GENERAL DYNAMICS

C4 Systems

Exhibit 6 – Test Report

General Dynamics C4 Systems CM-350 (V2) VHF Digital Transmitter (VDT)

FCC ID: MIJCM350V2

Model No. CM-350 (V2) VDT

1.0 Identification (Nameplate) Information

Equipment Applicant: General Dynamics C4 Systems

8220 E. Roosevelt St.

Scottsdale, Arizona 85257

Tests Conducted By: General Dynamics C4 Systems

EMC Test Facility 8201 E. McDowell Rd. Scottsdale, Arizona 85257

Test Summary: Complies with FCC Part 87, Aviation Services

The General Dynamics EMC Laboratory is accredited through the

NVLAP Lab Code 100405-0

This document shall not be reproduced, except in full, without the written approval of the laboratory. This document shall no be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

or the U.S. Government.

APPLIC	APPLICATION		REVISION HISTORY		
NEXT ASSY	USED ON	REV	DESCRIPTION	DATE	APPROVED
	CM-350 (V2)	-	INTIAL RELEASE	YY-MM-DD	ССВ

©2013 GENERAL DYNAMICS ALL SHEETS ARE THE SAME REVISION LEVEL

EXPORT CONTROL	CONTR XXXXXXX-XX	(-X-XXXX		3ENER	AL DY	NAMICS
WARNING – Do not disclose or provide this	ISS X. XXXXXXXX	YY-MM-DD		SCOTTS	SDALE, ARIZ	ONA 85257
document or item (including its contents) to	APPROV	ALS	TITLE			
non-U.S. Citizens or non- U.S. Permanent	DWN X. XXXXXXXX	YY-MM-DD		CM	-350 (V2) VDT
Residents, or transmit this document or item	CHKR X. XXXXXXXX	YY-MM-DD		FCC Ce	ertificatio	on Report
(including its contents) outside the United States	QA X. XXXXXXXX `	YY-MM-DD				
without the written permission of General	MATL X. XXXXXXXX	X YY-MM-DD				
Dynamics and required U.S. Government export	MFG X. XXXXXXXX	YY-MM-DD	SIZE	CAGE CODE	DWG NO	
approvals.	ENG X. XXXXXXXX	YY-MM-DD	Α	1VPW8	12-P5	57599R
			SCAL	E: NONE		SHEET 1 OF 68

Table of Contents

GENERAL INFORMATION	7
APPLICABLE DOCUMENTS	7
TEST REQUIREMENTS	7
TEST SAMPLE	8
DESCRIPTION	8
EQUIPMENT UNDER TEST (EUT)	8
ATMOSPHERIC CONDITIONS	9
TEST EQUIPMENT	9
SETUP REQUIREMENTS	11
.2 Modes of Operation	11
TEST FACILITY	14
FACILITY DESCRIPTION	14
MEASUREMENT RESULTS	15
OCCUPIED BANDWIDTH	15
SPECTRAL MASK	17
CONDUCTED SPURIOUS EMISSIONS	23
RADIATED SPURIOUS EMISSIONS	39
MODULATION CHARACTERISTICS	53
Frequency Stability	57
RF OUTPUT POWER AND FINAL AMPLIFIER VOLTAGE/CURRENT	68
CONCLUSIONS	68
	APPLICABLE DOCUMENTS TEST REQUIREMENTS TEST SAMPLE DESCRIPTION EQUIPMENT UNDER TEST (EUT) POWER REQUIREMENTS ATMOSPHERIC CONDITIONS TEST EQUIPMENT SETUP REQUIREMENTS 1 General

Table of Figures

FIGURE 2.6-1	CM-350 (V2) VDT to ST	E Interconnect Diagram		13
FIGURE 4.1-1		PIED BANDWIDTH, 25 KHZ CH		
FIGURE 4.1-2	CM-350 (V2) VDT OCCU	PIED BANDWIDTH, 8.33 KHZ (CHANNEL 1	17
FIGURE 4.2-1	SPECTRAL MASK, 25 KHZ	CHANNEL @ 119.000 MHz		18
FIGURE 4.2-2	SPECTRAL MASK, 25 KHZ	CHANNEL @ 131.350 MHz		19
FIGURE 4.2-3	SPECTRAL MASK, 25 KHZ	CHANNEL @ 135.500 MHz		20
FIGURE 4.2-4		IZ CHANNEL @ 119.005 MHZ		
FIGURE 4.2-5	SPECTRAL MASK, 8.33 KH	IZ CHANNEL @ 131.355 MHZ		22
FIGURE 4.2-6		IZ CHANNEL @ 135.505 MHZ		
FIGURE 4.3-1		MISSIONS, 30MHz – 100MHz		
FIGURE 4.3-2	CONDUCTED SPURIOUS EM	MISSIONS, $100 \mathrm{MHz} - 200 \mathrm{MHz}$	z (Fo=119MHz) 2	25
FIGURE 4.3-3	CONDUCTED SPURIOUS EM	MISSIONS, 200MHZ – 400MHZ	z (Fo=119MHz) 2	26
FIGURE 4.3-4	CONDUCTED SPURIOUS EM	MISSIONS, 400MHZ – 1GHZ (F	o=119MHz)2	27
FIGURE 4.3-5	CONDUCTED SPURIOUS EM	MISSIONS, 1GHz – 2GHz (Fo=	119MHz)2	28
FIGURE 4.3-6	CONDUCTED SPURIOUS EM	MISSIONS, 30MHz – 100MHz	(Fo=131.35MHz) 2	29
FIGURE 4.3-7	CONDUCTED SPURIOUS EM	MISSIONS, $100 \mathrm{MHz} - 200 \mathrm{MHz}$	z (Fo=131.35MHz) 3	30
FIGURE 4.3-8	CONDUCTED SPURIOUS EN	MISSIONS, 200MHZ – 400MHZ	z (Fo=131.35MHz) 3	31
FIGURE 4.3-9	CONDUCTED SPURIOUS EN	MISSIONS, 400MHZ – 1GHZ (F	o=131.35MHz)3	32
FIGURE 4.3-10	CONDUCTED SPURIOUS EN	MISSIONS, 1GHz – 2GHz (Fo=	131.35MHz)3	33
FIGURE 4.3-11	CONDUCTED SPURIOUS EN	MISSIONS, 30MHz – 100MHz	(Fo=135.5MHz) 3	34
FIGURE 4.3-12	CONDUCTED SPURIOUS EN	MISSIONS, $100 \mathrm{MHz} - 200 \mathrm{MHz}$	z (Fo=135.5MHz) 3	35
FIGURE 4.3-13	CONDUCTED SPURIOUS EN	MISSIONS, 200MHz – 400MHz	z (Fo=135.5MHz) 3	36
FIGURE 4.3-14	CONDUCTED SPURIOUS EN	MISSIONS, 400MHZ – 1GHZ (F	o=135.5MHz)3	37
FIGURE 4.3-15	CONDUCTED SPURIOUS EN	MISSIONS, 1GHz – 2GHz (Fo=	135.5MHz)3	38
FIGURE 4.4-1 RA	ADIATED SPURIOUS EMISSION	NS, HORIZONTAL POLARIZATIO	ON, 30 MHz – 1 GHz	
				40
FIGURE 4.4-2 RA	ADIATED SPURIOUS EMISSION	NS, HORIZONTAL POLARIZATIO	ON, $1-2$ GHz (REAR). 4	41
FIGURE 4.4-3 RA	ADIATED SPURIOUS EMISSION	NS, VERTICAL POLARIZATION,	30 MHz – 1 GHz	
(REAR)			∠	42
		NS, VERTICAL POLARIZATION,		43
		ns, Horizontal Polarizatio		
		NS, HORIZONTAL POLARIZATIO		
		NS, VERTICAL POLARIZATION,	`	
		NS, VERTICAL POLARIZATION,		47
		NS, HORIZONTAL POLARIZATIO		
` /				48
FIGURE 4.4-10 (LEFT)		SIONS, VERTICAL POLARIZATI	on, 30MHz - 1GHz	
` /		ONS, HORIZONTAL POLARIZAT	ION 30MH7 - 1GH7	
		TORIZONTAL I OLARIZAT	· · · · · · · · · · · · · · · · · · ·	50
` '		ONS, VERTICAL POLARIZATION		
		······		51
		ONSE TEST SETUP DIAGRAM		
SIZE	CAGE CODE	REV	12-P57599R	
A	1VPW8	-	SHEET 3	

