

FCC Part 90 Test Report

for

Communication Network Interface, Inc.

on the

Radio Packet Modem

Model: CNI-903M

FCC ID: N79CNI-903M

Test Report #: J20007646A Date of Report: March 29, 2000

Job #: J20007646 Date of Test: March 21, 2000

Total No. of Pages Contained in this Report: 14 + data pages

David Chernomordik, Ph.D., EMC Site Manager

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek Testing Services, NA Inc. This report must not be used to claim product endorsement by NVLAP, NIST nor any other agency of the U.S. Government.

FCC Part 90 Cert, Rev 9/99

Communication Network Interface, Inc., Model No. CNI-903M

Date of Test: March 21, 2000

FCC ID: N79CNI-903M

1.0 **Summary of Tests**

FCC ID: N79CNI-903M Model No.: CNI-903M

FCCRULE	DESCRIPTION OF TEST	RESULTS
2.1046	RF Power Output	Pass
90.205	Effective Radiated Power	Pass
2.1049, 90. 209(b)(5) , 90.210	Occupied Bandwidth, Bandwidth Limitation, Emission Masks	Pass
2.1051	Spurious Emissions at Antenna Terminals	Pass
2.1053, 15.109	Field Strength of Spurious Radiation	Pass
15,107	Line Conducted Emissions	Pass
2.1055	Frequency Stability vs. Temperature	Pass
2.1055	Frequency Stability vs. Voltage	Pass
2.914	Transient Frequency Behavior	N/A

Xi-Ming Yang Date: 3/30/00

EMC Site Manager: David Chernomordik, Ph.D. Date: 3/30/00

David Chernomordik, Ph.D.

EMC Site Manager

Date of Test: March 21, 2000

Table of Contents

1.0	Sum	mary of Tests	1
2.0	Gen	eral Description	1
	2.1	Product Description	······································
	2.2	Related Submittal(s) Grants	2
	2.3	Test Facility	2
3.0	RF I	Power Output, FCC § 2.985(a)	1
	3.1	Test Procedure	2
	3.2	Test Equipment	
	3.3	Test Results	3
4.0	Occi	upied Bandwidth, Bandwidth Limitation, Emission Masks	A
	4.1	Test Procedure	A
	4.2	Test Equipment	
	4.3	Test Results	4
5.0	Out	of Band Emissions at Antenna Terminals, FCC §2.991	
	5.1	Test Procedure	5
6.0	Field	Strength of Spurious Radiation, FCC §2.993, §15.109	6
	6.1	Test Procedure	
	6.2	Test Equipment	6
7.0	Line	Conducted Emissions, FCC § 15,107	q
	7.1	Test Procedure	Q
	7.2	Test Configuration Setup - Line Conducted Emissions	10
	7.3	Test Results	11
8.0	Frequ	uency Stability vs Temperature, FCC § 2.995(a)	12
	8.1	Test Procedure	17
	8.2	Test Equipment	12
	8.3	Test Results	12
9.0	Frequ	uency Stability vs Voltage, FCC §2.995(d)(2)	13
	9.1	Test Procedure	
	9.2	Test Equipment	13
	9.3	Test Results	13
10.0	Trans	sient Frequency Behavior, FCC §90.214	14
	10.1	Test Procedure	14
	10.2	Test Results	14

Date of Test: March 21, 2000

2.0 General Description

2.1 Product Description

The CNI-903M, RPM (Radio Packet Modem) is a digital data communication equipment in acordance with Mobitex specification. The frequency it uses ranges from 896 MHz to 901 MHz for transmission and from 935 MHz to 941 MHz for reception.

A production version of the sample was received on March 21, 2000 in good condition.

Overview of Radio Packet Modem

Applicant	Communication Network Interface, Inc.
Trade Name & Model No.	CNI/CNI-903M
FCC Identifier	N79CNI-903M
Use of Product	Digital Data Communication (Two-Way Pager)
Type of Transmission	Direct Sequence
Bit Rate	8000 bps
Max. Allowed Deviation	2 kHz
Range of RF Output	2W
The dc voltage applied to and	Voltage: 3V
current into the several	Current: 1A
elements of the final RF	
amplifying device	
Frequency Range	896 – 901 MHz
Max. Number of Channels	
Antenna(e) & Gain	0 dBi
Detachable Antenna?	[X] Yes [] No
Receiver L.O. Frequency	896 – 901 MHz
External Input	[] Audio [X] Digital Data

2.2 Related Submittal(s) Grants

None.

2.3 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is site. This test facility and site measurement data have been fully placed on file with the FCC and NVLAP accredited.

Date of Test: March 21, 2000

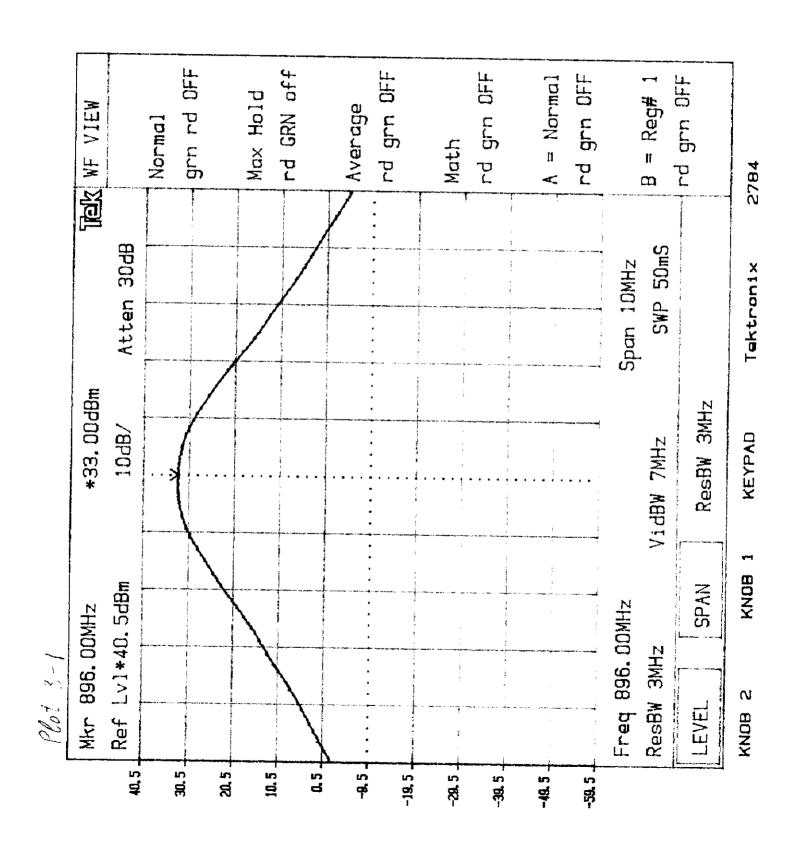
3.0 RF Power Output, FCC § 2.985(a)

