

Intertek 731 Enterprise Drive Lexington, KY 40510

Tel 859 226 1000 Fax 859 226 1040

www.intertek.com

Attenti US Inc. TEST REPORT

SCOPE OF WORK

EMC TESTING - AT1 1-PIECE GPS TRACKING DEVICE

REPORT NUMBER

103788844LEX-002

ISSUE DATE

1/11/2018

PAGES

21

DOCUMENT CONTROL NUMBER

Non-Specific EMC Report Shell Rev. December 2017 © 2017 INTERTEK

EMC TEST REPORT

(PARTIAL COMPLIANCE)

Report Number: 103788844LEX-002 **Project Number:** G103788844

Report Issue Date: 1/11/2018

Model(s) Tested: AT1 1-Piece GPS Tracking Device

Standards: FCC Part 15.247

FCC Part 27

Limited to RSE Verification

Tested by:
Intertek Testing Services NA, Inc.
731 Enterprise Dr.
Lexington, KY 40510
USA

Client: Attenti US Inc. 1838 Gunn Hihgway

Report prepared by

Report reviewed by

Brian Daffin, Engineer Bryan Taylor, Team Leader

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Date: 1/11/2018

Table of Contents

1	Introduction and Conclusion	. 4
2	Test Summary	. 4
3	Client Information	. 5
4	Description of Equipment under Test and Variant Models	. 6
5	System Setup and Method	. 7
6	Radiated Spurious Emissions, FCC Part 15.247	. 9
7	Radiated Spurious Emissions, FCC Part 27	15
R	Revision History	21

Date: 1/11/2018

Page 4 of 21

1 **Introduction and Conclusion**

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complies with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 **Test Summary**

Section	Test full name	Result
6	Radiated Spurious Emissions FCC Part 15.247, RSE Verification Only	Compliant
7	Radiated Spurious Emissions FCC Part 27, RSE Verification Only	Compliant

Note: Testing was limited to radiated spurious emissions only due to the integration of certified radio modules.

Report Number: 103788844LEX-002

Date: 1/11/2018

3 Client Information

This product was tested at the request of the following:

Client Information			
Client Name:	Attenti US Inc.		
Address:	1838 Gunn Hihgway		
Contact:	Stanley DuPont		
Telephone:	813 749 5454		
Email:	sdupont@attentigroup.com		
	Manufacturer Information		
Manufacturer Name:	Attenti US Inc.		
Manufacturer Address:	1838 Gunn Hihgway		

Date: 1/11/2018

4 Description of Equipment under Test and Variant Models

	Equipment Under Test			
Product Name AT1 1-Piece GPS Tracking Device				
Model Number	14024VL			
Serial Number	34477985			
Receive Date	12/13/2018			
Test Start Date	12/14/2018			
Test End Date 12/21/2018				
Device Received Condition	Good			
Test Sample Type	Production			
Rated Voltage	12 VDC via AC/DC Adapter			
Rated Current	<2 A DC			
Rated Frequency	DC			
Descrip	tion of Equipment Under Test (provided by client)			
Attenti 1Piece GPS Offender Tracking Device Model 14024VL				

4.1 Variant Models:

There were no variant models covered by this evaluation.

Date: 1/11/2018

5 System Setup and Method

5.1 Method:

Configuration as required by ANSI C63.4:2014.

No.	Descriptions of EUT Exercising
1	Transmitting via wifi radio on various channels at max power
2	Transmitting via LTE bands 4 or 13 on various channels at max power

	Cables						
Qty	Description	Length (m)	Shielding	Ferrites	Termination		
1	Charging Cable	2	No	No	AC Plug		

Support Equipment						
Description	Manufacturer	Model Number	Serial Number			
No Support Equipment						

Non-Specific EMC Report Shell Rev. December 2017 Page 7 of 21

Report Number: 103788844LEX-002

Date: 1/11/2018

5.2 EUT Photo (Front):

5.3 EUT Photo (Back):

Date: 1/11/2018

Radiated Spurious Emissions, FCC Part 15.247

6.1 Method

Tests are performed in accordance with ANSI C63.10:2013.