FIGURE 4.5-2	AUDIO FREQUENCY RESPONSE CURVE, 25 KHZ CHANNEL SPACING	54
FIGURE 4.5-3	AUDIO FREQUENCY RESPONSE CURVE, 8.33 KHZ CHANNEL SPACING	55
FIGURE 4.5-4	MODULATION RESPONSE	56
	List of Tables	
TABLE 2.4-1	ATMOSPHERIC TEST EQUIPMENT	9
TABLE 2.5-1	EMI LABORATORY TEST EQUIPMENT LIST	10
TABLE 2.5-2	STE TEST EQUIPMENT	10
TABLE 2.6-1	VDT OPERATING FREQUENCY SETTINGS FOR 25 KHZ CHANNEL MODE	
TABLE 2.6-2	VDT OPERATING FREQUENCY SETTINGS FOR 8.33 KHZ CHANNEL MODE	12
TABLE 4.2-1	SPECTRAL MASK EMISSION LIMITS	18
TABLE 4.1-1	RADIATED SPURIOUS EMISSION, OATS MEASUREMENTS	52
TABLE 4.6-1	FREQUENCY STABILITY INPUT VOLTAGE SETTINGS	57

Test Summary Table

	cification: 47 CFR Parts 2 & 87 Test Procedure: 12-P57247R	Test Sample : CM-350 (V2) VDT SN : 2V5000001			
		CFR	Data	Test Result	
No.	Test	Reference	Section		
1	Occupied Bandwidth	87.135	4.1	COMPLIANT	
2	Spectrum Mask	87.135	4.2	COMPLIANT	
3	Spurious Emissions, Antenna Terminal	87.139	4.3	COMPLIANT	
4	Spurious Emissions, Radiated Chassis	87.139	4.4	COMPLIANT	
5	Modulation Characteristics	87.141	4.5	COMPLIANT	
6	Frequency Stability	87.133	4.6	COMPLIANT	
7	RF Power Output	2.1046	4.7	N/A (Required Information Provided)	

Administrative Data

Purpose of Test: To measure specific transmitter characteristics of the NEXCOM II CM-

350 (V2) VHF Digital Transmitter (VDT) and compare those results to the

applicable requirements specified in the Code of Federal Regulations

(CFR), Title 47, Parts 2 and 87 for FCC Certification.

Manufacturer: General Dynamics C4 Systems

8201 E McDowell Rd. Scottsdale, Arizona 85257

Unit Identification: CM-350 (V2) VDT S/N: 2V5000001

CM-350 (V2) VDT S/N: 2V5000005 CM-350 (V2) VDT S/N: 2V5000007 CM-350 (V2) VDT S/N: 2V5000107

Test Conducted By: General Dynamics

C4 Systems

EMC/TEMPEST Test Facility

Test Period: 04/24/2013 to 05/29/2013

Disposition of Unit: Returned to Project

Abstract: This document contains the measurement data required for FCC

certification of the CM-350 (V2) VDT. Included is a description of the test sample, test setups, and test equipment used. Test setup photos are

included in a separate exhibit of the FCC filing package.

1.0 GENERAL INFORMATION

1.1 Applicable Documents

47 CFR Part 2	Code of Federal Regulations, Title 47, Part 2, "Frequency
	Allocations and Radio Treaty Matters; General Rules and
	Regulations"
47 CFR Part 87	Code of Federal Regulations, Title 47, Part 87, "Aviation
	Services"
ANSI C63.4-	American National Standard for Methods of Measurement of
2009	Radio-Noise Emissions from Low-Voltage Electrical and
	Electronic Equipment in the Range of 9 kHz to 40 GHz
12-P57247R	FCC Test Procedure for the NEXCOM II CM-300/350 (V2)
	VHF Digital Transmitters (VDT)

1.2 Test Requirements

The CM-350 (V2) VDT is subject to the requirements in 47 CFR Parts 2 and 87 for FCC certification of Aviation Service transmitters used in the United States. The tests shown in Table 1.2-1 as defined in Parts 2 and 87 were performed on the CM-350 (V2) VDT.

Table 1.2-1 FCC Certification Technical Data Requirements

Test Name	Media	Test Range	47 CFR Parts
			2 and 87
			Requirements
Bandwidth of Emissions	RF Output	99% Mean Power	87.135
(Occupied Bandwidth)			2.1049
Emission Limitations	RF Output	25 dBc @ 50-100%	87.139
(Antenna Terminal)	_	35 dBc @ 100-250%	2.1051
		43+10LogP > 250%	
Emission Limitations	Chassis – E-Field	30MHz – 1.4 GHz	87.139
(Radiated with output			2.1053
terminated)			
Modulation Characteristics	RF Output	Audio Frequency	87.141
		Response	2.1047
		100 Hz – 5 kHz	
Frequency Stability	RF Output	-30°C to +50°C	87.133
	Carrier	85 to 115% VAC/DC	2.1055
RF Power Output	RF Output	Carrier	87.131
			2.1046

2.0 TEST SAMPLE

2.1 Description

The NEXCOM II Air Traffic Control (ATC) Transmitters and Receivers are designed to meet the dynamic mission requirements of air traffic control centers, commercial airports, military air stations and range installations. The radio equipment is designed to be rack mounted and includes the following units:

CM-300 (V2) VDR VHF Receiver CM-300 (V2) VDT VHF Low Power Transmitter 12 Watts CM-350 (V2) VDT VHF High Power Transmitter 35 Watts

The receiver is a superheterodyne double conversion designs with internal cosite cavity filters. They share a common architecture and operate from a common field upgradable software load. Control is provided by a General Purpose Processor and digital demodulation is implemented in a dedicated real time Digital Signal Processor (DSP). The receivers are remotely controllable and support Voice over IP (VoIP).

