5. TEST RESULTS (802.11g)

5.1 Powerline Conducted Emissions [Section 15.207]

5.1.1 EUT Configuration

The EUT was set up on the non-conductive table that is 1.0 by 1.5 meter, 80cm above ground. The wall of the shielded room was located 40cm to the rear of the EUT.

Power to the EUT was provided through the LISN. The impedance vs. frequency characteristic of the LISN is complied with the limit used.

Both lines (neutral and hot) were connected to the LISN in series at testing. A coaxial-type connector which provides one 50 ohms terminating impedance was provided for connecting the test instrument. The excess length of the power cord was folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

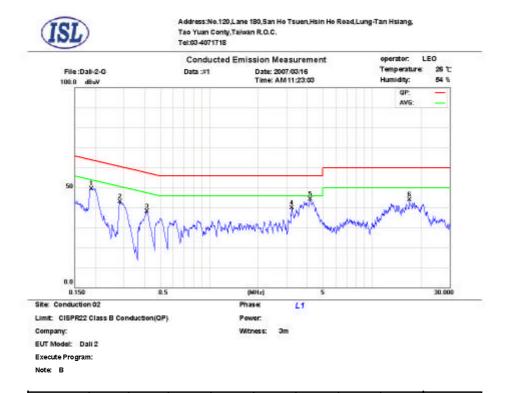
If the EUT is a Personal Computer or a peripheral of personal computer, and the personal computer has an auxiliary AC outlet which can be used for providing power to an external monitor, then all measurements will be made with the monitor power from first the computer-mounted AC outlet and then a floor-mounted AC outlet.

5.1.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. The main power line conducted EMI tests were run on the hot and neutral conductors of the power cord and the results were recorded. The effect of varying the position of the interface cables has been investigated to find the configuration that produces maximum emission.

At the frequencies where the peak values of the emissions were higher than 6dß below the applicable limits, the emissions were also measured with the quasi-peak detectors. At the frequencies where the quasi-peak values of the emissions were higher than 6dß below the applicable average limits, the emissions were also measured with the average detectors.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.


5.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range Detector Function Bandwidth (RBW) 150 KHz--30MHz Quasi-Peak/Average 9KHz

Report Number: 07LR014FC

5.1.4 Test Data:

Power Line Conducted Emissions (Hot) Channel 1, 6, 11


	Frequency MHz	LISN Loss dB	Cable Loss dB	QP Correct dBuV	QP Limit dBuV	QP Margin dB	AVG Correct. dBuV	AVG Limit dBuV	AVG Margin dB	Note
*	0.1894	0.1	0.04	47.60	64.0	-16.4	35.70	54.0	-18.3	
	0.2833	0.14	0.09	39.70	60.7	-21.0	22.90	50.7	-27.8	
	0.4148	0.2	0.08	34.90	57.5	-22.6	21.60	47.5	-25.9	
	3.2239	0.32	0.12	29.40	56.0	-26.6	14.80	46.0	-31.2	
	4.1796	0.4	0.14	37.10	56.0	-18.9	20.10	46.0	-25.9	
L	16.9282	0.9	0.32	35.90	60.0	-24.1	29.80	50.0	-20.2	

^{*:}Maximum data x:Over limit

「「「「「「「「」」 原管料技能分育収全司 Filamatoral Standards Laborators

Power Line Conducted Emissions (Neutral) Channel 1, 6, 11

-30-

Frequency MHz	LISN Loss dB	Cable Loss dB	QP Correct dBuV	QP Limit dBuV	QP Margin dB	AVG Correct. dBuV	AVG Limit dBuV	AVG Margin dB	Note
0.1664	0.1	0.03	29.60	65.1	-35.5	10.70	55.1	-44.4	
0.1845	0.1	0.04	28.20	64.2	-36.0	23.70	54.2	-30.5	
* 0.1934	0.1	0.04	47.80	63.8	-16.0	36.60	53.8	-17.2	
0.2083	0.1	0.05	46.10	63.2	-17.1	34.90	53.2	-18.3	
0.2847	0.14	0.09	38.20	60.6	-22.4	23.60	50.6	-27.0	
4.4305	0.21	0.15	35.20	56.0	-20.8	19.40	46.0	-26.6	

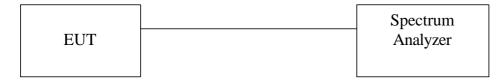
* NOTE: During the test, the EMI receiver was set to Max. Hold then switch the EUT Channel between 1, 6, 11 to get the maximum reading of all these channels.

Margin = Amplitude + Insertion Loss- Limit

A margin of -8dB means that the emission is 8dB below the limit

^{*:}Maximum data x:Over limit

5.2 Bandwidth for DSSS [Section 15.247 (a)(2)]


5.2.1 Test Procedure

The Transmitter output of EUT was connected to the spectrum analyzer. The 6 dB bandwidth of the fundamental frequency was measured. The setting of spectrum analyzer is as follows

-31-

Equipment mode	Spectrum analyzer
Detector function	Peak mode
RBW	100KHz
VBW	100KHz

