

Certification Test Report

CFR 47 FCC Part 2 and Part 27, Subpart C

Model: 2.3 GHz MX2 Base Station Transceiver 2.3-BTS4A-R1 (AC Unit) 2.3-BTS4T-R1 (24 VDC Unit) 2.3-BTS4F-R1 (-48 VDC Unit)

FCC ID No.: PL6-2300-BTS4-R1

Project Code: W7444

Revision: 1

Prepared for: Navini Networks

2240 Campbell Creek Blvd.

Suite 110

Richardson, TX 75082

Author: Tom Tidwell, Manager of Wireless Services

Issued: 13 February, 2008

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Report Summary

NTS Plano

FCC: Accreditation Numbers: 101741

> IC: 46405-4319 File # IC-4319A-1

Applicant: Navini Networks, Inc.

2240 Campbell Creek Blvd.

Suite 110

Richardson, TX 75082

Customer Representative: Larry Zhou

EUT Description:

EUT Description	Manufacturer	Model	Revision	Serial Number
The equipment tested is a point-to-multipoint base station for data transmission.	Navini Networks	2.3-BTS3A-R1 (AC Unit) 2.3-BTS3T-R1 (24 VDC Unit) 2.3-BTS3F-R1 (-48 VDC Unit)	PN: 92- 82300-00R	074500102

Test Summary

ndix	Test/Requirement	Deviations from:		Pass / Fail	Annliachta Bula Davia	
Appendix	Description	Base Standard	Test Basis	NTS Procedure	Pass/Fall	Applicable Rule Parts
Α	RF Power Output	No	No	No	PASS	CFR 47, Part 2, Para. 2.1046 CFR 47, Part 27, Para. 27.50(a)
В	Modulation Characteristics	No	No	No	PASS	CFR 47, Part 2, Para. 2.1047
С	Occupied Bandwidth	No	No	No	PASS	CFR 47, Part 2, Para. 2.1049 CFR 47, Part 27, Para. 27.53(a)
D	Spurious Emissions at Antenna Terminals	No	No	No	PASS	CFR 47, Part 2, Para. 2.1051 CFR 47, Part 27, Para. 27.53(a)
Е	Field Strength of Spurious Radiation	No	No	No	PASS	CFR 47, Part 2, Para. 2.1053 CFR 47, Part 27, Para. 27.53(a)
F	Frequency Stability	No	No	No	PASS	CFR 47, Part 2, Para. 2.1055 CFR 47, Part 24, Para. 27.54

Test Result: The product presented for testing complied with test requirements as shown above.

This is to certify that the preceding report is true and correct to the best of my knowledge.

Robert Stevens,

Quality Assurance Manager

Tom Tidwell,

Wireless Test Engineer

Table of Contents

REPC	ORT SUMMARY	2
TEST	T SUMMARY	3
	ISTER OF REVISIONS	
	RODUCTION	
1.1 2.0	Purpose EUT DESCRIPTION	6
2.1 2.1.1 2.2 2.3 3.0	CONFIGURATION EUT POWER EUT CABLES MODE OF OPERATION DURING TESTS SUPPORT EQUIPMENT	
3.1 3.2 4.0	Configuration Test Bed/Peripheral Configuration FREQUENCY SPECTRUM	3 9
APPE	ENDICES	10
APPE	ENDIX A: 2.1046 RF POWER OUTPUT	11
APPE	ENDIX B: 2.1047 MODULATION CHARACTERISTICS	14
APPE	ENDIX C: 2.1049 OCCUPIED BANDWIDTH	16
APPE	ENDIX D: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	23
APPE	ENDIX E: 2.1053 FIELD STRENGTH OF SPURIOUS RADIATION	41
APPE	ENDIX F: 2.1055 FREQUENCY STABILITY	46
APPE	ENDIX G: TEST EQUIPMENT LIST	54
END (OF DOCUMENT	55

Model: 2.3 GHz MX2 Base Station

FCC ID.: PL6-2300-BTS4-R1

Register of revisions

Revision	Reason for Revision	Release Date
0	Original	12/12/2007
1	Added ACP plots (fig. 11, 13, 17). Added comments to clarify Frequency Stability measurement data.	2/13/2008

INTRODUCTION

1.1 **PURPOSE**

The purpose of this document is to describe the tests applied by NTS Plano to demonstrate that the 2.3-BTS4A-R1, 2.3-BTS4T-R1, and 2.3-BTS4F-R1 base station transmitter continues to comply to FCC Part 27 Subparts C and M in accordance with the certification requirements of CFR 47, Part 2 following modification as described in the FCC filing. Modification was made to improve the spurious emission performance of the device. No modification was made to frequency-determining components.

2.0 **EUT DESCRIPTION**

2.1 **CONFIGURATION**

Description of EUT

Description of Lot	Name	Model	Revision	Serial Number	
EUT	2.3 GHz MX2 Base Station	2.3-BTS4A-R1 (AC Unit) 2.3-BTS4T-R1 (24 VDC Unit) 2.3-BTS4F-R1 (-48 VDC Unit)	PN: 92- 82300-00R	074500102	
RF Exposure Classification	Fixed Outdoor				
Channels/Frequency Range	2305 – 2315 MH 2350 – 2360 MH				
Power	1.68 watts at antenna terminals (avg.) 12.3 watts at antenna terminals (peak)				
Emission Designator:	5M00W7D (OFDMA only)				
TX antenna details	The antenna is fixed-mounted on outdoor permanent structures. RF exposure is addressed at the time of licensing.				
Functional Description	The device tested is used to deliver broadband data services.				

2.1.1 **EUT POWER**

Voltage	120 Vac, 60 Hz
Number of Feeds	Single phase (L1 and Neutral)

Model: 2.3 GHz MX2 Base Station

FCC ID.: PL6-2300-BTS4-R1

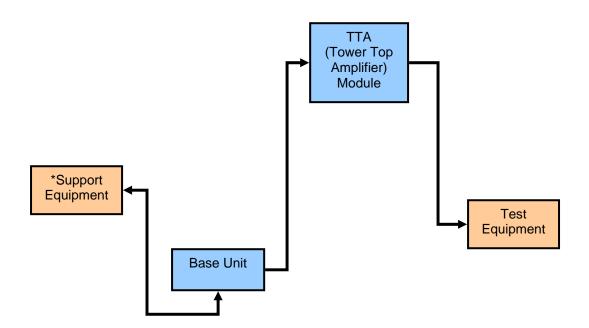
2.2 EUT CABLES

lantity	Madel/Tune	Roi	uting	Shielded /	Description	Cable Length
Qual	Model/Type	From	То	Unshielded	ded Description	
1	Coaxial	EUT	Test equipment	Shielded	Coaxial cable	3
1	Ethernet	EUT	Support/configuration PC	unshielded		2

2.3 Mode of Operation During tests

Frequencies: 2307.5 MHz (Low A), 2312.5 MHz (Low B), 2352.5 MHz (High A), 2357.5 MHz (High B),

Modulation Mode: OFDMA (Orthogonal Frequency Division Multiple Access) QPSK. This mode was determined to produce worst-case results based on pre-testing.

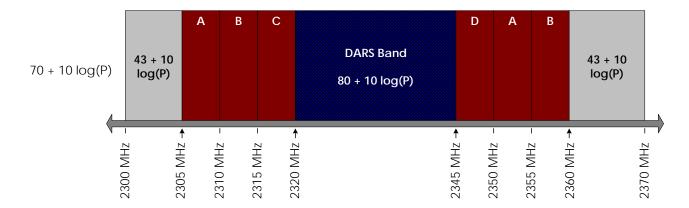


3.0 SUPPORT EQUIPMENT

3.1 CONFIGURATION

The radio was activated using customer-supplied test software. The software allowed the test engineer to change modulation modes and data rates and transmit channel.

