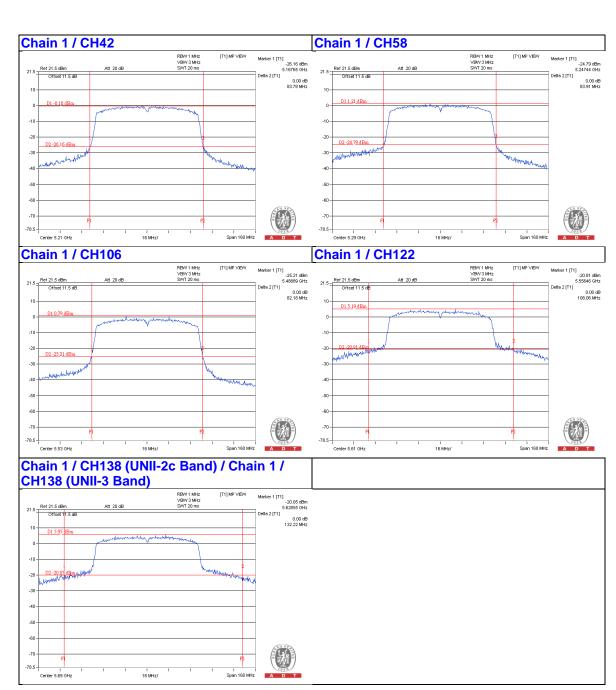
Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)	
138	5690	18.0332	12.56	
Note: The total power was calculated through formula and record the value for reference only.				


26dB OCCUPIED BANDWIDTH

Channel	Frequency (MHz)	26dBc Bandwidth (MHz)		
Onarmer		Chain 0	Chain 1	
42	5210	84.06	83.78	
58	5290	83.99	83.91	
106	5530	84.32	82.18	
122	5610	117.56	108.06	
138 (UNII-2c Band)	5690	113.42	96.45	

Note: For U-NII-2A, U-NII-2C Band output power limitation is determined based on 26dBc bandwidth

Power Limit = 11dBm + 10logB < U-NII-2A, U-NII-2C >					
Channel Number	Freq.(MHz)	Min. B(MHz)	Determined Conducted Limit (dBm)		
58	5290	83.91	30.23 > 24		
106	5530	82.18	30.14 > 24		
122	5610	108.06	31.33 > 24		
138 (UNII-2c Band)	5690	96.45	30.84 > 24		



NOTE:

For CH138 (UNII-2c Band) = 5725MHz - Marker 1

NOTE:

For CH138 (UNII-2c Band) = 5725MHz - Marker 1

For Reference only – Power meter value

The power value was measured by power meter with average sensor.

Chan Chan. Freq.		Average Power (dBm)		Total Power	Total Power
Chan. (MHz)	(MHz)	Chain 0	Chain 1	(mW)	(dBm)
138	5690	13.80	13.48	46.272	16.65
					_

Note: The total power was calculated through formula and record the value for reference only.

4.2 Unwanted Emission (Conducted)

4.2.1 Limits of Unwanted Emission Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits

specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS

APPLICABLE TO	LIMIT		
789033 D02 General UNII Test	FIELD STRENGTH AT 3m		
Procedure New Rules v01	PK:74 (dBµV/m)	AV:54 (dBµV/m)	
APPLICABLE TO	EIRP LIMIT	EQUIVALENT FIELD STRENGTH AT 3m	
15.407(b)(1)			
15.407(b)(2)	PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)	
15.407(b)(3)			
15.407(b)(4)	PK:-27 (dBm/MHz) *1 PK:-17 (dBm/MHz) *2	PK: 68.2(dBµV/m) *1 PK:78.2 (dBµV/m) *2	

NOTE: *1 beyond 10MHz of the band edge *2 within 10 MHz of band edge

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts).