TEST SITE: 10m ALSE

Site Designation: 10m Chamber

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	3.9dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	4.0dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.7dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	4.7dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.7dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.7dB	5.5 dB

As shown in the table above our radiated emissions $\,U_{\it lab}\,$ is less than the corresponding $\,U_{\it CISPR}\,$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required.

Report Number: 103788844LEX-002

Non-Specific EMC Report Shell Rev. December 2017 Page 9 of 21

Date: 1/11/2018

Page 10 of 21

6.2 Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBμV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}\mu\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}\mu\text{V/m}$

To convert from dB μ V to μ V or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μV
NF = Net Reading in $dB\mu V$

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

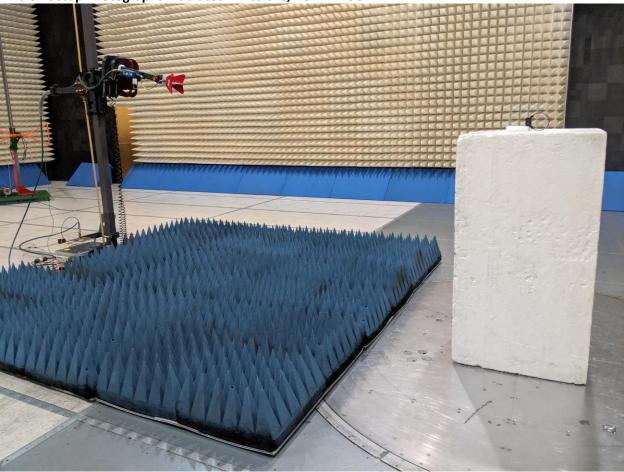
$$UF = 10^{(32\,dB_{\mu}V\,/\,20)} = 39.8\,\mu V/m$$

Date: 1/11/2018

6.3 Test Equipment Used:

Description	Asset	Manufacturer	Model	Cal Date	Cal Due
EMI Test Receiver	3900	Rohde & Schwarz	ESU40	9/18/2018	9/18/2019
Bilog Antenna	7088	SunAR	JB6	7/24/2018	7/24/2019
Horn Antenna	3780	ETS Lindgren	3117	6/11/2018	6/11/2019
System Controller	4096	ETS Lindgren	2090	Verify at	Verify at
				Time of Use	Time of Use
System Controller	3957	Sunol Sciences	SC99V	Verify at	Verify at
				Time of Use	Time of Use
3m Cable	3074			11/26/2018	11/26/2019
Antenna→Preamp					
3m Cable	3918	Rohde & Schwarz	TS-PR18	11/26/2018	11/26/2019
Preamplifier					
3m Cable	2588			11/26/2018	11/26/2019
Preamp→Chamber					
3m Cable	2593			11/26/2018	11/26/2019
Chamber→Control Room					
3m Cable	2592			11/26/2018	11/26/2019
Control Room→Receiver					
10m Cable	3339			11/26/2018	11/26/2019
Antenna → Preamp					
10m Cable	7019	Rohde & Schwarz	TS-PR3	11/26/2018	11/26/2019
Preamplifier					
10m Cable	3172			11/26/2018	11/26/2019
Preamp→Chamber					
10m Cable	2590			11/26/2018	11/26/2019
Chamber→Control Room					
10m Cable	2589			11/26/2018	11/26/2019
Control Room→Receiver					

6.4 Software Utilized:


Name	Manufacturer	Version
EMC32	Rohde & Schwarz	Version 9.15.02

6.5 Results:

The sample tested was found to Comply. Data shown is from the worst case orientation after investigating emissions with the test sample in three orthogonal positions.

Date: 1/11/2018

6.6 Setup Photographs: Radiated Emissions, 1GHz – 18GHz

Date: 1/11/2018

6.7 Plots/Data: Radiated Emissions, 1GHz – 18GHz

1 Mbps, Channel 1 Final Result PK+

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
4809.500000	42.77	74.00	31.23	1000.000	410.0	Н	311.0	7.1
7237.000000	50.51	74.00	23.49	1000.000	100.0	٧	66.0	11.2
9648.000000	48.57	74.00	25.43	1000.000	100.0	٧	87.0	13.4
14471.500000	53.99	74.00	20.01	1000.000	410.0	٧	122.0	19.4
16852.000000	56.65	74.00	17.35	1000.000	100.0	٧	68.0	24.1

