

# **TEST REPORT**

Test Report No.: UL-RPT-RP10983334JD01A

Manufacturer : General Dynamics Broadband UK Ltd

Model No. : BBR

Product Generation : 1

FCC ID : PKTODUBBR

Technology : LTE

**Test Standard(s)** : FCC Parts 2.1049, 2.1051, 74.636(a), 74.637(a)(c) & 74.661

1. This test report shall not be reproduced in full or partial, without the written approval of UL VS LTD.

- 2. The results in this report apply only to the sample tested.
- 3. The sample tested is in compliance with the above standard(s).
- 4. The test results in this report are traceable to the national or international standards.

5. Version 1.0.

Date of Issue: 12 May 2016

Checked by:

Ian Watch Senior Engineer, Radio Laboratory

**Company Signatory:** 

Steven White Service Lead, Radio Laboratory UL VS LTD



This laboratory is accredited by UKAS. The tests reported herein have been performed in accordance with its terms of accreditation.

Facsimile: +44 (0)1256 312001

SERIAL NO: UL-RPT-RP10983334JD01A

VERSION 1.0 ISSUE DATE: 12 MAY 2016

This page has been left intentionally blank.

Page 2 of 57 UL VS LTD

# **Table of Contents**

| 1. Customer Information                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 2. Summary of Testing                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>5</b><br>5<br>5<br>5<br>6      |
| 3. Equipment Under Test (EUT)                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>7</b><br>7<br>7<br>7<br>7<br>8 |
| 4. Operation and Monitoring of the EUT during Testing  4.1. Operating Modes  4.2. Configuration and Peripherals                                                                                                                                                                                                                                                                                                                                               | 9<br>9<br>9                       |
| 5. Measurements, Examinations and Derived Results 5.1. General Comments 5.2. Test Results 5.2.1. Transmitter Power limitations 5.2.2. Transmitter Occupied Bandwidth 5.2.3. Transmitter Duty Cycle 5.2.4. Transmitter Conducted Emission Mask 5.2.5. Transmitter Conducted Emissions 5.2.6. Transmitter Radiated Spurious Emissions 5.2.7. Transmitter Frequency Stability (Temperature Variation) 5.2.8. Transmitter Frequency Stability (Voltage Variation) |                                   |
| 6. Measurement Uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56                                |
| 7. Report Revision History                                                                                                                                                                                                                                                                                                                                                                                                                                    | 57                                |

UL VS LTD Page 3 of 57

# 1. Customer Information

| Company Name: | General Dynamics Broadband UK Ltd                                                           |
|---------------|---------------------------------------------------------------------------------------------|
| Address:      | Unit 7 Greenways Business Park Bellinger Close Chippenham Wiltshire SN15 1BN United Kingdom |

Page 4 of 57 UL VS LTD

### 2. Summary of Testing

### 2.1. General Information

| Specification Reference: | 47CFR74                                                                                                                 |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Specification Title:     | Code of Federal Regulations Volume 47 (Telecommunications): Part 74 Subpart F (Television Broadcast Auxiliary Stations) |
| Site Registration:       | 209735                                                                                                                  |
| Location of Testing:     | UL VS LTD, Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom         |
| Test Dates:              | 15 February 2016 to 01 March 2016                                                                                       |

### 2.2. Summary of Test Results

| FCC Reference (47CFR)                        | Measurement                                                         | Note(s)  | Result   |
|----------------------------------------------|---------------------------------------------------------------------|----------|----------|
| 74.636(a)                                    | Transmitter Power Limitations                                       | -        | <b>②</b> |
| 2.1049                                       | Transmitter Occupied Bandwidth                                      | -        | <b>②</b> |
| 74.636                                       | Transmitter Duty Cycle                                              | -        | <b>②</b> |
| 74.637(a)(2)(i) / 74.637(c)(3)<br>/ 2.1051   | Transmitter Conducted Emissions Mask                                | 1        | <b>②</b> |
| 74.637(a)(2)(iii) /<br>74.637(c)(3) / 2.1051 | Transmitter Conducted Emissions                                     | -        | <b>②</b> |
| 74.637(a)(2)(iii) /<br>74.637(c)(3) / 2.1053 | Transmitter Radiated Spurious Emissions                             | -        | <b>②</b> |
| 74.661 / 2.1055                              | Transmitter Frequency Stability (Temperature and Voltage Variation) | -        | <b>②</b> |
| Key to Results                               |                                                                     | <u> </u> |          |
| = Complied                                   | □ = Did not comply                                                  |          |          |

#### Note(s):

1. Calculations of the emission mask specified in Part 74.637(a)(2)(i), were performed using 6 and 12 MHz as values for the authorised bandwidth, for the 5 and 10 MHz channel bandwidths respectively. The authorised bandwidth and mask parameters were established in pre-filing KDB inquiry consultation with FCC Lab.

#### 2.3. Methods and Procedures

| Reference: | FCC KDB 971168 D01 v02r02, October 17 2014                              |
|------------|-------------------------------------------------------------------------|
| Title:     | Measurement Guidance for Certification of Licensed Digital Transmitters |

UL VS LTD Page 5 of 57

# 2.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

Page 6 of 57

# 3. Equipment Under Test (EUT)

### 3.1. Identification of Equipment Under Test (EUT)

| Brand Name:                | General Dynamics Broadband |  |
|----------------------------|----------------------------|--|
| Model Name or Number:      | BBR                        |  |
| Product Generation:        | 1                          |  |
| Test Sample Serial Number: | BBRBG010042A               |  |
| Hardware Version:          | 2A                         |  |
| Software Version:          | 9.2.6                      |  |
| FCC ID:                    | PKTODUBBR                  |  |

### 3.2. Description of EUT

The Equipment Under Test was an LTE TV Broadcast Auxiliary Station that can be used in fixed or mobile applications. It is powered from a 28 VDC supply.

### 3.3. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

### 3.4. Additional Information Related to Testing

| Tested Technology:                  | LTE                                     |          |        |  |
|-------------------------------------|-----------------------------------------|----------|--------|--|
| Type of Equipment                   | Broadcast Auxiliary Station             |          |        |  |
| Channel Bandwidth:                  | 5 MHz & 10 MHz                          |          |        |  |
| Modulation Types:                   | QPSK & 16QAM                            |          |        |  |
| Duty Cycle:                         | 60%                                     | 60%      |        |  |
| Peak Antenna Gain:                  | 24.0 dBi                                |          |        |  |
| Power Supply Requirement:           | Nominal 28.0 VDC                        |          |        |  |
|                                     | Minimum                                 | 18.0 VDC |        |  |
|                                     | Maximum                                 | 33.0 VDC |        |  |
| Transmit / Receive Frequency Range: | e: 2025 MHz to 2110 MHz                 |          |        |  |
| Channels Tested:                    | Channel Bandwidth Frequency (MHz) (MHz) |          |        |  |
| Bottom Channel                      | 5                                       |          | 2028.5 |  |
|                                     | 10                                      |          | 2031.5 |  |
| Middle Channel                      | All                                     |          | 2067.5 |  |
| Top Channel                         | 5                                       |          | 2106.5 |  |
|                                     | 10                                      |          | 2103.5 |  |

UL VS LTD Page 7 of 57

# 3.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

| Description:          | Laptop PC          |
|-----------------------|--------------------|
| Brand Name:           | Toshiba            |
| Model Name or Number: | Satellite Pro A100 |
| Serial Number:        | 67071048Q          |

| Description:          | Ethernet cable |
|-----------------------|----------------|
| Brand Name:           | None stated    |
| Model Name or Number: | None stated    |
| Serial Number:        | None stated    |

| Description:          | Communications Tester              |  |
|-----------------------|------------------------------------|--|
| Brand Name:           | Rohde & Schwarz                    |  |
| Model Name or Number: | CMW 500                            |  |
| Serial Number:        | 119871 (UL VS LTD Asset No. L1174) |  |

Page 8 of 57

### 4. Operation and Monitoring of the EUT during Testing

#### 4.1. Operating Modes

The EUT was tested in the following operating mode(s):

 Transmit Mode - The EUT was set to transmit with maximum output power in TDD mode, using 5 MHz and 10 MHz channel bandwidths with maximum resource blocks of 25 and 50 respectively.
 QPSK and 16QAM modulation modes were tested.

#### 4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

- The EUT has one transceiver RF port marked *Tx/Rx* and one receiver port marked *Rx*. Both ports were always terminated with a matched load, by either the connection of a link to a Rohde & Schwarz CMW500 Communications Tester, or by a discrete 50 Ohm load.
- The EUT was given an external data stream using the Ethernet service port, sourced via a test laptop PC, using iPerf commands into a command window and a data file supplied by the customer.
- For conducted transmit tests, the EUT was put into a two port link with a CMW 500 Communications
  Tester, running a user defined LTE TDD mode. The operating frequencies, bandwidths and
  modulation modes of the EUT were selected by changing the uplink parameters on the CMW 500.
  The customer gave test instructions, which were followed to place the unit into the correct test mode.
  The instructions were noted and stored on the UL VS LTD IT server under the relevant job number
  as Documentation/Radio/setup info.docx
- For conducted transmit tests, the following configuration was used
  - o The EUT Tx/Rx port was connected via two 20 dB attenuators to the RF 1 COM port on the CMW 500, configured for both uplink and downlink. The measurement system was connected via suitable attenuation to a directional coupler or splitter inserted at the mid-point node of the attenuators. A resistive splitter was used for used measurements below 1GHz and a coupler was used above 1GHz.
  - The EUT Rx port was connected via 40 dB of attenuation to the RF 3 COM port on the CMW 500, configured for downlink.
  - The measurement layout was configured such that the optimum range of signal levels could be measured whilst all components were used within their operating range.
- For cabinet radiated transmit tests, the EUT was put into a one port conducted link with a CMW 500 Communications Tester, running a user defined LTE TDD mode. The EUT Rx port was terminated with a matched load. The operating frequencies, bandwidths and modulation modes of the EUT were selected by changing the uplink parameters on the CMW 500.
- For the 5 MHz channel bandwidth, the EUT was configured for 25 Resource Blocks as defined in 3GPP 36.141 Rel 8.
- For the 10 MHz channel bandwidth, the EUT was configured for 50 Resource Blocks as defined in 3GPP 36.141 Rel 8.
- For all tests, a DC supply with a total power capability of 400 W was used in order to support
  transient current demand by the EUT. To meet this requirement, two separate laboratory power
  supply units were used, with their DC outputs connected in series and the required voltage
  distributed equally. The combined voltage was measured at the EUT.