The receiver includes voice A3E AM operating mode with 8.33 kHz channels and 25 kHz channels. The Receiver also includes local or remote control operation. The local mode has a built-in display and keypad. Remote control is via Ethernet using a personal computer (PC) or the remote interface connector.

The transmitters are on-channel synthesized designs with Cartesian feedback power amplifiers and internal cosite cavity filters. A General Purpose Processor provides local and remote control of the transmitter and implements the VoIP, Ethernet, and serial interfaces. These transmitters produce high quality, low distortion Amplitude Modulation (AM) signals while minimizing out of band emissions, back intermodulation products, and adjacent channel noise.

2.2 Equipment Under Test (EUT)

This particular EMC test report is for the CM-350 (V2) VDT, S/N 2V5000001, CM-350 (V2) VDT, S/N 2V5000005, CM-350 (V2) VDT, S/N 2V5000007 and CM-350 (V2) VDT, S/N 2V5000107.

2.3 Power Requirements

The CM-350 (V2) VDT was operated from an AC power source for the majority of the testing except for frequency stability which was also performed with a +24 VDC power supply. The radio equipment includes automatic AC/24 VDC switching in the event of AC voltage failures or brown-outs.

2.4 **Atmospheric Conditions**

During testing, the room temperature, relative humidity and atmospheric pressure were monitored and measured using the equipment in Table 2.4-1. Typical values during testing in the GDC4S EMC/TEMPEST Laboratory were as follows: 1) room temperature of 25°C and 2) relative humidity of 28%. The atmospheric pressure in the EMC/TEMPEST Laboratory measured about 96.6 kPa.

The final Radiated Emissions measurements performed on the Open Area Test Site (OATS) were recorded on the data sheet as follows: 1) 32°C, 2) relative humidity of 10%, and 3)92.6 kPA atmospheric pressure.

Table 2.4-1 Atmospheric Test Equipment

MODEL	DESCRIPTION	MFG.	ASSET#	UN- CERT.	LAST CAL.	DUE CAL.
3310-40	Hygrometer & Temp. Indicator	Sufft	T47785	± 5.0%	13-Nov-12	30-Nov-13
Nimbus	Barometer, Digital	Sensor Instruments Co., Inc.	T53728	± 0.1%	03-Oct-12	31-Oct-13

2.5 Test Equipment

The EMI test equipment used for these measurements is listed below as Table 2.5-1. Equipment calibration is traceable to NIST. The calibration dates shown are those in effect at the time this test report was generated. In some cases, the "last" calibration date indicates that the equipment was calibrated after the date on which the test was actually performed. However, all test equipment had current calibrations at the time the testing was performed. Support Test Equipment (STE) is listed in Table 2.5-2.

Table 2.5-1 EMI Laboratory Test Equipment List

	Table 2.5-1 Eivil E	aboratory rest	Баприне	110 23100		
MODEL	DESCRIPTION	MFG.	ASSET#	UN- CERT.	LAST CAL.	DUE CAL.
		Antennas				
2070-2	Antenna Mast, 6 meter	EMCO	G72315	N/A	NCR	NCR
3142B	Antenna, BiConiLog	EMCO	T47085	± 2.0 dB	18-Mar-13	31-Mar-14
3142B	Antenna, BiConiLog	EMCO	T47086	± 2.0 dB	18-Mar-13	31-Mar-14
	•	Controllers	•			
2090	Controller, Multi-Device	EMCO	G72315.1	N/A	NCR	NCR
	•	LISNs	•	•	•	•
8028-50-TS-24-BNC	LISN, 50µH, FCC	Solar	T36676	± 2.0 dB	11-Mar-13	31-Mar-14
8028-50-TS-24-BNC	LISN, 50µH, FCC	Solar	T41319	± 2.0 dB	11-Mar-13	31-Mar-14
8012-50-R-24	LISN, Dual 50µH, FCC	Solar	T52419	± 2.0 dB	20-Feb-13	28-Feb-14
		Receivers	•	ļ		
ESI-7	Receiver, 20Hz-7GHz	Rohde & Schwarz	G71791	± 2.0 dB	05-Apr-13	30-Apr-14
ESI-7	Receiver BIOS Firmware 3.3	Rohde & Schwarz	G71791.1	N/A	NCR	NCR
ESI-7	Receiver Analyzer Firmware 4.01	Rohde & Schwarz	G71791.2	N/A	NCR	NCR
ES-K1.60	Receiver Software, EMI Controller(1999), Service Pack 2	Rohde & Schwarz	G71791.3	N/A	NCR	NCR
ESU40	Receiver, 20Hz-40GHz	Rohde & Schwarz	100295	± 2.0 dB	12-Sep-12	12-Sep-13

Table 2.5-2 STE Test Equipment

MODEL	DESCRIPTION	MFG.	ASSET#	UN- CERT.	LAST CAL.	DUE CAL.
8903A	Audio Analyzer	Hewlett Packard	G20851	N/A	26-Dec-12	31-Dec-13
8901A	Modulation Analyzer	Hewlett Packard	G24131	N/A	04-Feb-13	28-Feb-15
R2670	Digital Communications System Analyzer	General Dynamics	G78047	N/A	06-Jul-12	31-Jul-13
778D	Coupler, Directional, 20dB, 0.1-2.0 GHz, 50 Watt	Hewlett Packard	T37492	± 1.5 dB	VBU	VBU
E6400	MDT Lattitude Laptop	Dell	X74905	N/A	NCR	NCR

2.6 Setup Requirements

2.6.1 General

A standard, commercial, 3-conductor AC power cord was used for testing of the equipment. A special DC power cable with a "D" Subminiature (D-Sub) connector was used for DC power mode testing while receiving +24 VDC power from an external power supply. Both power cables were unshielded.

A 37 pin, D-Sub style connector, was used for the remote interface including audio and discrete I/O on the VHF transmitter. A double shielded CAT 5E Ethernet cable was used for communications with the Maintenance Data Terminal (MDT) located outside the chamber. The RF coaxial cables were Huber+Suhner Enviroflex_142 Type used for both interfacing to the STE and also for the cavity filter interconnects.