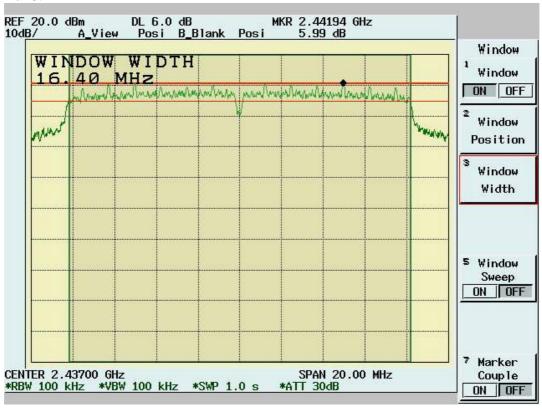
5.2.2 Test Setup

5.2.3 Test Data:

6dB Bandwidth

Temp. (? C): 25

Test Engr:	Jerry Chiou	Humidity (%):	50


Chennel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Pass/Fail
1	2412	16.4	0.5	Pass
6	2437	16.4	0.5	Pass
11	2462	16.4	0.5	Pass

Channel 1:

Channel 6:

Channel 11:

5.3 DSSS Maximum Peak Output Power [Section 15.247 (b)(1)]

5.3.1 Test Procedure

The Transmitter output of EUT was connected to the peak power analyzer.

5.3.2 Test Setup

5.3.3 Test Data

Maximum Peak Output Power

Temp. (? C): 25

Jerry Chiou 50 Test Engr: Humidity (%):

Channel	Frequency (MHz)	Analyzer Reading (dBm)	Cable Loss (dB)	Peak Power Output (mW)	Peak Power Output (dBm)	Limit (dBm)	Pass/Fail
1	2412	22.67	1.1	238.23	23.77	30	Pass
6	2437	25.67	1.1	475.34	26.77	30	Pass
11	2462	22.73	1.1	241.55	23.83	30	Pass

Note: Two RF output(MAIN & AUX) have been test, the worse data shown above.

5.4 Radiated Emission Measurement [Section [15.247(c)(4)]

-35-

5.4.1 EUT Configuration

The equipment under test was set up on the 10 meter chamber with measurement distance of 3 meters. The EUT was placed on a non-conductive table 80cm above ground.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

5.4.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. We found the maximum readings by varying the height of antenna and then rotating the turntable. Both polarization of antenna, horizontal and vertical, are measured.

30M to 1GHz: The highest emissions between 30 MHz to 1000 MHz were also analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, its polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission.

1GHz – 25GHz: The highest emissions were also analyzed in details by operating the spectrum analyzer and/or EMI receiver in peak mode to determine the precise amplitude of the emission. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, its polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission. During test the EMI receiver and spectrum was setup according to EMI Receiver/Spectrum Analyzer Configuration.

For the test of 2^{nd} to 10^{th} harmonics frequencies , the equipment setup was also refer to EMIReceiver/Spectrum Analyzer Configuration. The frequencies were tested using Peak mode first, if the test data is higher than the emissions limit, an additional measurement using Average mode will be performed and the average reading will be compared to the limit and record in test report.

5.4.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

30MHz~1000MHz Frequency Range Tested: **Detector Function:** Quasi-Peak Mode

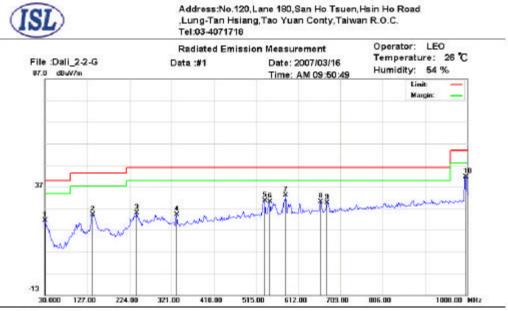
120KHz Resolution Bandwidth (RBW): Video Bandwidth (VBW) 1MHz

Frequency Range Tested: 1GHz - 25 GHz **Detector Function:** Peak Mode Resolution Bandwidth (RBW): 1MHz Video Bandwidth (VBW) 3MHz

Frequency Range Tested: 1GHz – 25 GHz **Detector Function:** Average Mode

Resolution Bandwidth (RBW): 1MHz Video Bandwidth (VBW) 10 Hz

Horizontal


Polarization: Power :

Witness: 10m

5.4.4 Test Data (30MHz – 1GHz):

30M – 1GHz Open Field Radiated Emissions (Horizontal) Channel 1, 6, 11

-36-

Site: Chamber 02

Condition : FCC Class B 3M Radiation

Company : EUT Model: Dali 2 Execute Program :

Note: G

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
	30.0000	1.72	18.8	0.84	0	21.36	40.00	-18.64			peak
	138.6400	10.92	11.28	1.88	0	24.08	43.50	-19.42			peak
	239.5200	10.98	11.44	2.48	0	24.90	46.00	-21.10			peak
	332.6400	7.04	13.98	3.22	0	24.24	46.00	-21.76			peak
	534.4000	7.98	18.5	4.26	0	30.74	46.00	-15.26			peak
	546.0400	6.81	18.87	4.33	0	30.01	46.00	-15.99			peak
	582.9000	9.79	18.8	4.55	0	33.14	46.00	-12.86			peak
	664.3800	6.28	18.97	4.91	0	30.16	46.00	-15.84			peak
	677.9600	5.71	18.94	4.99	0	29.64	46.00	-16.36			peak
*	996.1200	13.95	21.27	6.46	0	41.68	54.00	-12.32			peak

^{*:}Maximum data x:Over limit !:over margin

30M – 1GHz Open Field Radiated Emissions (Vertical) Channel 1, 6, 11

-37-

Site : Chamber 02

Condition : FCC Class B 3M Radiation

Company: EUT Model: Dali 2 Execute Program:

Note : B

Polarization: Venical
Power:
Witness: 10m

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
*	33.8800	9.42	16.24	0.94	0	26.60	40.00	-13.40			peak
	136.7000	15.57	11.4	1.87	0	28.84	43.50	-14.66			peak
	225.9400	18.39	9.81	2.44	0	30.64	46.00	-15.36			peak
	258.9200	15.57	14.01	2.63	0	32.21	46.00	-13.79			peak
	291.9000	14.46	13.04	2.87	0	30.37	46.00	-15.63			peak
	355.9200	11.33	14.57	3.34	0	29.24	46.00	-16.76			peak
	452.9200	10.35	16.74	3.87	0	30.96	46.00	-15.04			peak
	532.4600	9.11	18.44	4.25	0	31.80	46.00	-14.20			peak
	582.9000	8.06	18.8	4.55	0	31.41	46.00	-14.59			peak
	996.1200	12.73	21.27	6.46	0	40.46	54.00	-13.54			peak

NOTE:

- > During the Pre-test, the EUT has been tested for Channel 1, 6, 11 transmit from Main and Aux antenna respectively to get all the critical emission frequencies. In the final test all the critical emission frequencies has been tested and the test data are listed above.
- ➤ Margin = Corrected Amplitude Limit

 Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss Pre-Amplifier Gain

 A margin of -8dB means that the emission is 8dB below the limit

All frequencies from 30MHz to 1GHz have been tested

International Standards Laboratory

^{*:}Maximum data x:Over limit !:over margin

5.4.5 Test Data (1GHz – 25 GHz).

1GHz~ 25 GHz (Horizontal), Channel 1: 2412 MHz

Operator: Jerry Chiou

RBW: 1MHz Humidity (%): 52 Temperature (C): 22

Frequency	Rx_R.	Ant_F.	Cab_L.	PreAmpl	Emission	Limit	Margin	A.Tower	T.Table
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg
1596.9	44.83pk	27.61	2.3	23.75	50.99pk	54.00av	-3.01	101	71
1659.34	45.10pk	28.14	2.35	23.75	51.84pk	54.00av	-2.16	101	67
1664.34	44.90pk	28.18	2.35	23.75	51.68pk	54.00av	-2.32	101	66
2286.21	42.71pk	30.94	1.73	24.37	51.01pk	54.00av	-2.99	101	133
7860.14	30.48pk	39.85	3.87	26.63	47.57pk	54.00av	-6.43	100	235
9859.14	30.24pk	38.45	4.09	24.7	48.09pk	54.00av	-5.91	101	3
14595.9	29.70pk	45.04	4.59	28.43	50.89pk	54.00av	-3.11	101	21

-38-

1GHz~ 25 GHz (Vertical), Channel 1: 2412 MHz

Operator: Jerry Chiou RBW: 1MHz Humidity (%): 52

Temperature (C): 22

Frequency	Rx_R.	Ant_F.	Cab_L.	PreAmpl	Emission	Limit	Margin	A.Tower	T.Table
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg
1596.9	43.89pk	27.61	2.3	23.75	50.06pk	54.00av	-3.94	101	71
1659.34	46.60pk	28.14	2.35	23.75	53.34pk	54.00av	-0.66	101	67
1994.01	37.91pk	30.95	2.6	23.75	47.71pk	54.00av	-6.29	100	43
2286.21	39.74pk	30.94	1.73	24.37	48.04pk	54.00av	-5.96	101	1331
6484.02	31.91pk	38.81	4.17	27.26	47.63pk	54.00av	-6.37	100	201
7686.31	30.57pk	39.54	3.93	26.56	47.47pk	54.00av	-6.53	100	209
9656.34	30.59pk	38.82	3.95	24.83	48.53pk	54.00av	-5.47	102	7
14349.7	29.65pk	44.19	4.85	28.37	50.32pk	54.00av	-3.68	102	33

- > According to the standards used, Where limits are specified by agencies for both average and peak (or quasi-peak) detection, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- " * ": Fundamental Frequency
- "**": Not in the restricted band, Limit level=Fundamental Emission-20dB
- " pk": peak mode
- > "av": average mode
- > "---": No meter reading data due to the emission level is smaller than spectrum noise level.
- ➤ The Spectrum noise level+Correction Factor < Limit 6 dB
- Margin=Corrected Amplitude Limit
- Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss-Pre-Amplifier Gain
- A margin of -8dB means that the emission is 8dB below the limit.

All frequencies from 1GHz to 25 GHz have been tested.

1GHz~ 25 GHz (Horizontal), Channel 6: 2437 MHz

Operator: Jerry Chiou RBW: 1MHz Humidity (%): 59

Temperature (C): 22

Frequency	Rx_R.	Ant_F.	Cab_L.	PreAmpl	Emission	Limit	Margin	A.Tower	T.Table
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg
1594.41	40.98pk	27.59	2.3	23.75	47.13pk	54.00av	-6.87	101	71
1659.34	43.10pk	28.14	2.35	23.75	49.84pk	54.00av	-4.16	101	67
2286.21	43.95pk	30.94	1.73	24.37	52.25pk	54.00av	-1.75	101	133
4876.12	32.13pk	34.33	5.13	27.41	44.18pk	54.00av	-9.82	100	12
7831.17	30.18pk	39.8	3.88	26.62	47.23pk	54.00av	-6.77	100	230
9743.26	31.23pk	38.66	4.01	24.77	49.12pk	54.00av	-4.88	102	5
12234.8	32.29pk	41.57	4.45	28.23	50.08pk	54.00av	-3.92	100	147