3.2 TEST BED/PERIPHERAL CONFIGURATION



Support Equipment:

- 1. Hawking Technology Ethernet Switch, model # HFS5T;
- 2. Dell Laptop, model # Latitude C810.

4.0 FREQUENCY SPECTRUM

Model: 2.3 GHz MX2 Base Station

FCC ID.: PL6-2300-BTS4-R1

APPENDICES

APPENDIX A: 2.1046 RF POWER OUTPUT

A.1. **Base Standard & Test Basis**

Base Standard	FCC PART 2.1046
Test Basis	TIA 603-C, 2004
Test Method	TIA 603-C, 2004

A.2. **Specifications**

27.50 Power and antenna height requirements

- (a) The following power limits apply to the 2305–2320 MHz and 2345–2360 MHz bands:
 - (1) Fixed, land, and radiolocation land stations transmitting are limited to 2000 watts peak equivalent isotropically radiated power (EIRP).
- (2) Mobile and radiolocation mobile stations transmitting are limited to 20 watts EIRP peak power.

Applicable RF Power Limit from Above: The maximum power is 2000 watts peak EIRP.

A.3. **Deviations**

Deviation	Time &	Description and	De			
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
None						

A.4. **Test Procedure**

TIA 603-C, 2004 and 27.50(h)(2)(i)

A.5. **Test Results**

Band	Frequency	Peak Power (dBm)	Avg. Power (dBm)	Avg. Power (Watts)
Low Band A	2.3075 GHz	40.91	31.93	1.56
High Band A	2.3525 GHz	40.56	32.11	1.63
Low Band B	2.3125 GHz	40.75	32.25	1.68
High Band B	2.3575 GHz	40.53	32.12	1.63

Spectrum Analyzer Settings:

RBW: 10 MHz VBW: 10 MHz

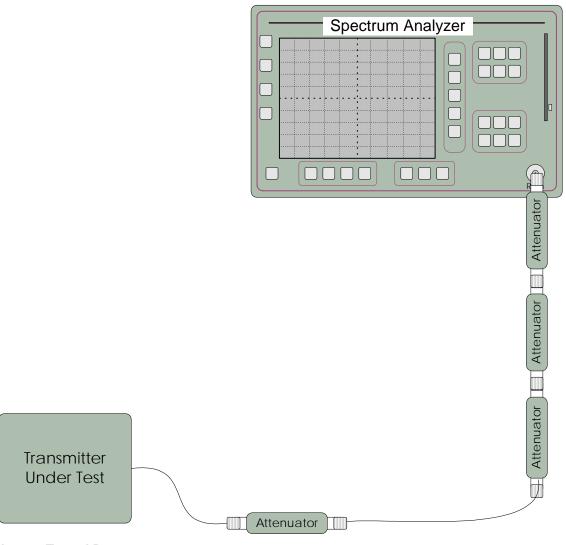
Detector: Max. Peak (for peak power measurement) RMS (for average power measurement)

A.6. **Operating Mode During Test**

The transmitter was tested while in a continuous transmit mode.

A.7. **Sample Calculation**

Rf power(watts) = $10^{(\text{rf power}(dBm)/10)} / 1000$


A.8. **Test Data**

Test Date: 11 December, 2007

Tested by: Dwaine Hartman, Wireless Technician

A.9. Test Diagram

A.10. Tested By

Test Date: 11 December, 2007

Tested by: Dwaine Hartman, Wireless Technician

APPENDIX B: 2.1047 MODULATION CHARACTERISTICS

B.1. **Base Standard & Test Basis**

Base Standard	FCC 2.1047
Test Basis	FCC 2.1047 Modulation Characteristics
Test Method	TIA 603-C, 2004

B.2. **Specifications**

2.1047 - Modulation Characteristics

- (a) Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.
- (b) Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels
- (c) Single sideband and independent sideband radiotelephone transmitters which employ a device or circuit to limit peak envelope power. A curve showing the peak envelope power output versus the modulation input voltage shall be supplied. The modulating signals shall be the same in frequency as specified in paragraph (c) of §2.1049 for the occupied bandwidth tests.
- (d) Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

B.3. **Deviations**

Deviation	n Time & Description and		De			
Number		Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
none						

B.4. **Test Method**

This device generates a complex digitally modulated waveform.

Model: 2.3 GHz MX2 Base Station

FCC ID.: PL6-2300-BTS4-R1

B.5. Test Results

Not applicable – The device does not produce an analogue modulated waveform.

Test Data Summary

Emission Designators: 5M00W7D OFDMA mode

B.6. Test Diagram

N/A

B.7. Tested By

Test Date: 11 December, 2007

Tested by: Dwaine Hartman, Wireless Technician

APPENDIX C: 2.1049 OCCUPIED BANDWIDTH

C.1. **Base Standard & Test Basis**

Base Standard	FCC 2.1049	
Test Basis	Test Basis FCC 2.1049 Occupied Bandwidth	
Test Method	TIA 603-C, 2004	

C.2. **Specifications**

- (a) For operations in the bands 2305–2320 MHz and 2345–2360 MHz, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by the following amounts:
 - (1) For fixed, land, and radiolocation land stations: By a factor not less than 80 + 10 log (p) dB on all frequencies between 2320 and 2345 MHz:
 - (2) For mobile and radiolocation mobile stations: By a factor not less than 110 + 10 log (p) dB on all frequencies between 2320 and 2345 MHz;
 - (3) For fixed, land, mobile, radiolocation land and radiolocation mobile stations: By a factor not less than 70 + 10 log (p) dB on all frequencies below 2300 MHz and on all frequencies above 2370 MHz; and not less than 43 + 10 log (p) dB on all frequencies between 2300 and 2320 MHz and on all frequencies between 2345 and 2370 MHz that are outside the licensed bands of operation:
 - (4) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or less, but at least one percent of the emission bandwidth of the fundamental emission of the transmitter, provided the measured energy is integrated over a 1 MHz bandwidth:
 - (5) In complying with the requirements in §27.53(a)(1) and §27.53(a)(2), WCS equipment that uses opposite sense circular polarization from that used by Satellite DARS systems in the 2320-2345 MHz band shall be permitted an allowance of 10 dB;
 - (6) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the edges, both upper and lower, of the licensee's bands of operation as the design permits;
 - (7) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power;

C.3. **Deviations**

Deviation Number	Time & Date	Description and Justification of Deviation	Deviation Reference			
			Base Standard	Test Basis	NTS Procedure	Approval
none						

C.4. **Test Method**

TIA 603-C, 2004 and 27.53(a)

C.5. **Test Results**

Compliant.

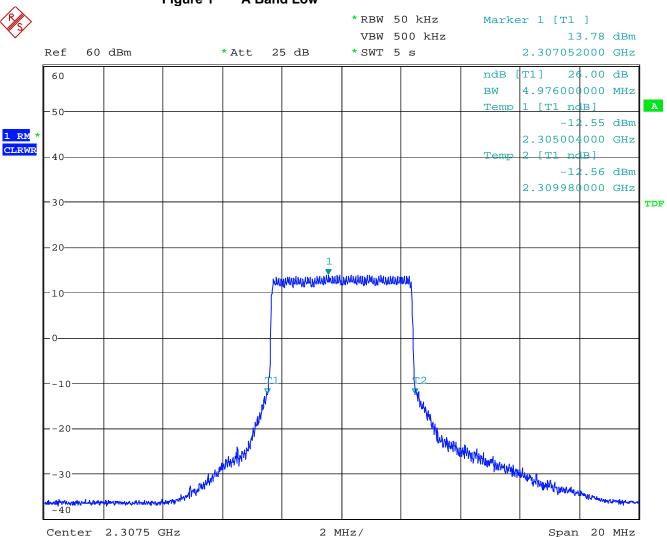
C.6. **Deviations from Normal Operating Mode During Test**

Model: 2.3 GHz MX2 Base Station

FCC ID.: PL6-2300-BTS4-R1

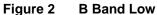
None.

