

EMC Technologies Pty Ltd

ABN 82 057 105 549 176 Harrick Road Keilor Park Victoria Australia 3042

Ph: + 613 9365 1000 Fax: + 613 9331 7455

email: melb@emctech.com.au

SAR Test Report

Report Number: M110363_FCC_AR5B97_SAR_2.4

Test Sample: Portable TABLET Computer

Radio Modules: WLAN ATHEROS HB97 (11B/G/N)

2X2 AR5B97 & Bluetooth BCM92070MD REF6

Host PC Model Number: T731, TH701

PC System FCC ID: PPD-AR5B97-F
PC System IC: 4104A-AR5B97

Date of Issue: 25th May 2011

EMC Technologies Pty Ltd reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. EMC Technologies Pty Ltd shall have no liability for any deductions, inferences or generalisations drawn by the client or others from EMC Technologies Pty Ltd issued reports. This report shall not be used to claim, constitute or imply product endorsement by EMC Technologies Pty Ltd.

CONTENTS

1.0	GENERAL INFORMATION	3
2.0	INTRODUCTION	4
3.0	TEST SAMPLE TECHNICAL INFORMATION	4
	3.1 DUT (WLAN) Details	
	3.2 DUT (Bluetooth) Details	
	3.3 DUT (Notebook PC) Details	
	3.4 Test Sample Accessories	
	3.4.1 Battery Types	
4.0	TEST SIGNAL, FREQUENCY AND OUTPUT POWER	
	4.1 Battery Status	
5.0	DETAILS OF TEST LABORATORY	_
	5.1 Location	
	5.2 Accreditations	
	5.3 Environmental Factors	
6.0	DESCRIPTION OF SAR MEASUREMENT SYSTEM	
	6.1 Probe Positioning System	
	6.2 E-Field Probe Type and Performance	
	6.3 System verification	
	6.3.1 System verification Results @ 2450MHz	
	6.3.3 Liquid Depth 15cm	
	6.4 Phantom Properties	
	6.5 Tissue Material Properties	
	6.5.1 Liquid Temperature and Humidity	
	6.6 Simulated Tissue Composition Used for SAR Test	
	6.7 Device Holder for Laptops and P 10.1 Phantom	. 12
7.0	SAR MEASUREMENT PROCEDURE USING DASY5	. 13
8.0	MEASUREMENT UNCERTAINTY	. 14
9.0	EQUIPMENT LIST AND CALIBRATION DETAILS	. 16
	TEST METHODOLOGY	
10.0	1.1 Positions	
	1.1.1 "Lap Held" Position Definition (0mm spacing)	
	1.1.2 "Edge On" Position (Portrait or Landscape)	
	1.1.3 "Bystander" Position (25mm spacing)	
	10.1 List of All Test Cases (Test Frequencies, User Modes)	. 18
11.0	SAR MEASUREMENT RESULTS	. 19
	11.1 2450MHz SAR Results	. 19
12.0	COMPLIANCE STATEMENT	. 20
13.0	MULTIBAND EVALUATION CONSIDERATIONS	. 21
	ENDIX A1 TEST SAMPLE PHOTOGRAPHS	
	ENDIX A2 TEST SAMPLE PHOTOGRAPHS	
	ENDIX A3 TEST SAMPLE PHOTOGRAPHS	
	ENDIX A4 TEST SETUP PHOTOGRAPHS	
	ENDIX A5 TEST SETUP PHOTOGRAPHS	
APP	ENDIX A6 TEST SETUP PHOTOGRAPHS	. 27
APP	ENDIX A7 TEST SETUP PHOTOGRAPHS	. 28
APP	ENDIX B: PLOTS OF THE SAR MEASUREMENTS	. 29

SAR TEST REPORT

Report Number: M110363_FCC_AR5B97 _SAR_2.4

PC System FCC ID: PPD-AR5B97-F PC System IC: 4104A-AR5B97

1.0 GENERAL INFORMATION

Table 1

Test Sample: Portable TABLET Computer

Model Name: T731, TH701

Radio Modules: WLAN AR5B97 & Bluetooth BCM92070MD REF6

Interface Type:Half Mini-PCI ModuleDevice Category:Portable TransmitterTest Device:Pre-Production UnitPC System FCC ID:PPD-AR5B97-FPC System IC:4104A-AR5B97

RF exposure Category: General Population/Uncontrolled

Manufacturer: Fujitsu Limited

Test Standard/s: 1. Evaluating Compliance with FCC Guidelines For Human Exposure to

Radiofrequency Electromagnetic Fields

Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01)

2. Radio Frequency Exposure Compliance of Radiocommunication

Apparatus (All Frequency Bands), RSS-102

Statement Of Compliance: The Fujitsu TABLET Computer T731, TH701 with Wireless LAN

model AR5B97 and Bluetooth module BCM92070MD_REF6 complied* with the FCC General public/uncontrolled RF exposure limits of 1.6mW/g per requirements of 47CFR2.1093(d). It also

complied with IC RSS-102 requirements.

Test Dates: 12th May 2011

Authorised Signature: Q 7

Chris Zombolas
Technical Director

Peter Jakubiec

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

Test Officer:

SAR TEST REPORT Portable TABLET Computer Model: T731, TH701

Report Number: M110363_FCC_AR5B97 _SAR_2.4

2.0 INTRODUCTION

antenna.

Testing was performed on the Fujitsu TABLET PC, Model: T731, TH701 with ATHEROS Half Mini-PCI Wireless LAN Module (ATHEROS HB97 (11B/G/N) 2X2 802.11a/b/g/n), Model: AR5B97 & BROADCOM Bluetooth Module, Model: BCM92070MD_REF6. The ATHEROS HB97 (11B/G/N) 2X2 module is an OEM product. The Half Mini-PCI Wireless LAN (WLAN) was tested in the dedicated host – LIFEBOOK T SERIES, Model T731, TH701. The system tested will be referred to as the DUT throughout this report.

There are two variants of the Fujitsu Tablet PC, Model: T731, TH701 covered in this report. One that is equipped with the Bluetooth transmitter and Bluetooth antenna FCC ID: PPD-AR5B97-F IC: 4104A-AR5B97, and one variant that does not contain Bluetooth transmitter or Bluetooth antenna.

SAR testing was conducted on the sample that is equipped with the Bluetooth transmitter and Bluetooth

Additionally the test sample had the WWAN antenna present during testing but WWAN antenna was not transmitting and the distance between WWAN antenna and any other transmitting antenna was at least 12 mm.

The measurement test results mentioned herein only apply to the 2450MHz frequency band.

3.0 TEST SAMPLE TECHNICAL INFORMATION

(Information supplied by the client)

3.1 DUT (WLAN) Details

Table 2

Transmitter: Half Mini-Card Wireless LAN Module

 Wireless Module:
 HB97 (11b/g/n) 2x2

 FCC ID:
 PPD-AR5B97-F

 IC:
 4104A-AR5B97

Wireless Module: ATHEROS HB97 (11B/G/N) 2X2 (802.11a/b/g/n)

Model Number: AR5B97

Manufacturer: Atheros Communication Inc,

Modulation Type: Direct Sequence Spread Spectrum (DSSS for 802.11b)

Orthogonal Frequency Division Multiplexing (OFDM for 802.11g) Orthogonal Frequency Division Multiplexing (OFDM for 802.11a) Orthogonal Frequency Division Multiplexing (OFDM for 802.11n)

2.4 GHz (802.11b/g/n): CCK, DQPSK, DBPSK, BPSK, QPSK, 16QAM, 64QAM **Maximum Data Rate:** 802.11b = 11Mbps, 802.11g and 802.11a = 54Mbps

802.11n = 300 Mbps

Frequency Ranges: 2.412 –2.462 GHz for 11b/g/n Number of Channels: 11 channels for 11b/g/n

7 channels for 11n with 40 MHz bandwidth

Antenna Types: Nissei Inverted F (1st, 2nd), Yokowo Monopole (3rd)

Model: refer to WLAN antenna data

Location: Left Top edge of LCD screen(1st), Right Top edge of LCD

screen(2nd)