-39-

1GHz~ 25 GHz (Vertical), Channel 6: 2437 MHz

Operator: Jerry Chiou RBW: 1MHz Humidity (%): 52

Temperature (C): 22

Frequency	Rx_R.	Ant_F.	Cab_L.	PreAmpl	Emission	Limit	Margin	A.Tower	T.Table
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg
1544.46	42.49pk	27.17	2.26	23.75	48.18pk	54.00av	-5.82	101	74
1659.34	46.57pk	28.14	2.35	23.75	53.31pk	54.00av	-0.69	101	67
2286.21	43.42pk	30.94	1.73	24.37	51.72pk	54.00v	-2.28	101	133
4861.64	38.54pk	34.27	5.13	27.43	50.52pk	54.00av	-3.48	100	14
7295.2	31.63pk	38.38	3.88	26.57	47.33pk	54.00av	-6.67	101	152
9728.77	38.25pk	38.69	4	24.78	56.15pk	74.00pk	-17.85	102	5
9759.41	28.31av	38.69	4	24.78	46.21av	54.00av	-7.79	102	5
12133.4	31.90pk	41.71	4.59	28.36	49.84pk	54.00av	-4.16	100	120
14494.5	29.57pk	44.97	4.54	28.51	50.57pk	54.00v	-3.43	102	26

Note:

- > According to the standards used, Where limits are specified by agencies for both average and peak (or quasi-peak) detection, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- " * ": Fundamental Frequency
- "**": Not in the restricted band, Limit level=Fundamental Emission-20dB
- "pk": peak mode
- > "av": average mode
- "---": No meter reading data due to the emission level is smaller than spectrum noise level.
- ightharpoonup The Spectrum noise level+Correction Factor < Limit 6 dB
- Margin=Corrected Amplitude Limit
- Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss-Pre-Amplifier Gain
- A margin of -8dB means that the emission is 8dB below the limit.

All frequencies from 1GHz to 25 GHz have been tested.

1GHz~25 GHz (Horizontal), Channel 11: 2462 MHz

Operator: Jerry Chiou RBW: 1MHz Humidity (%): 52

Temperature (C): 22

Frequency	Rx_R.	Ant_F.	Cab_L.	PreAmpl	Emission	Limit	Margin	A.Tower	T.Table
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg
1596.9	45.04pk	27.61	2.3	23.75	51.20pk	54.00av	-2.8	101	71
1664.34	43.48pk	28.18	2.35	23.75	50.26pk	54.00av	-3.74	101	66
2286.21	40.66pk	30.94	1.73	24.37	48.97pk	54.00av	-5.03	101	133
7889.11	30.32pk	39.9	3.86	26.65	47.43pk	54.00av	-6.57	100	239
9583.92	29.22pk	38.95	3.9	24.88	47.18pk	54.00av	-6.82	102	8
12060.9	31.78pk	41.81	4.69	28.45	49.84pk	54.00av	-4.16	100	101
14668.3	28.93pk	45.07	4.63	28.37	50.26pk	54.00av	-3.74	101	17

-40-

1GHz~ 25 GHz (Vertical), Channel 11: 2462 MHz

Operator: Jerry Chiou RBW: 1MHz Humidity (%): 52

Temperature (C): 22

Frequency	Rx_R.	Ant_F.	Cab_L.	PreAmpl	Emission	Limit	Margin	A.Tower	T.Table
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	deg
1544.46	42.17pk	27.17	2.26	23.75	47.86pk	54.00av	-6.14	101	74
1661.84	47.99pk	28.16	2.35	23.75	54.75pk	74.00pk	-19.25	101	66
1682.24	31.12av	28.16	2.35	23.75	37.88av	54.00av	-16.12	101	66
1994.01	38.71pk	30.95	2.6	23.75	48.51pk	54.00av	-5.49	100	43
2286.21	38.73pk	30.94	1.73	24.37	47.03pk	54.00av	-6.97	101	133
5281.72	30.25pk	35.14	4.91	27.41	42.88pk	54.00av	-11.12	100	81
7976.02	30.23pk	40.06	3.83	26.68	47.43pk	54.00av	-6.57	100	251
11336.7	31.71pk	41.29	4.71	27.83	49.88pk	54.00av	-4.12	101	183
14451	30.06pk	44.74	4.63	28.47	50.96pk	54.00av	-3.04	102	28

Note:

- > According to the standards used, Where limits are specified by agencies for both average and peak (or quasi-peak) detection, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- " * ": Fundamental Frequency
- "**": Not in the restricted band, Limit level=Fundamental Emission-20dB
- "pk": peak mode
- > "av": average mode
- "---": No meter reading data due to the emission level is smaller than spectrum noise level.
- ightharpoonup The Spectrum noise level+Correction Factor < Limit 6 dB
- Margin=Corrected Amplitude Limit
- Corrected Amplitude=Radiated Amplitude+Antenna Correction Factor+Cable Loss-Pre-Amplifier Gain
- A margin of -8dB means that the emission is 8dB below the limit.

All frequencies from 1GHz to 25 GHz have been tested.

5.5 Band Edge Measurement

5.5.1 Test Procedure (Conducted)

1. The transmitter output of EUT was connected to the spectrum analyzer.

Equipment mode: Spectrum analyzer

Detector function: Peak mode

SPAN: 100MHz RBW: 100KHz **VBW**: 100KHz

Center frequency: 2.4GHz, 2.4835GHz.

Using Peak Search to read the peak power of Carrier frequencies after Maximum 2.