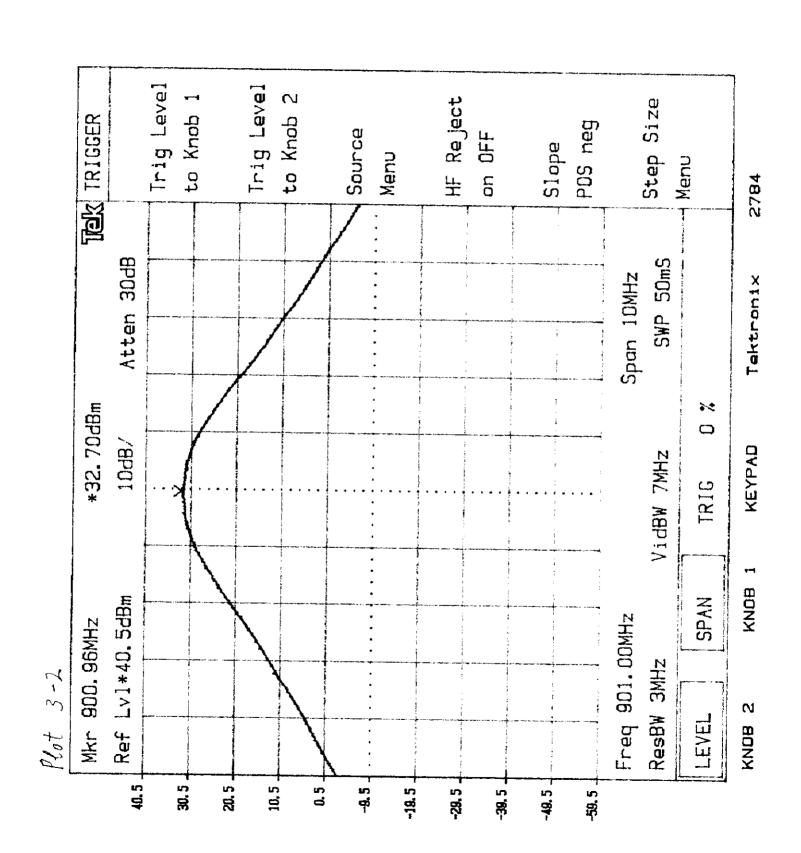
3.1 Test Procedure

The transmitter output was connected to a calibrated coaxial attenuator, the other end of which was connected to a spectrum analyzer. The resolution bandwidth and the video bandwidth of the spectrum analyzer were set up to 100 kHz and 30 kHz respectively. The attenuator was included in spectrum analyzer OFFSET function.

Transmitter output was read off the spectrum analyzer in dBm.

3.2 Test Equipment


Hewlett Packard 8481A Power Sensor, 435B Power Meter Hewlett Packard HP8566B Spectrum Analyzer, 100 Hz - 22 GHz Tektronix 2782 Spectrum Analyzer, 100 Hz - 40 GHz


3.3 Test Results

Refer to the attached plot.

Plot Number	Description
3-1	Low Channel
3-2	High Channel

Results: Passed	

Date of Test: March 21, 2000

4.0 Occupied Bandwidth, Bandwidth Limitation, Emission Masks FCC §2.989(I), 90.209(B)(5), 90.210

4.1 Test Procedure

The antenna was disconnected from the transmitter and the short cable was connected to the transmitter RF output.

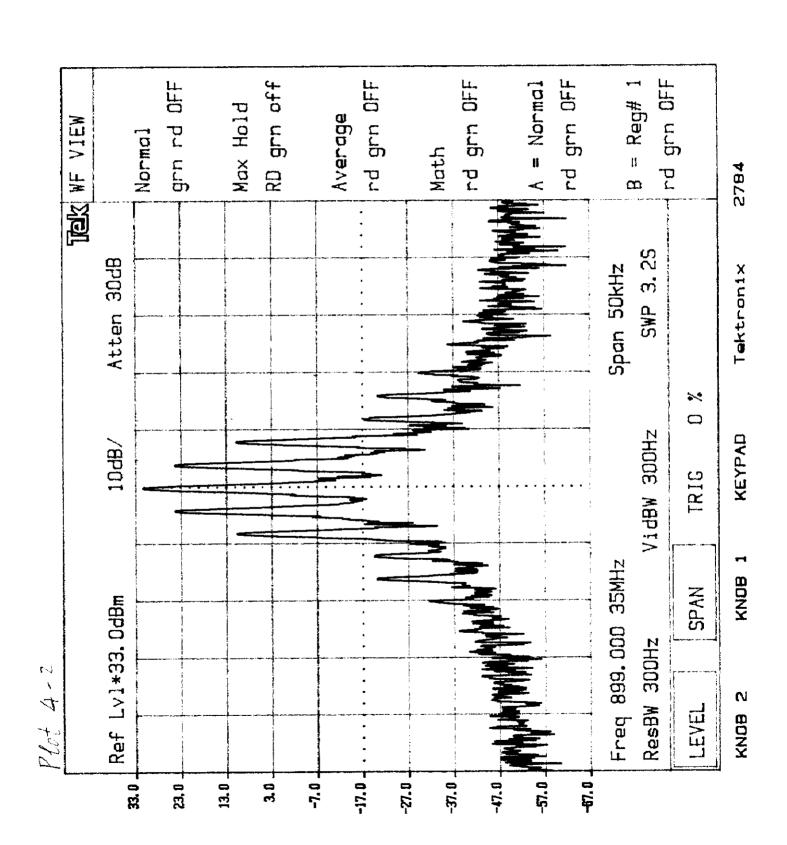
The RF output was connected to the input of the spectrum analyzer through sufficient attenuation.