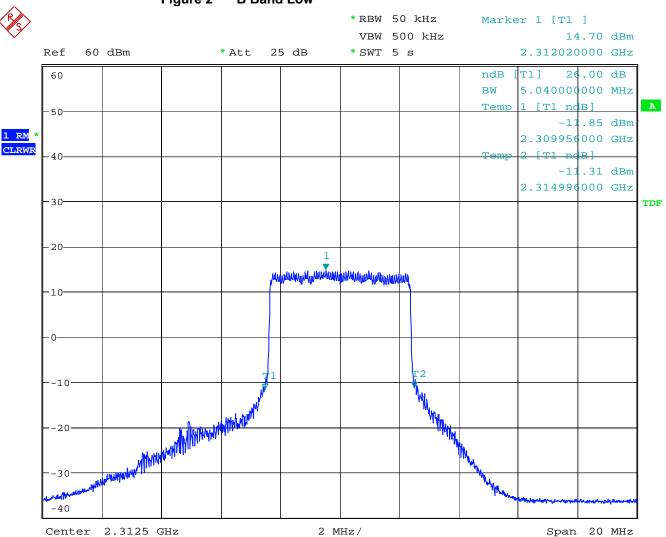
C.7. Sample Calculation


70 + 10 log(P) 70 + 10 log(2) 70 + 10 * 0.3 70 + 3 = 73 dB 33 dBm - 73 dB = -40 dBm

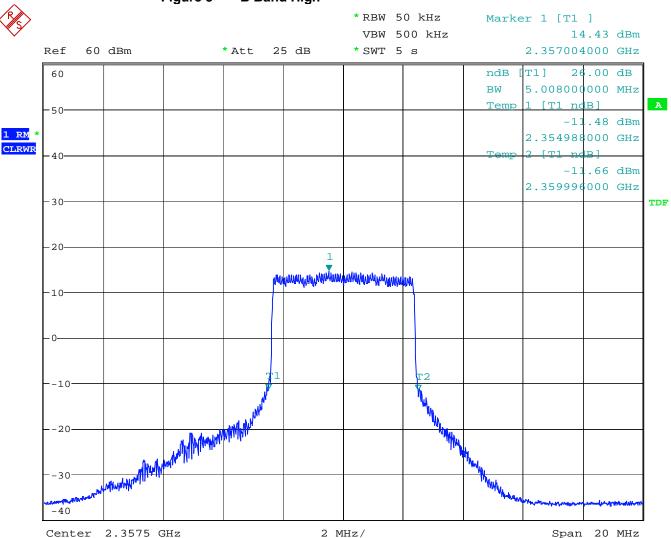
C.8. Test Data

See plots following.



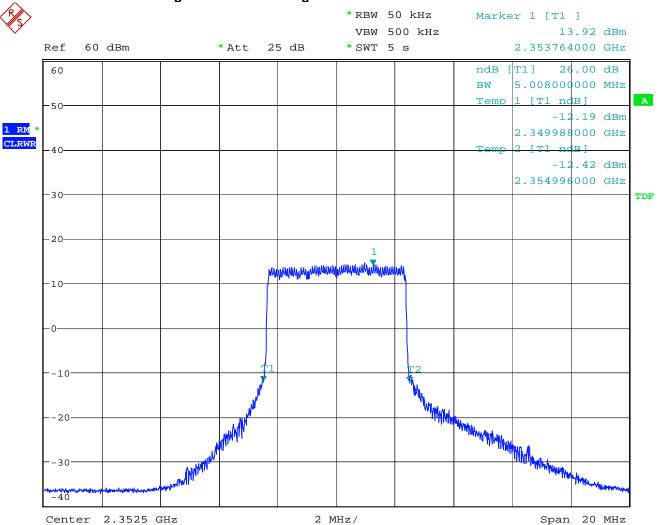


Date: 11.DEC.2007 09:09:12

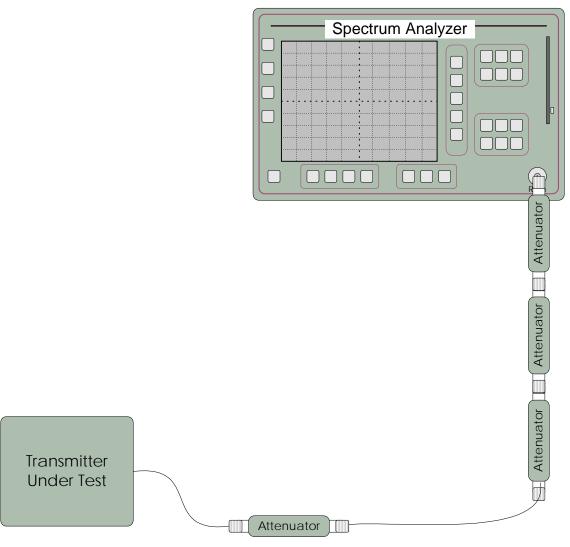


Date: 11.DEC.2007 10:02:50

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



Date: 11.DEC.2007 10:21:30



Date: 11.DEC.2007 10:34:03

C.9. **Test Diagram**

C.10. Tested By

Test Date: 11 December, 2007

Tested by: Dwaine Hartman, Wireless Technician

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

APPENDIX D: 2.1051 SPURIOUS EMISSIONS AT ANTENNA **TERMINALS**

D.1. **Base Standard & Test Basis**

Base Standard	FCC 2.1051
Test Basis FCC 2.1051 Spurious Emissions at Antenna Terminals	
Test Method	TIA 603-C, 2004

D.2. **Specifications**

27.53

- (a) For operations in the bands 2305–2320 MHz and 2345–2360 MHz, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by the following amounts:
 - (1) For fixed, land, and radiolocation land stations: By a factor not less than 80 + 10 log (p) dB on all frequencies between 2320 and 2345 MHz;
 - (2) For mobile and radiolocation mobile stations: By a factor not less than 110 + 10 log (p) dB on all frequencies between 2320 and 2345 MHz;
 - (3) For fixed, land, mobile, radiolocation land and radiolocation mobile stations: By a factor not less than 70 + 10 log (p) dB on all frequencies below 2300 MHz and on all frequencies above 2370 MHz; and not less than 43 + 10 log (p) dB on all frequencies between 2300 and 2320 MHz and on all frequencies between 2345 and 2370 MHz that are outside the licensed bands of
 - (4) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or less, but at least one percent of the emission bandwidth of the fundamental emission of the transmitter, provided the measured energy is integrated over a 1 MHz bandwidth;
 - (5) In complying with the requirements in §27.53(a)(1) and §27.53(a)(2), WCS equipment that uses opposite sense circular polarization from that used by Satellite DARS systems in the 2320-2345 MHz band shall be permitted an allowance of 10 dB:
 - (6) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the edges, both upper and lower, of the licensee's bands of operation as the design permits;
 - (7) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power;