Hold function is completed

3. Find the next peak frequency outside the operation frequency band

5.5.2 Test Setup (Conducted)

	Spectrum
EUT	Analyzer

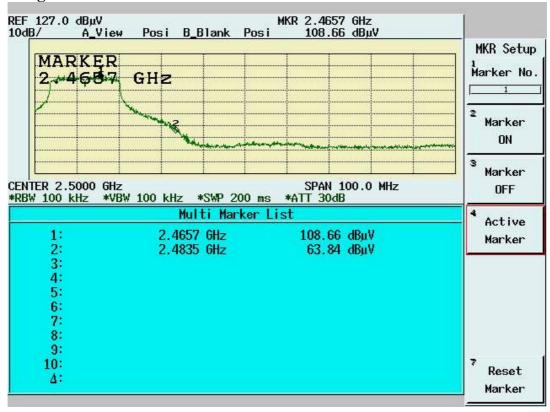
5.5.3 Test Data:

Table: Band Edge measurement (Conducted)

Temp. (?C): 25

Test Engr: Jerry Chiou Humidity (%): 50

Channel	Frequency (MHz)	Spectrum Reading (dBuV)	Carrier - Outsideband Limit: >20dB	Pass/Fail			
	(IVIIIZ)	(uBu v)	(ub)				
1	2414.4	110.56					
Outside band	2400	80.46	30.1	Pass			
11	2465.7	108.66					
Outside band	2483.5	63.84	44.82	Pass			


Note: Two RF output(MAIN & AUX) have been test, the worse data shown above.

Band Edge Conducted measurement

Band Edge Conducted Measurement

5.5.4 Test Procedure (Radiated)

Antenna and Turntable test procedure same as Radiated Emission Measurement.

Equipment mode: Spectrum analyzer

Detector function: Peak mode

SPAN: 100MHz RBW: 1MHz VBW: 3MHz

Center frequency: 2.395GHz, 2.48GHz. Using Peak Search to read the peak power of Carrier frequencies after Maximum 2. Hold function is completed.

Find the next peak frequency outside the operation frequency band 3. For peak frequency emission level measurement in Restricted Band 4.

Change RBW: 1MHz

VBW: 10Hz Span: 100MHz.

5. Get the spectrum reading after Maximum Hold function is completed.

5.5.5 Test Setup (Radiated)

Same as Radiated Emission Measurement

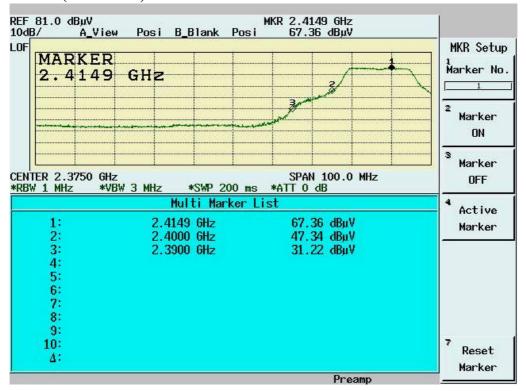
5.5.6 Test Data

Table Band Edge measurement (Radiated)

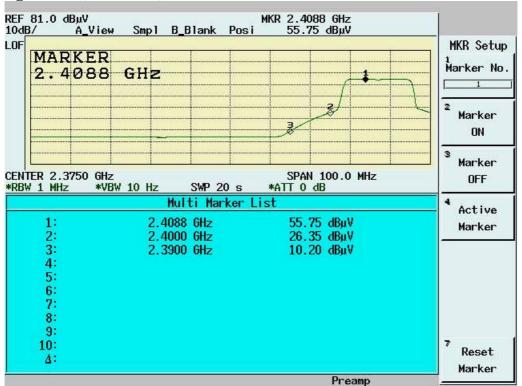
Temp. (? C):

25

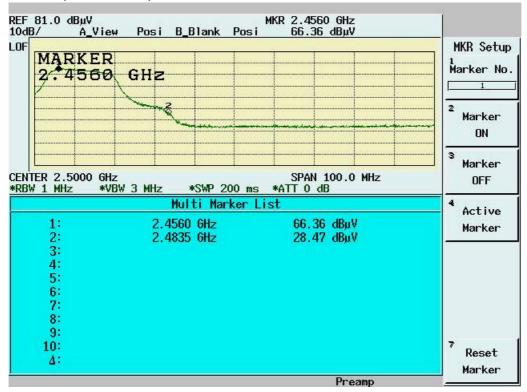
Test Engr: Jerry Chiou Humidity (%): 50


	Frequency	Spectrum	Correction	Emission	dBc (Limit:	Limit	Equip.	Pass
Description	(MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	> 20dBc)	(dBuV/m)	Setup VBW	or Fail
Channel_1 (average mode)	2408.8	55.75	35.48	91.23			10Hz	
Channel_1 (peak mode)	2414.9	67.36	35.48	102.84			3MHz	
Outside band (peak mode)	2400	47.34	35.48	82.82	20.02		3MHz	Pass
Channel_11 (average mode)	2457.9	54.88	35.5	90.38			10Hz	
Channel_11 (peak mode)	2456	66.36	35.5	101.86			3MHz	
Outside band (peak mode)	2483.5	28.47	35.51	63.98	37.88		3MHz	Pass
Channel_1 Restricted band (peak mode)	2390	31.22	35.47	66.69		74	3MHz	Pass
Restricted band (average mode)	2390	10.2	35.47	45.67		54	10Hz	Pass
Channel_11 Restricted band (peak mode)	2483.5	28.47	35.51	63.98		74	3MHz	Pass
Restricted band (average mode)	2483.5	8.05	35.51	43.56		54	10Hz	Pass