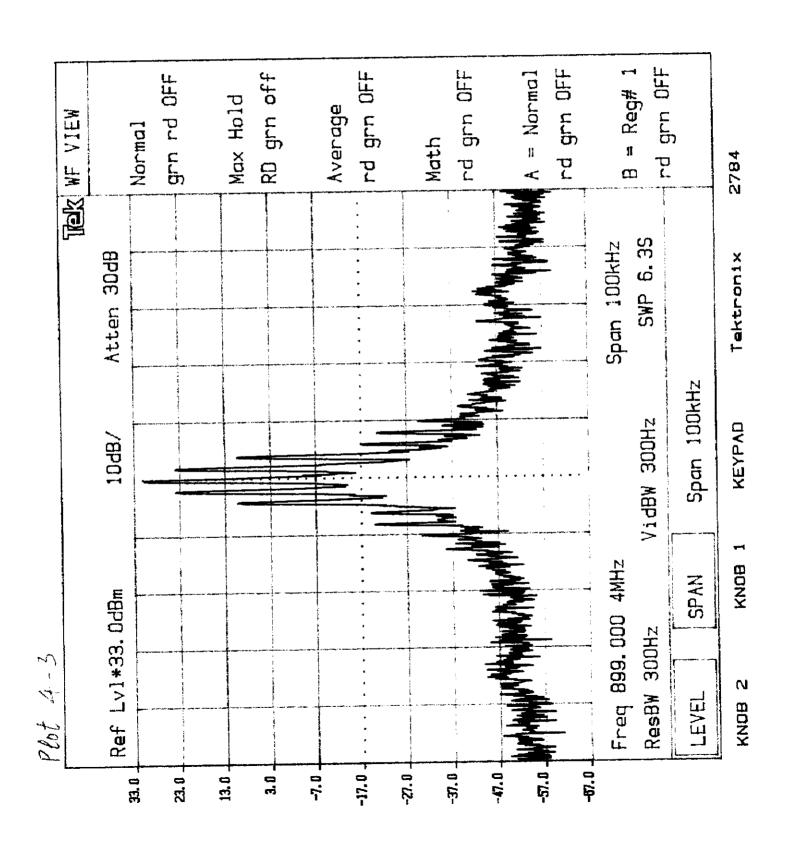
The resolution bandwidth of the spectrum analyzer was set up at least 10 times higher then the authorized bandwidth of the transmitter. The spectrum analyzer reading was recorded and plotted. This reading is used as a reference for emission mask measurements.

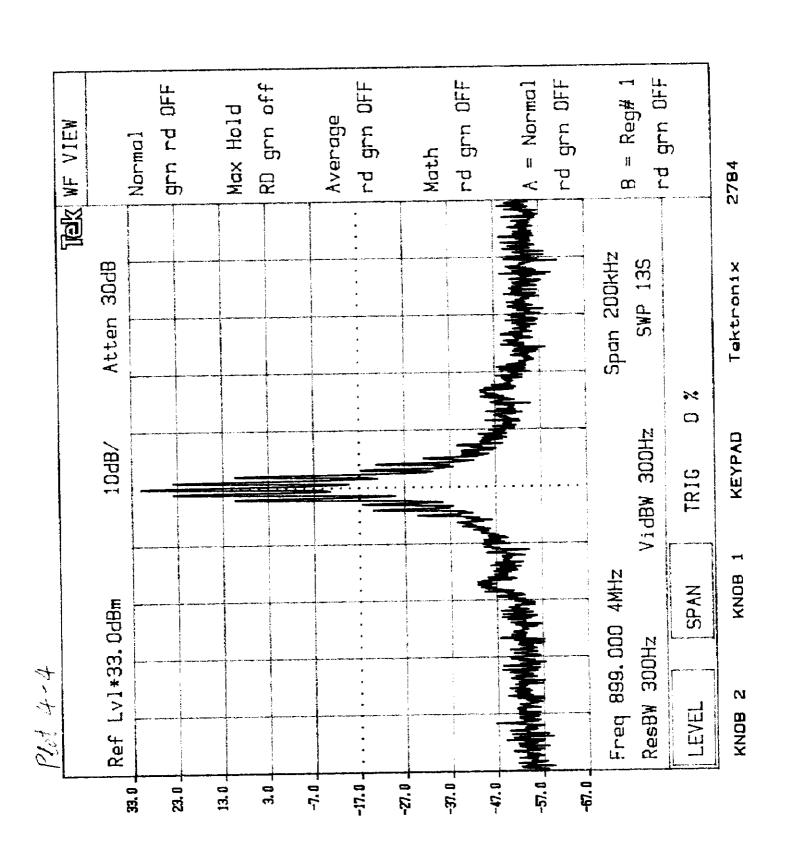
The resolution bandwidth of the spectrum analyzer was set up to 100 Hz and the spectrum of the transmitting signal was recorded. This spectrum was compared to the required emission mask.