Power Supply: 3.3 VDC from PCI bus

Table 3 Channels and Output power setting

Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	Tx BW (MHz)	Average P (d	ower Target Bm)
					FCC	EN
	1	2412			17.02	16.76
	2	2417				
802.11b	3 2722	2422			17.25	16.79
2.4 GHz	4	2427	1	-		
	5	2432				
	6	2437				
	7	2442				
	8	2447				
	9	2452				
	10	2457				
	11	2462			16.21	
	13	2472				16.46
	1	2412			14.8	15.71
	2	2417				
802.11g	3	2422			17.6	
2.4 GHz	4	2427	6	-		
	5	2432				
	6	2437				15.07
	7	2442				
	8	2447				
	9	2452				
	10	2457				
	11	2462			11.94	
	13	2472				15.51
	1	2412			13.88	15.43
	2	2417				
	3	2422			17.37	
	4	2427		20		
	5	2432				
002 11n	6	2437				14.76
802.11n 2.4 GHz	7	2442	MCS0			
2.4 GHZ	8	2447	IVICOU			
	9	2452	_			
	10	2457	_			
	11	2462			11.32	
	13	2472	_			15.31
	3	2422	_		12.15	15.84
	4	2427	_			
	6	2437	_	40 Wide	15.13	15.36
	8	2447				
	9	2452			10.1	16.97

3.2 DUT (Bluetooth) Details

Table 4

Transmitter: Bluetooth

 FCC ID:
 QDS-BRCM1043

 IC:
 4324A-BRCM1043

 Model Number:
 BCM92070MD_REF6

Manufacturer: BROADCOM

Network Standard: Bluetooth[™] RF Test Specification

Modulation Type: Frequency Hopping Spread Spectrum (FHSS)

Frequency Range: 2402 MHz to 2480 MHz

Number of Channels: 79 Carrier Spacing: 1.0 MHz

Antenna Types: Monopole Antenna included in module

Module location: Right side of hinge

Max. Output Power: 4 dBm

Reference Oscillator: 16 MHz (Built-in) **Power Supply:** 3.3 VDC from host.

Table 5

Channel Number	Frequency (MHz)	Bluetooth Utility power setting
1	2402	
2	2403	
-	-	
39	2440	
40	2441	Power (Ext, Int) = 0, 96
41	2442	
-	-	
78	2479	
79	2480	

3.3 DUT (Notebook PC) Details

Table 6

Host notebook: LifeBook T series **Model Name**: T731, TH701

Serial Number: Pre-production Sample **Manufacturer:** FUJITSU LIMITED

CPU Type and Speed: Core i7-2620M 2.7GHz

LCD 12.1"WXGA(1280x800) : HV121WX6-100

Graphics chip Non

Wired LAN: Intel 82579LM: 10 Base-T/100 Base-TX/1000Base-T

Modem: Agere MDC1.5 modem Model: D40

Port Replicator Model: FPCPR105

AC Adapter Model: 80W: ADP-80NB A(Delta), SEE100P2-19.0(Sanken),

PJW1942N(Tamura), PJW1942NA(Tamura)

Voltage: 19 V Current Specs: 4.22A Watts: 80W

Radio Modules: WLAN (HB97 IEEE802.11b/g/n, 2x2)

WLAN Model Number: AR5B97 WLAN Manufacturer: Atheros Corp.

Interface Type: Half Mini-Card Wireless LAN Module

Radio Modules: Bluetooth module **Model Number:** BCM92070MD_REF6

Manufacturer: Broadcom USB

3.4 Test Sample Accessories

3.4.1 Battery Types

One type of Fujitsu Lithium Ion battery is used to power the DUT.

Table 7 Battery Details

Model	FMVNBP171
V/mAh	10.8V/5800mAh

4.0 TEST SIGNAL, FREQUENCY AND OUTPUT POWER

ATHEROS's ART test tool was used to configure the WLAN for testing. The DUT Wireless LAN had a total of 11 channels (USA model) within the 2412 to 2462 MHz frequency band. In The frequency range 2412 MHz to 2462 MHz the DUT operates in 2 modes, OFDM and DSSS. For the SAR measurements the device was operating in continuous transmit mode using programming codes supplied by Fujitsu.

The Bluetooth module operates over 79 channels within the frequency range 2402 to 2480 MHz. It is possible for the Bluetooth module to operate simultaneously with the WLAN module (co-transmission). However, due to low output power of Bluetooth module (less than 5mW), standalone SAR measurement for Bluetooth module was not conducted (as per **KDB 616217**)

The WLAN modules can be configured in a number of different data rates. It was found that the highest source based time averaged power was measured when using the lowest data rates available in each mode. This lowest data rate corresponds to 6Mbps in OFDM mode and 1Mbps in DSSS mode.

The frequency span of the 2450 MHz range Band was more than 10MHz consequently; the SAR levels of the test sample were measured for lowest, centre and highest channels in the applicable modes. The DUT is capable of using two antennas transmitting simultaneously (HT8 DATA mode) the power level is 3dB lower (50%) than if a single antenna was transmitting, There were no wires or other connections to the DUT during the SAR measurements.

At the beginning of the SAR tests, the conducted power of the device was measured after temporary modification of antenna connector inside the device's TX RX compartment. Measurements were performed with a calibrated Power Meter. The Transmitter power was set to be equal or higher than power specified by the manufacturer.

4.1 Battery Status

The device battery was fully charged prior to commencement of measurement. Each SAR test was completed within 30 minutes. The battery condition was monitored by measuring the RF field at a defined position inside the phantom before the commencement of each test and again after the completion of the test. It was not possible to perform conducted power measurements at the output of the device, at the beginning and end of each scan due to lack of a suitable antenna port. The uncertainty associated with the power drift was less than 12% and was assessed in the uncertainty budget.

5.0 DETAILS OF TEST LABORATORY

5.1 Location

EMC Technologies Pty Ltd 176 Harrick Road Keilor Park, (Melbourne) Victoria Australia 3042

 Telephone:
 +61 3 9365 1000

 Facsimile:
 +61 3 9331 7455

 email:
 melb@emctech.com.au

 website:
 www.emctech.com.au

5.2 Accreditations

EMC Technologies Pty. Ltd. is accredited by the National Association of Testing Authorities, Australia (NATA). **NATA Accredited Laboratory Number: 5292**

EMC Technologies Pty Ltd is NATA accredited for the following standards:

Table 8

AS/NZS 2772.1: RF and microwave radiation hazard measurement

ACMA: Radio communications (Electromagnetic Radiation - Human Exposure) Standard 2003 +

Amdt (No. 2):2011

FCC: Guidelines for Human Exposure to RF Electromagnetic Field OET65C 01/01

Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz – 3 GHz)

EN 62209-1:2006 Human Exposure to radio frequency fields from hand-held and body-mounted wireless

communication devices - Human models instrumentation and procedures.

Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices

used in close proximity to the ear (300 MHz to 3 GHz)

*EN62209-2:2010 Human Exposure to radio frequency fields from hand-held and body-mounted wireless

communication devices - Human models instrumentation and procedures **Part 2**: Procedure to determine the specific absorption rate (SAR) for wireless

communication devices used in close proximity to the human body (frequency range of 30

MHz to 6 GHz

IEEE 1528: 2003 Recommended Practice for Determining the Peak Spatial-Average Specific Absorption

Rate (SAR) in the Human Head Due to Wireless Communications Devices: Measurement

Techniques.

*NATA accreditation pending – standard to be adopted by ACMA.

Refer to NATA website www.nata.asn.au for the full scope of accreditation.

5.3 Environmental Factors

The measurements were performed in a shielded room with no background RF signals. The temperature in the laboratory was controlled to within $20\pm1^{\circ}\text{C}$, the humidity was 54%. The liquid parameters are measured daily prior to the commencement of each test. Tests were performed to check that reflections within the environment did not influence the SAR measurements. The noise floor of the DASY5 SAR measurement system using the SN1380 probe was less than $5\mu\text{V}$ in both air and liquid mediums.