UL VS LTD Page 9 of 57

### 5. Measurements, Examinations and Derived Results

#### **5.1. General Comments**

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to *Section 6* for Measurement Uncertainty details.

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

Page 10 of 57

UL VS LTD

#### 5.2. Test Results

#### 5.2.1. Transmitter Power limitations

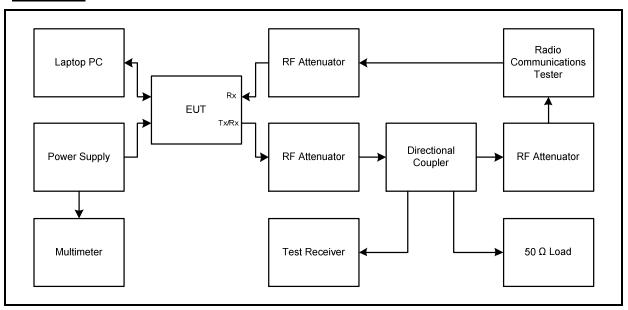
#### **Test Summary:**

| Test Engineer:             | Keith Tucker | Test Date: | 29 February 2016 |
|----------------------------|--------------|------------|------------------|
| Test Sample Serial Number: | BBRBG010042A |            |                  |

| FCC Reference:    | Parts 74.636(a)                           |
|-------------------|-------------------------------------------|
| Test Method Used: | FCC KDB 971168 D01 Sections 5.2.2.1 & 5.6 |

#### **Environmental Conditions:**

| Temperature (°C):      | 25 |
|------------------------|----|
| Relative Humidity (%): | 29 |


#### Note(s):

- Measurements were performed with the EUT transmitting 5 MHz or 10 MHz bandwidths using QPSK or 16QAM modulation schemes.
- Maximum conducted power was calculated by integrating the spectrum across the OBW of the signal, using the signal analyser's band power measurement function with band limits set equal to the OBW. Measurements of OBW can be found in Section 5.2.2 of this test report.
- The signal analyser was connected to the Tx/Rx port on the EUT, using suitable attenuation and RF
  cable. An RF level offset was entered on the spectrum analyser to compensate for the loss of the
  measurement network.
- 4. The customer stated that the EUT is designed to operate with a maximum antenna gain of 24 dBi. This value has been added to the measured conducted power to obtain the EIRP.
- 5. This device can operate as a mobile device, therefore the lower EIRP limit of Part 74.636(a) applies. The EIRP limit of 35 dBW was converted to a limit of 65 dBm.
- 6. Additionally for a mobile device, the maximum allowable transmit power limit in Part 74.636(a) is 12 W. This value was converted to a limit of 40.8 dBm. Note that if the EUT is operated as a fixed device the limit is increased by 10 dBW therefore the test result margins are further increased by 10 dB for EIRP measurements shown in the results table of this report.
- 7. As the EUT had a constant duty cycle less than 98%, a duty cycle correction of 10 log<sub>10</sub> (1/duty cycle) was added to the indicated power to give the mean power (P<sub>MEAN</sub>). The duty cycle measurement results are shown in Section 5.2.3 of this test report.
- 8. The signal analyser's number of sweep points was set to greater than twice the span divided by the RBW.

UL VS LTD Page 11 of 57

### **Transmitter Power limitations (continued)**

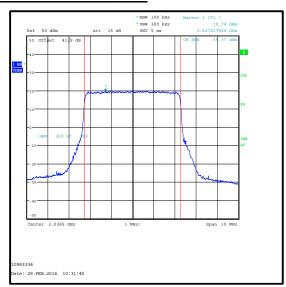
### Test setup:

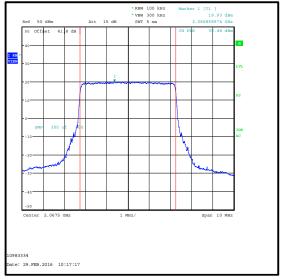


Page 12 of 57 UL VS LTD

# **Transmitter Power limitations (continued)**

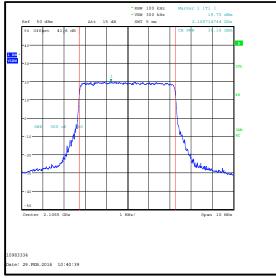
### Results: 5 MHz Channel Bandwidth / QPSK


| Frequency<br>(MHz) | Modulation | Conducted<br>RF Power<br>(dBm) | Duty<br>cycle<br>correction<br>(dB) | Mean<br>Conducted<br>RF Power<br>(dBm) | RF Power<br>Limit for<br>Mobile<br>(dBm) | Margin<br>(dB) | Result   |
|--------------------|------------|--------------------------------|-------------------------------------|----------------------------------------|------------------------------------------|----------------|----------|
| 2028.5             | QPSK       | 35.4                           | 2.3                                 | 37.7                                   | 40.8                                     | 3.1            | Complied |
| 2067.5             | QPSK       | 35.5                           | 2.3                                 | 37.8                                   | 40.8                                     | 3.0            | Complied |
| 2106.5             | QPSK       | 35.2                           | 2.3                                 | 37.5                                   | 40.8                                     | 3.3            | Complied |


| Frequency<br>(MHz) | Conducted<br>RF Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | EIRP<br>(dBm) | EIRP Limit<br>for Mobile<br>(dBm) | Margin<br>(dB) | Result   |
|--------------------|--------------------------------|--------------------------|---------------|-----------------------------------|----------------|----------|
| 2028.5             | 37.7                           | 24.0                     | 61.7          | 65.0                              | 3.3            | Complied |
| 2067.5             | 37.8                           | 24.0                     | 61.8          | 65.0                              | 3.2            | Complied |
| 2106.5             | 37.5                           | 24.0                     | 61.5          | 65.0                              | 3.5            | Complied |

UL VS LTD Page 13 of 57

## **Transmitter Power limitations (continued)**


### Results: 5 MHz / QPSK





**QPSK / Bottom Channel** 

**QPSK / Middle Channel** 

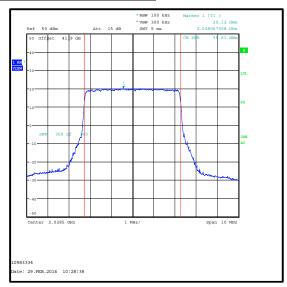


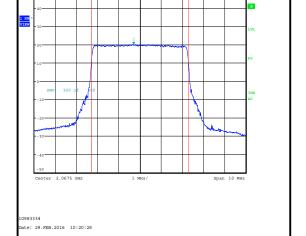
**QPSK / Top Channel** 

Page 14 of 57 UL VS LTD

# **Transmitter Power limitations (continued)**

# Results: 5 MHz Channel Bandwidth / 16QAM

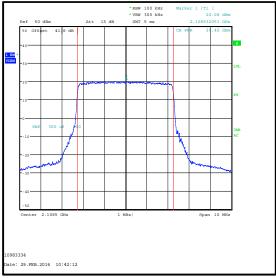

| Frequency<br>(MHz) | Modulation | Conducted<br>RF Power<br>(dBm) | Duty<br>cycle<br>correction<br>(dB) | Mean<br>Conducted<br>RF Power<br>(dBm) | RF Power<br>Limit for<br>Mobile<br>(dBm) | Margin<br>(dB) | Result   |
|--------------------|------------|--------------------------------|-------------------------------------|----------------------------------------|------------------------------------------|----------------|----------|
| 2028.5             | 16QAM      | 35.6                           | 2.3                                 | 37.9                                   | 40.8                                     | 2.9            | Complied |
| 2067.5             | 16QAM      | 35.7                           | 2.3                                 | 38.0                                   | 40.8                                     | 2.8            | Complied |
| 2106.5             | 16QAM      | 35.5                           | 2.3                                 | 37.8                                   | 40.8                                     | 3.0            | Complied |


| Frequency<br>(MHz) | Conducted<br>RF Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | EIRP<br>(dBm) | EIRP Limit<br>for Mobile<br>(dBm) | Margin<br>(dB) | Result   |
|--------------------|--------------------------------|--------------------------|---------------|-----------------------------------|----------------|----------|
| 2028.5             | 37.9                           | 24.0                     | 61.9          | 65.0                              | 3.1            | Complied |
| 2067.5             | 38.0                           | 24.0                     | 62.0          | 65.0                              | 3.0            | Complied |
| 2106.5             | 37.8                           | 24.0                     | 61.8          | 65.0                              | 3.2            | Complied |

UL VS LTD Page 15 of 57

# **Transmitter Power limitations (continued)**

### Results: 5 MHz / 16QAM






\*RBW 100 kHz \*VBW 300 kHz SWT 5 ms

16QAM / Bottom Channel





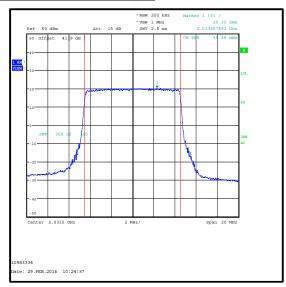
16QAM / Top Channel

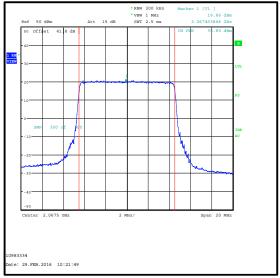
Page 16 of 57

UL VS LTD

# **Transmitter Power limitations (continued)**

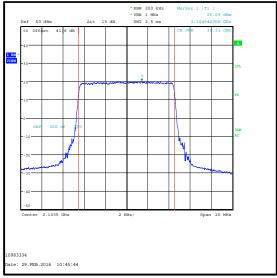
### Results: 10 MHz Channel Bandwidth / QPSK


| Frequency<br>(MHz) | Modulation | Conducted<br>RF Power<br>(dBm) | Duty<br>cycle<br>correction<br>(dB) | Mean<br>Conducted<br>RF Power<br>(dBm) | RF Power<br>Limit for<br>Mobile<br>(dBm) | Margin<br>(dB) | Result   |
|--------------------|------------|--------------------------------|-------------------------------------|----------------------------------------|------------------------------------------|----------------|----------|
| 2031.5             | QPSK       | 35.5                           | 2.3                                 | 37.8                                   | 40.8                                     | 3.0            | Complied |
| 2067.5             | QPSK       | 35.8                           | 2.3                                 | 38.1                                   | 40.8                                     | 2.7            | Complied |
| 2103.5             | QPSK       | 35.2                           | 2.3                                 | 37.5                                   | 40.8                                     | 3.3            | Complied |


| Frequency<br>(MHz) | Conducted<br>RF Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | EIRP<br>(dBm) | EIRP Limit<br>for Mobile<br>(dBm) | Margin<br>(dB) | Result   |
|--------------------|--------------------------------|--------------------------|---------------|-----------------------------------|----------------|----------|
| 2031.5             | 37.8                           | 24.0                     | 61.8          | 65.0                              | 3.2            | Complied |
| 2067.5             | 38.1                           | 24.0                     | 62.1          | 65.0                              | 2.9            | Complied |
| 2103.5             | 37.5                           | 24.0                     | 61.5          | 65.0                              | 3.5            | Complied |