D.3. **Measurement Uncertainty**

Expanded Uncertainty (K=2)			
+1.11/-1.22			

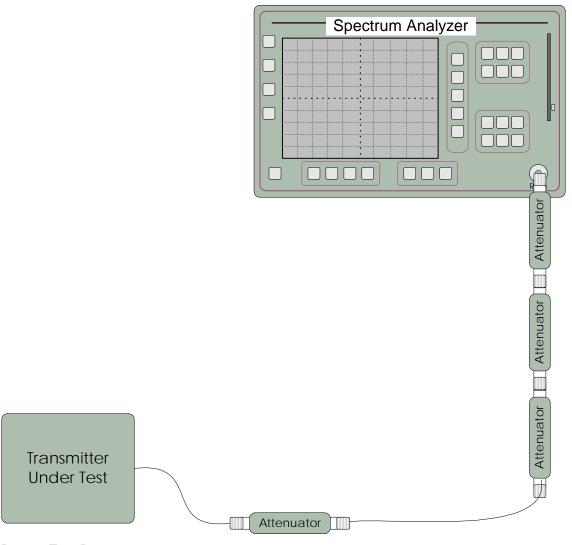
D.4. **Deviations**

Deviation Number	Time & Date	Description and Justification of Deviation	Deviation Reference			
			Base Standard	Test Basis	NTS Procedure	Approval
none						

Model: 2.3 GHz MX2 Base Station

Compliance Test Report

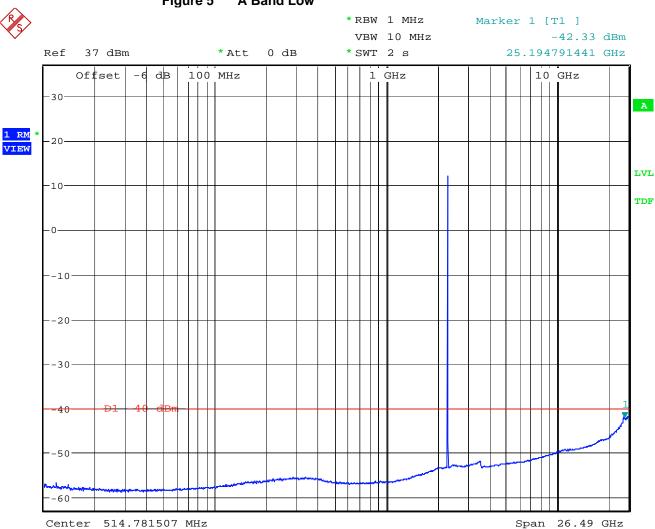
FCC ID.: PL6-2300-BTS4-R1


D.5. Test Results

Complies. All emissions meet the out of band limits.

Out-of-Band Emissions limit is 70 + 10 log(P) which relates to -40 dBm absolute power.

D.6. Test Diagram



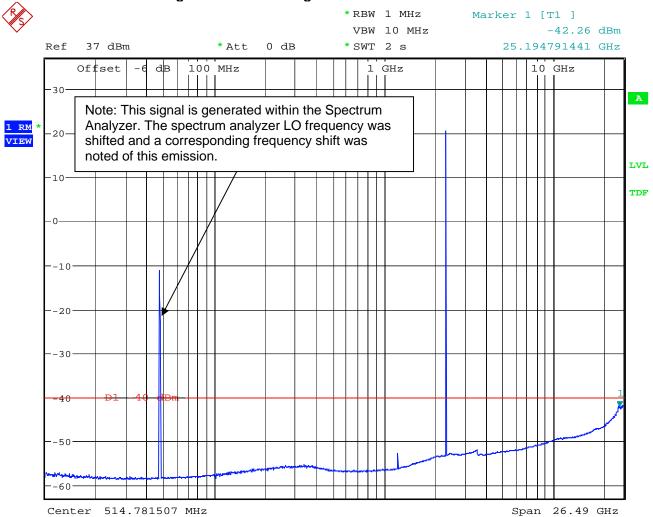
D.7. Test Data

See following pages.



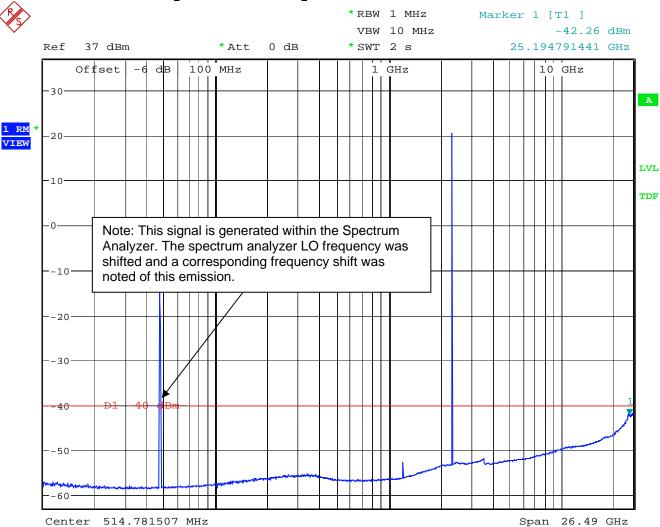
Date: 1.FEB.2008 12:45:22

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

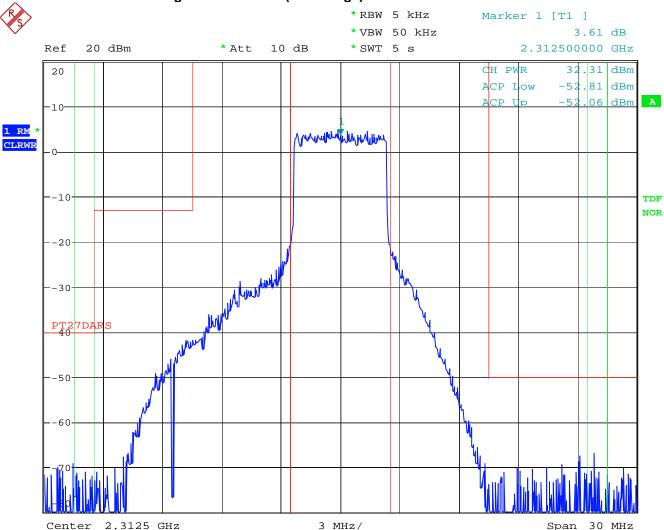


Date: 1.FEB.2008 12:48:46

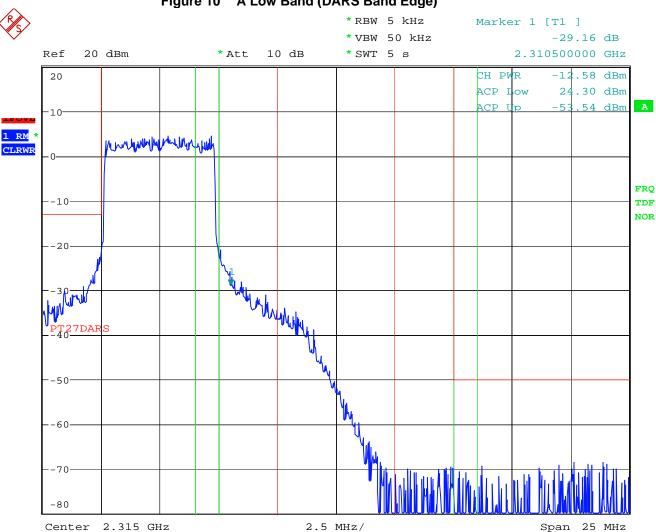
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