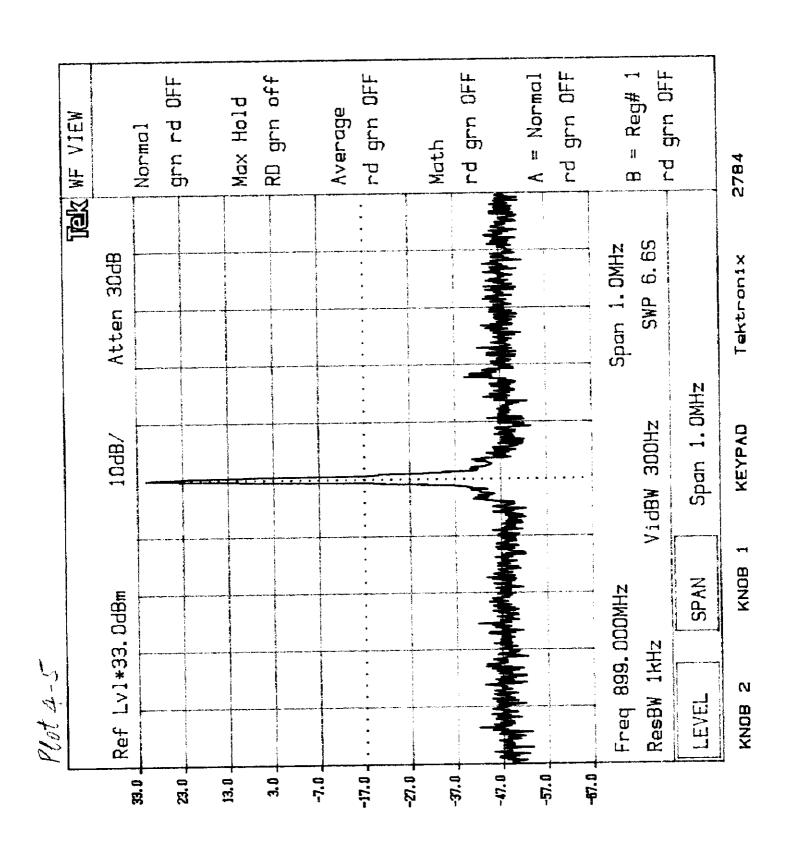
The emission designator was defined as 11K25F1D, where 11.25 kHz is the Authorized Bandwidth.

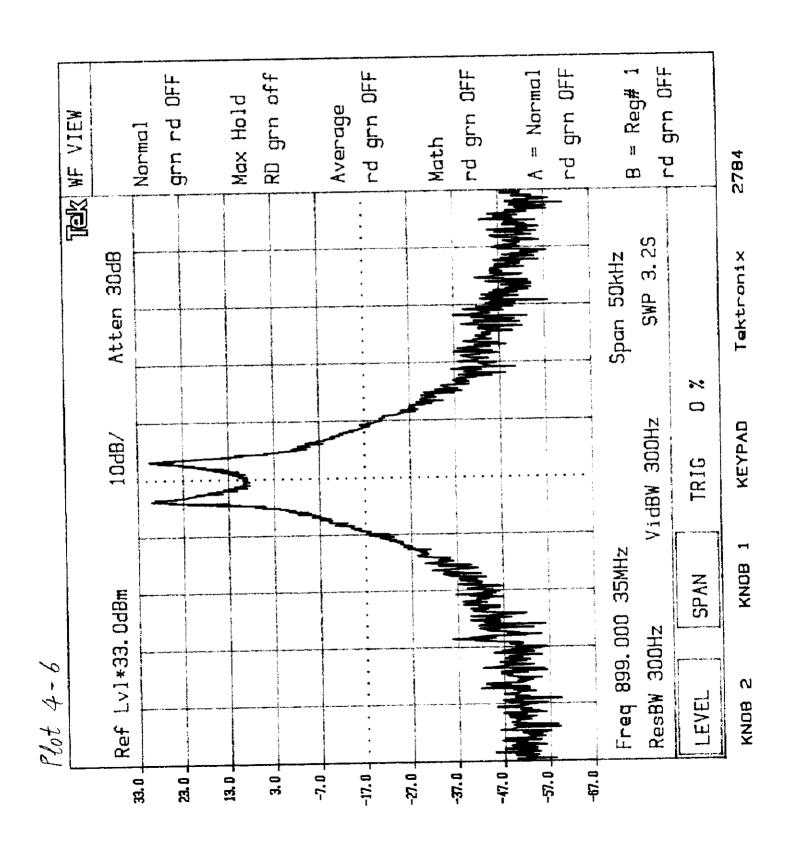
4.2 Test Equipment


Hewlett Packard 8481A Power Sensor, 435B Power Meter Hewlett Packard HP8566B Spectrum Analyzer, 100 Hz - 22 GHz Tektronix 2782 Spectrum Analyzer, 100 Hz - 40 GHz


4.3 Test Results


Plot Number	Description
4-1	Unmodulated
4-2	Modulated (00.11.00,11) 50 kHz Span
4-3	Modulated (00.11.00.11) 100 kHz Span
4-4	Modulated (00.11.00.11) 200 kHz Span
4-5	Modulated (00.11.00.11) 1 MHz Span
4-6	Random Modulated


Dogultar Doggod	
Results: Passed	



Date of Test: March 21, 2000

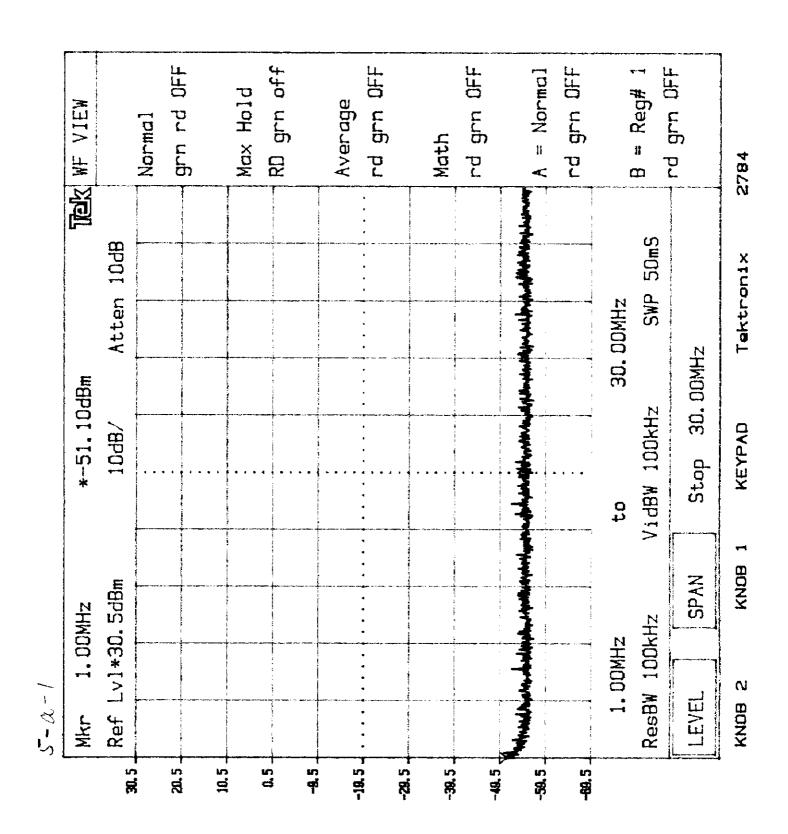
5.0 Out of Band Emissions at Antenna Terminals, FCC §2.991