Report No.: RF150226E05E-1 Reference No.: 170523E03

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSV40	100964	June 28, 2016	June 27, 2017
Spectrum Analyzer Agilent	E4446A	MY48250253	Dec. 21, 2016	Dec. 20, 2017
Power meter Anritsu	ML2495A	1014008	May 11, 2017	May 10, 2018
Power sensor Anritsu	MA2411B	0917122	May 11, 2017	May 10, 2018
AC Power Source Extech Electronics	6205	1440452	NA	NA
Temperature & Humidity Chamber Giant Force	GTH-150-40-SP-AR	MAA0812-008	Jan. 11, 2017	Jan. 10, 2018
DC Power Supply Topward	6603D	795558	NA	NA
Digital Multimeter FLUKE	87III	73680266	Nov. 10, 2016	Nov. 09, 2017
ESG Vector signal generator Agilent	E4438C	MY45094468/005 506 602 UK6 UNJ	Nov. 25, 2016	Nov. 24, 2017
Mech Switch Absorptive Mini-Circuits	MSP4TA-18+	0140	Mar. 18, 2017	Mar. 17, 2018
FXD ATTEN Mini-Circuits	BW-S3W2+	MN71981	Mar. 18, 2017	Mar. 17, 2018
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA

- **NOTE:** 1. The test was performed in Oven room 2.
 - 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 - 3. Tested Date: June 02, 2017

4.2.3 Test Procedure

Following FCC KDB 789033 D02 General UNII Test Procedures:

Radiated versus Conducted Measurements.

The unwanted emission limits in both the restricted and non-restricted bands are based on antenna-port conducted measurements in conjunction with cabinet emissions tests are permitted to demonstrate compliance.

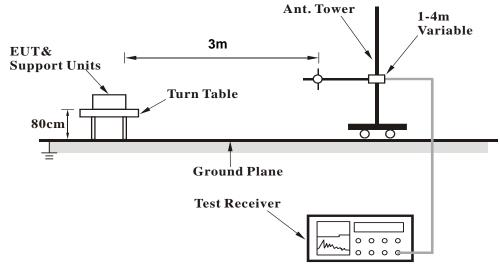
The following steps was performed:

- a. Cabinet emissions measurements. Radiated measurement was performed to ensure that cabinet emissions are below the emission limits. For the cabinet-emission measurements the antenna was replaced by a termination matching the nominal impedance of the antenna.
- b. Conducted tests was performed using equipment that matches the nominal impedance of the antenna assembly used with the EUT
- c. EIRP calculation. A value representative of an upper bound on out-of-band antenna gain (in dBi) shall be added to the measured antenna-port conducted emission power to compute EIRP within the specified measurement bandwidth. (For emissions in the restricted bands, additional calculations are required to convert EIRP to field strength at the specified distance.) The upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands or 2 dBi, whichever is greater
- d. EIRP adjustments for multiple outputs. (Follow the procedures specified in FCC KDB Publication 662911)
- e. For all of Radiation emission test
 - e-1. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at a 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
 - e-2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
 - e-3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
 - e-4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
 - e-5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
 - e-6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

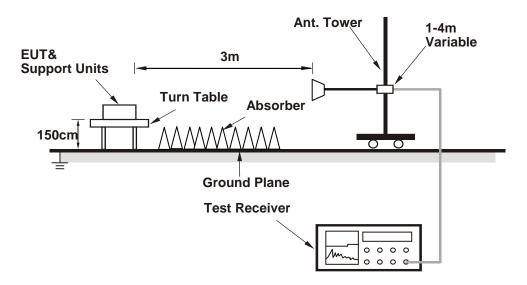
NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

Report No.: RF150226E05E-1 Page No. 45 / 66 Report Format Version:6.1.2 Reference No.: 170523E03