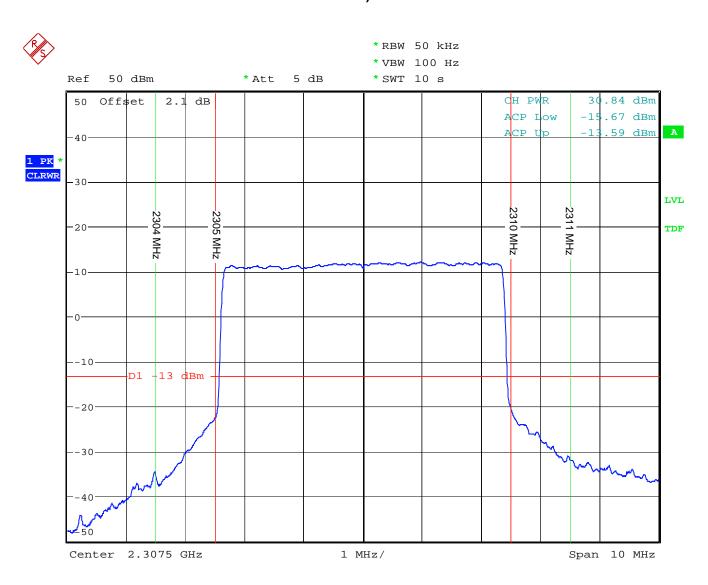
Date: 1.FEB.2008 12:52:45



Date: 1.FEB.2008 12:52:45

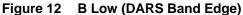


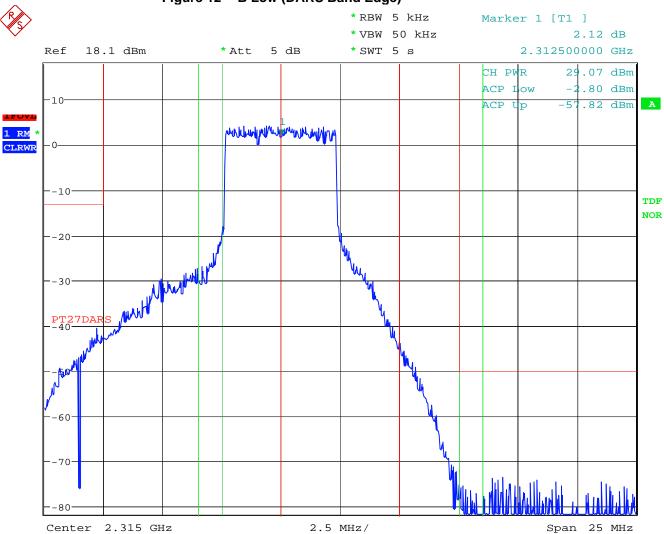
Date: 11.DEC.2007 10:10:11



Date: 11.DEC.2007 13:02:52

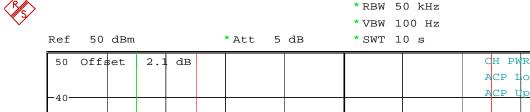
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

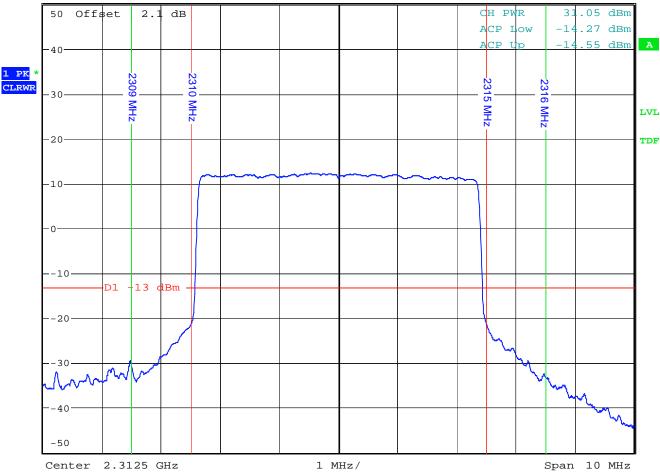

Figure 11 A Low Band (Band Edge showing compliance to -13 dBm 2304 - 2305 MHz)



Date: 7.FEB.2008 11:24:49

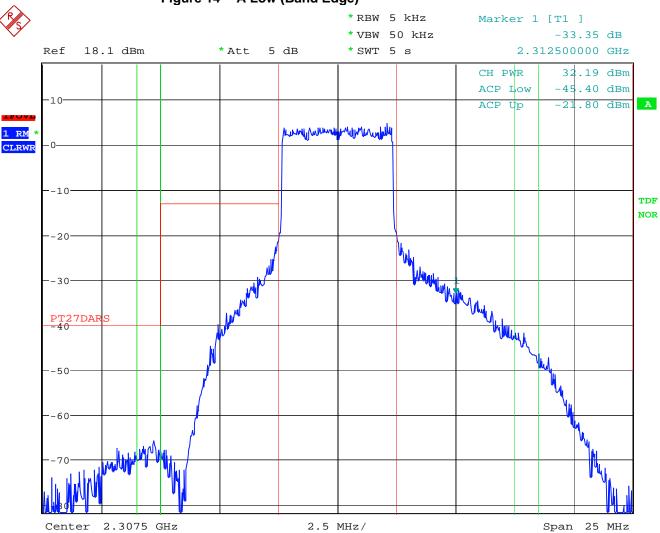
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.




Date: 11.DEC.2007 10:13:37

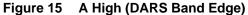
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

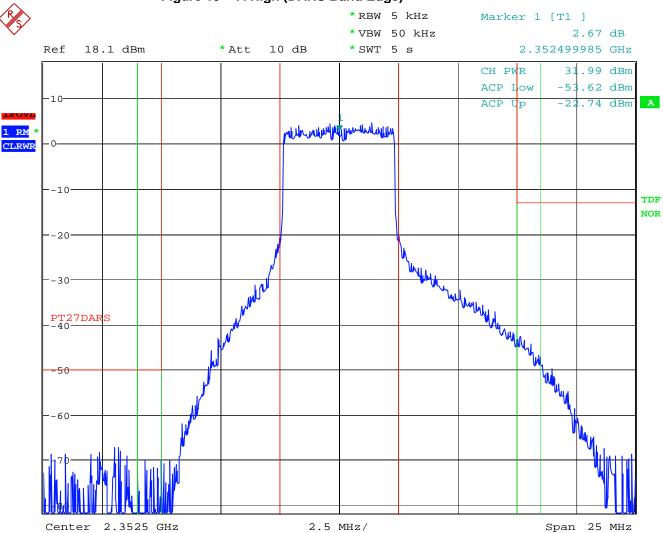
Figure 13 B Low (Band Edge showing compliance to -13 dBm 2315 -2316 MHz)



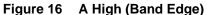
Date: 7.FEB.2008 11:26:12

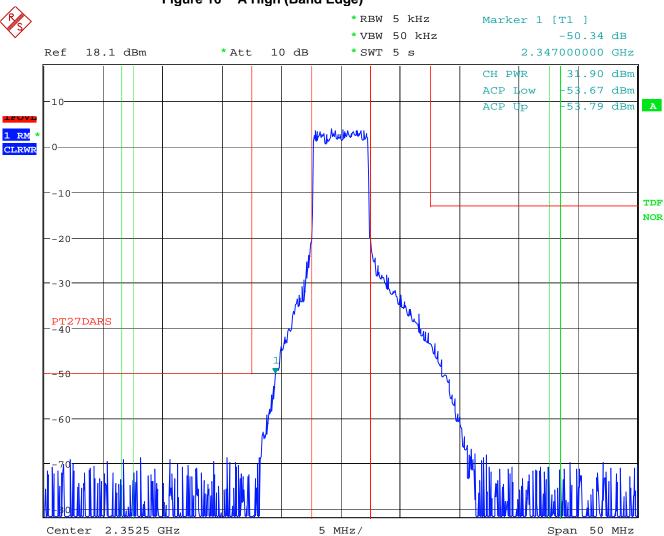
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.