6.0 DESCRIPTION OF SAR MEASUREMENT SYSTEM

Table 9

Applicable Head Configurations Applicable Body Configurations	: None : Edge On Position
, , , , , , , , , , , , , , , , , , ,	: Bystander Position (industry Canada) : Lap Held Position

6.1 Probe Positioning System

The measurements were performed with the state-of-the-art automated near-field scanning system **DASY5 Version 52** from Schmid & Partner Engineering AG (SPEAG). The DASY5 fully complies with the OET65 C (01-01), IEEE 1528, EN62209-1 and EN62209-2 SAR measurement requirements.

6.2 E-Field Probe Type and Performance

The SAR measurements were conducted with SPEAG dosimetric probe ET3DV6 Serial: 1380 (2.45 GHz). Please refer to appendix C for detailed information.

6.3 System verification

6.3.1 System verification Results @ 2450MHz

The following tables lists the dielectric properties of the tissue simulating liquid measured prior to SAR system verification. The results of the system verification are listed in columns 4 and 5. The forward power into the reference dipole for SAR system verification was adjusted to 250 mW.

Table 10 System verification Results (Dipole: SPEAG D2450V2 SN: 724)

1. System Frequency and verification Date	2. ∈r	3. σ (mho/m)	4. Measured	5. Measured
	(measured)	(measured)	SAR 1g (mW/g)	SAR 10g (mW/g)
2450 MHz 12 th May 2011	51.6	1.96	15	7.03

6.3.2 Deviation from reference system verification values

The reference SAR values are derived using a reference dipole and flat section of the SAM phantom suitable for a centre frequency of 2450MHz. These reference SAR values are obtained from the IEEE Std 1528-2003 and are normalized to 1W.

The SPEAG calibration reference SAR value is the SAR system verification result obtained in a specific dielectric liquid using the validation dipole (D2450V2) during calibration. The measured one-gram SAR should be within 10% of the expected target reference values shown in table below (2450MHz) below.

Table 11 Deviation from reference system verification values @ 2450MHz

Frequency and Date	Date SAR 1g (mW/g)		SPEAG Calibration reference SAR Value 1g (mW/g)	Deviation From SPEAG Reference 1g (%)
2450MHz 12 th May 2011	15	60.00	60	0.00

NOTE: All reference system verification values are referenced to 1W input power.

6.3.3 Liquid Depth 15cm

During the SAR measurement process the liquid level was maintained to a level of 15cm with a tolerance of 0.5cm.

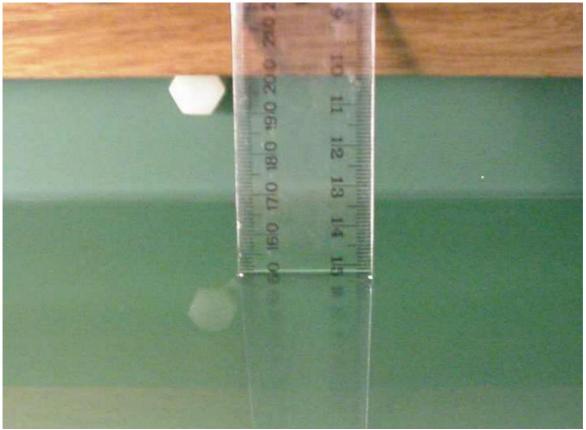


Photo of liquid Depth in Flat Phantom

6.4 Phantom Properties

The phantoms used during the testing comply with the OET65 C (01-01), IEEE 1528 and EN62209-1 and EN62209-2 SAR measurement requirements.

6.5 Tissue Material Properties

The dielectric parameters of the brain simulating liquid were measured prior to SAR assessment using the HP85070A dielectric probe kit and HP8753ES Network Analyser. The actual dielectric parameters are shown in the following table.

Table 12 Measured Body Simulating Liquid Dielectric Values

Frequency Band	∈r (measured range)	∈r (target)	σ (mho/m) (measured range)	ਰ (target)	ρ kg/m ³
2417 MHz Muscle	51.8	52.7 ±5% (50.1 to 55.3)	1.90	1.95 ±5% (1.85 to 2.05)	1000
2437 MHz Muscle	51.7	52.7 ±5% (50.1 to 55.3)	1.94	1.95 ±5% (1.85 to 2.05)	1000
2457 MHz Muscle	51.6	52.7 ±5% (50.1 to 55.3)	1.97	1.95 ±5% (1.85 to 2.05)	1000

NOTE: The brain and muscle liquid parameters were within the required tolerances of ±5%.

6.5.1 Liquid Temperature and Humidity

The humidity and dielectric/ambient temperatures were recorded during the assessment of the tissue material dielectric parameters. The difference between the ambient temperature of the liquid during the dielectric measurement and the temperature during tests was less than |2|°C.

Table 13 Temperature and Humidity recorded for each day

Date	Ambient Temperature (°C)	Liquid Temperature (°C)	Humidity (%)
12 th May 2011	20.1	19.8	54

6.6 Simulated Tissue Composition Used for SAR Test

The tissue simulating liquids are created prior to the SAR evaluation and often require slight modification each day to obtain the correct dielectric parameters.

Table 14 Tissue Type: Brain @ 2450MHz

Volume of Liquid: 30 Litres

Approximate Composition	% By Weight
Distilled Water	62.7
Salt	0.5
Triton X-100	36.8
*D ("OFT D !! !! OF	07/04 D00"

^{*}Refer "OET Bulletin 65 97/01 P38"

Table 15 Tissue Type: Muscle @ 2450MHz

Volume of Liquid: 60 Litres

Approximate Composition	% By Weight
Distilled Water	73.2
Salt	0.04
DGBE	26.7

6.7 Device Holder for Laptops and P 10.1 Phantom

A low loss clamp was used to position the DUT underneath the phantom surface. Refer to Appendix A for photographs of device positioning

7.0 SAR MEASUREMENT PROCEDURE USING DASY5

The SAR evaluation was performed with the SPEAG DASY5 system. A summary of the procedure follows:

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the EUT. The SAR at this point is measured at the start of the test, and then again at the end of the test.
- b) The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 4 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 15 mm x 15 mm. The actual Area Scan has dimensions of 75 mm x 120 mm surrounding the test device. Based on this data, the area of the maximum absorption is determined by Spline interpolation.
- c) Around this point, a volume of 30 mm x 30 mm x 30 mm is assessed by measuring 7 x 7 x 7 points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:
 - (i) The data at the surface are extrapolated, since the centre of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 4 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
 - (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
 - (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found
 - (iv) The SAR value at the same location as in Step (a) is again measured to evaluate the actual power drift.

8.0 MEASUREMENT UNCERTAINTY

The uncertainty analysis is based on the template listed in the IEEE Std 1528-2003 for both device SAR tests and System verification uncertainty. The measurement uncertainty of a specific device is evaluated independently and the total uncertainty for both evaluations (95% confidence level) must be less than 30%.

Table 16: Uncertainty Budget for DASY5 Version 52 – EUT SAR test 2450MHz

Error Description	Uncert. Value	Prob. Dist.	Div.	C _i (1g)	C _i (10g)	1g u _i	10g u _i	Vi
Measurement System								
Probe Calibration	5.5	N	1.00	1	1	5.50	5.50	∞
Axial Isotropy	4.7	R	1.73	0.7	0.7	1.90	1.90	∞
Hemispherical Isotropy	9.6	R	1.73	0.7	0.7	3.88	3.88	∞
Boundary Effects	1	R	1.73	1	1	0.58	0.58	∞
Linearity	4.7	R	1.73	1	1	2.71	2.71	∞
System Detection Limits	1	R	1.73	1	1	0.58	0.58	∞
Readout Electronics	0.3	N	1.00	1	1	0.30	0.30	∞
Response Time	0.8	R	1.73	1	1	0.46	0.46	∞
Integration Time	2.6	R	1.73	1	1	1.50	1.50	∞
RF Ambient Noise	3	R	1.73	1	1	1.73	1.73	∞
RF Ambient Reflections	3	R	1.73	1	1	1.73	1.73	∞
Probe Positioner	0.4	R	1.73	1	1	0.23	0.23	∞
Probe Positioning	2.9	R	1.73	1	1	1.67	1.67	∞
Max. SAR Eval.	1	R	1.73	1	1	0.58	0.58	∞
Test Sample Related								
Test Sample Positioning	2.9	N	1.00	1	1	2.90	2.90	145
Device Holder Uncertainty	3.6	N	1.00	1	1	3.60	3.60	5
Output Power Variation – SAR Drift Measurement	11.08	R	1.73	1	1	6.40	6.40	8
Phantom and Setup								
Phantom Uncertainty	4	R	1.73	1	1	2.31	2.31	∞
Liquid Conductivity – Deviation from target values	5	R	1.73	0.64	0.43	1.85	1.24	8
Liquid Conductivity – Measurement uncertainty	2.5	N	1.00	0.64	0.43	1.60	1.08	∞
Liquid Permittivity – Deviation from target values	5	R	1.73	0.6	0.49	1.73	1.41	8
Liquid Permittivity – Measurement uncertainty	2.5	N	1.00	0.6	0.49	1.50	1.23	∞
Combined standard Uncertainty (u _c)						12.1	11.9	
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=	2		24.3	23.9	