The part numbers for the cables used during FCC testing are provided below:

- 37 pin remote interface cable is an L-Com P/N CS2N37MF-15
- Ethernet cable is L-Com P/N TRD855DSZ-15
- RF Cables were double-shielded Huber+Suhner Enviroflex _142 Type

2.6.2 Modes of Operation

The CM-350 (V2) VDT was placed in a typical operating mode using Support Test Equipment (STE). The CM-350 (V2) VDT transmitter was adjusted to the rated continuous wave (CW) output power level of 35 Watts, after cavity filter and ATR losses. The transmitter was set for continuous transmit mode via the Push-To-Talk (PTT) toggle switch on the remote breakout box. The normal PTT timeout was disabled through the Maintenance Data Terminal (MDT) interface.

Where required, the VHF transmitter was tested at three (3) frequencies across the ATC FCC certifiable operating range of 117.975 to 136.975 MHz. For other testing requiring only a single transmit frequency, the measurements were taken at the mid-band frequency of 131.35 MHz. The specific operating frequency settings shown in Table 2.6-1 placed the radio in a 25 kHz channel spacing mode.

Table 2.6-1 VDT Operating Frequency Settings for 25 kHz Channel Mode

Low	Mid	High
119.000 MHz	131.350 MHz	135.500 MHz

Additional measurements with the radio in a 8.33 kHz channel spacing mode were performed for the Occupied Bandwidth and Spectral Mask measurements. The frequency settings for the 8.33 kHz channel spacing mode are shown in Table 2.6-2 below.

Table 2.6-2 VDT Operating Frequency Settings for 8.33 kHz Channel Mode

	<u> </u>	
Low	Mid	High
119.005 MHz	131.355 MHz	135.505 MHz

The carrier was modulated by a 2500 Hz tone at an input level 16 dB greater than that necessary to produce 50 percent modulation.

A general test setup diagram is shown as Figure 2.6-1. The indication of a chamber wall between the CM-350 (V2) VDT and the STE is only applicable for the radiated emission pre-scans that were performed in a shielded enclosure.

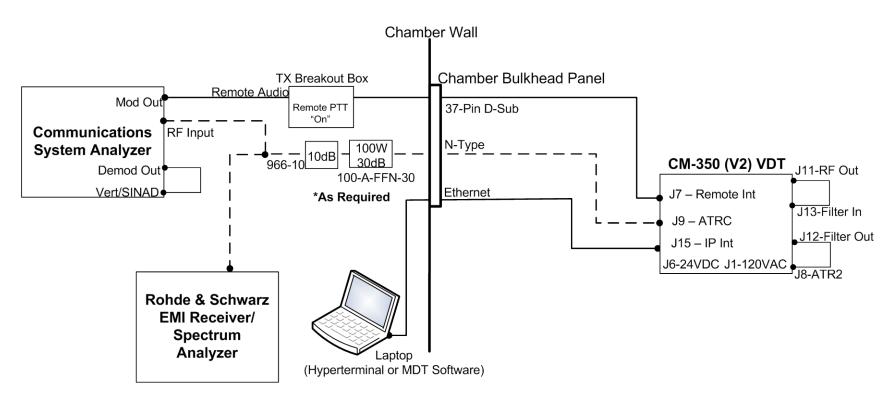


Figure 2.6-1 CM-350 (V2) VDT to STE Interconnect Diagram

3.0 **TEST FACILITY**

3.1 **Facility Description**

The FCC certification testing on the CM-350 (V2) VDT was performed by General Dynamics C4 Systems (GDC4S), EMC/TEMPEST Test Laboratory which is located in the southeast wing of the Hayden building at 8201 E. McDowell Road, Scottsdale, AZ.

The GDC4S EMC test facility includes an accredited three-meter and ten-meter Open Area Test Site (OATS) and several shielded enclosures. The facility has been found to be in compliance with the requirements of Section 2.948 of the FCC rules, per Registration Number 90811, dated July 27, 2010. The facility has also been issued a Certificate of Accreditation through the National Voluntary Laboratory Accreditation Program (NVLAP) by NIST. This is under NVLAP Code: 100405-0 and is effective through September 30, 2013. The facility is in compliance with all CISPR 16 requirements.

In order to properly identify radiated emissions in an ambient free environment prior to final measurements on the Open Area Test Site (OATS), preliminary radiated emissions measurements were performed in a solid wall shielded enclosure.

All other RF front end measurements associated with the transmitter certification process were performed outside of a shielded enclosure in the GDC4S EMC/TEMPEST Laboratory.

3.2 Quality System

The GDC4S EMI/TEMPEST Test Laboratory maintains a Group Operating Manual that describes the quality assurance program of the EMC/TEMPEST Facility to set forth procedures covering all quality assurance functions. This manual has been constructed to reflect a quality program in compliance with the requirements of the following:

- National Institute of Standards & Technology (NIST) National Voluntary Laboratory Accreditation Program (NVLAP)
- NIST Handbook 150 NVLAP Procedures and General Requirements
- NVLAP EMC and Telecommunications FCC Methods Handbook 150-11
- ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories

4.0 MEASUREMENT RESULTS

4.1 Occupied Bandwidth

The occupied bandwidth measurements for the CM-350 (V2) VDT are illustrated in Figures 4.1-1 and 4.1-2. These measurements were performed on the ATRC RF output on the unit with the transmitter operating in a normal mode at rated output power. The unit was modulated with an audio frequency of 2500 Hz. The audio tone level was first set to an amplitude that resulted in 50% modulation depth. The audio level was then increased by 16dB. The Rohde & Schwarz Spectrum Analyzer was set for a measurement of 99% Occupied Bandwidth.

Radio Model				
Number:	CM-350 (V2) VDT			
Radio Serial Number	2V5000001			
Radio Hardware				
Version	Pilot			
Radio Software				
Version	Micro	1.38	SBV	1.37
	Boot	4.05	Web	5.05
	CPLD	F00V009		

The requirements of 2.1049(c)(1) and 87.137 specify 25 kHz (6K00A3E) and 8.33 kHz (5K6A3E) when tuned to an 8.33 kHz channel. These requirements were met in both cases.