Final Result AVG

 a	•							
Frequency	Average	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
4809.500000	29.57	54.00	24.43	1000.000	410.0	Н	311.0	7.1
7237.000000	42.71	54.00	11.29	1000.000	100.0	٧	66.0	11.2
9648.000000	37.53	54.00	16.47	1000.000	100.0	٧	87.0	13.4
14471.500000	41.70	54.00	12.30	1000.000	410.0	٧	122.0	19.4
16852.000000	43.27	54.00	10.73	1000.000	100.0	٧	68.0	24.1

1 Mbps, Channel 6 Final Result PK+

Frequency	MaxPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
4844.000000	42.96	74.00	31.04	1000.000	410.0	Н	222.0	7.1
7311.500000	47.88	74.00	26.12	1000.000	232.0	٧	123.0	10.9
9748.000000	49.87	74.00	24.13	1000.000	100.0	٧	85.0	13.3
12199.000000	51.32	74.00	22.68	1000.000	326.0	٧	14.0	17.9
14622.000000	54.40	74.00	19.60	1000.000	383.0	Н	312.0	19.7

Final Result AVG

<u></u>								
Frequency	Average	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
4844.000000	29.77	54.00	24.23	1000.000	410.0	Н	222.0	7.1
7311.500000	37.19	54.00	16.81	1000.000	232.0	٧	123.0	10.9
9748.000000	40.51	54.00	13.49	1000.000	100.0	٧	85.0	13.3
12199.000000	37.34	54.00	16.66	1000.000	326.0	٧	14.0	17.9
14622.000000	42.99	54.00	11.01	1000.000	383.0	Н	312.0	19.7

Non-Specific EMC Report Shell Rev. December 2017 Page 13 of 21

Report Number: 103788844LEX-002

Date: 1/11/2018

1 Mbps, Channel 11 Final_Result_PK+

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
4927.000000	42.72	74.00	31.28	1000.000	157.0	Н	0.0	7.2
7387.500000	47.01	74.00	26.99	1000.000	257.0	٧	211.0	11.0
9848.000000	50.38	74.00	23.62	1000.000	293.0	٧	183.0	13.6
12315.000000	51.66	74.00	22.34	1000.000	100.0	Н	313.0	18.7
14772.000000	54.26	74.00	19.74	1000.000	410.0	٧	133.0	19.4

Final Result AVG

i iiiai_itesa	^.	•							
Frequenc	y	Average	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)		(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
4927.00	0000	29.46	54.00	24.54	1000.000	157.0	Н	0.0	7.2
7387.50	0000	36.41	54.00	17.59	1000.000	257.0	V	211.0	11.0
9848.00	0000	41.45	54.00	12.55	1000.000	293.0	٧	183.0	13.6
12315.00	0000	38.42	54.00	15.58	1000.000	100.0	Н	313.0	18.7
14772.00	0000	43.71	54.00	10.29	1000.000	410.0	٧	133.0	19.4

Test Personnel:	Brian Daffin	Test Date:	12/17/2018
Supervising/Reviewing Engineer:			
(Where Applicable)	N/A	Limit Applied:	See table above
Product Standard:	FCC Part 15.247	Ambient Temperature:	21.7 °C
Input Voltage:	12 VDC via AC DC Adapter	Relative Humidity:	36.6 %
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4 mbar

Deviations, Additions, or Exclusions: None

Date: 1/11/2018

Radiated Spurious Emissions, FCC Part 27

7.1 Method

Tests are performed in accordance with ANSI C63.26:2015.

TEST SITE: 10m ALSE

Site Designation: 10m Chamber

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	3.9dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	4.0dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.7dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	4.7dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.7dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.7dB	5.5 dB

As shown in the table above our radiated emissions $\,U_{\it lab}\,$ is less than the corresponding $\,U_{\it CISPR}\,$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required.