UL VS LTD Page 17 of 57

### **Transmitter Power limitations (continued)**


### Results: 10 MHz / QPSK





**QPSK / Bottom Channel** 

**QPSK / Middle Channel** 



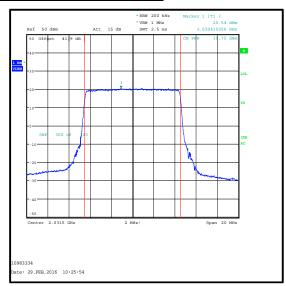
**QPSK / Top Channel** 

Page 18 of 57

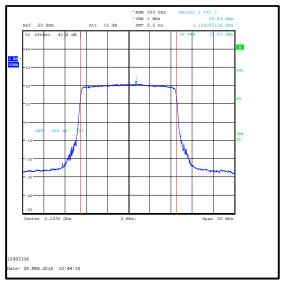
UL VS LTD

# **Transmitter Power limitations (continued)**

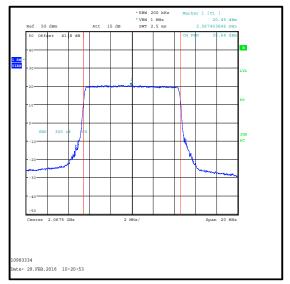
# Results: 10 MHz Channel Bandwidth / 16QAM


| Frequency<br>(MHz) | Modulation | Conducted<br>RF Power<br>(dBm) | Duty<br>cycle<br>correction<br>(dB) | Mean<br>Conducted<br>RF Power<br>(dBm) | RF Power<br>Limit for<br>Mobile<br>(dBm) | Margin<br>(dB) | Result   |
|--------------------|------------|--------------------------------|-------------------------------------|----------------------------------------|------------------------------------------|----------------|----------|
| 2031.5             | 16QAM      | 35.8                           | 2.2                                 | 38.0                                   | 40.8                                     | 2.8            | Complied |
| 2067.5             | 16QAM      | 35.8                           | 2.2                                 | 38.0                                   | 40.8                                     | 2.8            | Complied |
| 2103.5             | 16QAM      | 35.8                           | 2.2                                 | 38.0                                   | 40.8                                     | 2.8            | Complied |

| Frequency<br>(MHz) | Combined<br>Conducted<br>RF Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | EIRP<br>(dBm) | EIRP Limit<br>for Mobile<br>(dBm) | Margin<br>(dB) | Result   |
|--------------------|--------------------------------------------|--------------------------|---------------|-----------------------------------|----------------|----------|
| 2031.5             | 38.0                                       | 24.0                     | 62.0          | 65.0                              | 3.0            | Complied |
| 2067.5             | 38.0                                       | 24.0                     | 62.0          | 65.0                              | 3.0            | Complied |
| 2103.5             | 38.0                                       | 24.0                     | 62.0          | 65.0                              | 3.0            | Complied |


UL VS LTD Page 19 of 57

### **Transmitter Power limitations (continued)**


### Results: 10 MHz / 16QAM



16QAM / Bottom Channel



16QAM / Top Channel



16QAM / Middle Channel

Page 20 of 57 UL VS LTD

# **Transmitter Power limitations (continued)**

### **Test Equipment Used:**

| Asset<br>No. | Instrument          | Manufacturer            | Type No.      | Serial No.  | Date<br>Calibration<br>Due | Cal.<br>Interval<br>(Months) |
|--------------|---------------------|-------------------------|---------------|-------------|----------------------------|------------------------------|
| M1659        | Thermohygrometer    | JM Handelspunkt         | 30.5015.13    | None stated | 23 Apr 2016                | 12                           |
| A1397        | Attenuator          | Weinschel<br>Associates | WA46-20       | A128        | Calibrated before use      | -                            |
| A2534        | Directional Coupler | AtlanTecRF              | CDC-003060-20 | 14041701718 | Calibrated before use      | -                            |
| M1874        | Test Receiver       | Rohde & Schwarz         | ESU26         | 100553      | 12 Jun 2016                | 12                           |
| G0607        | Signal Generator    | Rohde & Schwarz         | SMU200A       | 100943      | 18 Jul 2016                | 36                           |
| M199         | Power Meter         | Rohde & Schwarz         | NRVS          | 827023/075  | 08 Apr 2016                | 24                           |
| M1267        | Power Sensor        | Rohde & Schwarz         | NRV-Z52       | 100155      | 23 Apr 2016                | 24                           |

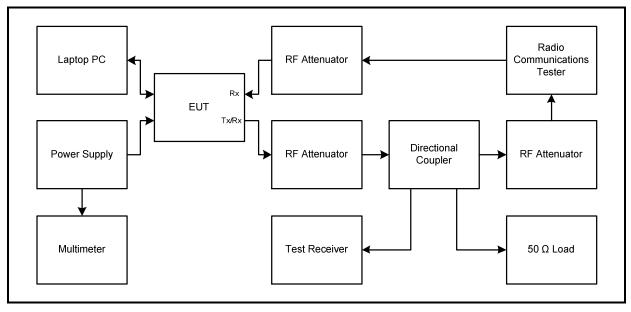
UL VS LTD Page 21 of 57

### 5.2.2. Transmitter Occupied Bandwidth

#### **Test Summary:**

| Test Engineer:             | Keith Tucker | Test Date: | 17 February 2016 |
|----------------------------|--------------|------------|------------------|
| Test Sample Serial Number: | BBRBG010042A |            |                  |

| FCC Reference:    | Part 2.1049                |
|-------------------|----------------------------|
| Test Method Used: | KDB 971168 D01 Section 4.2 |

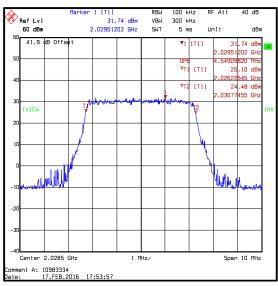

#### **Environmental Conditions:**

| Temperature (°C):      | 25 |
|------------------------|----|
| Relative Humidity (%): | 25 |

#### Note(s):

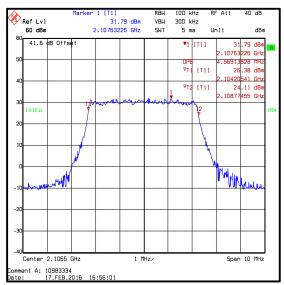
- 1. Measurements were performed with the EUT transmitting with QPSK and 16QAM modulation schemes.
- 2. The 99% emission bandwidth was measured using the signal analyser occupied bandwidth function. The resolution bandwidth was set in the range of 1% to 5% of the occupied bandwidth and the video bandwidth set to at least 3 times the resolution bandwidth. A peak detector was used.

#### **Test setup:**




Page 22 of 57 UL VS LTD

### **Transmitter Occupied Bandwidth (continued)**


### Results: 5 MHz Channel Bandwidth

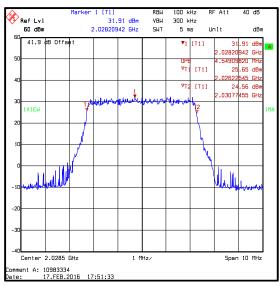
| Frequency<br>(MHz) | Modulation | Resource<br>Blocks | Resolution<br>Bandwidth<br>(kHz) | Video<br>Bandwidth<br>(kHz) | Occupied<br>Bandwidth<br>(MHz) |
|--------------------|------------|--------------------|----------------------------------|-----------------------------|--------------------------------|
| 2028.5             | QPSK       | 25                 | 100                              | 300                         | 4.549                          |
| 2067.5             | QPSK       | 25                 | 100                              | 300                         | 4.529                          |
| 2106.5             | QPSK       | 25                 | 100                              | 300                         | 4.569                          |



**QPSK / Bottom Channel** 

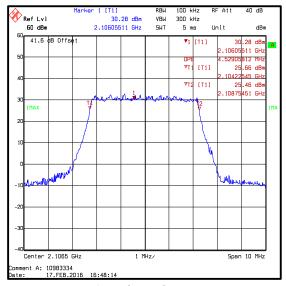
**QPSK / Middle Channel** 




**QPSK / Top Channel** 

UL VS LTD Page 23 of 57

### **Transmitter Occupied Bandwidth (continued)**


### Results: 5 MHz Channel Bandwidth

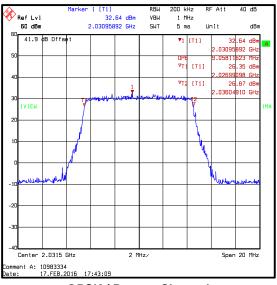
| Frequency<br>(MHz) | Modulation | Resource<br>Blocks | Resolution<br>Bandwidth<br>(kHz) | Video<br>Bandwidth<br>(kHz) | Occupied<br>Bandwidth<br>(MHz) |
|--------------------|------------|--------------------|----------------------------------|-----------------------------|--------------------------------|
| 2028.5             | 16QAM      | 25                 | 100                              | 300                         | 4.549                          |
| 2067.5             | 16QAM      | 25                 | 100                              | 300                         | 4.549                          |
| 2106.5             | 16QAM      | 25                 | 100                              | 300                         | 4.529                          |