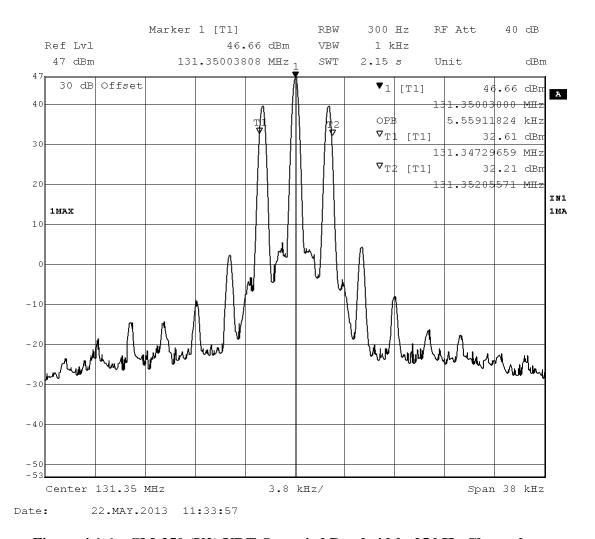
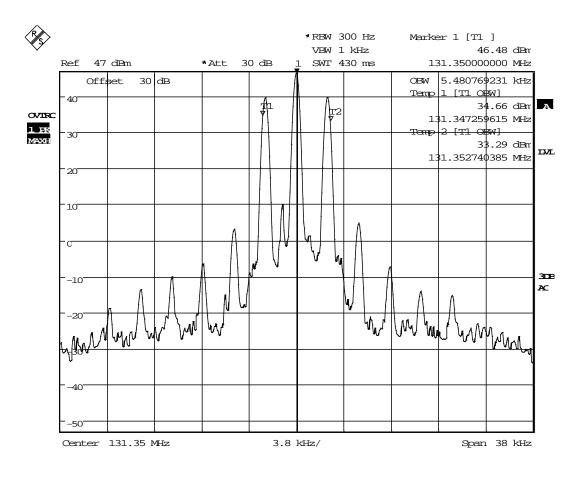



Figure 4.1-1 CM-350 (V2) VDT Occupied Bandwidth, 25 kHz Channel

Date: 29.MAY.2013 19:41:52

Figure 4.1-2 CM-350 (V2) VDT Occupied Bandwidth, 8.33 kHz Channel

4.2 Spectral Mask

The spectral mask was measured at frequencies \pm 250% of the allocated bandwidth centered at the low, mid, and high operating frequencies of 119.000 MHz, 131.350 MHz, and 135.500 MHz.

The requirements of 2.1051 and 87.139 specify the following:
-25 dBc @ 50 to 100% removed from Carrier
-35 dBc @ 100 to 250% removed from Carrier
-58.5 dBc @ >250% removed from Carrier
(43+10LogP)

The spectral mask limits are further defined in Table 4.2-1 for the 35W VHF transmitter.

Table 4.2-1 Spectral Mask Emission Limits

Power	25 dBc limit	35 dBc limit	43 + 10Log P (W) limit
35W (+45.5 dBm)	+20.5 dBm	+10.5 dBm	-13 dBm

The same modulation scheme that was used for the Occupied Bandwidth measurement was used for the Spectral Mask measurements. The measurements were also repeated for the 8.33 kHz channel settings of 119.005 MHz, 131.355 MHz, and 135.505 MHz.

All modulated carriers were within their spectral mask requirements and the data plots are shown in Figures 4.2-1 through 4.2-6.