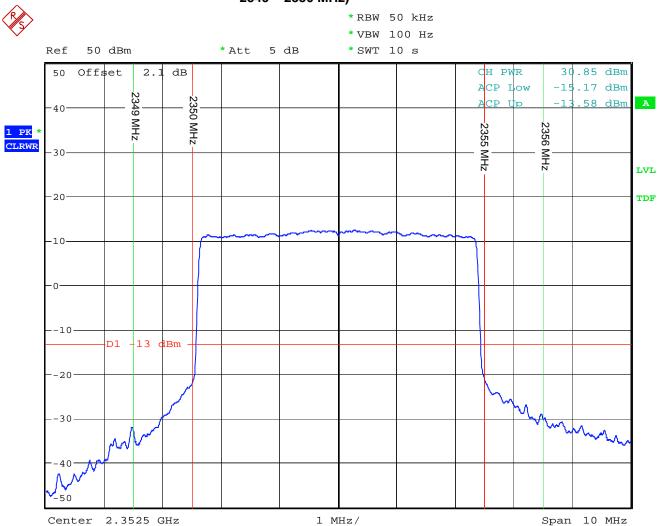
Date: 11.DEC.2007 09:37:52





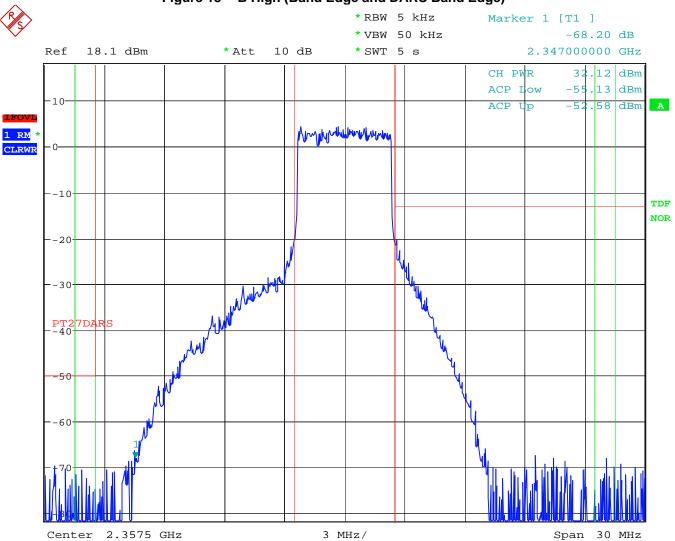
Date: 11.DEC.2007 10:47:53

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.


Date: 11.DEC.2007 10:40:13

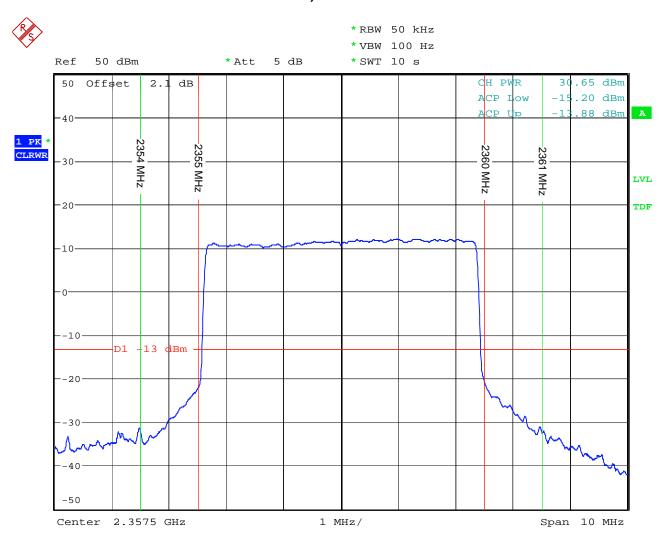
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Figure 17 A High Band (Band Edge showing compliance to -13 dBm 2349 - 2350 MHz)



Date: 7.FEB.2008 11:17:21

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



Date: 11.DEC.2007 12:58:36

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Figure 19 B High (Band Edge showing compliance to -13 dBm 2360 -2361 MHz)

Date: 7.FEB.2008 11:15:46

D.8. **Tested By**

Test Date: 11 December, 2007

Tested by: Dwaine Hartman, Wireless Technician

APPENDIX E: 2.1053 FIELD STRENGTH OF SPURIOUS RADIATION

E.1. **Base Standard & Test Basis**

Base Standard	FCC 2.1053
Test Basis	FCC 2.1053 Field Strength of Spurious Radiation
Test Method	TIA 603-C, 2004 Substitution Antenna Method

Limits E.2.

27.53

- (a) For operations in the bands 2305–2320 MHz and 2345–2360 MHz, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by the following amounts:
 - (1) For fixed, land, and radiolocation land stations: By a factor not less than 80 + 10 log (p) dB on all frequencies between 2320 and 2345 MHz;
 - (2) For mobile and radiolocation mobile stations: By a factor not less than 110 + 10 log (p) dB on all frequencies between 2320 and 2345 MHz;
 - (3) For fixed, land, mobile, radiolocation land and radiolocation mobile stations: By a factor not less than 70 + 10 log (p) dB on all frequencies below 2300 MHz and on all frequencies above 2370 MHz; and not less than 43 + 10 log (p) dB on all frequencies between 2300 and 2320 MHz and on all frequencies between 2345 and 2370 MHz that are outside the licensed bands of operation:
 - (4) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or less, but at least one percent of the emission bandwidth of the fundamental emission of the transmitter, provided the measured energy is integrated over a 1 MHz bandwidth;
 - (5) In complying with the requirements in §27.53(a)(1) and §27.53(a)(2), WCS equipment that uses opposite sense circular polarization from that used by Satellite DARS systems in the 2320-2345 MHz band shall be permitted an allowance of 10 dB;
 - (6) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the edges, both upper and lower, of the licensee's bands of operation as the design permits;
 - (7) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power;

E.3. **Test Results**

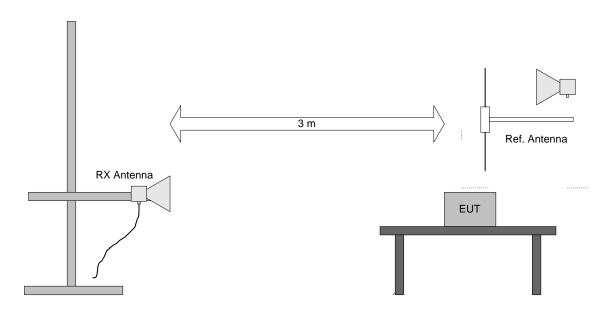
Compliant. The worst-case spurious emission level was -52.7 dBm at 4715 MHz. This level is 12.7 dB below the specification limit of -40 dBm. The spectrum was searched from 30 MHz up to 26.5 GHz.

E.4. **Deviations from Normal Operating Mode During Test**

None.

E.5. Sample Calculation

Final measured value (dBm) = Substitution level (dBm) + Antenna Gain (dBd)


Minimum attenuation limit (dB) = $70 + 10 \log(P)$ where P = Peak power of the carrier in watts.

Min. Atten. Limit dB) = 70 + 10 * log(2 watts)= 70 + 10 * 0.3= 70 + 3= 73 dB

33 dBm - 73 dB = -40 dBm

E.6. Test Diagram

Note: The EUT is set to repeat a signal at maximum rf output power into a coaxial load for this testing. Testing was performed in an open area.

E.7. Test Data

Project No: Navini Networks W7445 Model: 2.3 GHz MX2 BTS

Comments: Transmit at full of output power (2 watts average, 20 watts pk.)