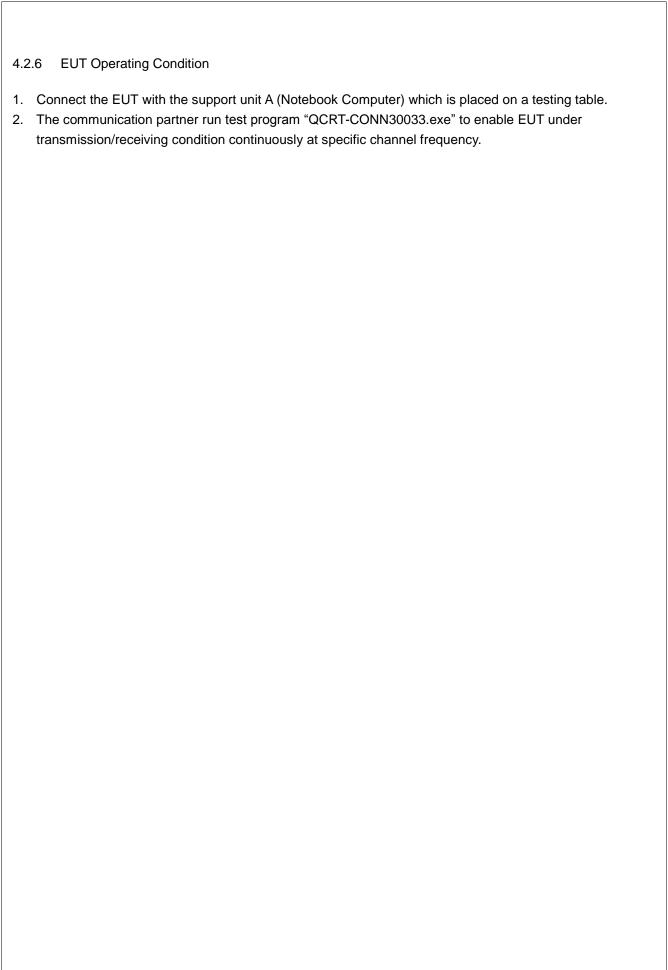
4.2.4 Deviation from Test Standard


No deviation.

4.2.5 Test Setup

For radiated configuration: <Frequency Range below 1GHz>

<Frequency Range above 1GHz>



For conducted configuration:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

Report No.: RF150226E05E-1 Reference No.: 170523E03

4.2.7 Test Results (Conducted Measurement)

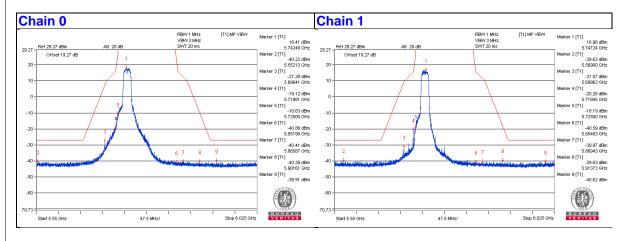
Radiated versus Conducted Measurement					
□ Conducted measurement	☐ Radiated measurement				
For Radiated measurement:					
The level of unwanted emissions was measured when radiated by the cabinet or structure of the equipment with the antenna connector(s) terminated by a specified load (cabinet radiation)					
For Conducted measurement:					
The level of unwanted emissions was measured as their power in a specified load (conducted spurious emissions).					

Conducted Measurement Factor

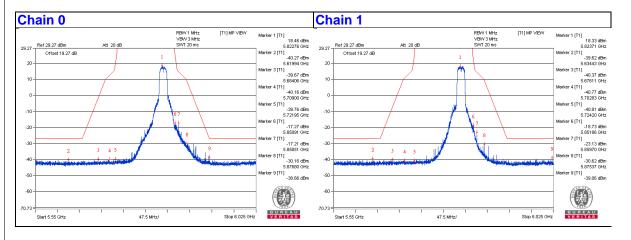
 The max antenna gain is used for conducted measurement shown as "Correction factor" in spurious emissions tables.

(Composite gain = 3.08dBi + 10log(2) = 6.09dBiComposite gain = 4.76dBi + 10log(2) = 7.77dBi)

- For the out of band spurious the gain for the specific band may have been used rather than the highest gain across all bands.
- c. For the band edge the gain for the specific band may have been used.
- d. In restricted bands below 1000 MHz, add upper bound on ground plane reflection:

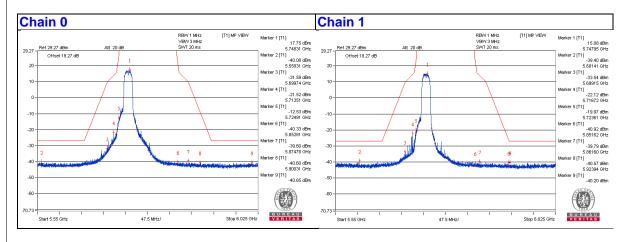

For f = 30 - 1000 MHz, add 4.7 dB.

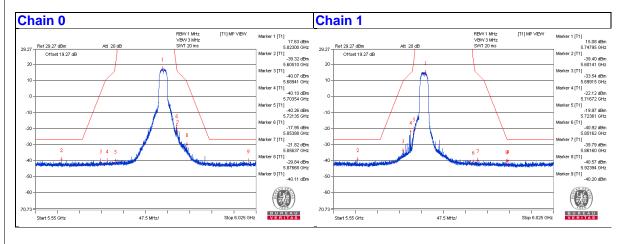
Note: The conducted emission test was considered some factor to compute test result.