The power of emissions must be attenuated below the power of the unmodulated carrier (P) on any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth - at least 43 + 10 log P dB.

5.1 Test Procedure

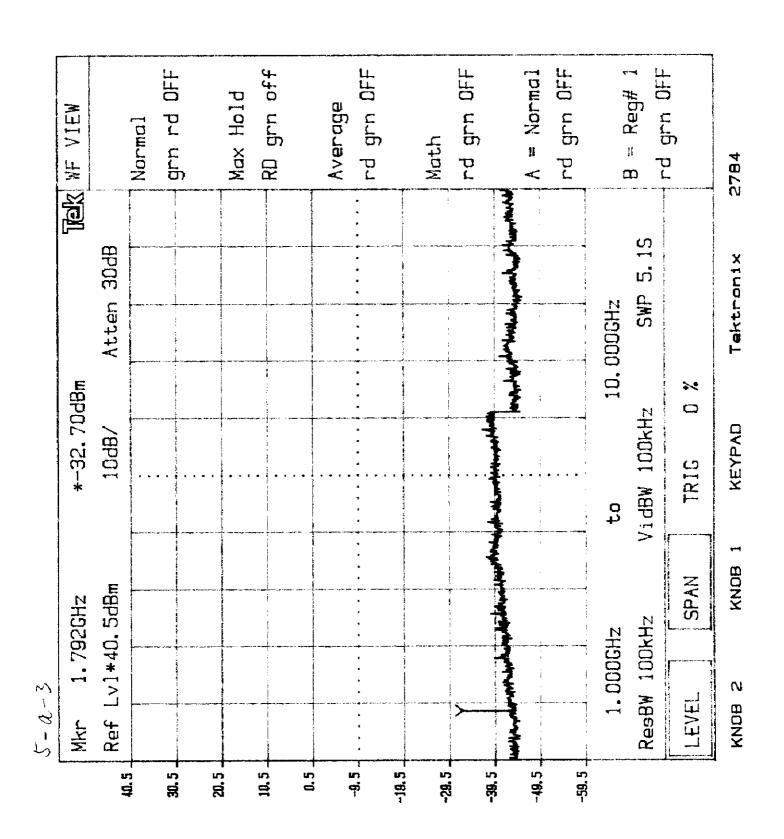
The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show the out-of-band emissions if any up to 10th harmonic.