Report Number: 103788844LEX-002

Page 15 of 21 Non-Specific EMC Report Shell Rev. December 2017

Date: 1/11/2018

7.2 Limit Calculation

For any frequency outside of the operating band, the power of any emissions shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log(P)dB.

```
\begin{split} & \text{Limit (dBm)} = P - 43 + 10 log(P) dB \\ & P_{(dBm)} = 10 \ log(P_{(Watts)}) + 30 \\ & \text{Limit }_{(dBm)} = 10 \ log(P_{(Watts))} + 30 - 43 - 10 \ log(P_{(Watts)}) \\ & \text{Limit }_{(dBm)} = 30 - 43 = -13 dBm \end{split}
```

To convert this limit to a Field Strength limit in units of dBµV/m, the following correction factor from ANSI C63.26

Correction Factor = 20log(D) - 104.8 where D is the measurement distance Correction Factor = 20log(3) - 104.8 = -95.26 dB $Limit_{(dB\mu\nu/m)} = Limit_{(dBm)} + 95.26$ $Limit_{(dB\mu\nu/m)} = -13 + 95.26 = 82.26_{(dB\mu\nu/m)}$

7.3 Sample Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBμV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}\mu\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}\mu\text{V/m}$

To convert from dB μ V to μ V or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μV NF = Net Reading in $dB\mu V$

Example:

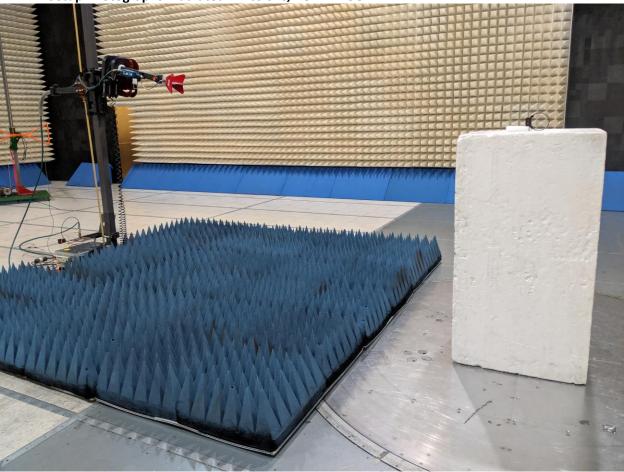
FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0UF = $10^{(32 \, dB_{\mu}V / 20)} = 39.8 \, \mu V/m$

Date: 1/11/2018

7.4 Test Equipment Used:

Description	Asset	Manufacturer	Model	Cal Date	Cal Due
EMI Test Receiver	3900	Rohde & Schwarz	ESU40	9/18/2018	9/18/2019
Bilog Antenna	7088	SunAR	JB6	7/24/2018	7/24/2019
Horn Antenna	3780	ETS Lindgren	3117	6/11/2018	6/11/2019
System Controller	4096	ETS Lindgren	2090	Verify at	Verify at
				Time of Use	Time of Use
System Controller	3957	Sunol Sciences	SC99V	Verify at	Verify at
				Time of Use	Time of Use
3m Cable	3074			11/26/2018	11/26/2019
Antenna→Preamp					
3m Cable	3918	Rohde & Schwarz	TS-PR18	11/26/2018	11/26/2019
Preamplifier					
3m Cable	2588			11/26/2018	11/26/2019
Preamp→Chamber					
3m Cable	2593			11/26/2018	11/26/2019
Chamber→Control Room					
3m Cable	2592			11/26/2018	11/26/2019
Control Room→Receiver					
10m Cable	3339			11/26/2018	11/26/2019
Antenna → Preamp					
10m Cable	7019	Rohde & Schwarz	TS-PR3	11/26/2018	11/26/2019
Preamplifier					
10m Cable	3172			11/26/2018	11/26/2019
Preamp→Chamber					
10m Cable	2590			11/26/2018	11/26/2019
Chamber→Control Room					
10m Cable	2589			11/26/2018	11/26/2019
Control Room→Receiver					

7.5 Software Utilized:


Name	Manufacturer	Version
EMC32	Rohde & Schwarz	Version 9.15.02

7.6 Results:

The sample tested was found to Comply. Data shown is from the worst case orientation after investigating emissions with the test sample in three orthogonal positions.