802.11a - Channel 149

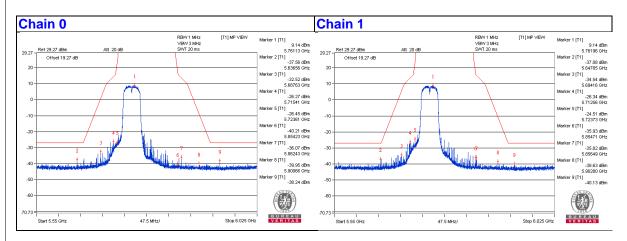
Bandedge table


802.11a - Channel 165



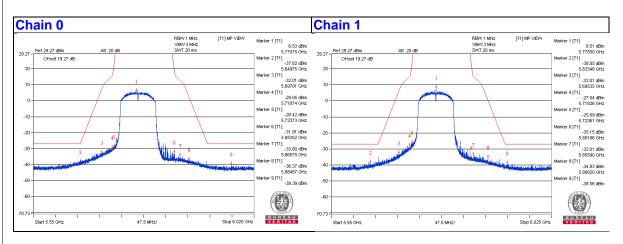
802.11ac (VHT20) - Channel 149

Bandedge table


802.11ac (VHT20) - Channel 165

802.11ac (VHT40) - Channel 151

Bandedge table



802.11ac (VHT40) - Channel 159

802.11ac (VHT80) - Channel 155

5 Pictures of Test Arrangements
Please refer to the attached file (Test Setup Photo).

Report No.: RF150226E05E-1 Reference No.: 170523E03

6 Appendix A – Radiated Emission Measurement

6.1 Limits of Radiated Emission Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

6.2 Test Instruments

DECORPTION 8			CALIDDATED	CALIDDATED
DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED
MANUFACTURER			DATE	UNTIL
Test Receiver Agilent	N9038A	MY50010156	Aug. 18, 2016	Aug. 17, 2017
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Dec. 28, 2016	Dec. 27, 2017
Pre-Amplifier EMCI	EMC12630SE	980384	Feb. 02, 2017	Feb. 01, 2018
RF Cable	EMC104-SM-SM-1200 EMC104-SM-SM-2000 EMC104-SM-SM-5000	160922 150317 150322	Feb. 02, 2017 Mar. 29, 2017 Mar. 29, 2017	Feb. 01, 2018 Mar. 28, 2018 Mar. 28, 2018
Spectrum Analyzer Keysight	N9030A	MY54490520	July 29, 2016	July 28, 2017
Pre-Amplifier EMCI	EMC184045SE	980386	Feb. 02, 2017	Feb. 01, 2018
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Dec. 15, 2016	Dec. 14, 2017
RF Cable	SUCOFLEX 102	36432/2 36433/2	Jan. 15, 2017	Jan. 14, 2018
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA

Note:

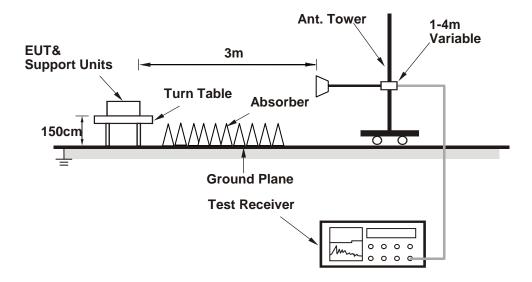
- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 3.
- 3. The FCC Site Registration No. is 147459
- 4. The CANADA Site Registration No. is 20331-1
- 5. Tested Date: May 03, 2017

6.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

NOTE:

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


6.4 Deviation from Test Standard

No deviation

Report No.: RF150226E05E-1 Page No. 56 / 66 Report Format Version:6.1.2 Reference No.: 170523E03

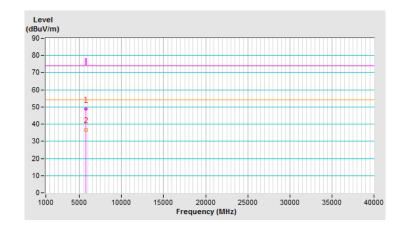
6.5 Test Setup

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

6.6 EUT Operating Conditions

- 3. Connect the EUT with the support unit A (Notebook Computer) which is placed on a testing table.
- 4. The communication partner run test program "QRCT_CONN.exe" to enable EUT under transmission/receiving condition continuously at specific channel frequency.