Estimated total measurement uncertainty for the DASY5 measurement system was $\pm 12.1\%$. The extended uncertainty (K = 2) was assessed to be $\pm 24.3\%$ based on 95% confidence level. The uncertainty is not added to the measurement result.

Table 17:Uncertainty Budget for DASY5 Version 52 – System verification 2450MHz

Error Description	Uncert. Value	Prob. Dist.	Div.	C _i (1g)	C _i (10g)	1g ui	10g u _i	Vi
Measurement System								
Probe Calibration	5.5	N	1.00	1	1	5.50	5.50	∞
Axial Isotropy	4.7	R	1.73	1	1	2.71	2.71	∞
Hemispherical Isotropy	9.6	R	1.73	0	0	0.00	0.00	∞
Boundary Effects	1	R	1.73	1	1	0.58	0.58	∞
Linearity	4.7	R	1.73	1	1	2.71	2.71	∞
System Detection Limits	1	R	1.73	1	1	0.58	0.58	∞
Readout Electronics	0.3	N	1.00	1	1	0.30	0.30	∞
Response Time	0	R	1.73	1	1	0.00	0.00	∞
Integration Time	0	R	1.73	1	1	0.00	0.00	∞
RF Ambient Noise	1	R	1.73	1	1	0.58	0.58	∞
RF Ambient Reflections	1	R	1.73	1	1	0.58	0.58	∞
Probe Positioner	0.8	R	1.73	1	1	0.46	0.46	∞
Probe Positioning	6.7	R	1.73	1	1	3.87	3.87	∞
Max. SAR Eval.	2	R	1.73	1	1	1.15	1.15	∞
Dipole Related								
Deviation of exp. dipole	5.5	R	1.73	1	1	3.18	3.18	8
Dipole Axis to Liquid Dist.	2	R	1.73	1	1	1.15	1.15	8
Input power & SAR drift	5.00	R	1.73	1	1	2.89	2.89	8
Phantom and Setup								
Phantom Uncertainty	4	R	1.73	1	1	2.31	2.31	8
SAR Correction	1.9	R	1.73	1	0.84	1.10	0.92	8
Liquid Conductivity (meas.)	2.5	N	1.00	0.78	0.71	1.95	1.78	8
Liquid Permittivity (meas.)	2.5	N	1.00	0.26	0.26	0.65	0.65	8
Temp.unc Conductivity	1.7	R	1.73	0.78	0.71	0.77	0.70	8
Temp. unc Permittivity	0.3	R	1.73	0.23	0.26	0.04	0.05	∞
Combined standard Uncertainty (u _c)						9.7	9.6	
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=	2		19.4	19.3	

Estimated total measurement uncertainty for the DASY5 measurement system was $\pm 9.7\%$. The extended uncertainty (K = 2) was assessed to be $\pm 19.4\%$ based on 95% confidence level. The uncertainty is not added to the System verification measurement result.