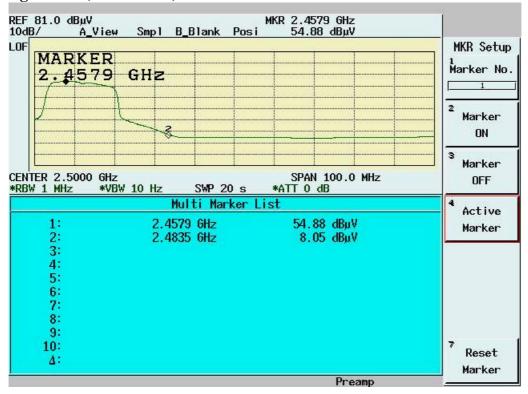
Note:


- > The Spectrum plot of emission level measurement in Restricted band is attached.
- ➤ Emission Level=Spectrum Reading+Correction Factor
- ➤ Correction Factor=Antenna Factor+cable loss-amplifier gain
- > Both Horizontal and Vertical polarizaion have been tested and the worst data is listed above.

Band Edge measurement for radiated emission in Restricted Band(Radiated) Peak Mode (Channel 1)



Band Edge measurement for radiated emission in Restricted Band(Radiated) Average Mode (Channel 1)



Band Edge measurement for radiated emission in Restricted Band(Radiated) Peak Mode (Channel 11)

Band Edge measurement for radiated emission in Restricted Band(Radiated) Average Mode (Channel 11)

5.6 RF Exposure Measurement [Section 15.247(b)(4) & 1.1307(b)]

See SAR report

6. Appendix

6.1 Appendix A: Measurement Procedure for Power line Conducted Emissions

The measurements are performed in a $3.5 \text{m} \times 3.4 \text{m} \times 2.5 \text{m}$ shielded room, which referred as Conduction 01 test site, or a $3 \text{m} \times 3 \text{m} \times 2.3 \text{m}$ test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction $1.0 \text{m} \times 1.5 \text{m}$ table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (50ohm/50uH) vs. Frequency Characteristic in accordance with the required standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

If the EUT is supplied with a flexible power cord, the power cord length in excess of the distance separating the EUT from the LISN shall be folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length. If the EUT is provided with a permanently coiled power cord, bundling of the cord is not required. If the EUT is supplied without a power cord, the EUT shall be connected to the LISN by a power cord of the type specified by the manufacturer which shall not be longer than 1 meter. The excess power cord shall be bundled as described above. If a non-flexible power cord is provided with the EUT, it shall be cut to the length necessary to attach the EUT to the LISN and shall not be bundled.

The interconnecting cables were arranged and moved to get the maximum emission. Both the line of power cord, hot and neutral, were measured.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

Report Number: 07LR014FC

6.2 Appendix B: Test Procedure for Radiated Emissions

Preliminary Measurements in the Anechoic Chamber

The radiated emissions are initially measured in the anechoic chamber at a measurement distance of 3 meters. Desktop EUT are placed on a wooden stand 0.8 meter in height. The measurement antenna is 3 meters from the EUT. The test setup in anechoic chamber is the same as open site. The turntable rotated 360°C. The antenna height is varied from 1-2.5m. The primary objective of the radiated measurements in the anechoic chamber is to identify the frequency spectrum in the absence of the electromagnetic environment existing on the open test site. The frequencies can then be pre-selected on the open test site to obtain the corresponding amplitude. The initial scan is made with the spectrum analyzer in automatic sweep mode. The spectrum peaks are then measured manually to determine the exact frequencies.

Measurements on the Open Site or 10m EMC Chamber

The radiated emissions test will then be repeated on the open site or 10m EMC chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of the 3 or 10 meter open field sites. Desktop EUT are set up on a wooden stand 0.8 meter above the ground.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. Both reading are recorded with the quasi-peak detector with 120KHz bandwidth. For frequency between 30 MHz and 1000MHz, the reading is recorded with peak detector or quasi-peak detector. For frequency above 1 GHz, the reading is recorded with peak detector or average detector with 1 MHz bandwidth.

At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum emission. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings.