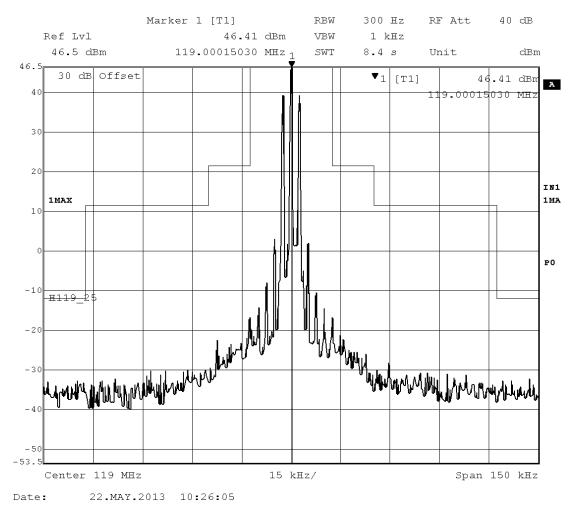


Figure 4.2-1 Spectral Mask, 25 kHz Channel @ 119.000 MHz

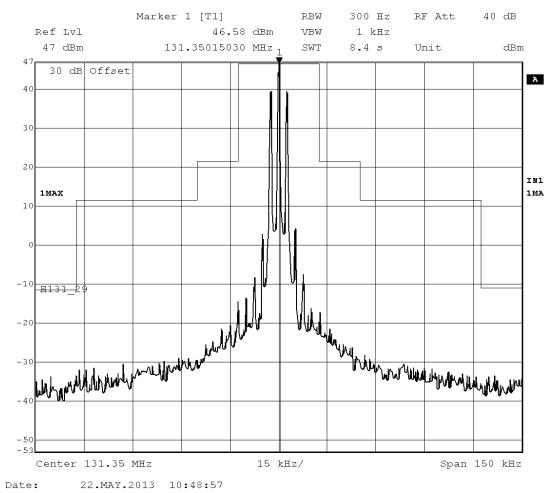


Figure 4.2-2 Spectral Mask, 25 kHz Channel @ 131.350 MHz

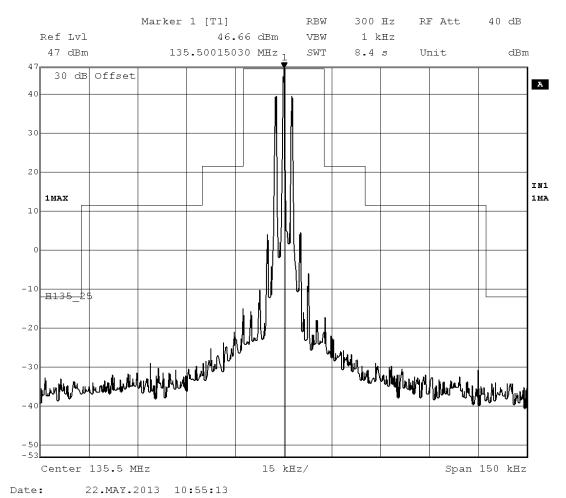


Figure 4.2-3 Spectral Mask, 25 kHz Channel @ 135.500 MHz

 SIZE
 CAGE CODE
 REV
 12-P57599R

 A
 1VPW8
 SHEET 20

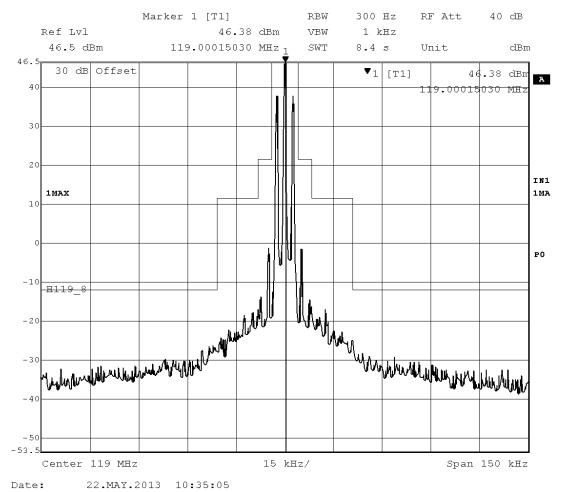


Figure 4.2-4 Spectral Mask, 8.33 kHz Channel @ 119.005 MHz

 SIZE
 CAGE CODE
 REV
 12-P57599R

 A
 1VPW8
 SHEET 21

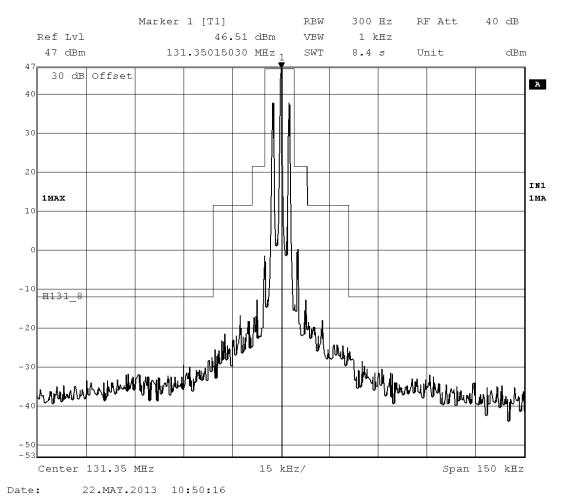


Figure 4.2-5 Spectral Mask, 8.33 kHz Channel @ 131.355 MHz

 SIZE
 CAGE CODE
 REV
 12-P57599R

 A
 1VPW8
 SHEET 22

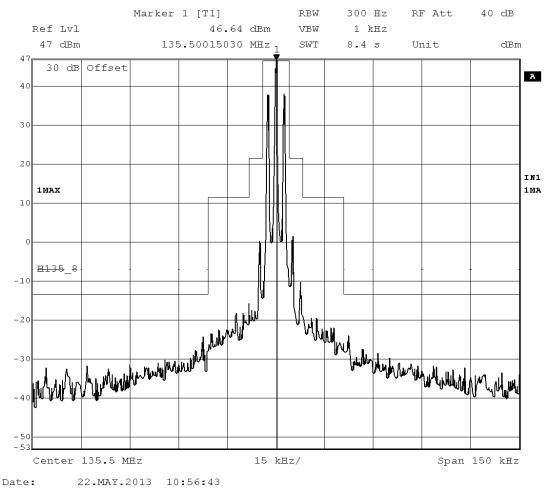
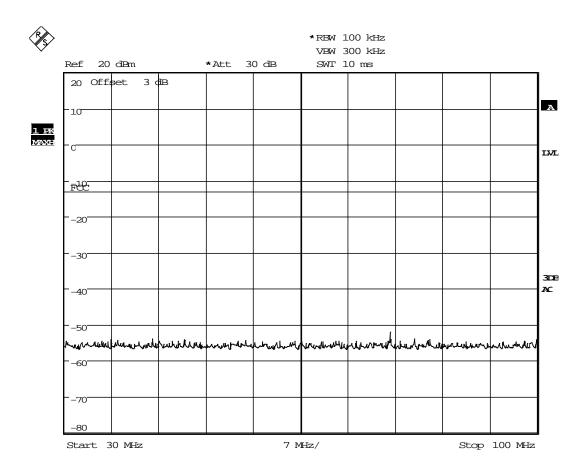
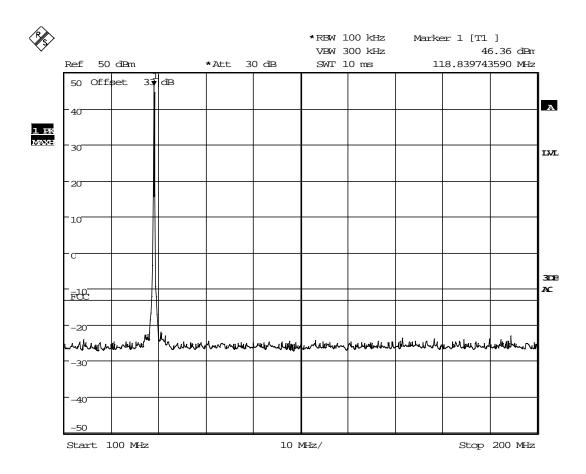



Figure 4.2-6 Spectral Mask, 8.33 kHz Channel @ 135.505 MHz

4.3 Conducted Spurious Emissions


The following measurement data illustrates the out-of-band conducted spurious emissions measured between 30 MHz and 2 GHz. The test requirement limit specified at >250% frequency offset from the carrier frequency is -58.5 dBc (43+10Log P) or approximately -13 dBm for a 35W transmitter.

All conducted spurious emissions on the CM-350 (V2) VDT were well below the specified limit.

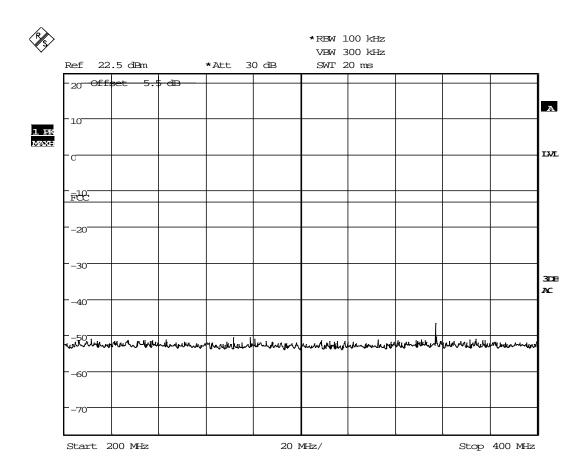

Date: 28.MAY.2013 23:52:12

Figure 4.3-1 Conducted Spurious Emissions, 30MHz – 100MHz (Fo=119MHz)

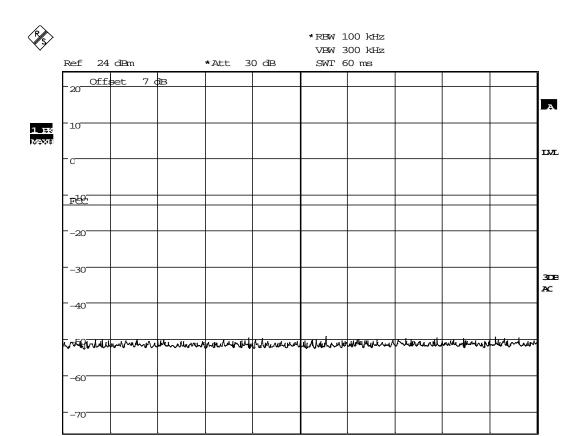
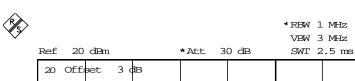

Date: 28.MAY.2013 23:47:19

Figure 4.3-2 Conducted Spurious Emissions, 100MHz – 200MHz (Fo=119MHz)