9.0 EQUIPMENT LIST AND CALIBRATION DETAILS

Table 18 SPEAG DASY5 Version 52

Robot - Six Axes	Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due	Used For this Test?
SAM Phantom SPEAG N/A 1260 Not applicable SAM Phantom SPEAG N/A 1060 Not applicable Flat Phantom AndreT 10.1 P 10.1 Not Applicable Flat Phantom AndreT 9.1 P 9.1 Not Applicable Flat Phantom SPEAG PO1A 6mm 1003 Not Applicable Data Acquisition Electronics SPEAG DAE3 V1 359 07-July-2011 Data Acquisition Electronics SPEAG DAE3 V1 442 09-Dec-2011 ✓ Probe E-Field Dummy SPEAG DP1 N/A Not applicable Probe E-Field SPEAG E3DV6 3029 Not Used Antenna Dipole 300 MHz SPEAG </td <td>Robot - Six Axes</td> <td>Staubli</td> <td>RX90BL</td> <td>N/A</td> <td>Not applicable</td> <td>✓</td>	Robot - Six Axes	Staubli	RX90BL	N/A	Not applicable	✓
SAM Phantom SPEAG N/A 1060 Not applicable	Robot Remote Control	SPEAG	CS7MB	RX90B	Not applicable	✓
Flat Phantom	SAM Phantom	SPEAG	N/A	1260	Not applicable	
Flat Phantom	SAM Phantom	SPEAG	N/A	1060	Not applicable	
Flat Phantom SPEAG PO1A 6mm 1003 Not Applicable	Flat Phantom	AndreT	10.1	P 10.1	Not Applicable	✓
Data Acquisition Electronics SPEAG DAE3 V1 359 07-July-2011 Data Acquisition Electronics SPEAG DAE3 V1 442 09-Dec-2011 ✓ Probe E-Field - Dummy SPEAG DP1 N/A Not applicable Probe E-Field SPEAG ET3DV6 1380 09-Dec-2011 ✓ Probe E-Field SPEAG ET3DV6 1377 7-July-2011 ✓ Probe E-Field SPEAG EX3DV4 3563 18-July-2011 ✓ Probe E-Field SPEAG EX3DV4 3563 18-July-2011 ✓ Probe E-Field SPEAG EX3DV4 3667 13-Dec-2011 ✓ Antenna Dipole 300 MHz SPEAG D300V2 1005 15-Dec-2011 ✓ Antenna Dipole 450 MHz SPEAG D900V2 047 5-July-2012 ✓ Antenna Dipole 1640 MHz SPEAG D1640V2 314 9-July-2012 ✓ Antenna Dipole 1950 MHz SPEAG D3500V2 1002 17-July-2010 ✓ <td>Flat Phantom</td> <td>AndreT</td> <td>9.1</td> <td>P 9.1</td> <td>Not Applicable</td> <td></td>	Flat Phantom	AndreT	9.1	P 9.1	Not Applicable	
Data Acquisition Electronics SPEAG DAE3 V1 442 09-Dec-2011 ✓ Probe E-Field - Dummy SPEAG DP1 N/A Not applicable Probe E-Field SPEAG ET3DV6 1380 09-Dec-2011 ✓ Probe E-Field SPEAG ET3DV6 1377 7-July-2011 ✓ Probe E-Field SPEAG ES3DV6 3029 Not Used ✓ Probe E-Field SPEAG EX3DV4 3563 16-July-2011 ✓ Probe E-Field SPEAG EX3DV4 3657 13-Dec-2011 ✓ Antenna Dipole 300 MHz SPEAG D300V2 1005 15-Dec-2011 ✓ Antenna Dipole 450 MHz SPEAG D450V2 1009 17-Dec-2010 ✓ Antenna Dipole 1640 MHz SPEAG D900V2 047 5-July-2012 ✓ Antenna Dipole 1850 MHz SPEAG D1640V2 314 9-July-2012 ✓ Antenna Dipole 3500 MHz SPEAG D3500V2 1002 17-July-2010 ✓	Flat Phantom	SPEAG	PO1A 6mm	1003	Not Applicable	
Probe E-Field - Dummy SPEAG DP1 N/A Not applicable Probe E-Field SPEAG ET3DV6 1380 09-Dec-2011 ✓ Probe E-Field SPEAG ET3DV6 1377 7-July-2011 ✓ Probe E-Field SPEAG ES3DV6 3029 Not Used ✓ Probe E-Field SPEAG EX3DV4 3663 16-July-2011 ✓ Antenna Dipole 300 MHz SPEAG EX3DV4 3667 13-Dec-2011 ✓ Antenna Dipole 300 MHz SPEAG D300V2 1005 15-Dec-2011 ✓ Antenna Dipole 450 MHz SPEAG D450V2 1009 17-Dec-2010 ✓ Antenna Dipole 900 MHz SPEAG D900V2 047 5-July-2012 ✓ Antenna Dipole 1640 MHz SPEAG D1640V2 314 9-July-2012 ✓ Antenna Dipole 1950 MHz SPEAG D1800V2 242 13-July-2012 ✓ Antenna Dipole 3500 MHz SPEAG D3500V2 1002 17-July-2010 ✓<	Data Acquisition Electronics	SPEAG	DAE3 V1	359	07-July-2011	
Probe E-Field SPEAG ET3DV6 1380 09-Dec-2011 ✓ Probe E-Field SPEAG ET3DV6 1377 7-July-2011 ✓ Probe E-Field SPEAG ES3DV6 3029 Not Used ✓ Probe E-Field SPEAG EX3DV4 3663 16-July-2011 ✓ Antenna Dipole 300 MHz SPEAG D300V2 1005 15-Dec-2011 ✓ Antenna Dipole 450 MHz SPEAG D450V2 1009 17-Dec-2010 ✓ Antenna Dipole 900 MHz SPEAG D450V2 1009 17-Dec-2010 ✓ Antenna Dipole 1640 MHz SPEAG D900V2 047 5-July-2012 ✓ Antenna Dipole 1800 MHz SPEAG D1640V2 314 9-July-2012 ✓ Antenna Dipole 1950 MHz SPEAG D1800V2 242 13-July-2012 ✓ Antenna Dipole 3500 MHz SPEAG D3500V2 1002 17-July-2010 ✓ Antenna Dipole 2450 MHz SPEAG D2450V2 724 09-Dec-2	Data Acquisition Electronics	SPEAG	DAE3 V1	442	09-Dec-2011	✓
Probe E-Field SPEAG ET3DV6 1377 7-July-2011 Probe E-Field SPEAG ES3DV6 3029 Not Used Probe E-Field SPEAG EX3DV4 3563 16-July-2011 Probe E-Field SPEAG EX3DV4 3657 13-Dec-2011 Antenna Dipole 300 MHz SPEAG D300V2 1005 15-Dec-2011 Antenna Dipole 450 MHz SPEAG D450V2 1009 17-Dec-2010 Antenna Dipole 900 MHz SPEAG D900V2 047 5-July-2012 Antenna Dipole 1640 MHz SPEAG D1640V2 314 9-July-2012 Antenna Dipole 1800 MHz SPEAG D1800V2 242 13-July-2012 Antenna Dipole 1950 MHz SPEAG D1950V3 1113 10-Dec-2012 Antenna Dipole 2550 MHz SPEAG D2450V2 724 09-Dec-2012 ✓ Antenna Dipole 2560 MHz SPEAG D5GHzV2 1008 16-Dec-2011 ✓ RF Amplifier Mini-Circuits ZHL-42 N/A *In test <td< td=""><td>Probe E-Field - Dummy</td><td>SPEAG</td><td>DP1</td><td>N/A</td><td>Not applicable</td><td></td></td<>	Probe E-Field - Dummy	SPEAG	DP1	N/A	Not applicable	
Probe E-Field SPEAG ES3DV6 3029 Not Used Probe E-Field SPEAG EX3DV4 3563 16-July-2011 Probe E-Field SPEAG EX3DV4 3657 13-Dec-2011 Antenna Dipole 300 MHz SPEAG D300V2 1005 15-Dec-2010 Antenna Dipole 450 MHz SPEAG D450V2 1009 17-Dec-2010 Antenna Dipole 900 MHz SPEAG D900V2 047 5-July-2012 Antenna Dipole 1640 MHz SPEAG D1640V2 314 9-July-2012 Antenna Dipole 1800 MHz SPEAG D1800V2 242 13-July-2012 Antenna Dipole 1950 MHz SPEAG D1950V3 1113 10-Dec-2012 Antenna Dipole 3500 MHz SPEAG D3500V2 1002 17-July-2010 Antenna Dipole 2450 MHz SPEAG D2450V2 724 09-Dec-2012 ✓ Antenna Dipole 36600 MHz SPEAG D5GHzV2 1008 16-Dec-2011 ✓ RF Amplifier Mini-Circuits ZHL-42 N/A *In test <td>Probe E-Field</td> <td>SPEAG</td> <td>ET3DV6</td> <td>1380</td> <td>09-Dec-2011</td> <td>✓</td>	Probe E-Field	SPEAG	ET3DV6	1380	09-Dec-2011	✓
Probe E-Field SPEAG EX3DV4 3563 16-July-2011 Probe E-Field SPEAG EX3DV4 3657 13-Dec-2011 Antenna Dipole 300 MHz SPEAG D300V2 1005 15-Dec-2011 Antenna Dipole 450 MHz SPEAG D450V2 1009 17-Dec-2010 Antenna Dipole 900 MHz SPEAG D900V2 047 5-July-2012 Antenna Dipole 1640 MHz SPEAG D1640V2 314 9-July-2012 Antenna Dipole 1800 MHz SPEAG D1800V2 242 13-July-2012 Antenna Dipole 1950 MHz SPEAG D1950V3 1113 10-Dec -2012 Antenna Dipole 3500 MHz SPEAG D3500V2 1002 17-July-2010 Antenna Dipole 2450 MHz SPEAG D2450V2 724 09-Dec-2012 ✓ Antenna Dipole 5600 MHz SPEAG D5GHzV2 1008 16-Dec-2011 RF Amplifier BIN 603L N/A *In test ✓ RF Amplifier Mini-Circuits ZVE-8G N/A	Probe E-Field	SPEAG	ET3DV6	1377	7-July-2011	