16QAM / Bottom Channel

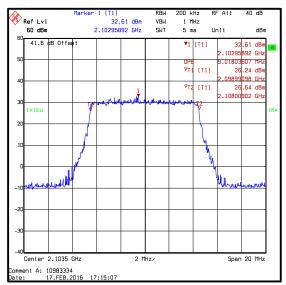
16QAM / Middle Channel




16QAM / Top Channel

Page 24 of 57 UL VS LTD

### **Transmitter Occupied Bandwidth (continued)**


### Results: 10 MHz Channel Bandwidth

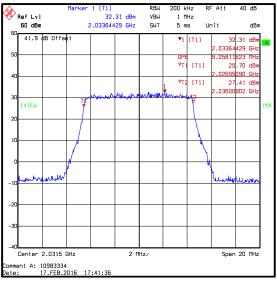
| Frequency<br>(MHz) | Modulation | Resource<br>Blocks | Resolution<br>Bandwidth<br>(kHz) | Video<br>Bandwidth<br>(kHz) | Occupied<br>Bandwidth<br>(MHz) |
|--------------------|------------|--------------------|----------------------------------|-----------------------------|--------------------------------|
| 2031.5             | QPSK       | 50                 | 200                              | 1000                        | 9.058                          |
| 2067.5             | QPSK       | 50                 | 200                              | 1000                        | 9.058                          |
| 2103.5             | QPSK       | 50                 | 200                              | 1000                        | 9.018                          |



**QPSK / Bottom Channel** 

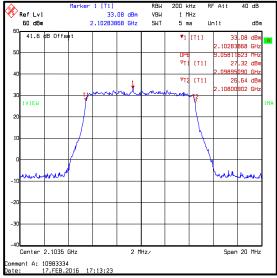
QPSK / Middle Channel




**QPSK / Top Channel** 

UL VS LTD Page 25 of 57

### **Transmitter Occupied Bandwidth (continued)**


### Results: 10 MHz Channel Bandwidth

| Frequency<br>(MHz) | Modulation | Resource<br>Blocks | Resolution<br>Bandwidth<br>(kHz) | Video<br>Bandwidth<br>(kHz) | Occupied<br>Bandwidth<br>(MHz) |
|--------------------|------------|--------------------|----------------------------------|-----------------------------|--------------------------------|
| 2031.5             | 16QAM      | 50                 | 200                              | 1000                        | 9.058                          |
| 2067.5             | 16QAM      | 50                 | 200                              | 1000                        | 9.098                          |
| 2103.5             | 16QAM      | 50                 | 200                              | 1000                        | 9.058                          |



16QAM / Bottom Channel

16QAM / Middle Channel



16QAM / Top Channel

Page 26 of 57 UL VS LTD

# **Transmitter Occupied Bandwidth (continued)**

### **Test Equipment Used:**

| Asset<br>No. | Instrument          | Manufacturer            | Type No.      | Serial No.  | Date<br>Calibration<br>Due | Cal.<br>Interval<br>(Months) |
|--------------|---------------------|-------------------------|---------------|-------------|----------------------------|------------------------------|
| M1785        | Thermohygrometer    | JM Handelspunkt         | 30.5015.13    | None stated | 23 Apr 2016                | 12                           |
| M127         | Spectrum Analyser   | Rohde & Schwarz         | FSEB30        | 842659/016  | 11 Aug 2016                | 12                           |
| A296         | Attenuator          | Narda                   | 766-20        | 167         | Calibrated before use      | -                            |
| A1397        | Attenuator          | Weinschel<br>Associates | WA46-20       | A128        | Calibrated before use      | -                            |
| A2534        | Directional Coupler | AtlanTecRF              | CDC-003060-20 | 14041701718 | Calibrated before use      | -                            |
| G0607        | Signal Generator    | Rohde & Schwarz         | SMU200A       | 100943      | 18 Jul 2016                | 36                           |
| M199         | Power Meter         | Rohde & Schwarz         | NRVS          | 827023/075  | 08 Apr 2016                | 24                           |
| M1267        | Power Sensor        | Rohde & Schwarz         | NRV-Z52       | 100155      | 23 Apr 2016                | 24                           |

UL VS LTD Page 27 of 57

#### 5.2.3. Transmitter Duty Cycle

#### **Test Summary:**

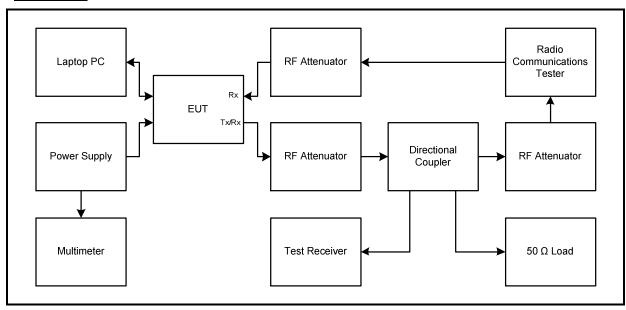
| Test Engineer:             | Keith Tucker | Test Date: | 15 February 2016 |
|----------------------------|--------------|------------|------------------|
| Test Sample Serial Number: | BBRBG010042A |            |                  |

| FCC Reference:    | Part 74.636                  |
|-------------------|------------------------------|
| Test Method Used: | FCC KDB 971168 Section 5.2.2 |

#### **Environmental Conditions:**

| Temperature (°C):      | 24 |
|------------------------|----|
| Relative Humidity (%): | 39 |

#### Note(s):

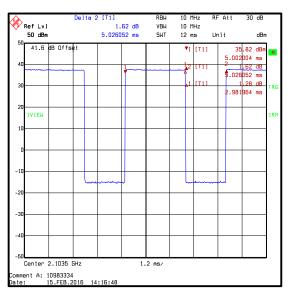

1. In order to assist with the determination of the mean power during the transmission time, measurements of duty cycle were made. The transmission burst duration and the total transmission cycle period were measured using a spectrum analyser in the time domain with duty cycle and power correction calculated by using the following calculations:

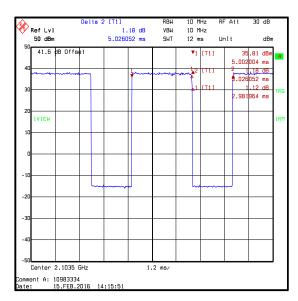
Duty Cycle = (Transmission On Time / Transmission on + off period)

Duty Cycle correction  $(dB) = 10 \log_{10} (1/\text{Duty Cycle})$ .

- 2. Spectrum analyser zero span method of KDB 971168 Section 5.2.2 was used to measure the duty cycle. The analyser plot used 500 points distributed over 12 ms such that 1 point equates to 24 μs. For a transmission burst of 3 ms, this is considered to be sufficient to permit accurate measurement of the burst duty cycle. 24 μs as a percentage of the burst is 0.8% (100 x 0.024/3) or ±0.4%, and equivalent to a variation of ±0.028 dB or less when corrected as Note 1.
- 3. The duty cycle of both 5 MHz and 10 MHz bandwidths for both QPSK and 16QAM modulation was measured. The duty cycle was independent of carrier frequency.

#### Test setup:





Page 28 of 57 UL VS LTD

### **Transmitter Duty Cycle (continued)**

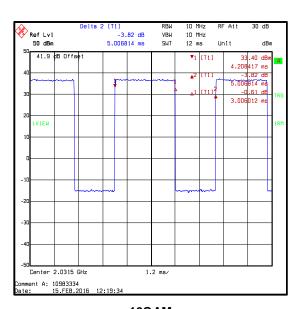
#### Results: 5 MHz bandwidth

| Modulation | Pulse Duration<br>(ms) | Period<br>(ms) | Duty cycle<br>(%) | Duty cycle<br>correction<br>(dB) |
|------------|------------------------|----------------|-------------------|----------------------------------|
| QPSK       | 2.9820                 | 5.0261         | 59.3              | 2.3                              |
| 16QAM      | 2.9820                 | 5.0261         | 59.3              | 2.3                              |





QPSK 16QAM


UL VS LTD Page 29 of 57

### **Transmitter Duty Cycle (continued)**

### Results: 10 MHz bandwidth

| Modulation | Pulse Duration<br>(ms) | Period<br>(ms) | Duty cycle<br>(%) | Duty cycle<br>correction<br>(dB) |
|------------|------------------------|----------------|-------------------|----------------------------------|
| QPSK       | 2.982                  | 5.031          | 59.3              | 2.3                              |
| 16QAM      | 3.006                  | 5.007          | 60.0              | 2.2                              |





QPSK 16QAM

Page 30 of 57

# **Transmitter Duty Cycle (continued)**

# **Test Equipment Used:**

| Asset<br>No. | Instrument          | Manufacturer            | Type No.      | Serial No.  | Date<br>Calibration<br>Due | Cal.<br>Interval<br>(Months) |
|--------------|---------------------|-------------------------|---------------|-------------|----------------------------|------------------------------|
| M1785        | Thermohygrometer    | JM Handelspunkt         | 30.5015.13    | None stated | 23 Apr 2016                | 12                           |
| M127         | Spectrum Analyser   | Rohde & Schwarz         | FSEB30        | 842659/016  | 11 Aug 2016                | 12                           |
| A1397        | Attenuator          | Weinschel<br>Associates | WA46-20       | A128        | Calibrated before use      | -                            |
| A2534        | Directional Coupler | AtlanTecRF              | CDC-003060-20 | 14041701718 | Calibrated before use      | -                            |
| G0607        | Signal Generator    | Rohde & Schwarz         | SMU200A       | 100943      | 18 Jul 2016                | 36                           |
| M199         | Power Meter         | Rohde & Schwarz         | NRVS          | 827023/075  | 08 Apr 2016                | 24                           |
| M1267        | Power Sensor        | Rohde & Schwarz         | NRV-Z52       | 100155      | 23 Apr 2016                | 24                           |

UL VS LTD Page 31 of 57

#### 5.2.4. Transmitter Conducted Emission Mask

#### **Test Summary:**

| Test Engineer:             | Keith Tucker | Test Date: | 29 February 2016 |
|----------------------------|--------------|------------|------------------|
| Test Sample Serial Number: | BBRBG010042A |            |                  |