Date: 28.MAY.2013 23:53:56

Figure 4.3-3 Conducted Spurious Emissions, 200MHz – 400MHz (Fo=119MHz)


Date: 28.MAY.2013 23:55:20

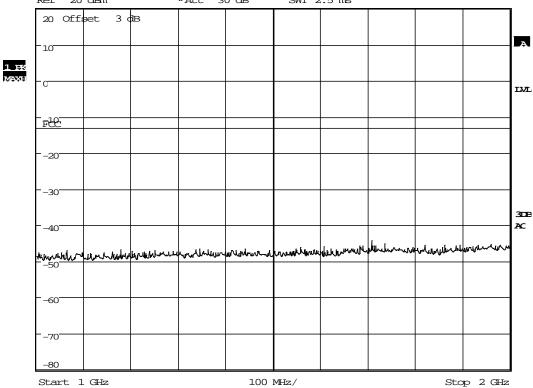
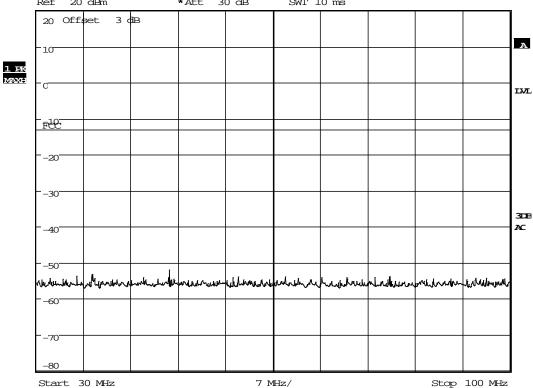

Start 400 MHz

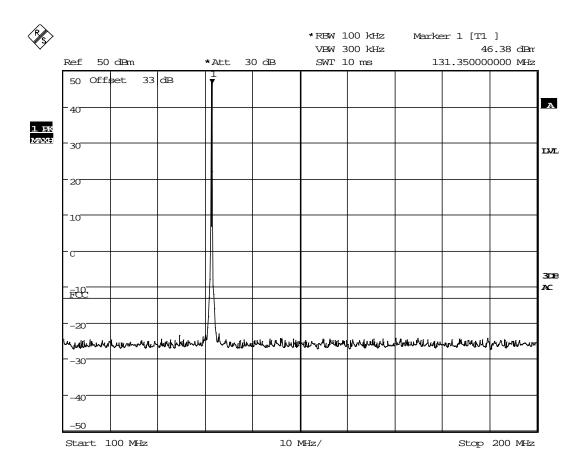
Figure 4.3-4 Conducted Spurious Emissions, 400MHz – 1GHz (Fo=119MHz)

Stop 1 GHz

60 MHz/



Date: 28.MAY.2013 23:56:43


Figure 4.3-5 Conducted Spurious Emissions, 1GHz – 2GHz (Fo=119MHz)

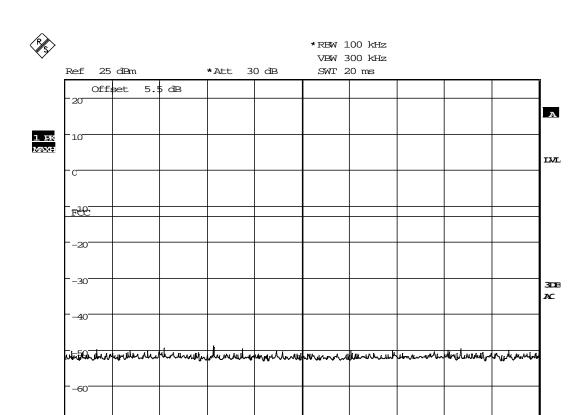

Date: 29.MAY.2013 00:01:59

Figure 4.3-6 Conducted Spurious Emissions, 30MHz – 100MHz (Fo=131.35MHz)

Date: 28.MAY.2013 23:59:51

Figure 4.3-7 Conducted Spurious Emissions, 100MHz – 200MHz (Fo=131.35MHz)

Date: 29.MAY.2013 00:03:09

Start 200 MHz

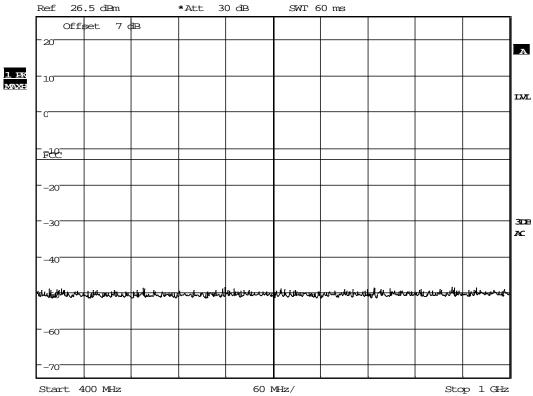
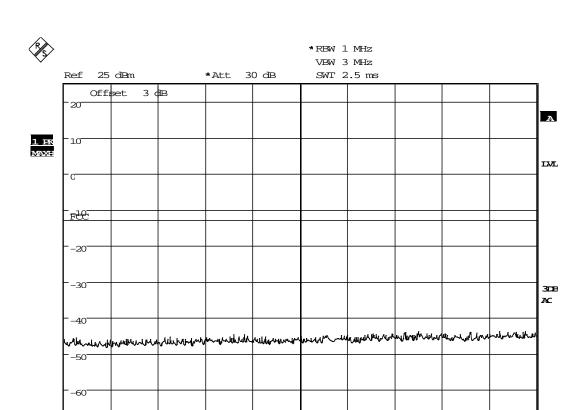

-70

Figure 4.3-8 Conducted Spurious Emissions, 200MHz – 400MHz (Fo=131.35MHz)

20 MHz/


Stop 400 MHz

Date: 29.MAY.2013 00:04:07

Figure 4.3-9 Conducted Spurious Emissions, 400MHz – 1GHz (Fo=131.35MHz)