Date: 12/11/2007

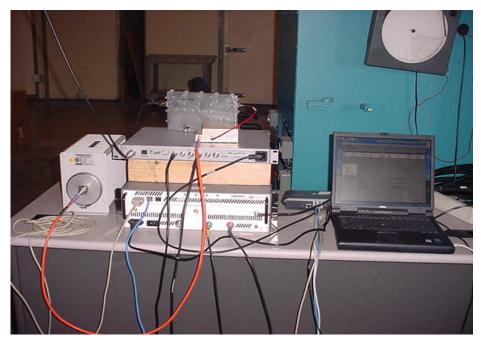
Distance: 3 m Standard: CFR 47, Part 2.1043 RBW: (unless < 1 GHz = 120 kHz VBW: (unless Peak = RBW Aug. = 10 Hz noted) > 1 GHz = 1 MHz noted)

Antenna	Polarization	Frequency	Measured	Substitution Level	Substitution Antenna Gain		ured Value	Peak Ca	rrier Power	Mnimum Attenuation Limit	Margin
	(V/H)	(MHz)	(dBm)	(dBm)	(dBi)	(dBm)	(watts)	(dBm)	(watts)	(dBc)	(dB)
Ref. E1019	V	4715	-134.7	-61.42	8.73	-52.7	5.38E-09	32	2	72	12.7
Ref. E1019	Н	4715	-134.7	-61.42	8.73	-52.7	5.38E-09	32	2	72	12.7
Ref. E1019	V	7072.5	-140.5	-69.21	9.77	-59.4	1.14E-09	32	2	72	19.4
Ref. E1019	Н	7072.5	-140.5	-69.21	9.77	-59.4	1.14E-09	32	2	72	19.4
Ref. E1019	V	9430	-138	-68.26	9.49	-58.8	1.33E-09	32	2	72	18.8
Ref. E1019	Н	9430	-138	-68.26	9.49	-58.8	1.33E-09	32	2	72	18.8
Ref. E1019	V	11787.5	-137.2	-69.17	10.59	-58.6	1.39E-09	32	2	72	18.6
Ref. E1019	Н	11787.5	-137.2	-69.17	10.59	-58.6	1.39E-09	32	2	72	18.6
Ref. E1019	V	14145	-137.3	-71.82	9.45	-62.4	5. 79 E-10	32	2	72	22.4
Ref. E1019	Н	14145	-137.3	-71.82	9.45	-62.4	5. 79 E-10	32	2	72	22.4
Ref. E1019	V	16502.50	-134.2	-69.09	13.99	-55.1	3.09E-09	32	2	72	15.1
Ref. E1019	Н	16502.50	-134.2	-69.09	13.99	-55.1	3.09E-09	32	2	72	15.1

Notes: (1) A positive margin indicates a passing result

Note: Emissions were checked at 4 frequencies across the band. The data presented above was the worst-case result which was with maximum rf power output at 2357.5 MHz. The spectrum was searched from 30 MHz up to 26.5 GHz.

⁽²⁾ Spurious emissions were measured with average detection and compared to the maximum average fundamental power of 2 watts.


⁽³⁾ The minimum threshold of sensitivity was sufficient to detect signals within 10 dB of the -40 dBmllimit over the frequency range 30 M-Iz - 26 G-Iz.

IX2 Base Station FCC ID.: PL6-2300-BTS4-R1

E.8. Test Photo

E.9. Tested By

Test Date: 11 December, 2007

Tested by: Dwaine Hartman, Wireless Technician

Model: 2.3 GHz MX2 Base Station

Pase Station FCC ID.: PL6-2300-BTS4-R1

APPENDIX F: 2.1055 FREQUENCY STABILITY

F.1. Base Standard & Test Basis

Base Standard	FCC 2.1055
Test Method	TIA 603-C, 2004

Specifications

27.54 Frequency Stability

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

F.2. Deviations

Deviation Number	Time & Date	Description and Justification of Deviation	De			
			Base Standard	Test Basis	NTS Procedure	Approval
none						

F.3. Test Results

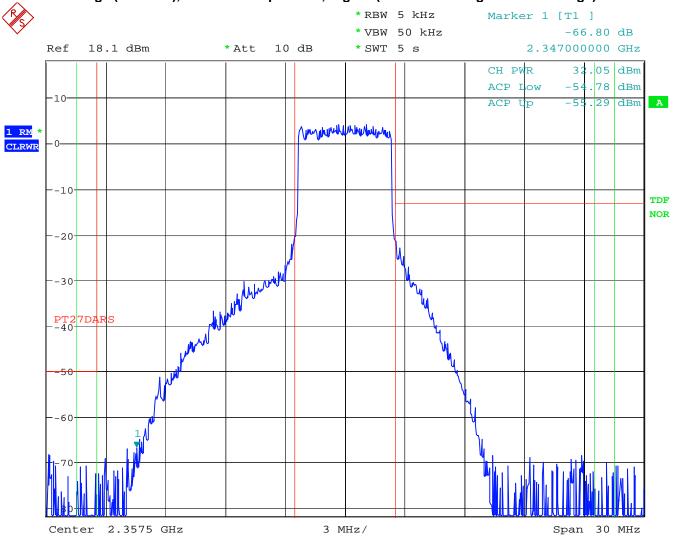
Complies

F.4. Observations

It was confirmed that the BTS ceased to transmit when the ambient temperature was reduced below 0 degrees Celsius.

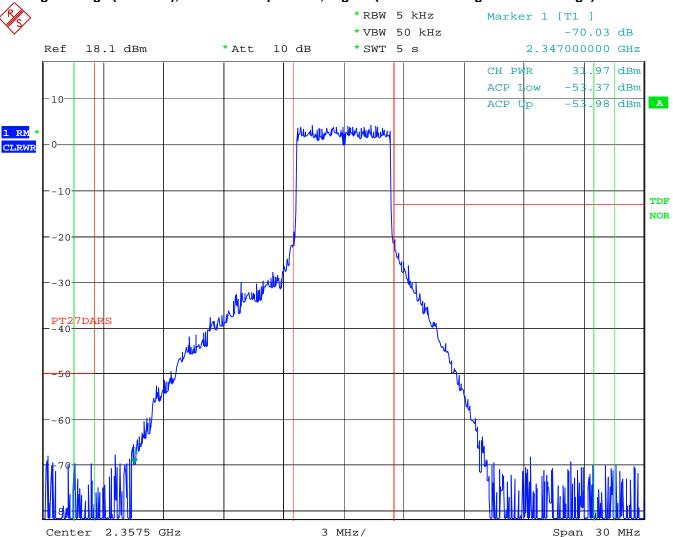
F.5. Deviations from Normal Operating Mode During Test

None.

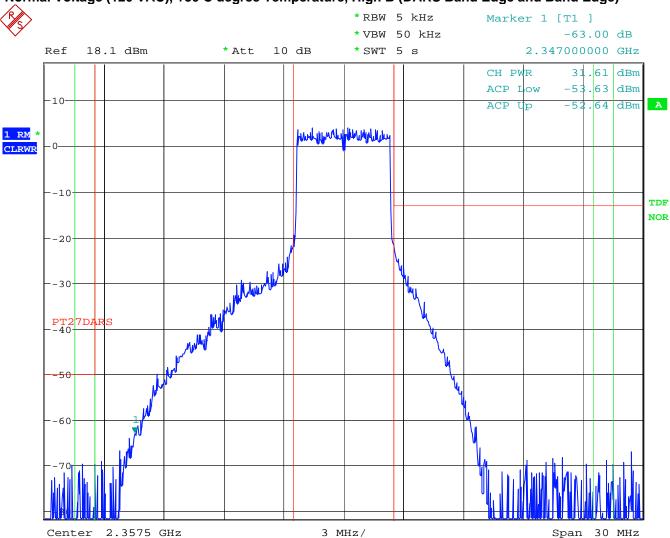

F.6. Sample Calculation

Frequency drift (ppm) = Frequency Drift (Hz)/Authorized frequency (MHz)