Report Number: 07LR014FC

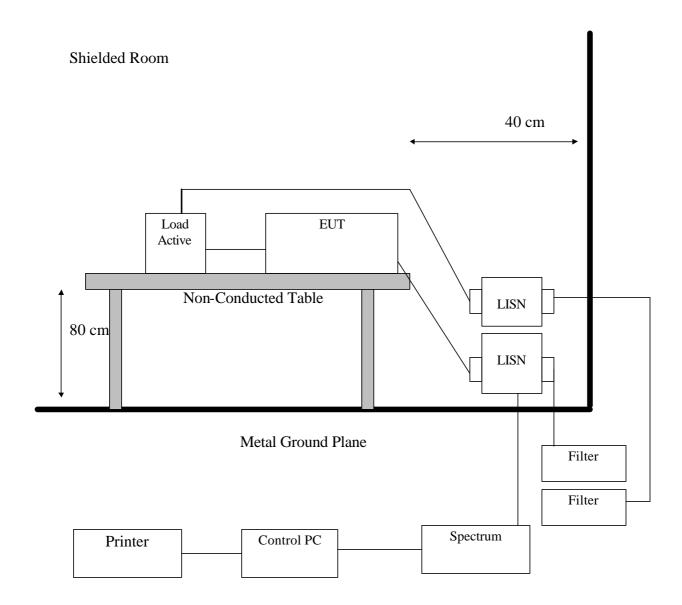
6.3 Appendix C: Test Equipment

6.3.1 Test Equipment List

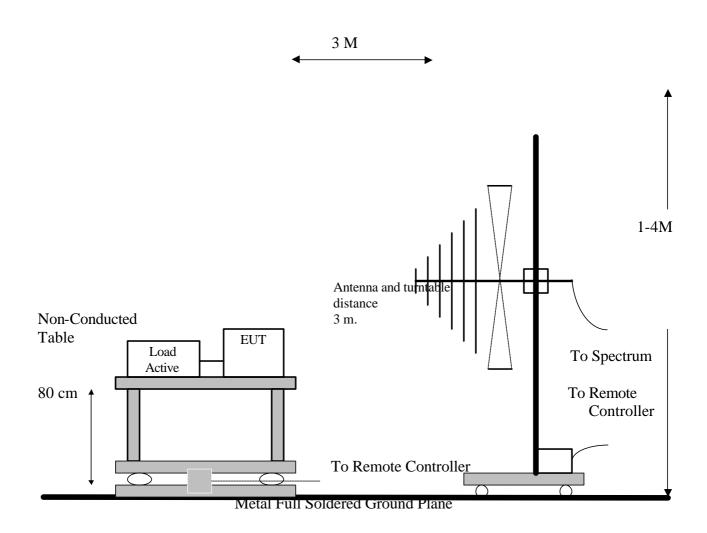
Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conduction	Coaxial Cable 1F-C2	Harbourindustr ies	RG400	1F-C2	07/15/2006	07/15/2007
Conduction	Digital Hygro-Thermometer Conduct	MicroLife	HT-2126G	ISL-Conductio n02	11/30/2006	11/30/2007
Conduction	EMI Receiver 07	Schwarzbeck Mess-Elektronik	FCKL 1528	1528-201	09/01/2007	09/01/2008
Conduction	LISN 04	EMCO	3810/2	9604-1429	12/30/2006	12/30/2007
Conduction	LISN 06	R&S	ESH3-Z5	828874/009	12/13/2006	12/13/2007
Radiation	BILOG Antenna 08	Schaffner	CBL6112B	2756	06/12/2006	06/12/2007
Radiation	Coaxial Cable Chmb 02-10M	Belden	RG-8/U	Chmb 02-10M	07/12/2006	07/12/2007
Radiation	Digital Hygro-Thermometer Chmb 02	MicroLife	HT-2126G	Chmb 02	11/30/2006	12/30/2007
Radiation	EMI Receiver 03	HP	85460A	3448A00183	04/10/2007	04/10/2008
Radiation	Spectrum Analyzer 13	Advantest	R3132	121200411	02/17/2007	02/17/2008
Radiation	Horn Antenna 02	Com-Power	AH-118	10088	12/28/2006	12/27/2007
Radiation	Horn Antenna 04	Com-Power	AH-826	081-001	03/24/2007	03/23/2008
Radiation	Horn Antenna 05	Com-Power	AH-640	100A	11/16/2006	11/15/2007
Radiation	Microwave Cable RF SK-01	HUBER+SUH NERAG.	Sucoflex 102	22139 /2	11/09/2006	11/09/2007
Radiation	Preamplifier 09	MITEQ	AFS44-00102 650-40-10P-4 4	858687	04/02/2007	04/02/2008
Radiation	Preamplifier 10	MITEQ	JS-26004000- 27-5A	818471	12/28/2006	12/27/2007
Radiation	High Pass Filter 01	HEWLETT-PA CKARD	84300-80038	001	N/A	N/A
Radiation	High Pass Filter 02	HEWLETT-PA CKARD	84300-80039	005	N/A	N/A
Radiation	Spectrum Analyzer 14	Advantest	R3182	140600028	11/21/2006	11/21/2007
Chamber 05	Peak Power Analyzer	HP	8990A	3621A01269	03/28/2007	03/28/2008

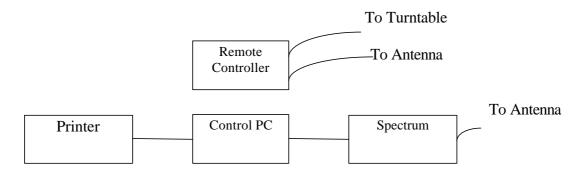
-50-

Note: Calibration is traceable to NIST or national or international standards.


6.3.2 Software for Controlling Spectrum/Receiver and Calculating Test Data

Radiation/Conduction Filename		Version	Issued Date
Conduction	Tile.exe	1.12E	7/7/2000
Radiation	Tile.exe	1.12C	6/16/2000


6.4 Appendix D: Layout of EUT and Support Equipment


6.4.1 General Conducted Test Configuration

6.4.2 General Radiation Test Configuration

6.5 Appendix E: Description of Support Equipment

6.5.1 Description of Support Equipment

Support Unit 1.

Description: Tablet Personal Computer

Model No.: 7762; 7763; 7764; 7767; 7768; 7769
CPU: Intel Core2 Duo Genuine 1.6GHz *2
Power Supply Type: Lenovo 65W 20V (MODEL: 92P1211)

Hard Disk Driver: FUJITSU 60GB SATA (MODEL: MHV2060BH PL)
DDR: HYNIX 1GB (MODEL: HYMP512S64BP8 – Y5 AB)

Battery SANYO 8cells (MODEL: BTP-B6K8)

WLAN EUT
Power In Port: one
USB Connector: three
VGA Port: one
Line Out Port: one
MIC In Port: one

Modem Card: MDC 1.5 Foxconn

LAN Connector: one
PCMCIA Slot: one
Modem Connector: one
SD Card reader: one
Wireless LAN Card: EUT

Bluetooth: BDC 2.0 Foxconn WWAN: WWAN MC8755 Sierra

Support Unit 2.