Date: 1/11/2018

7.7 Setup Photographs: Radiated Emissions, 1GHz – 18GHz

Date: 1/11/2018

Page 19 of 21

7.8 Plots/Data: Radiated Emissions, 1GHz – 18GHz

LTE Band 4, Low

Frequency	Average	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
3422.500000	27.96	82.25	54.29	1000.000	295.0	٧	156.0	4.4
5137.500000	31.32	82.25	50.93	1000.000	355.0	٧	157.0	7.5
6850.000000	52.04	82.25	30.21	1000.000	410.0	٧	184.0	10.4
8558.000000	33.26	82.25	48.99	1000.000	243.0	٧	312.0	11.9
10277.000000	38.52	82.25	43.73	1000.000	210.0	٧	186.0	14.5
11987.500000	39.43	82.25	42.82	1000.000	192.0	٧	169.0	17.4
13700.000000	44.84	82.25	37.41	1000.000	357.0	٧	142.0	18.7

LTE Band 4, Mid

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
3464.000000	28.13	82.25	54.12	1000.000	297.0	٧	160.0	4.8
5199.000000	31.50	82.25	50.75	1000.000	410.0	٧	346.0	7.7
6930.000000	51.63	82.25	30.62	1000.000	410.0	٧	179.0	10.7
8662.000000	35.43	82.25	46.82	1000.000	332.0	٧	326.0	11.8
10395.000000	38.45	82.25	43.80	1000.000	215.0	٧	149.0	14.8
12125.000000	39.96	82.25	42.29	1000.000	193.0	٧	169.0	17.9
13859.000000	41.81	82.25	40.44	1000.000	272.0	٧	173.0	18.7

LTE Band 4. High

- 1 - Dana -, 111511								
Frequency	Average	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
3503.500000	27.75	82.25	54.50	1000.000	410.0	٧	161.0	5.3
5258.000000	32.38	82.25	49.87	1000.000	237.0	٧	0.0	7.7
7010.000000	48.35	82.25	33.90	1000.000	367.0	٧	174.0	10.9
8763.500000	36.59	82.25	45.66	1000.000	254.0	٧	321.0	12.3
10515.000000	38.01	82.25	44.24	1000.000	197.0	٧	137.0	14.8
12267.500000	40.86	82.25	41.39	1000.000	296.0	٧	114.0	18.4
14019.500000	43.07	82.25	39.18	1000.000	410.0	٧	173.0	18.9

LTE Band 13, Low

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
1558.500000	33.37	82.25	48.88	1000.000	358.0	Н	220.0	-2.6
2335.000000	31.60	82.25	50.65	1000.000	100.0	Н	99.0	2.5
3118.000000	30.19	82.25	52.06	1000.000	288.0	Н	102.0	4.5
3896.500000	28.78	82.25	53.47	1000.000	312.0	٧	170.0	5.7

Report Number: 103788844LEX-002

Non-Specific EMC Report Shell Rev. December 2017

Date: 1/11/2018

LTE Band 13, Mid

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
1564.000000	31.55	82.25	50.70	1000.000	357.0	٧	150.0	-2.1
2349.500000	31.95	82.25	50.30	1000.000	325.0	٧	149.0	2.7
3128.000000	31.90	82.25	50.35	1000.000	304.0	٧	151.0	4.5
3911.500000	28.61	82.25	53.64	1000.000	410.0	Н	32.0	5.8

LTE Band 13, High

Frequency	Average	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB)
1564.500000	24.78	82.25	57.47	1000.000	357.0	V	150.0	-2.1
2356.500000	33.14	82.25	49.11	1000.000	371.0	Н	99.0	2.6
3138.000000	32.23	82.25	50.02	1000.000	333.0	٧	147.0	4.6
3923.000000	28.44	82.25	53.81	1000.000	100.0	Н	124.0	5.8

Test Personnel:	Brian Daffin	Test Date:	12/16/2018
Supervising/Reviewing Engineer:			
(Where Applicable)	N/A	Limit Applied:	See table above
Product Standard:	FCC Part 27	Ambient Temperature:	22.6 °C
Input Voltage:	12 VDC via AC DC Adapter	Relative Humidity:	28.2 %
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4 mbar

Deviations, Additions, or Exclusions: None

Date: 1/11/2018

8 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	1/11/2018	103788844LEX-002	BD	ВСТ	Original Issue

Non-Specific EMC Report Shell Rev. December 2017 Page 21 of 21

Report Number: 103788844LEX-002