Probe E-Field SPEAG EX3DV4 3657 13-Dec-2011 Antenna Dipole 300 MHz SPEAG D300V2 1005 15-Dec-2011 Antenna Dipole 450 MHz SPEAG D450V2 1009 17-Dec-2010 Antenna Dipole 900 MHz SPEAG D900V2 047 5-July-2012 Antenna Dipole 1640 MHz SPEAG D1640V2 314 9-July-2012 Antenna Dipole 1800 MHz SPEAG D1800V2 242 13-July-2012 Antenna Dipole 1950 MHz SPEAG D1950V3 1113 10-Dec-2012 Antenna Dipole 3500 MHz SPEAG D3500V2 1002 17-July-2010 Antenna Dipole 2450 MHz SPEAG D2450V2 724 09-Dec-2012 ✓ Antenna Dipole 5600 MHz SPEAG D5GHzV2 1008 16-Dec-2011 RF Amplifier Mini-Circuits ZHL-42 N/A *In test ✓ RF Amplifier Mini-Circuits ZVE-8G N/A *In test ✓ Synthesized signal generator Hewlett Packard	Probe E-Field	SPEAG	ES3DV6	3029	Not Used	
Antenna Dipole 300 MHz SPEAG D300V2 1005 15-Dec-2011 Antenna Dipole 450 MHz SPEAG D450V2 1009 17-Dec-2010 Antenna Dipole 900 MHz SPEAG D900V2 047 5-July-2012 Antenna Dipole 1640 MHz SPEAG D1640V2 314 9-July-2012 Antenna Dipole 1800 MHz SPEAG D1800V2 242 13-July-2012 Antenna Dipole 1950 MHz SPEAG D1950V3 1113 10-Dec-2012 Antenna Dipole 3500 MHz SPEAG D3500V2 1002 17-July-2010 Antenna Dipole 2450 MHz SPEAG D2450V2 724 09-Dec-2012 ✓ Antenna Dipole 5600 MHz SPEAG D5GHzV2 1008 16-Dec-2011 RF Amplifier Mini-Circuits ZHL-42 N/A *In test ✓ RF Amplifier Mini-Circuits ZVE-8G N/A *In test ✓ Synthesized signal generator Hewlett Packard 437B 3125012786 9-Aug-2011 ✓ RF Power Meter	Probe E-Field	SPEAG	EX3DV4	3563	16-July-2011	
Antenna Dipole 450 MHz SPEAG D450V2 1009 17-Dec-2010 Antenna Dipole 900 MHz SPEAG D900V2 047 5-July-2012 Antenna Dipole 1640 MHz SPEAG D1640V2 314 9-July-2012 Antenna Dipole 1800 MHz SPEAG D1800V2 242 13-July-2012 Antenna Dipole 1950 MHz SPEAG D1950V3 1113 10-Dec -2012 Antenna Dipole 3500 MHz SPEAG D3500V2 1002 17-July-2010 Antenna Dipole 2450 MHz SPEAG D2450V2 724 09-Dec-2012 ✓ Antenna Dipole 5600 MHz SPEAG D5GHzV2 1008 16-Dec-2011 RF Amplifier EIN 603L N/A *In test ✓ RF Amplifier Mini-Circuits ZHL-42 N/A *In test ✓ Synthesized signal generator Hewlett Packard ESG-D3000A GB37420238 *In test ✓ RF Power Meter Hewlett Packard 8481H 1545A01634 13-Aug-2011 ✓ RF Power	Probe E-Field	SPEAG	EX3DV4	3657	13-Dec-2011	
Antenna Dipole 900 MHz SPEAG D900V2 047 5-July-2012 Antenna Dipole 1640 MHz SPEAG D1640V2 314 9-July-2012 Antenna Dipole 1800 MHz SPEAG D1800V2 242 13-July-2012 Antenna Dipole 1950 MHz SPEAG D1950V3 1113 10-Dec -2012 Antenna Dipole 3500 MHz SPEAG D3500V2 1002 17-July-2010 Antenna Dipole 2450 MHz SPEAG D2450V2 724 09-Dec-2012 ✓ Antenna Dipole 5600 MHz SPEAG D5GHzV2 1008 16-Dec-2011 RF Amplifier EIN 603L N/A *In test ✓ RF Amplifier Mini-Circuits ZHL-42 N/A *In test ✓ RF Amplifier Mini-Circuits ZVE-8G N/A *In test ✓ Synthesized signal generator Hewlett Packard 437B 3125012786 9-Aug-2011 ✓ RF Power Meter Hewlett Packard 8481H 1545A01634 13-Aug-2011 ✓	Antenna Dipole 300 MHz	SPEAG	D300V2	1005	15-Dec-2011	
Antenna Dipole 1640 MHz SPEAG D1640V2 314 9-July-2012 Antenna Dipole 1800 MHz SPEAG D1800V2 242 13-July-2012 Antenna Dipole 1950 MHz SPEAG D1950V3 1113 10-Dec -2012 Antenna Dipole 3500 MHz SPEAG D3500V2 1002 17-July-2010 Antenna Dipole 2450 MHz SPEAG D2450V2 724 09-Dec-2012 ✓ Antenna Dipole 5600 MHz SPEAG D5GHzV2 1008 16-Dec-2011 ✓ RF Amplifier EIN 603L N/A *In test ✓ RF Amplifier Mini-Circuits ZVE-8G N/A *In test ✓ RF Amplifier Mini-Circuits ZVE-8G N/A *In test ✓ Synthesized signal generator Hewlett Packard ESG-D3000A GB37420238 *In test ✓ RF Power Meter Hewlett Packard 437B 3125012786 9-Aug-2011 ✓ RF Power Sensor 0.01 - 18 GHz Hewlett Packard 8481H 1545A01634 13-Aug-2011	Antenna Dipole 450 MHz	SPEAG	D450V2	1009	17-Dec-2010	
Antenna Dipole 1800 MHz SPEAG D1800V2 242 13-July-2012 Antenna Dipole 1950 MHz SPEAG D1950V3 1113 10-Dec -2012 Antenna Dipole 3500 MHz SPEAG D3500V2 1002 17-July-2010 Antenna Dipole 2450 MHz SPEAG D2450V2 724 09-Dec-2012 ✓ Antenna Dipole 5600 MHz SPEAG D5GHzV2 1008 16-Dec-2011 RF Amplifier EIN 603L N/A *In test ✓ RF Amplifier Mini-Circuits ZVE-8G N/A *In test ✓ RF Amplifier Mini-Circuits ZVE-8G N/A *In test ✓ Synthesized signal generator Hewlett Packard ESG-D3000A GB37420238 *In test ✓ RF Power Meter Hewlett Packard 437B 3125012786 9-Aug-2011 ✓ RF Power Sensor 0.01 - 18 GHz Hewlett Packard 8481H 1545A01634 13-Aug-2011 ✓ RF Power Meter Rohde & Schwarz NRP 101415 5-M	Antenna Dipole 900 MHz	SPEAG	D900V2	047	5-July-2012	
Antenna Dipole 1950 MHz SPEAG D1950V3 1113 10-Dec -2012 Antenna Dipole 3500 MHz SPEAG D3500V2 1002 17-July-2010 Antenna Dipole 2450 MHz SPEAG D2450V2 724 09-Dec-2012 ✓ Antenna Dipole 5600 MHz SPEAG D5GHzV2 1008 16-Dec-2011 RF Amplifier EIN 603L N/A *In test ✓ RF Amplifier Mini-Circuits ZVE-8G N/A *In test ✓ RF Amplifier Mini-Circuits ZVE-8G N/A *In test ✓ Synthesized signal generator Hewlett Packard ESG-D3000A GB37420238 *In test ✓ RF Power Meter Hewlett Packard 437B 3125012786 9-Aug-2011 ✓ RF Power Sensor 0.01 - 18 GHz Hewlett Packard 8481H 1545A01634 13-Aug-2011 ✓ RF Power Meter Rohde & Schwarz NRP 101415 5-May-2011 ✓ RF Power Sensor Rohde & Schwarz NRP - Z81 100	Antenna Dipole 1640 MHz	SPEAG	D1640V2	314	9-July-2012	
Antenna Dipole 3500 MHz SPEAG D3500V2 1002 17-July-2010 Antenna Dipole 2450 MHz SPEAG D2450V2 724 09-Dec-2012 ✓ Antenna Dipole 5600 MHz SPEAG D5GHzV2 1008 16-Dec-2011 Intention Intent	Antenna Dipole 1800 MHz	SPEAG	D1800V2	242	13-July-2012	
Antenna Dipole 2450 MHz SPEAG D2450V2 724 09-Dec-2012 ✓ Antenna Dipole 5600 MHz SPEAG D5GHzV2 1008 16-Dec-2011 RF Amplifier EIN 603L N/A *In test ✓ RF Amplifier Mini-Circuits ZVE-8G N/A *In test ✓ RF Amplifier Mini-Circuits ZVE-8G N/A *In test ✓ Synthesized signal generator Hewlett Packard ESG-D3000A GB37420238 *In test ✓ RF Power Meter Hewlett Packard 437B 3125012786 9-Aug-2011 ✓ RF Power Sensor 0.01 - 18 GHz Hewlett Packard 8481H 1545A01634 13-Aug-2011 ✓ RF Power Meter Rohde & Schwarz NRP 101415 5-May-2011 ✓ RF Power Sensor Rohde & Schwarz NRP - Z81 100174 16-July-2011 ✓ RF Power Meter Dual Hewlett Packard 435A 1733A05847 *In test *In test RF Power Sensor Hewlett	Antenna Dipole 1950 MHz	SPEAG	D1950V3	1113	10-Dec -2012	