Description: External Hard Disk Case

Manufacturer : TeraSys
Model Number: F12-UF
Serial Number NA

Power Supply Type: YHI(Model:YS-1015U12)

1394 Port: one 6-Pins USB: one 4-Pins

Power In: one

Power Cable: Non-shielded, Detachable, (Can Dismantle)

Report Number: 07LR014FC

Support Unit 3.

Description: External Hard Disk Case

Manufacturer : TeraSys
Model Number: F12-UF
Serial Number NA

Power Supply Type: YHI(Model:YS-1015U12)

1394 Port: one 6-Pins USB: one 4-Pins

Power In: one

Power Cable: Non-shielded, Detachable, (Can Dismantle)

Support Unit 4.

Description: ATA Microphone and HeadSet

Model Number: 1221K
Serial Number: N/A
Power Supply Type: N/A
Power Cord: N/A
FCC ID: N/A

Support Unit 5.

Description: DELL USB Mouse

Model Number: M-UR69 Serial Number: LNA24412741

Power Supply Type: N/A
Power Cord: N/A

FCC ID: N/A (Comply with FCC DOC)

Support Unit 6.

Description: LCD Monitor

Model: AL712 Serial Number: NA

Power Supply: PWB276 REV:1B

Power Cord: Non-shielded, Detachable FCC ID: (Comply with FCC DOC)

6.5.2 Software for Controlling Support Unit

Test programs exercising various part of EUT were used. The programs were executed as follows:

-55-

- 1. Read and write to the disk drives.
- 2. The RF software makes the transmitter continuously sending RF signals
- 3. Read and write data the external hard disk through EUT USB port.
- 4. Send audio signal to the Microphone and HeadSet through Headphone Port.
- Receive audio signal from Microphone and HeadSet through Microphone Port. 5.
- 6. Repeat the above steps.

	Filename	Issued Date
ART V53 Build35	ART.exe	2007/01/12
Headphone	Wmplay.exe	12/16/2002

6.5.3 I/O Cable Condition of EUT and Support Units

Description	Path	Cable Length	Cable Type	Connector Type
AC Power Cord	110V (~240V) to AC Power Cord Inlet (3-pin)	1.8M	Nonshielded, Detachable	Plastic Head
USB Data Cable*2	USB external hard disk to EUT USB Port	1.8M	Shielded, Un-detachable	Metal Head
Audio Data Cable	Microphone and HeadSet to EUT Line In Port and Line Out Port	1.8M	Non-shielded, Un-Detachable	Plastic Head
USB Data Cable	USB Mouse to EUT USB Port	1.8M	Shielded, Un-detachable	Metal Head
Monitor Data Cable	Monitor Vedio Port to EUT Vedio Port	1.8M	Shielded, Detachable (with core)	Metal Head

-56-

6.6 Appendix F: Accuracy of Measurement

Test Site: Conduction 02

Item	Source of Uncertainty	Probability Distribution	Total Uncerta	inties (dB)	Standard Unce	ertainty (dB)
1	Systematic Effects: (Assessment from 20 repeat observation; 1 reading on EUT)	Normal	k=2	0.104	k=1	0.052
2	Random Effects: (Assessment from 20 random observations; 1 reading on EUT)	Normal	k=2	0.330	k=1	0.165
3	Receiver Calibration	Rectangular	k=1.73	1.000	k=1	0.577
4	LISN Factor Calibration	Normal	k=2	1.200	k=1	0.600
5	Cable Loss Calibration	Normal	k=2	1.000	k=1	0.500
6	Combined Standard Uncertainty Uc(y)	Normal			k=1	0.850
7	Total Uncertainty @95% mim. Confidence Level	Normal	k=2	1.701		

Measurement Uncertainty Calculations:

Uc (y) = square root (
$$u_1 (y)^2 + u_2 (y)^2 + \dots + u_n (y)^2$$
)

$$U = 2 * Uc (y)$$

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.

Test Site: Chamber 02-3M

Item	Source of Uncertainty	Probability Distribution	Total Uncerta	inties (dB)	Standard Unce	ertainty (dB)
1	Systematic Effects: (Assessment from 20 repeat observation; 1 reading on EUT)	Normal	k=2	0.067	k=1	0.034
2	Random Effects: (Assessment from 20 random observations; 1 reading on EUT)	Normal	k=2	0.103	k=1	0.052
3	Receiver Calibration	Rectangular	k=1.73	1.000	k=1	0.577
4	Antenna Factor Calibration	Normal	k=2	1.700	k=1	0.850
5	Cable Loss Calibration	Normal	k=2	1.000	k=1	0.500
6	Combined Standard Uncertainty Uc(y)	Normal			k=1	1.029
7	Total Uncertainty @95% mim. Confidence Level	Normal	k=2	2.059		

Measurement Uncertainty Calculations:

$$Uc\left(y\right)=square\;root\left(\;u_{1}\left(y\right)^{2}\;+u_{2}\left(y\right)^{2}+.....+u_{n}\left(y\right)^{2}\right)$$

$$U = 2 * Uc (y)$$

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS: The treatment of Uncertainty in EMC Measurement.

6.7 Appendix G: Photographs of EUT Configuration Test Set Up

Please refer to the attached file.

6.8 Appendix H: Antenna Spec.

Please refer to the attached file.