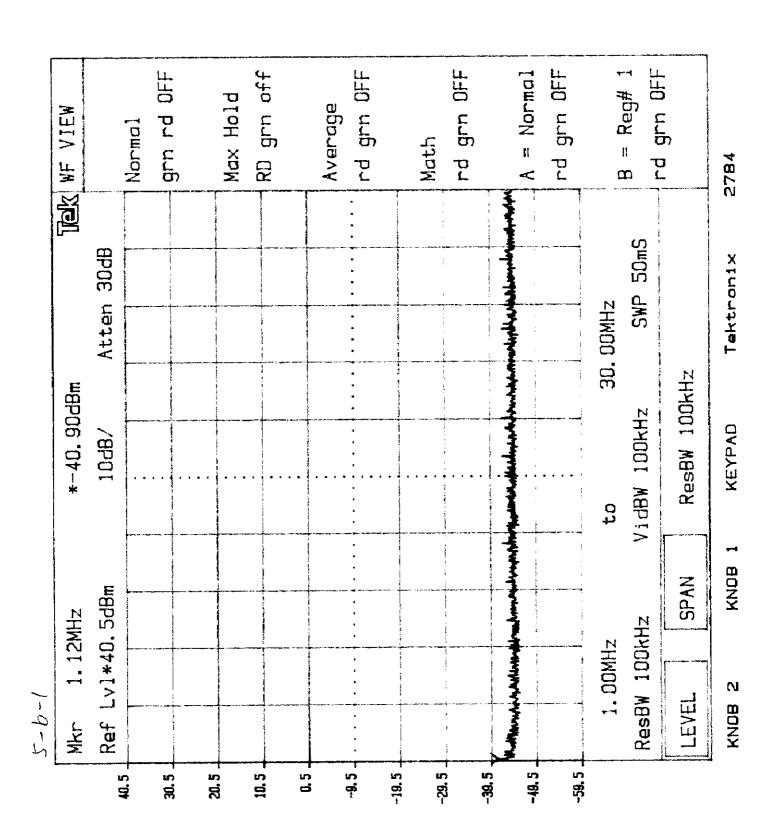
5.2 Test Equipment

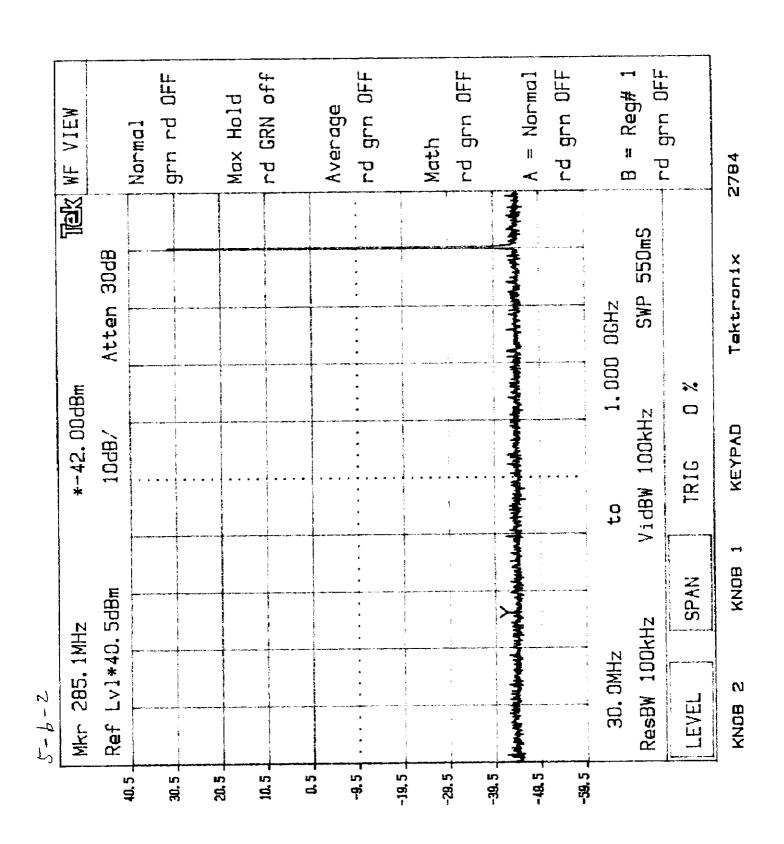

HP 8566B Spectrum Analyzer, 100 Hz - 22 GHz HP 7470A Plotter

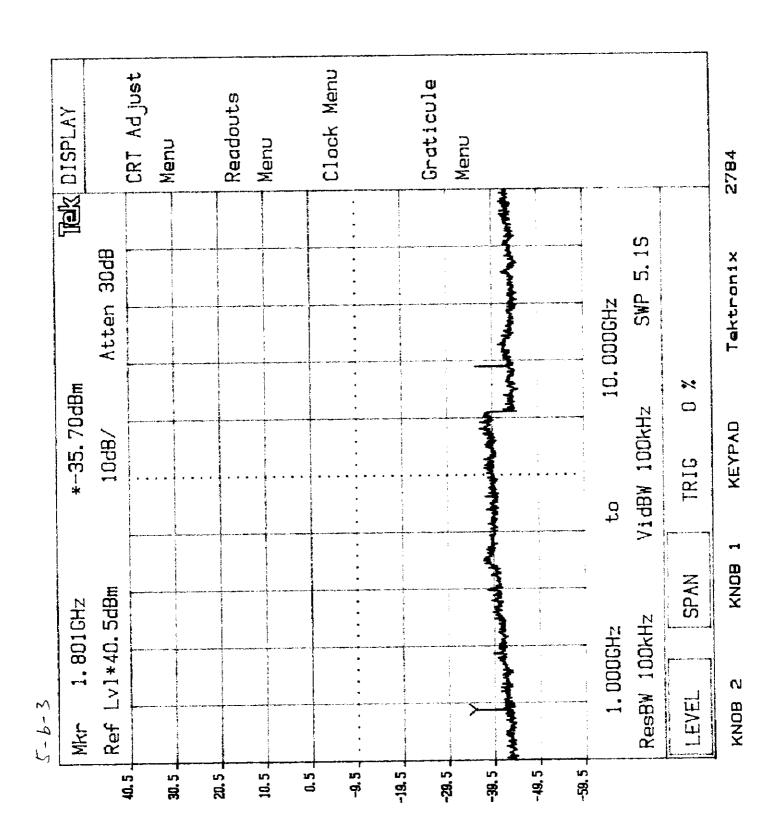
5.3 Test Results

Refer to the attached plots.


Plot Number	Description
5-1-1	Low Channel , 1 MHz -3 0 MHz
5-1-2	Low Channel, 30 MHz - 1 GHz
5-1-3	Low Channel, 1 GHz - 10 GHz
5-b-1	High Channel, 1 MHz -3 0 MHz
5-b-2	High Channel, 30 MHz - 1 GHz
5-b-3	High Channel, 1 GHz - 10 GHz


Results: Passed




2-8-5

2784 Taktronix KEYPAD KNOB 1

Date of Test: March 21, 2000

6.0 Field Strength of Spurious Radiation, FCC §2.993, §15.109

6.1 Test Procedure

The transmitter was placed on a wooden turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3 orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

The spurious harmonic attenuation was calculated as the difference between E in dB(uV/m) at the fundamental frequency and at the spurious emission frequency.

6.2 Test Equipment


CDI B100/200/300 Biconical Antennas EMCO 3115 Horn Antenna HP 8566B Spectrum Analyzer Preamplifiers

Date of Test: March 21, 2000

6.3 Test Configuration Setup - Radiated Emission

1365 Adams Ct. Menlo Park, CA 94025

Communication Network Interface, Inc., Model No. CNI-903M FCC ID: N79CNI-903M

Date of Test: March 21, 2000

6.4 Test Results

See attached.