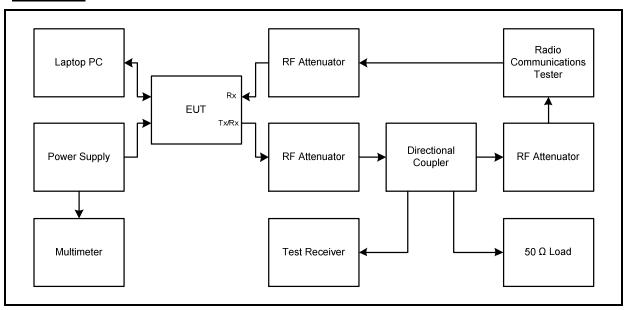
| FCC Reference:    | Parts 74.637(a)(2)(i), 74.637(c)(3), 2.1051 and notes below |
|-------------------|-------------------------------------------------------------|
| Test Method Used: | KDB 971168 D01 Section 6.0                                  |

#### **Environmental Conditions:**

| Temperature (°C):      | 25 |
|------------------------|----|
| Relative Humidity (%): | 29 |

#### Note(s):

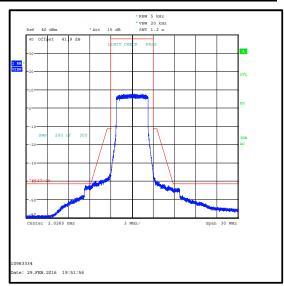
- 1. Measurements were performed with the EUT transmitting with 5 MHz and 10 MHz channel bandwidths, using QPSK and 16QAM modulation schemes, with full resource blocks.
- 2. Calculations of the emission mask specified in Part 74.637(a)(2)(i), were performed using 6 and 12 MHz as values for the authorised bandwidth, for the 5 and 10 MHz channel bandwidths respectively. The authorised bandwidth and mask parameters were established in pre-filing KDB inquiry consultation with FCC Lab.
- 3. The emission mask defined in Part 74.637(a)(2)(i), is based on the use of a 4 kHz resolution bandwidth (B<sub>REF</sub>). The nearest resolution bandwidth (B<sub>RES</sub>) of the signal analyser used at or above the 4 kHz reference bandwidth was 5 kHz. Measurements were performed with the signal analyser's resolution bandwidth set to 5 kHz. In accordance with Part 74.637(c)(3), attenuation requirements were therefore decreased by a factor of 1 dB:

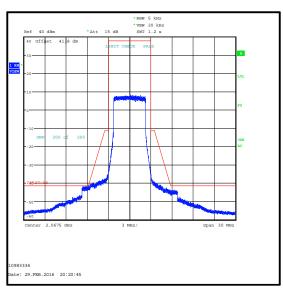

 $10 \times \log_{10}[(B_{REF} \text{ in megahertz})/(B_{RES} \text{ in megahertz})] = 10 \times \log_{10}[(4 \times 10^{-3})/(5 \times 10^{-3})] = -1 \text{ dB}$ 

- 4. The mask reference level was set relative to mean carrier power (P<sub>MEAN</sub>), as presented in Section 5.2.1 of this test report, using the limit line Y-Offset function of the signal analyser. It was set equal to the difference between the signal analyser reference level and the calculated mean power.
- The signal analyser was connected to the transmit port of the EUT using suitable attenuation and RF cable. An RF level offset was entered on the spectrum analyser to compensate for the path loss of the measurement system.
- 6. The signal analyser's number of sweep points was set to greater than twice the span divided by the RBW.
- 7. No mask incursions were observed. The result is compliant.

Page 32 of 57 UL VS LTD

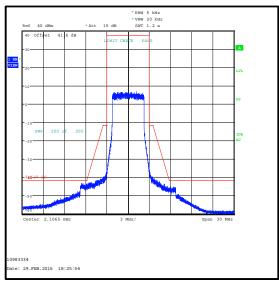
### **Transmitter Conducted Emission Mask (continued)**


### Test setup:




UL VS LTD Page 33 of 57

### **Transmitter Conducted Emission Mask (continued)**


### Results: 5 MHz Channel Bandwidth / QPSK

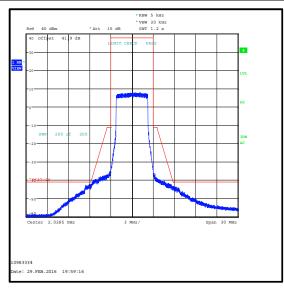


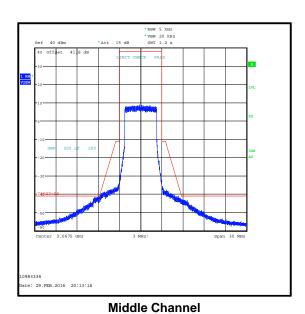


**Bottom Channel** 

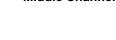


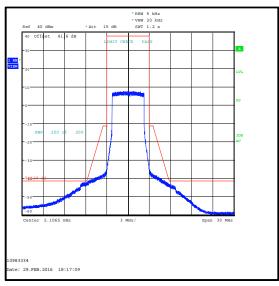



**Top Channel** 


Page 34 of 57

UL VS LTD


### **Transmitter Conducted Emission Mask (continued)**

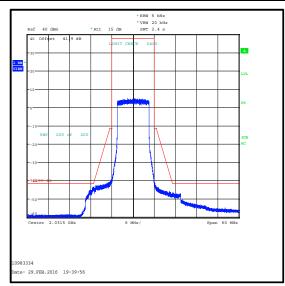

### Results: 5 MHz Channel Bandwidth / 16QAM

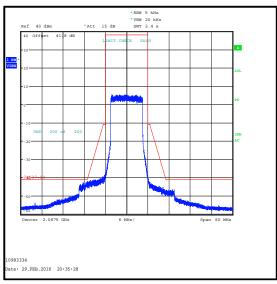




**Bottom Channel** 

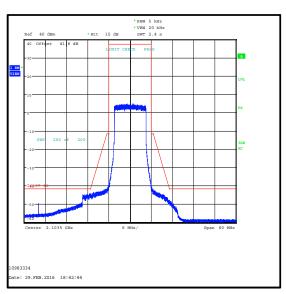






**Top Channel** 

UL VS LTD Page 35 of 57

### **Transmitter Conducted Emission Mask (continued)**

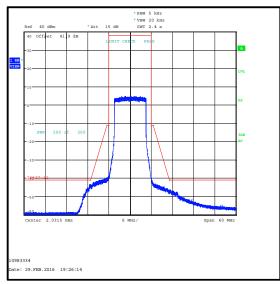

### Results: 10 MHz Channel Bandwidth / QPSK

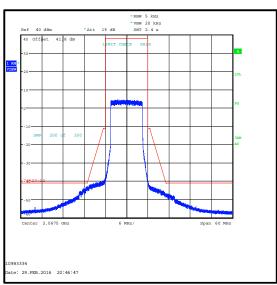




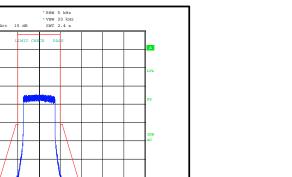
**Bottom Channel** 







**Top Channel** 

Page 36 of 57


## **Transmitter Conducted Emission Mask (continued)**

## Results: 10 MHz Channel Bandwidth / 16QAM





**Bottom Channel** 



**Top Channel** 

ate: 29.FEB.2016 19:09:45

**Middle Channel** 

UL VS LTD Page 37 of 57

# **Transmitter Conducted Emission Mask (continued)**

## **Test Equipment Used:**

| Asset<br>No. | Instrument          | Manufacturer            | Type No.      | Serial No.  | Date<br>Calibration<br>Due | Cal.<br>Interval<br>(Months) |
|--------------|---------------------|-------------------------|---------------|-------------|----------------------------|------------------------------|
| M1659        | Thermohygrometer    | JM Handelspunkt         | 30.5015.13    | None stated | 23 Apr 2016                | 12                           |
| M1874        | Test Receiver       | Rohde & Schwarz         | ESU26         | 100553      | 12 Jun 2016                | 12                           |
| A296         | Attenuator          | Narda                   | 766-20        | 167         | Calibrated before use      | -                            |
| A1397        | Attenuator          | Weinschel<br>Associates | WA46-20       | A128        | Calibrated before use      | -                            |
| A2534        | Directional Coupler | AtlanTecRF              | CDC-003060-20 | 14041701718 | Calibrated before use      | -                            |
| G0607        | Signal Generator    | Rohde & Schwarz         | SMU200A       | 100943      | 18 Jul 2016                | 36                           |
| M199         | Power Meter         | Rohde & Schwarz         | NRVS          | 827023/075  | 08 Apr 2016                | 24                           |
| M1267        | Power Sensor        | Rohde & Schwarz         | NRV-Z52       | 100155      | 23 Apr 2016                | 24                           |

Page 38 of 57 UL VS LTD

#### 5.2.5. Transmitter Conducted Emissions

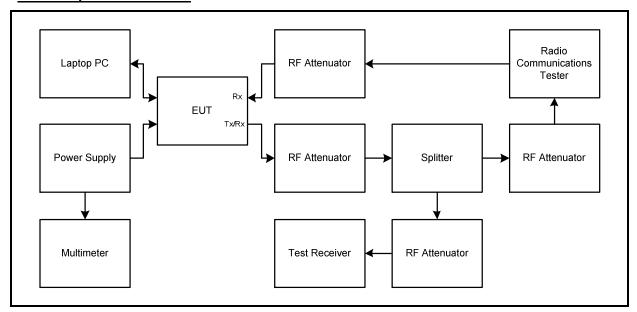
#### **Test Summary:**

| Test Engineer:             | Keith Tucker | Test Dates: | 23 February 2016 & 24 February 2016 |
|----------------------------|--------------|-------------|-------------------------------------|
| Test Sample Serial Number: | BBRBG010042A |             |                                     |