Antenna Dipole 5600 MHz SPEAG D5GHzV2 1008 16-Dec-2011 RF Amplifier EIN 603L N/A *In test RF Amplifier Mini-Circuits ZHL-42 N/A *In test RF Amplifier Mini-Circuits ZVE-8G N/A *In test Synthesized signal generator Hewlett Packard ESG-D3000A GB37420238 *In test RF Power Meter Hewlett Packard 437B 3125012786 9-Aug-2011 ✓ RF Power Sensor 0.01 - 18 GHz Hewlett Packard 8481H 1545A01634 13-Aug-2011 ✓ RF Power Meter Rohde & Schwarz NRP 101415 5-May-2011 ✓ RF Power Sensor Rohde & Schwarz NRP - Z81 100174 16-July-2011 ✓ RF Power Meter Dual Hewlett Packard 435A 1733A05847 *In test RF Power Sensor Hewlett Packard 8482A 2349A10114 *In test Network Analyser Hewlett Packard 8714B GB3510035 22-Sept-2011 Network A	Antenna Dipole 3500 MHz	SPEAG	D3500V2	1002	17-July-2010	
RF Amplifier EIN 603L N/A *In test RF Amplifier Mini-Circuits ZHL-42 N/A *In test RF Amplifier Mini-Circuits ZVE-8G N/A *In test Synthesized signal generator Hewlett Packard ESG-D3000A GB37420238 *In test RF Power Meter Hewlett Packard 437B 3125012786 9-Aug-2011 ✓ RF Power Sensor 0.01 - 18 GHz Hewlett Packard 8481H 1545A01634 13-Aug-2011 ✓ RF Power Meter Rohde & Schwarz NRP 101415 5-May-2011 ✓ RF Power Sensor Rohde & Schwarz NRP - Z81 100174 16-July-2011 ✓ RF Power Meter Dual Hewlett Packard 435A 1733A05847 *In test RF Power Sensor Hewlett Packard 8482A 2349A10114 *In test Network Analyser Hewlett Packard 8714B GB3510035 22-Sept-2011 Network Analyser Hewlett Packard 8753ES JP39240130 10-Nov-2011 ✓	Antenna Dipole 2450 MHz	SPEAG	D2450V2	724	09-Dec-2012	✓
RF Amplifier Mini-Circuits ZHL-42 N/A *In test RF Amplifier Mini-Circuits ZVE-8G N/A *In test Synthesized signal generator Hewlett Packard ESG-D3000A GB37420238 *In test RF Power Meter Hewlett Packard 437B 3125012786 9-Aug-2011 RF Power Sensor 0.01 - 18 GHz RF Power Meter Rohde & Schwarz NRP 101415 5-May-2011 RF Power Sensor Rohde & Schwarz NRP 101415 5-May-2011 RF Power Sensor Rohde & Schwarz NRP - Z81 100174 16-July-2011 RF Power Meter Dual Hewlett Packard 435A 1733A05847 *In test RF Power Sensor Hewlett Packard 8482A 2349A10114 *In test Network Analyser Hewlett Packard 8714B GB3510035 22-Sept-2011 Network Analyser Hewlett Packard 8753ES JP39240130 10-Nov-2011 **ONA	Antenna Dipole 5600 MHz	SPEAG	D5GHzV2	1008	16-Dec-2011	
RF Amplifier Mini-Circuits ZVE-8G N/A *In test Synthesized signal generator Hewlett Packard ESG-D3000A GB37420238 *In test RF Power Meter Hewlett Packard 437B 3125012786 9-Aug-2011 RF Power Sensor 0.01 - 18 GHz Hewlett Packard 8481H 1545A01634 13-Aug-2011 RF Power Meter Rohde & Schwarz NRP 101415 5-May-2011 RF Power Sensor Rohde & Schwarz NRP - Z81 100174 16-July-2011 RF Power Meter Dual Hewlett Packard 435A 1733A05847 *In test RF Power Sensor Hewlett Packard 8482A 2349A10114 *In test Network Analyser Hewlett Packard 8714B GB3510035 22-Sept-2011 Network Analyser Hewlett Packard 8753ES JP39240130 10-Nov-2011 **ONA *In test Packard P	RF Amplifier	EIN	603L	N/A	*In test	
Synthesized signal generator Hewlett Packard ESG-D3000A GB37420238 *In test ✓ RF Power Meter Hewlett Packard 437B 3125012786 9-Aug-2011 ✓ RF Power Sensor 0.01 - 18 GHz Hewlett Packard 8481H 1545A01634 13-Aug-2011 ✓ RF Power Meter Rohde & Schwarz NRP 101415 5-May-2011 ✓ RF Power Sensor Rohde & Schwarz NRP - Z81 100174 16-July-2011 ✓ RF Power Meter Dual Hewlett Packard 435A 1733A05847 *In test RF Power Sensor Hewlett Packard 8482A 2349A10114 *In test Network Analyser Hewlett Packard 8714B GB3510035 22-Sept-2011 Network Analyser Hewlett Packard 8753ES JP39240130 10-Nov-2011 ✓	RF Amplifier	Mini-Circuits	ZHL-42	N/A	*In test	✓
RF Power Meter Hewlett Packard 437B 3125012786 9-Aug-2011 ✓ RF Power Sensor 0.01 - 18 GHz Hewlett Packard 8481H 1545A01634 13-Aug-2011 ✓ RF Power Meter Rohde & Schwarz NRP 101415 5-May-2011 ✓ RF Power Sensor Rohde & Schwarz NRP - Z81 100174 16-July-2011 ✓ RF Power Meter Dual Hewlett Packard 435A 1733A05847 *In test RF Power Sensor Hewlett Packard 8482A 2349A10114 *In test Network Analyser Hewlett Packard 8714B GB3510035 22-Sept-2011 Network Analyser Hewlett Packard 8753ES JP39240130 10-Nov-2011 ✓	RF Amplifier	Mini-Circuits	ZVE-8G	N/A	*In test	
RF Power Sensor 0.01 - 18 GHz Hewlett Packard 8481H 1545A01634 13-Aug-2011 ✓ RF Power Meter Rohde & Schwarz NRP 101415 5-May-2011 ✓ RF Power Sensor Rohde & Schwarz NRP - Z81 100174 16-July-2011 ✓ RF Power Meter Dual Hewlett Packard 435A 1733A05847 *In test RF Power Sensor Hewlett Packard 8482A 2349A10114 *In test Network Analyser Hewlett Packard 8714B GB3510035 22-Sept-2011 Network Analyser Hewlett Packard 8753ES JP39240130 10-Nov-2011 ✓	Synthesized signal generator	Hewlett Packard	ESG-D3000A	GB37420238	*In test	✓
GHz Hewlett Packard 8481H 1545A01634 13-Aug-2011 ✓ RF Power Meter Rohde & Schwarz NRP 101415 5-May-2011 ✓ RF Power Sensor Rohde & Schwarz NRP - Z81 100174 16-July-2011 ✓ RF Power Meter Dual Hewlett Packard 435A 1733A05847 *In test RF Power Sensor Hewlett Packard 8482A 2349A10114 *In test Network Analyser Hewlett Packard 8714B GB3510035 22-Sept-2011 Network Analyser Hewlett Packard 8753ES JP39240130 10-Nov-2011 ✓	RF Power Meter	Hewlett Packard	437B	3125012786	9-Aug-2011	✓
RF Power Sensor Rohde & Schwarz NRP - Z81 100174 16-July-2011 ✓ RF Power Meter Dual Hewlett Packard 435A 1733A05847 *In test RF Power Sensor Hewlett Packard 8482A 2349A10114 *In test Network Analyser Hewlett Packard 8714B GB3510035 22-Sept-2011 Network Analyser Hewlett Packard 8753ES JP39240130 10-Nov-2011 ✓		Hewlett Packard	8481H	1545A01634	13-Aug-2011	✓
RF Power Meter Dual Hewlett Packard 435A 1733A05847 *In test RF Power Sensor Hewlett Packard 8482A 2349A10114 *In test Network Analyser Hewlett Packard 8714B GB3510035 22-Sept-2011 Network Analyser Hewlett Packard 8753ES JP39240130 10-Nov-2011	RF Power Meter	Rohde & Schwarz	NRP	101415	5-May-2011	✓
RF Power Sensor Hewlett Packard 8482A 2349A10114 *In test Network Analyser Hewlett Packard 8714B GB3510035 22-Sept-2011 Network Analyser Hewlett Packard 8753ES JP39240130 10-Nov-2011	RF Power Sensor	Rohde & Schwarz	NRP - Z81	100174	16-July-2011	✓
Network AnalyserHewlett Packard8714BGB351003522-Sept-2011Network AnalyserHewlett Packard8753ESJP3924013010-Nov-2011	RF Power Meter Dual	Hewlett Packard	435A	1733A05847	*In test	
Network Analyser Hewlett Packard 8753ES JP39240130 10-Nov-2011 ✓	RF Power Sensor	Hewlett Packard	8482A	2349A10114	*In test	
	Network Analyser	Hewlett Packard	8714B	GB3510035	22-Sept-2011	
	Network Analyser	Hewlett Packard	8753ES	JP39240130	10-Nov-2011	√
Dual Directional Coupler Hewlett Packard 778D 1144 04700 *In test	Dual Directional Coupler	Hewlett Packard	778D	1144 04700	*In test	
Dual Directional Coupler NARDA 3022 75453 *In test ✓	Dual Directional Coupler	NARDA	3022	75453	*In test	√