Results: Passed

Radiated Emissions Test Data Compan C.N.I. Inc. Model #: CNI-903M Req. FCC 2.993 EUT: S/N or FCC #: Test Dist 3 meter J2000764 Project Test Date: March 21, 2000 ŦΡ **VVatt** 2.00 Test Tx @ Low Ch. Engineer: |Xi Ming Y. Min. Attn. 46.01 dBc Mode: Antenna Used Pre-Amp Used Cable Used Transducer Used Number: 13 EMCO LPB-2520A Model: EMCO None CDI P1000 ACO/400 None None Gm_M∗L None 3143 Frequen Detector Ant Amp Ant Pol. Reading Ant. Pre-Amp insert. Net ERP Attn. Margi Cy. Factor Loss n MHZ dE(µV) PANO HW dB(1/m) d5 ďВ dB(uV/m m₩ d8c ďВ 896.00 106.0 Peak 11 0 V 22.2 0.0 2.1 130.3 1.96E+03 0.0 N/A 1792.00 72.0 Peak 14 8 Н 26.2 29.4 3.1 71.9 2.81E-03 58.4 -12.42688.00 60.1 Peak 14 8 Н 32.7 28.4 2.3 66.7 8.56E-04 63.6 -17.63584.00 60.6 Peak 14 8 Н 32.1 27.8 2.7 67.6 1.04E-03 62.8 -16.7 4480.00 56.0 Peak 14 Н 34.5 27.9 2.9 65.5 6.42E-04 64.9 -18.8 5376.00 43.0 Peak 8 14 34.3 28.3 3.5 52.5 3.25E-05 77.8 -31.8 6272.00 39.0 Peak 14 8 V 36.8 28.0 3.9 51.7 2.73E-05 78.6 -32.67168,00 42.4 Peak 14 8 ٧ 38.0 4.3 27.9 56.8 8.80E-05 73.5 -27.5 8064.00 37.0 14 8 Peak V 37.9 27.2 4.8 52.5 3.24E-05 77.8 -31.8 8960.00 37.7 Peak 14 8 27.0 40.3 55.7 16.84E-05 74.6 -28.6 Notes: a) O.C.F.:Other Correction Factor b) Insert. Loss = Cable A + Cable B + Cable C + Transducer. c) Net = Reading + Antenna Factor - Pre-Amp + Insert. Loss. d) Attn. = Field Strength (Fundamental) - Field Strength (Harmonics). e) Negative signs (-) in Margin column signify levels below the limits.

Radia	ted Emis		est									
Compan y:	C.N.I. Inc.		:-			Model #:	CNI-903M			Reg FCC 2.9		2.993
EUT:						S/N or FCC	 		 	Test Dist	3	meter
Project #:	J2000764 6					Test Date:	March 21,	2000		TP	2.00	s Watt
Test Mode:	Tx @ Mid	Ch				Engineer:	Xi Ming Y.		· ,	Min, Attn.	46.01	d8c
		a Used			Pre-A	mp Used		Cabl e	Used		Transduc	ær Used
Number: Model:	2 EMCO	11 LPB-2520A	14	ACG :	0	8	13	0	0	12	0	000000000000000000000000000000000000000
nodei.	3143	C1 D-2020A		115	None	CDI_P1000	ACO/400	None	None	Gm_M+L	None	
requen cy	Reading	Detector	Ant	Amp	Ant. Pol.		Pre-Amp	Insert.	Net	ERP	Attn.	Margi
MHZ	dΒ(μV)	P/A/Q	ů	#	HV	Factor dB(1/m)	d₿	Loss dB	dB(µV/m	mW	₫₿¢	n oB
899.00	106.5	Peak	11	0	V	22.2	0.0	2.1	120.0	10.005.00		11/4
798.00	71.5	Peak	14	8	- - -	26.2	29.4	3.1	130.8 71.4	2.20E+03 2.51E-03	0.0	$\frac{N/A}{12}$
2697.00	67.7	Peak	14	8	V	30.4	28.4	2.3	72.0	2.90E-03	59.4 58.8	_ -13.4
3596.00	56.1	Peak	14	8	V	32.5	27.8	$-\frac{2.3}{2.7}$	63.5	4.05E-04	67.4	-12.8
4495.00	50.4	Peak	14	8	- · · · · · · · ·	34.2	27.9	2.9	59.6	1.65E-04	71.3	-21.3 -25.2
5394.00	35.4	Peak	14	8	v	35.4	28.3	3.5	46.0	7.28E-06	84.8	-25.2
5293.00	39.0	Peak	14	8		36.8	28.0	3.9	51.7	2.73E-05	79.1	30.0 33.1
7192.00	42.0	Peak	14	8		38.0	27.9	4.3	56.4	8.02E-05	74.4	-28.4
8091.00	37.0	Peak	14	8		37.9	27.2	4.8	52.5	3.24E-05	78.3	-32.3
8990.00	36.0	Peak	14	8	V	40.3	27.0	4.7	54.0	4.63E-05	76.8	-32.3
· 										·		
		; 	\rightarrow									
· · · · · · · · · · · · · · · · · · ·							ļ					
							-		:	···		
	c)	oss = Cable ading + An ield Strengt	A + tenna th (Fu	Cable Facto Indam	B + Cable or - Pre-An ental) - Fie	C + Transdi np + Insert. L eld Strength (fy levels belo	oss (Harmonics)					

	ed Emis Data											
Compan /:	C.N.I. Inc.			<u>-</u> .		Model #:	CNI-903M			Req.	FCC :	2 993
EUT:						S/N or FCC	#:			Test Dist	3	mele
Project #:	J2000764					Test Date:	March 21,	200 0		TP	2.00	Wat
Гest Mode:	Tx @ High	Ch.	Engineer:			Xi Ming Y.			Min. Attn.	46.01	dBc	
	Antenn	a Used			Pre-Ai	mp Used		Cable I	Jsed		Transduc	cer Us
lumber:	2	11	14	es des sellas sellas	0	8	13	0	0	12	0	(Melecensor) (Melecensor)
Aodel:	EMCO 3143	LPB-2520A		лсо 115	None	CDI_P1000	ACO/400	None	None	Gm_M+L	None	
requen	Reading	Detector	Ant	Amp	Ant. Pol.		Pre-Amp	Insert.	Net	ERP	Attn.	Març
Cy MH2	d6(µV)	P/A/G	#	į	HV	Factor dB(1/m)	dB	Loss dB	dB(µV/m)	ŧn₩	dBc	l n dB
901.00	106.1	Peak	11	0	V	22.1	0.0	2.2	130.4	1.99E+03	0.0	N//
802.00	75.4	Peak	14	8	H	26.2	29.3	3.2	75.5	6.49E-03	54.9	-8.
703.00	72.6	Peak	14	8	- ν	30.4	28.4	2.3	76.9	8.96E-03	53.5	-7.
604.00	48.1	Peak	14	8	V	32.5	27.8	2.7	55.5	6.42E-05	74.9	-28
505.00	52.5	Peak	14	8	V	33.9	27.9	3.2	61.7	2.71E-04	68.7	-22
406.00	42.3	Peak	14	8	V	35.4	28.3	3.5	52.9	3.57E-05	77.5	-31
307.00	35.9	Peak	14	8	V	36.8	28.0	3.9	48.6	1.34E- 05	81.7	-35
208.00	37.8	Peak	14	8	_ v	38,0	28.0	4.3	52.1	2.98E-05	78.3	-32
3109.00	34.8	Peak	14	8	V	37.9	27.2	4.8	50.3	1.95E- 05	80.1	-34
9010.00	35.0	Peak	14	8	V	40.2	26.8	4.7	53.1	3.76E-05	77.2	-31
			·			··· · · · · · · · · · · · · · · · · ·			<u>. </u>	· +		
	·					·				ļ -		
									r- !	:		
							·			·		
									-	· †		
			<u>!</u>						L	ii.		
otes:	a) O.C.F.:C	ther Corre	ection	Facto								
						C + Transd	ucer.				– –	
						np + Insert.						
	d) Attn. = F							··				