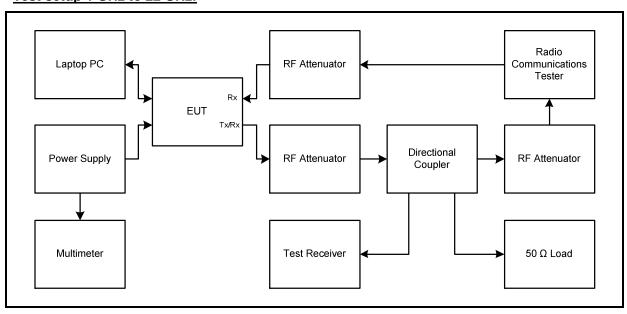
| FCC Reference:    | Parts 74.637(a)(2)(iii), 74.637(c)(3) and 2.1051 |
|-------------------|--------------------------------------------------|
| Test Method Used: | KDB 971168 D01 Section 6.0 & 8.0                 |
| Frequency Range:  | 9 kHz to 22 GHz                                  |

#### **Environmental Conditions:**

| Temperature (°C):      | 25       |
|------------------------|----------|
| Relative Humidity (%): | 28 to 32 |


#### Note(s):

- Pre-scans were performed with the EUT transmitting at maximum power with 10 MHz Channel Bandwidth using QPSK modulation scheme, as this was found to produce the highest output level and therefore deemed worst case.
- 2. Testing was performed to 22 GHz, as this was equal to at least the tenth harmonic of the highest fundamental frequency (2106.5 MHz).
- 3. The frequency range 2037.5 to 2097.5 MHz is less than or equal to ±250% of the authorised bandwidth for the test signal (2067.5 MHz) used, therefore the emission requirement of Part 74.637(c)(3) for this range is tested separately in Section 5.2.5 of this test report.
- 4. Emission levels measured in the plots below require a compensation factor: Clause 74.637(a)(2)(iii) defines the required emission attenuation level when measured in a 4 kHz reference bandwidth B<sub>REF</sub>. Part 74.637(c)(3) defines the resolution bandwidth B<sub>RES</sub> of the measuring instrument but, where B<sub>RES</sub> and B<sub>REF</sub> are not equal, requires a correction of 10×log<sub>10</sub>[(B<sub>REF</sub> in megahertz)/(B<sub>RES</sub> in megahertz)] decibels.
- 5. The signal analyser's number of sweep points was set to greater than twice the span divided by the RBW
- 6. All emissions were >20 dB below the applicable limit or below the level of the noise floor of the measuring receiver, therefore the highest emission level in each measurement range has been recorded in the table below.


UL VS LTD Page 39 of 57

## **Transmitter Conducted Emissions (continued)**

#### Test setup 9 kHz to 1 GHz:



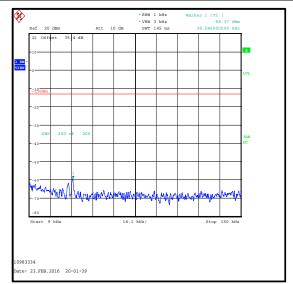
## Test setup 1 GHz to 22 GHz:

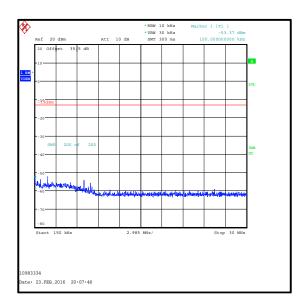


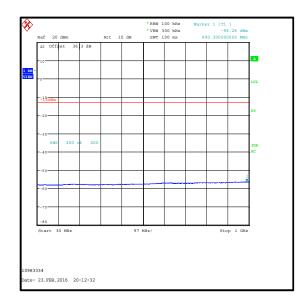
Page 40 of 57

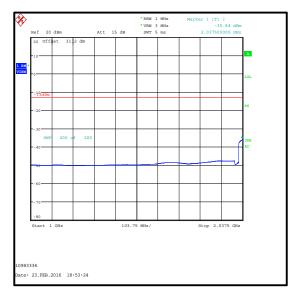
## **Transmitter Conducted Emissions (continued)**

## Results: 10 MHz Channel Bandwidth / Middle Channel / QPSK


| Measurement<br>Range<br>(MHz) | Measured Peak<br>Emission Level<br>(dBm) | Resolution<br>Bandwidth B <sub>RES</sub><br>(kHz) | Correction factor<br>(dB) for<br>B <sub>REF</sub> = 4 kHz | Corrected Peak<br>Emission Level<br>(dBm) |
|-------------------------------|------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|
| 0.009 to 0.15                 | -59.4                                    | 1                                                 | 6.0                                                       | -53.4                                     |
| 0.15 to 30                    | -53.4                                    | 10                                                | -4.0                                                      | -57.4                                     |
| 30 to 1000                    | -56.3                                    | 100                                               | -14.0                                                     | -70.3                                     |
| 1000 to 22000                 | -35.8                                    | 1000                                              | -24.0                                                     | -59.8                                     |


## **Results: Highest level emission**

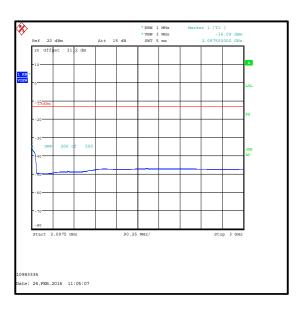

| Peak Emission<br>Frequency<br>(kHz) | Peak Emission<br>Level (dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|-------------------------------------|------------------------------|----------------|----------------|----------|
| 38.046                              | -53.4                        | -13.0          | 40.4           | Complied |

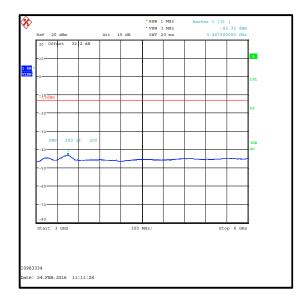

UL VS LTD Page 41 of 57

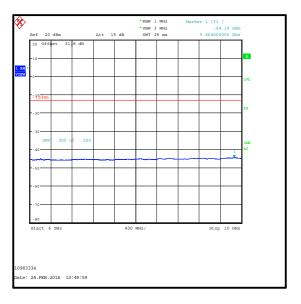
## **Transmitter Conducted Emissions (continued)**





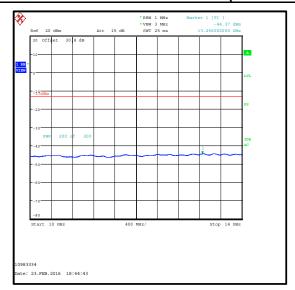


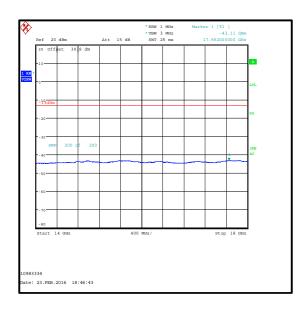



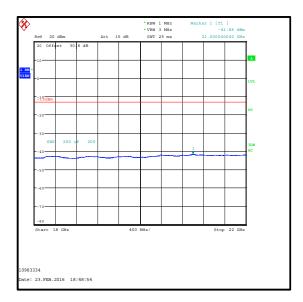


Page 42 of 57

## **Transmitter Conducted Emissions (continued)**

2037.5 MHz to 2097.5 MHz Refer to Transmitter Conducted Emission Mask section of this test report




UL VS LTD Page 43 of 57

## **Transmitter Conducted Emissions (continued)**







Page 44 of 57 UL VS LTD

## **Transmitter Conducted Emissions (continued)**

## **Test Equipment Used:**

| Asset<br>No. | Instrument          | Manufacturer            | Type No.   | Serial No.  | Date<br>Calibration<br>Due | Cal.<br>Interval<br>(Months) |
|--------------|---------------------|-------------------------|------------|-------------|----------------------------|------------------------------|
| M1785        | Thermohygrometer    | JM Handelspunkt         | 30.5015.13 | None stated | 23 Apr 2016                | 12                           |
| M1590        | Spectrum Analyser   | Rohde & Schwarz         | ESU26      | 100239      | 10 Feb 2017                | 12                           |
| A2140        | Attenuator          | AtlanTecRF              | AN18-10    | 090918-14   | 14 May 2016                | 12                           |
| A1397        | Attenuator          | Weinschel<br>Associates | WA46-20    | A128        | Calibrated before use      | -                            |
| A1271        | Power Splitter      | Mini Circuits           | ZFRSC-42   | 001         | Calibrated before use      | -                            |
| A1100        | Directional Coupler | Hewlett Packard         | HP87300C   | 3239A01058  | Calibrated before use      | -                            |
| A1975        | High Pass Filter    | AtlanTecRF              | AFH-03000  | 83640A      | 17 Apr 2016                | 12                           |
| G047         | Signal Generator    | Rohde & Schwarz         | SMY01      | 843 215/015 | 24 Jul 2016                | 12                           |
| M1252        | Signal Generator    | Hewlett Packard         | 83640A     | 3119A00489  | 26 Oct 2017                | 24                           |
| G0607        | Signal Generator    | Rohde & Schwarz         | SMU200A    | 100943      | 18 Jul 2016                | 36                           |
| M199         | Power Meter         | Rohde & Schwarz         | NRVS       | 827023/075  | 08 Apr 2016                | 24                           |
| M1267        | Power Sensor        | Rohde & Schwarz         | NRV-Z52    | 100155      | 23 Apr 2016                | 24                           |

UL VS LTD Page 45 of 57

#### 5.2.6. Transmitter Radiated Spurious Emissions

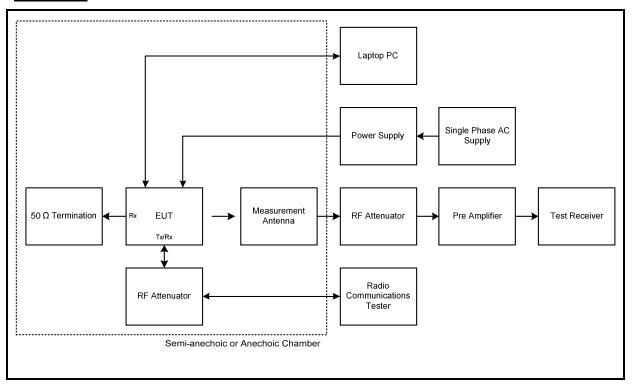
#### **Test Summary:**

| Test Engineer:             | Nick Steele  | Test Dates: | 25 February 2016 & 26 February 2016 |
|----------------------------|--------------|-------------|-------------------------------------|
| Test Sample Serial Number: | BBRBG010042A |             |                                     |

| FCC Reference:    | Parts 74.637(a)(2)(iii), 74.637(c)(3), 2.1053 and notes below |  |
|-------------------|---------------------------------------------------------------|--|
| Test Method Used: | KDB 971168 D01 Section 6.1                                    |  |
| Frequency Range:  | 30 MHz to 22 GHz                                              |  |