6.7 Test Results

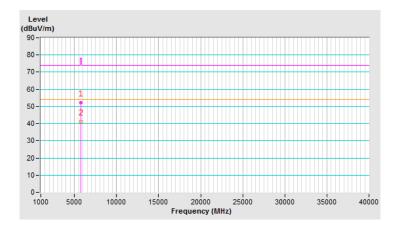

The EUT's antenna had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-plane**.

802.11a

CHANNEL	TX Channel 140	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5725.00	48.9 PK	78.2	-29.3	3.82 H	102	44.5	4.4		
2	#5725.00	36.8 AV	54.0	-17.2	3.82 H	102	32.4	4.4		

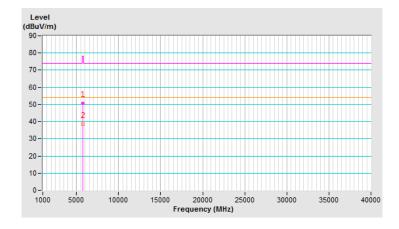
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " # ": The radiated frequency is out of the restricted band.



CHANNEL	TX Channel 140	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5725.00	52.2 PK	78.2	-26.0	2.17 V	167	47.8	4.4		
2	#5725.00	41.3 AV	54.0	-12.7	2.17 V	167	36.9	4.4		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " # ": The radiated frequency is out of the restricted band.

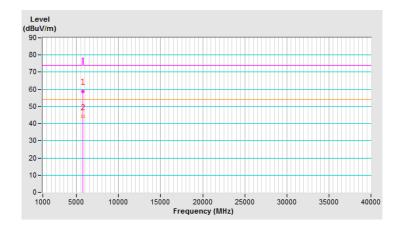


802.11ac (VHT20)

CHANNEL	TX Channel 140	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5725.00	50.8 PK	78.2	-27.4	3.80 H	92	46.4	4.4		
2	#5725.00	38.5 AV	54.0	-15.5	3.80 H	92	34.1	4.4		

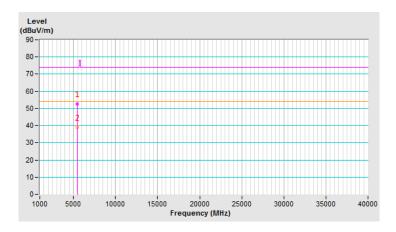
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " # ": The radiated frequency is out of the restricted band.



CHANNEL	TX Channel 140	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5725.00	58.9 PK	78.2	-19.3	2.03 V	253	54.5	4.4		
2	#5725.00	44.2 AV	54.0	-9.8	2.03 V	253	39.8	4.4		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " # ": The radiated frequency is out of the restricted band.

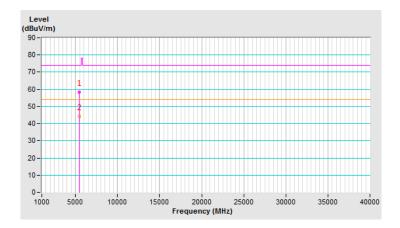


802.11ac (VHT40)

CHANNEL	TX Channel 102	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5470.00	52.8 PK	74.0	-21.2	3.88 H	92	48.6	4.2		
2	#5470.00	39.4 AV	54.0	-14.6	3.88 H	92	35.2	4.2		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " # ": The radiated frequency is out of the restricted band.



CHANNEL	TX Channel 102	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5470.00	58.3 PK	74.0	-15.7	2.02 V	149	54.1	4.2
2	#5470.00	44.2 AV	54.0	-9.8	2.02 V	149	40.0	4.2

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " # ": The radiated frequency is out of the restricted band.

802.11ac (VHT80)

CHANNEL	TX Channel 106	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5470.00	51.4 PK	74.0	-22.6	1.62 H	309	47.2	4.2
2	#5470.00	37.6 AV	54.0	-16.4	1.62 H	309	33.4	4.2

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " # ": The radiated frequency is out of the restricted band.

CHANNEL	TX Channel 106	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5470.00	59.4 PK	74.0	-14.6	2.09 V	148	55.2	4.2
2	#5470.00	46.4 AV	54.0	-7.6	2.09 V	148	42.2	4.2

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " # ": The radiated frequency is out of the restricted band.

Appendix B - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---