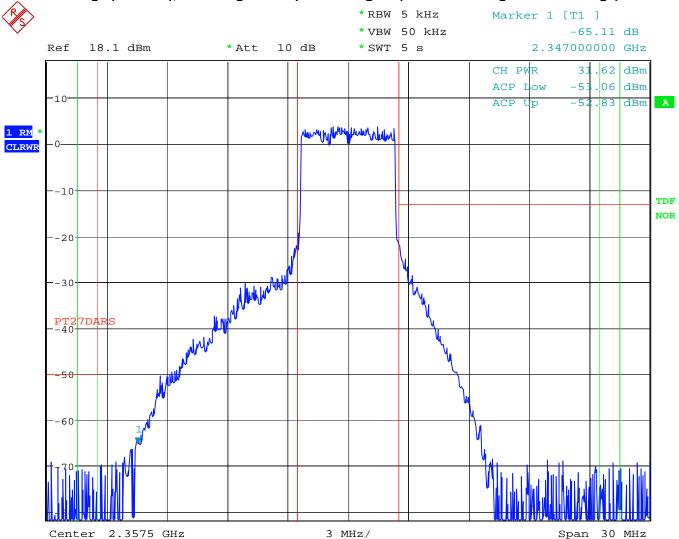
F.7. Test Data


Low Voltage (102 VAC), Ambient Temperature, High B (DARS Band Edge and Band Edge)

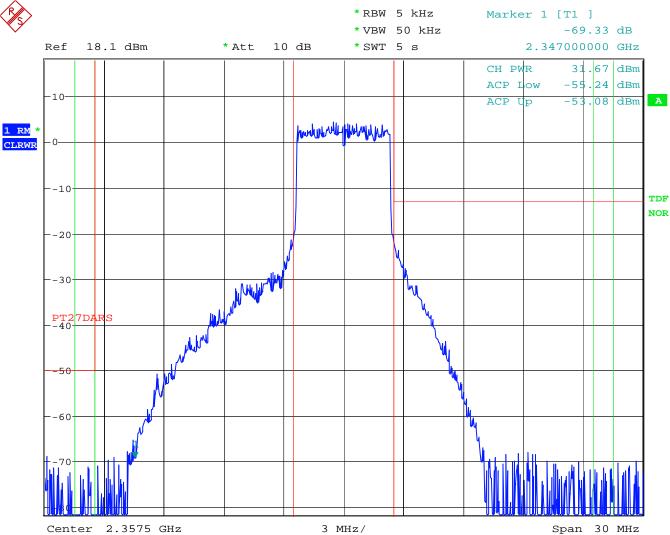
Date: 11.DEC.2007 13:07:41



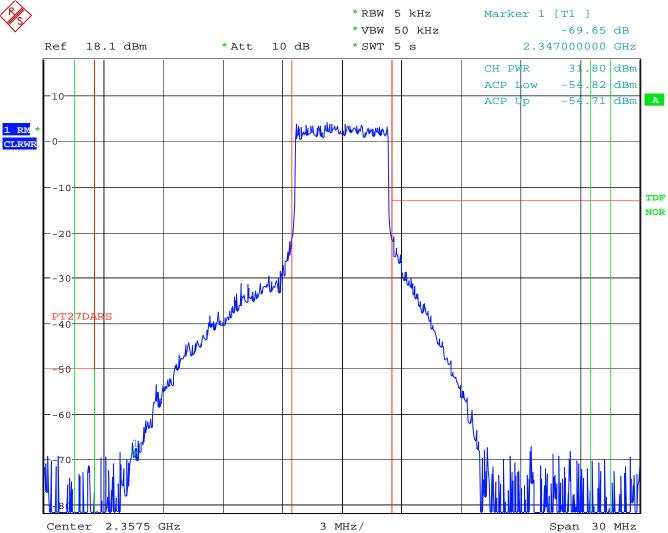
Date: 11.DEC.2007 13:09:26


Normal Voltage (120 VAC), +50 C degree Temperature, High B (DARS Band Edge and Band Edge)

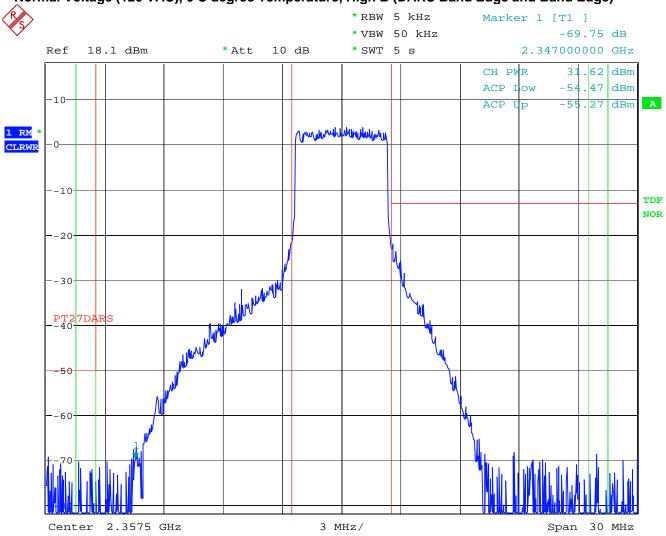
Date: 11.DEC.2007 13:39:01



Date: 11.DEC.2007 13:46:45



Date: 11.DEC.2007 13:54:03



Date: 11.DEC.2007 14:13:10

Date: 11.DEC.2007 14:22:53

F.8. Tested By

Test Date: 11 December, 2007

Tested by: Dwaine Hartman, Wireless Technician

APPENDIX G: TEST EQUIPMENT LIST

G.1. Field Strength of Spurious Emissions 30 MHz – 26.5 GHz Measurement Equipment

Description	Manufacturer	Type/Model	Calibration Frequency	Cal Due	NTS Control No.			
3m ANECHOIC CHAMBER								
RX Bilog Antenna	ETS	3142C	12 Months	9/21/08	E1288P			
Ref. Horn Antenna	ETS	3115	12 Months	9/05/08	E1049P			
RX Horn Antenna	ETS	3115	12 Months	9/05/08	E1049P			
High Frequency Cable	MegaPhase	TM26-3135- 144	12 Months	2/28/08	W1011P			
Reference Antenna	ETS	3121 Dipole Set	12 months	12/14/07	E1022P			
CONTROL ROOM								
Test Receiver	Rohde & Schwarz	r FSQ 26	12 Months	12/31/07	W1020P			
High Frequency - Cable 2	MegaPhase	NA	12 Months	8/23/08	W1011P			
Amplifier	HP		12 Months	6/30/08	E1010P			

G.2. Antenna Conducted Emissions Measurement Equipment

Instrument	Manufacturer	Model	Calibration Frequency	Cal Due	NTS Control No.			
ANTENNA CONDUCTED EMISSIONS								
Spectrum Analyzer	Rohde & Schwarz	FSQ 26	12 Months	12/31/07	W1020P			
High Frequency - Cable 1	MegaPhase	TM26- 3135-144	12 Months	8/23/08	W1011P			
Directional Coupler	Narda	3020A	12 Months	n/a	W1006P			
20 dB attenuator	INMET	26A-20	12 Months	10/24/08	W1019P			
10 dB attenuator	INMET	26A-10	12 Months	10/24/08	W1018P			
Climate Chamber	Tenney	T-14	No Cal Req'd	No Cal Req'd	ENV-1053P			
Temperature Sensor	Honeywell	Trueline	24 Months	5/13/08	ENV-1053P			

^{*}This device was not used for calibrated measurements.

Model: 2.3 GHz MX2 Base Station

FCC ID.: PL6-2300-BTS4-R1

END OF DOCUMENT