#### **Environmental Conditions:**

| Temperature (°C):      | 22 to 24 |
|------------------------|----------|
| Relative Humidity (%): | 30       |

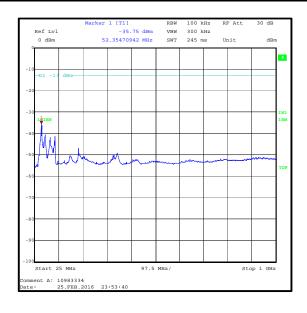

#### Note(s):

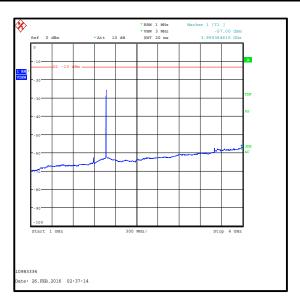
- 1. Pre scans were performed with the EUT was set to transmit with a 10 MHz channel bandwidth with QPSK modulation and full Resource Blocks, as this was found to have the highest output power.
- 2. The emission seen on the 1 GHz to 4 GHz plot at approximately 2067.5 MHz is the EUT carrier.
- 3. All emissions shown on the pre-scan plots were investigated and found to be ambient or >20 dB below the applicable limit or below the measurement system noise floor. Therefore the highest peak noise floor reading of the measuring receiver was recorded in the table below.
- 4. Measurements below 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 5. Pre-scans above 1 GHz were performed in a fully anechoic chamber (Asset Number K0002) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT. Final measurements above 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.

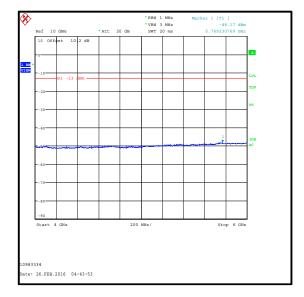
Page 46 of 57 UL VS LTD

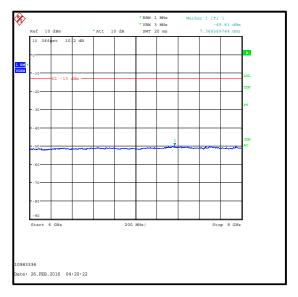
## **Transmitter Radiated Spurious Emissions (continued)**

## **Test setup:**



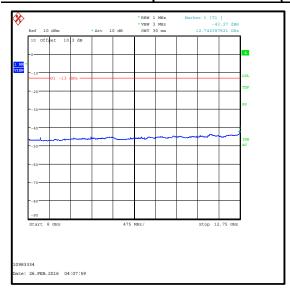


UL VS LTD Page 47 of 57

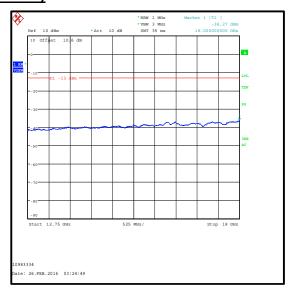

## **Transmitter Radiated Spurious Emissions (continued)**

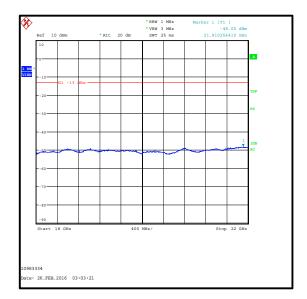

#### **Results:**

| Frequency<br>(MHz) | Antenna<br>Polarity | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Result   |
|--------------------|---------------------|----------------|----------------|----------------|----------|
| 18000.000          | Vertical            | -36.3          | -13.0          | 23.3           | Complied |






Page 48 of 57 UL VS LTD

## **Transmitter Radiated Spurious Emissions (continued)**







UL VS LTD Page 49 of 57

## **Transmitter Radiated Spurious Emissions (continued)**

## **Test Equipment Used:**

| Asset<br>No. | Instrument       | Manufacturer    | Type No.   | Serial No.  | Date<br>Calibration<br>Due | Cal.<br>Interval<br>(Months) |
|--------------|------------------|-----------------|------------|-------------|----------------------------|------------------------------|
| M1623        | Thermohygrometer | JM Handelspunkt | 30.5015.13 | None stated | 11 Jan 2017                | 12                           |
| K0001        | 5m RSE Chamber   | Rainford EMC    | N/A        | N/A         | 12 Jan 2017                | 12                           |
| A259         | Antenna          | Chase           | CBL6111A   | 1513        | 09 Apr 2016                | 12                           |
| M1273        | Test Receiver    | Rohde & Schwarz | ESIB 26    | 100275      | 19 Mar 2016                | 12                           |
| G0543        | Amplifier        | Sonoma          | 310N       | 230801      | 29 May 2016                | 3                            |
| A1834        | Attenuator       | Hewlett Packard | 8491B      | 10444       | 05 Mar 2016                | 12                           |
| M1656        | Thermohygrometer | JM Handelspunkt | 30.5015.13 | None stated | 23 Apr 2016                | 12                           |
| K0002        | 3m RSE Chamber   | Rainford EMC    | N/A        | N/A         | 01 May 2016                | 12                           |
| M1886        | Test Receiver    | Rohde & Schwarz | ESU26      | 100554      | 21 May 2016                | 12                           |
| A1534        | Pre Amplifier    | Hewlett Packard | 8449B      | 3008A00405  | 19 Dec 2016                | 12                           |
| A1396        | Attenuator       | Huber & Suhner  | 6810.17.B  | 757987      | 05 May 2016                | 12                           |
| A1818        | Antenna          | EMCO            | 3115       | 00075692    | 17 Dec 2016                | 12                           |
| A253         | Antenna          | Flann Microwave | 12240-20   | 128         | 17 Dec 2016                | 12                           |
| A254         | Antenna          | Flann Microwave | 14240-20   | 139         | 17 Dec 2016                | 12                           |
| A255         | Antenna          | Flann Microwave | 16240-20   | 519         | 17 Dec 2016                | 12                           |
| A256         | Antenna          | Flann Microwave | 18240-20   | 400         | 17 Dec 2016                | 12                           |
| A436         | Antenna          | Flann Microwave | 20240-20   | 330         | 19 Dec 2016                | 12                           |

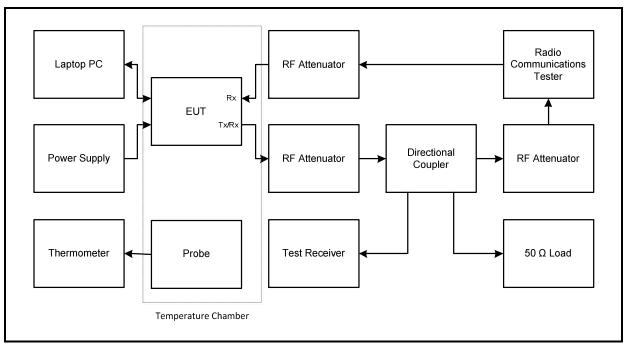
Page 50 of 57

#### 5.2.7. Transmitter Frequency Stability (Temperature Variation)

#### **Test Summary:**

| Test Engineer:             | Keith Tucker | Test Dates: | 24 February 2016 & 25 February 2016 |
|----------------------------|--------------|-------------|-------------------------------------|
| Test Sample Serial Number: | BBRBG010042A |             |                                     |

| FCC Reference:    | Parts 74.661 and 2.1055                                                    |
|-------------------|----------------------------------------------------------------------------|
| Test Method Used: | KDB 971168 D01 Section 9.0 referencing FCC CFR Part 2.1055 and notes below |


#### **Environmental Conditions:**

| Ambient Temperature (°C):      | 27 to 28 |
|--------------------------------|----------|
| Ambient Relative Humidity (%): | 28 to 29 |

#### Note(s):

- 1. The EUT could not be configured to operate in an unmodulated mode, therefore the mean of the upper and lower 10 dBc modulated envelope frequencies was calculated in order to determine the carrier frequency.
- 2. The envelope frequencies were measured with a test receiver using a 1 kHz RBW and more than one sweep point per kHz of span.
- 3. The frequency reference of the test receiver was used as a common frequency reference for the test system.
- 4. Temperature was monitored throughout the test with a calibrated digital thermometer.

## Test setup:



UL VS LTD Page 51 of 57

VERSION 1.0

ISSUE DATE: 12 MAY 2016

## **Transmitter Frequency Stability (Temperature Variation) (continued)**

## Results: Bottom Channel (2028.5 MHz)

| Temperature<br>(°C) | Lower<br>Frequency<br>(MHz) | Upper<br>Frequency<br>(MHz) | Mean<br>Frequency<br>(MHz) | Frequency<br>Error<br>(%) | Limit<br>(%) | Margin<br>(%) | Result   |
|---------------------|-----------------------------|-----------------------------|----------------------------|---------------------------|--------------|---------------|----------|
| -30                 | 2026.243590                 | 2030.759615                 | 2028.501603                | 0.000079                  | 0.005        | 0.004921      | Complied |
| -20                 | 2026.243590                 | 2030.756410                 | 2028.500000                | 0.000000                  | 0.005        | 0.005000      | Complied |
| -10                 | 2026.243590                 | 2030.756410                 | 2028.500000                | 0.000000                  | 0.005        | 0.005000      | Complied |
| 0                   | 2026.237179                 | 2030.756410                 | 2028.496795                | 0.000158                  | 0.005        | 0.004842      | Complied |
| 10                  | 2026.241590                 | 2030.767282                 | 2028.504436                | 0.000219                  | 0.005        | 0.004781      | Complied |
| 20                  | 2026.240385                 | 2030.759615                 | 2028.500000                | 0.000000                  | 0.005        | 0.005000      | Complied |
| 30                  | 2026.240385                 | 2030.759615                 | 2028.500000                | 0.000000                  | 0.005        | 0.005000      | Complied |
| 40                  | 2026.240308                 | 2030.756410                 | 2028.498359                | 0.000081                  | 0.005        | 0.004919      | Complied |
| 50                  | 2026.240308                 | 2030.756410                 | 2028.498359                | 0.000081                  | 0.005        | 0.004919      | Complied |