^{*} Calibrated during the test for the relevant parameters.

10.0 TEST METHODOLOGY

Notebooks should be evaluated in normal use positions, typical for lap-held bottom-face only. However the number of positions will depend on the number of configurations the laptop can be operated in. The "LIFEBOOK T SERIES" can be used in either a conventional laptop position (see Appendix A) or a Tablet configuration. The antenna location in the "LIFEBOOK T SERIES" is closest to the top of the screen when used in a conventional laptop configuration and due to the separation distances involved between the phantom and the laptop antenna, testing is not required in this position.

1.1 Positions

1.1.1 "Lap Held" Position Definition (0mm spacing)

The DUT was tested in the 2.00 mm flat section of the AndreT Flat phantom P 10.1 for the "Lap Held" position. The Transceiver was placed at the bottom of the phantom and suspended in such way that the back of the DUT was touching the phantom. This device orientation simulates the PC's normal use – being held on the lap of the user. A spacing of 0mm ensures that the SAR results are conservative and represent a worst-case position.

1.1.2 "Edge On" Position (Portrait or Landscape)

The DUT was tested in the (2.00 mm) flat section of the AndreT phantom for the "Edge On" position. The Antenna edge of the Transceiver was placed underneath the flat section of the phantom and suspended until the edge touched the phantom.

1.1.3 "Bystander" Position (25mm spacing)

The DUT was tested with the back of the screen parallel to the flat phantom, with the base 90 degrees to normal. This orientation simulates occasional exposure to the transmitter as a result of standing near the DUT operator during normal use.

For this position, the DUT was placed at the bottom of the P 10.1 phantom and suspended in such way that the back of the screen was 25mm from the phantom.

10.1 List of All Test Cases (Test Frequencies, User Modes)

The DUT has a fixed antenna. Depending on the measured SAR level up to three test channels with the test sample operating at maximum power were recorded. The following table represents the matrix used to determine what testing was required. All relevant provisions of KDB 447498 are applied for SAR measurements of the host system.

Table 19 Testing configurations

Phantom			Test Configurations				
Configuration	*Device Mode	Antenna	Channel (Low)	Channel (Middle)	Channel (High)		
Lap-Arm Held	OFDM 2.4GHz	Α		X			
		В		Χ			
Bystander	OFDM 2.4GHz	Α		X			
		В		X			
Edge On	OFDM 2.4GHz	Α		X			
		В		X			

Legend X	Testing Required in this configuration
	Testing required in this configuration only if SAR of middle channel is more than 3dB below the SAR limit or it is the worst case.

NOTE: Throughout this report, Antenna A, B refer to Tx1, Tx2 in the host respectively.

11.0 SAR MEASUREMENT RESULTS

The SAR values averaged over 1g tissue masses were determined for the sample DUT for all test configurations listed in section 10.2.

11.1 2450MHz SAR Results

There are two modes of operation within the 2450MHz band, they include OFDM and DSSS modulations. Refer to section 10.2 for selection of all device test configurations. Table below displays the SAR results.

Table 20 SAR MEASUREMENT RESULTS - OFDM Mode

Test Position	Plot No.	Ant	Bit rate Mode (Mbps)	Channel Bandwidth (MHz)	Test Channel	Test Freq (MHz)	Measured 1g SAR Results (mW/g)	Measured Drift (dB)
Bystander	1	Α	6	-	06	2437	0.050	-0.10
25mm Spacing	2	В	6	-	06	2437	0.039	-0.04
Lap Held	3	Α	6	-	06	2437	0.081	-0.16
сар пеш	-	В	6	-	06	2437	N/F	N/A
	4	Α	6	-	02	2417	0.350	-0.27
Primary Portrait	5	Α	6		06	2437	0.337	-0.30
	6	Α	6		10	2457	0.411	-0.30
Secondary	7	Α	6	-	06	2437	0.147	-0.12
Landscape	8	В	6	-	06	2437	0.116	-0.27
Secondary -	9	В	6	-	02	2417	1.180	0.05
	10	В	6	-	06	2437	1.070	-0.51
Portrait	11	В	6	-	10	2457	0.641	-0.25

NOTE: The measurement uncertainty of 24.3% for 2.45GHz was not added to the result.

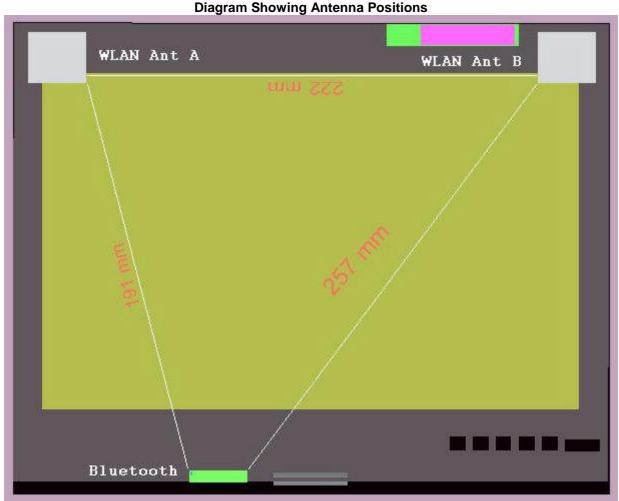
The highest SAR level recorded in the 2450MHz band was **1.180** mW/g as evaluated in a 1g cube of averaging mass. This value was obtained in **Secondary Portrait** position in **OFDM** mode, utilizing channel **02** (**2417** MHz) and antenna **B**.

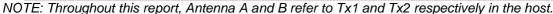
12.0 COMPLIANCE STATEMENT

The Fujitsu TABLET PC, Model: T731, TH701 with ATHEROS Mini-PCI Wireless LAN Module (ATHEROS HB97 (11B/G/N) 2X2 802.11a/b/g/n), Model: AR5B97 & BROADCOM Bluetooth Module, Model: BCM92070MD_REF6 was found to comply with the FCC and RSS-102 SAR requirements.

The highest SAR level recorded was **1.180** mW/g for a 1g cube. This value was measured at **2417** MHz (channel **02**) in the "**Secondary Portrait**" position in **OFDM** modulation mode at the antenna **B**. This was below the limit of 1.6 mW/g for uncontrolled exposure, even taking into account the measurement uncertainty of 24.3%.

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.


13.0 MULTIBAND EVALUATION CONSIDERATIONS


Fujitsu **TABLET** PC, Model: **T731, TH701** is equipped with WLAN (ATHEROS HB97 (11B/G/N) 2X2) and Bluetooth (BCM92070MD_REF6).

According to the FCC SAR evaluation procedures mentioned in **KDB 616217**, stand-alone SAR evaluation is NOT required when the maximum transmitter and antenna output power is less than or equal to $60/f_{(GHz)}$ (P_{ref}) The Bluetooth module in the EUT operates in the 2.4GHz range. It has a maximum output power of 2.5mW (4dBm) which is less than Pref (=60/2.4=25mW).

The shortest distance between the BT module and any other transmitting antenna was 19.1cm.

Because 19.1cm > 5cm, and 2.5mW < 25mW, the Bluetooth module was not considered for SAR evaluation. This is in accordance with the test reduction methods detailed in **KDB 616217** and **KDB 447498**.