Radiated Emissions Test Data

Company:	C.N.I. Inc.	Model #: CNI-903M	Standard_ FCC § 158
EUT:		S/N #:	Limits 2
Project #:	J20007646	Test Date: March 21,2000	Test Distance 3 meters
Test Mode:	RX@ Low, Mid, High Ch.	Engineer: Xi-Ming Y.	Duty 0 dB Relaxation

Antenna	Used	∮ Pre-A	mp Us e d		Cable U	Jsed	Ti	ransducer Used
Number: 2	14 8	В	10	0	0	0	12	0
Model: EMCO 3143	EMCO EMCO	CDI_P100	AFT18855	None	None	None	Gm_M+	None

Frequency	Reading	Detector	Ant	Amp.	Ant. Pol.	Ant. Factor	Pre-Amp	In sert. Loss	D. C. F.	Net	Limit @3m	Margin
MHz	dB(hA)	PJAJQ	#	#	ΗV	dB(1/m)	₫₿	₫₿	68	d8(µ V /m	dB(µV/m)	d₿
159.48	29.2	Peak	2	0	V	9.9	0.0	0.8	0.0	39.9	43.5	-3.6
184,35	27.0	Peak	2	0	V	9.3	0.0	0.9	0.0	37.2	43.5	-6.3
358.80	23.0	Peak	2	0	Н	15.3	0.0	1.3	0.0	39.6	46.0	-6.4
600.00	14.0	Peak	2	0	Н	19.4	0.0	1.7	0.0	35.1	46.0	-10.9
800.00	12.0	Peak	2	0	Н	21.4	0.0	2.0	0.0	35.4	46.0	-10.6
896.00	15.0	Peak	2	0	V	22.6	0.0	2.1	0.0	39.7	46.0	-6.3
899.00	13.7	Peak	2	0	V	22.6	0.0	2.1	0.0	38.4	46.0	-7.6
901.00	13.5	Peak	2	0	i v	22.7	0.0	2.2	0.0	38.4	46.0	-7.6
1792.00	35.0	Peak	14	8	H	26.2	29.4	3.1	0.0	34.9	54.0	-19.1
1790,00	34.0	Peak	14	8	H	26.2	29.4	3.1	0.0	33.9	54.0	-20.1
1802.00	32.0	Peak	14	8	Н	26.2	29.3	3.2	0.0	32.1	54.0	-2 1.9
							· † '		:			
	!		T							1		
	T	•	1									
]		Ţ	:								
			Ľ	l								
			,									

smitter
ts

Date of Test: March 21, 2000

- 7.0 Line Conducted Emissions, FCC § 15.107
- 7.1 Test Procedure

Not applicable, the EUT is battery powered.

Date of Test: March 21, 2000

7.2 Test Configuration Setup - Line Conducted Emissions

Not applicable, the EUT is battery powered.

Date of Test: March 21, 2000

7.3 Test Results

See attached test data.

Results: Not applicable, the EUT is battery powered.

Date of Test: March 21, 2000

8.0 Frequency Stability vs Temperature, FCC § 2.995(a)

8.1 Test Procedure

The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feedthrough attenuators. The EUT was placed inside the temperature chamber. The DC leads, RF output cable, exited the chamber through an opening After the temperature stabilized for approximately 20 minutes, the frequency of the output signal was recorded from the counter.

8.2 Test Equipment

Temperature Chamber, -50C to +100C Hewlett Packard 5383A Frequency Counter Tektronix 2784 Spectrum Analyzer Goldstar DC Power Supply, GR303

8.3 Test Results

Refer to the test data below.

Temperature, C	Difference (Hz)
+50	5
+40	320
+30	580
+20	629
+10	940
0	980
-10	980
-20	990
-30	935

Results: Passed

Communication Network Interface, Inc., Model No. CNI-903M

Date of Test: March 21, 2000

FCC ID: N79CNI-903M

9.0 Frequency Stability vs Voltage, FCC §2.995(d)(2)

9.1 Test Procedure

An external variable DC power supply was connected to the EUT. The frequency of the transmitter was measured for 115% of the DC nominal value and for 85% of the nominal value.

9.2 Test Equipment

Hewlett Packard 5383A Frequency Counter Tektronix 2784 Spectrum Analyzer Goldstar DC Power Supply, GR303

9.3 Test Results

Refer to the test data below.

Voltage, VDC	Difference (Hz)
4.8	641
4.2	629
3,6	665

Results: Passed

Note: Battery end at 3.6 VDC

Communication Network Interface, Inc., Model No. CNI-903M

Date of Test: March 21, 2000

FCC ID: N79CNI-903M

- 10.0 Transient Frequency Behavior, FCC §90.214
- 10.1 Test Procedure

Test was performed according the TIA/EIA/IS-102.CAAA, Section 2.2.18. The transmitter was continuously transmitting a modulated signal (FSK, 2400 bits/sec.). The generator was generating FM signal (1 kHz tone, 12.5 kHz deviation). Several plots were made on the FM demodulator output with the EUT turned ON and OFF.

10.2 Test Results

Results: Not Applicable