## Results: Top Channel (2106.5 MHz)

| Temperature (°C) | Lower<br>Frequency<br>(MHz) | Upper<br>Frequency<br>(MHz) | Mean<br>Frequency<br>(MHz) | Frequency<br>Error<br>(%) | Limit<br>(%) | Margin<br>(%) | Result   |
|------------------|-----------------------------|-----------------------------|----------------------------|---------------------------|--------------|---------------|----------|
| -30              | 2104.243590                 | 2108.756410                 | 2106.500000                | 0.000000                  | 0.005        | 0.005000      | Complied |
| -20              | 2104.243590                 | 2108.756410                 | 2106.500000                | 0.000000                  | 0.005        | 0.005000      | Complied |
| -10              | 2104.243590                 | 2108.756410                 | 2106.500000                | 0.000000                  | 0.005        | 0.005000      | Complied |
| 0                | 2104.243590                 | 2108.756410                 | 2106.500000                | 0.000000                  | 0.005        | 0.005000      | Complied |
| 10               | 2104.240385                 | 2108.759077                 | 2106.499731                | 0.000013                  | 0.005        | 0.004987      | Complied |
| 20               | 2104.243590                 | 2108.759077                 | 2106.501334                | 0.000063                  | 0.005        | 0.004937      | Complied |
| 30               | 2104.240385                 | 2108.759615                 | 2106.500000                | 0.000000                  | 0.005        | 0.005000      | Complied |
| 40               | 2104.243590                 | 2108.759615                 | 2106.501603                | 0.000076                  | 0.005        | 0.004924      | Complied |
| 50               | 2104.240385                 | 2108.760154                 | 2106.500270                | 0.000013                  | 0.005        | 0.004987      | Complied |

Page 52 of 57

UL VS LTD

# <u>Transmitter Frequency Stability (Temperature Variation) (continued)</u> <u>Test Equipment Used:</u>

| Asset<br>No. | Instrument               | Manufacturer            | Type No.          | Serial No.  | Date<br>Calibration<br>Due | Cal.<br>Interval<br>(Months) |
|--------------|--------------------------|-------------------------|-------------------|-------------|----------------------------|------------------------------|
| M1659        | Thermohygrometer         | JM Handelspunkt         | 30.5015.13        | None stated | 23 Apr 2016                | 12                           |
| M1874        | Test Receiver            | Rohde & Schwarz         | ESU26             | 100553      | 12 Jun 2016                | 12                           |
| E0513        | Environmental<br>Chamber | TAS                     | LT600<br>Series 3 | 23900506    | Calibrated before use      | -                            |
| M1249        | Thermometer              | Fluke                   | 5211              | 88800049    | 27 May 2016                | 12                           |
| A1397        | Attenuator               | Weinschel<br>Associates | WA46-20           | A128        | Calibrated before use      | -                            |
| A2534        | Directional Coupler      | AtlanTecRF              | CDC-<br>003060-20 | 14041701718 | Calibrated before use      | -                            |
| G088         | Power Supply             | Thurlby Thandar         | CPX200            | 100700      | Calibrated before use      | -                            |
| S021         | Power Supply             | Thurlby Thandar         | CPX200            | 061034      | Calibrated before use      | -                            |
| M1251        | Multimeter               | Fluke                   | 175               | 89170179    | 26 May 2016                | 12                           |
| G0607        | Signal Generator         | Rohde & Schwarz         | SMU200A           | 100943      | 18 Jul 2016                | 36                           |
| M199         | Power Meter              | Rohde & Schwarz         | NRVS              | 827023/075  | 08 Apr 2016                | 24                           |
| M1267        | Power Sensor             | Rohde & Schwarz         | NRV-Z52           | 100155      | 23 Apr 2016                | 24                           |

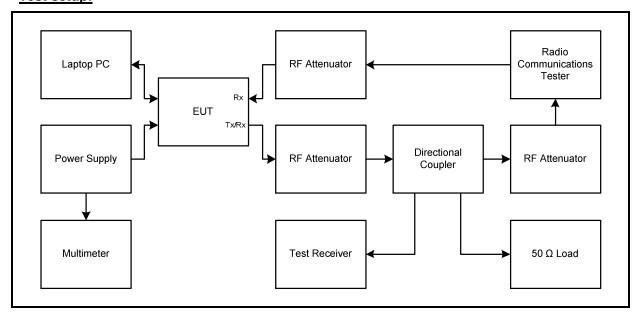
UL VS LTD Page 53 of 57

#### 5.2.8. Transmitter Frequency Stability (Voltage Variation)

#### **Test Summary:**

| Test Engineer:             | Keith Tucker | Test Date: | 25 February 2016 |  |
|----------------------------|--------------|------------|------------------|--|
| Test Sample Serial Number: | BBRBG010042A |            |                  |  |

| FCC Reference:    | Parts 74.661 and 2.1055                                                    |
|-------------------|----------------------------------------------------------------------------|
| Test Method Used: | KDB 971168 D01 Section 9.0 referencing FCC CFR Part 2.1055 and notes below |


#### **Environmental Conditions:**

| Temperature (°C):      | 28 |
|------------------------|----|
| Relative Humidity (%): | 28 |

#### Note(s):

- 1. Voltage at the EUT was monitored throughout the test with a calibrated digital voltmeter.
- 2. The EUT could not be configured to operate in an unmodulated mode, therefore the mean of the upper and lower 10 dBc modulated envelope frequencies was calculated in order to determine the carrier frequency.
- 3. The envelope frequencies were measured with a test receiver using a 1 kHz RBW and more than one sweep point per kHz of span.
- 4. The frequency reference of the test receiver was used as a common reference for the test system.

#### Test setup:



Page 54 of 57 UL VS LTD

## **Transmitter Frequency Stability (Voltage Variation) (continued)**

## Results: Bottom Channel (2028.5 MHz)

| Supply<br>Voltage (V) | Lower<br>Frequency<br>(MHz) | Upper<br>Frequency<br>(MHz) | Mean<br>Frequency<br>(MHz) | Frequency<br>Error<br>(%) | Limit<br>(%) | Margin<br>(%) | Result   |
|-----------------------|-----------------------------|-----------------------------|----------------------------|---------------------------|--------------|---------------|----------|
| 23.8                  | 2026.243590                 | 2030.796150                 | 2028.519870                | 0.000980                  | 0.005        | 0.004020      | Complied |
| 32.2                  | 2026.237179                 | 2030.756410                 | 2028.496795                | 0.000158                  | 0.005        | 0.004842      | Complied |

## Results: Top Channel (2106.5 MHz)

| Supply<br>Voltage (V) | Lower<br>Frequency<br>(MHz) | Upper<br>Frequency<br>(MHz) | Mean<br>Frequency<br>(MHz) | Frequency<br>Error<br>(%) | Limit<br>(%) | Margin<br>(%) | Result   |
|-----------------------|-----------------------------|-----------------------------|----------------------------|---------------------------|--------------|---------------|----------|
| 23.8                  | 2104.243590                 | 2108.756410                 | 2106.500000                | 0.000000                  | 0.005        | 0.005000      | Complied |
| 32.2                  | 2104.243590                 | 2108.756410                 | 2106.500000                | 0.000000                  | 0.005        | 0.005000      | Complied |

## **Test Equipment Used:**

| Asset<br>No. | Instrument          | Manufacturer            | Type No.          | Serial No.  | Date<br>Calibration<br>Due | Cal.<br>Interval<br>(Months) |
|--------------|---------------------|-------------------------|-------------------|-------------|----------------------------|------------------------------|
| M1659        | Thermohygrometer    | JM Handelspunkt         | 30.5015.13        | None stated | 23 Apr 2016                | 12                           |
| M1874        | Test Receiver       | Rohde & Schwarz         | ESU26             | 100553      | 12 Jun 2016                | 12                           |
| A1397        | Attenuator          | Weinschel<br>Associates | WA46-20           | A128        | Calibrated before use      | -                            |
| A2534        | Directional Coupler | AtlanTecRF              | CDC-<br>003060-20 | 14041701718 | Calibrated before use      | -                            |
| G088         | Power Supply        | Thurlby Thandar         | CPX200            | 100700      | Calibrated before use      | -                            |
| S021         | Power Supply        | Thurlby Thandar         | CPX200            | 061034      | Calibrated before use      | -                            |
| M1251        | Multimeter          | Fluke                   | 175               | 89170179    | 26 May 2016                | 12                           |
| G0607        | Signal Generator    | Rohde & Schwarz         | SMU200A           | 100943      | 18 Jul 2016                | 36                           |
| M199         | Power Meter         | Rohde & Schwarz         | NRVS              | 827023/075  | 08 Apr 2016                | 24                           |
| M1267        | Power Sensor        | Rohde & Schwarz         | NRV-Z52           | 100155      | 23 Apr 2016                | 24                           |

UL VS LTD Page 55 of 57

## **6. Measurement Uncertainty**

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

| Measurement Type                  | Range                | Confidence<br>Level (%) | Calculated<br>Uncertainty |
|-----------------------------------|----------------------|-------------------------|---------------------------|
| 99% Occupied Bandwidth            | 2025 MHz to 2110 MHz | 95%                     | ±3.92 %                   |
| Conducted Carrier Output Power    | 2025 MHz to 2110 MHz | 95%                     | ±1.13 dB                  |
| Duty Cycle with Spectrum Analyser | 2025 MHz to 2110 MHz | 95%                     | ±1.14 %                   |
| Conducted Spurious Emissions      | 9 kHz to 22 GHz      | 95%                     | ±2.62 dB                  |
| Radiated Spurious Emissions       | 30 MHz to 1 GHz      | 95%                     | ±5.65 dB                  |
| Radiated Spurious Emissions       | 1 GHz to 22 GHz      | 95%                     | ±2.94 dB                  |
| Frequency Stability               | 2025 MHz to 2110 MHz | 95%                     | ±0.92 ppm                 |

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

Page 56 of 57 UL VS LTD

# 7. Report Revision History

| Version | Revision Details |        |                 |
|---------|------------------|--------|-----------------|
| Number  | Page No(s)       | Clause | Details         |
| 1.0     | -                | -      | Initial Version |

--- END OF REPORT ---

UL VS LTD Page 57 of 57