Date: 29.MAY.2013 00:05:06

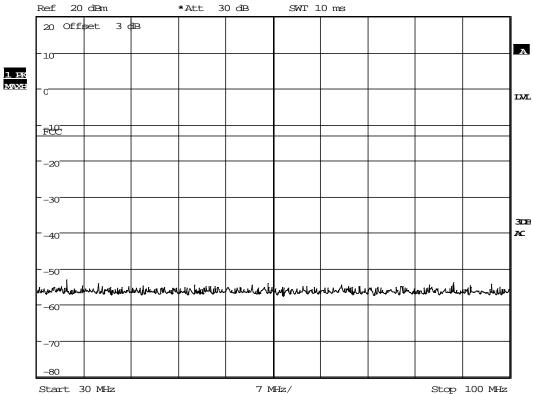
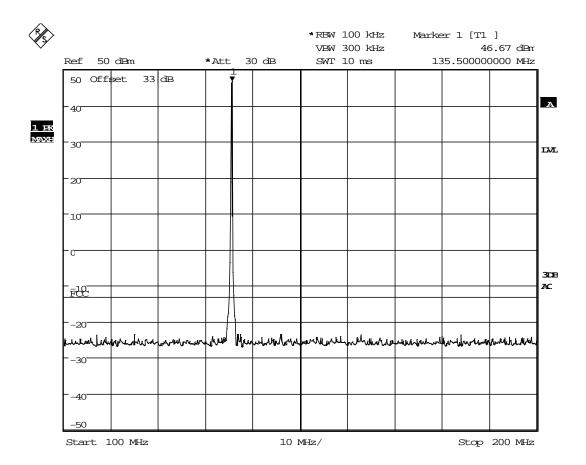
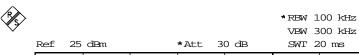
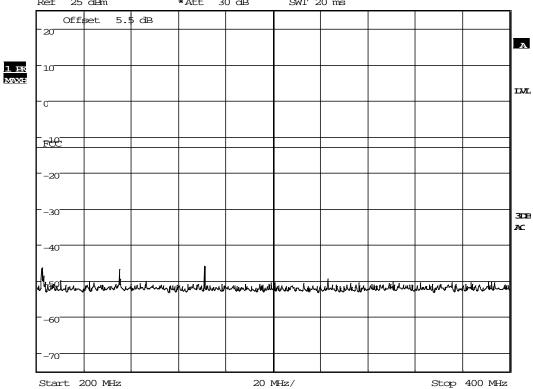

Start 1 GHz

Figure 4.3-10 Conducted Spurious Emissions, 1GHz – 2GHz (Fo=131.35MHz)

100 MHz/

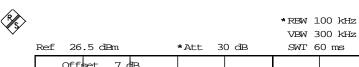

Stop 2 GHz

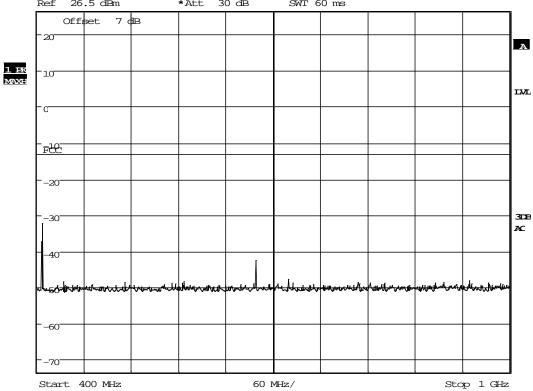

Date: 29.MAY.2013 00:11:08


Figure 4.3-11 Conducted Spurious Emissions, 30MHz – 100MHz (Fo=135.5MHz)

Date: 29.MAY.2013 00:09:33

Figure 4.3-12 Conducted Spurious Emissions, 100MHz – 200MHz (Fo=135.5MHz)

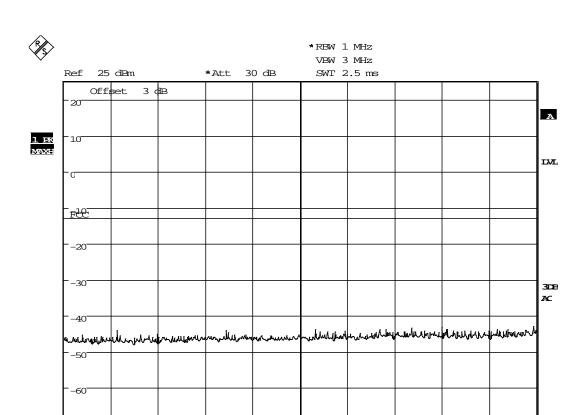




Date: 29.MAY.2013 00:12:11

Figure 4.3-13 Conducted Spurious Emissions, 200MHz – 400MHz (Fo=135.5MHz)

SIZE CAGE CODE REV 12-P57599R A 1VPW8 - SHEET 36



Date: 29.MAY.2013 00:13:08

Figure 4.3-14 Conducted Spurious Emissions, 400MHz – 1GHz (Fo=135.5MHz)

SIZE CAGE CODE REV 12-P57599R A 1VPW8 - SHEET 37

Date: 29.MAY.2013 00:14:09

Start 1 GHz

Figure 4.3-15 Conducted Spurious Emissions, 1GHz – 2GHz (Fo=135.5MHz)

100 MHz/

Stop 2 GHz

SIZE CAGE CODE REV 12-P57599R A 1VPW8 - SHEET 38

4.4 **Radiated Spurious Emissions**

Radiated spurious emissions were measured over the frequency range of 30 MHz to 2 GHz with a 50 Ohm termination on the antenna port. The carrier signal field strength at maximum output power (35W) was calculated to be approximately 132.4 dBuV/m at a 10 meter distance using the following formula.

$$E (V/m) = \sqrt{(30*P_tG_n)/d} = \sqrt{(30*35*1.64)/10} = 4.15 \text{ V/m}$$

 $E (dBuV/m) = 20*Log (4.15e06) = 132.4 \text{ dBuV/m}$

This reference level was calculated with the assumption that all emissions are radiated from half wave dipole antennas ($G_n = 1.64$). Therefore, the radiated emissions requirement limit was calculated to be approximately -58.4 dBc (i.e. 43 +10*Log (35)) or 74 dBuV/m.

As illustrated in the pre-scan data provided in the following pages, all radiated emissions from the cabinet and/or associated cables were well below (>30dB) the requirement limit. The final amplitude levels of the transmitter harmonics were still re-measured on the OATS and the data sheet is included as Table 4.4-1.

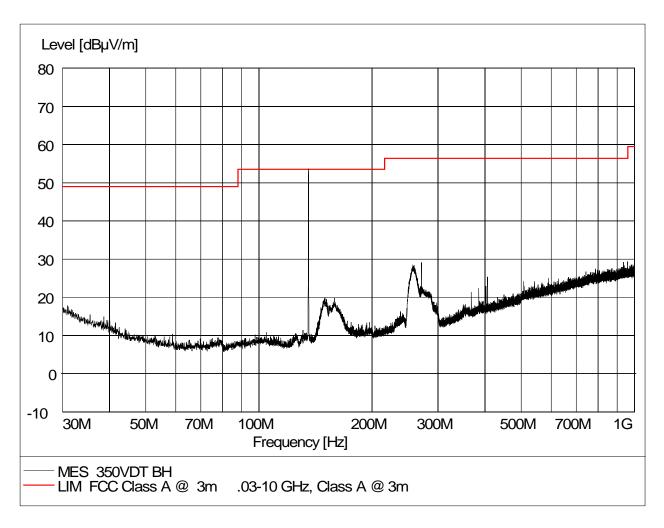


Figure 4.4-1 Radiated spurious emissions, Horizontal Polarization, 30 MHz – 1 GHz (Rear)

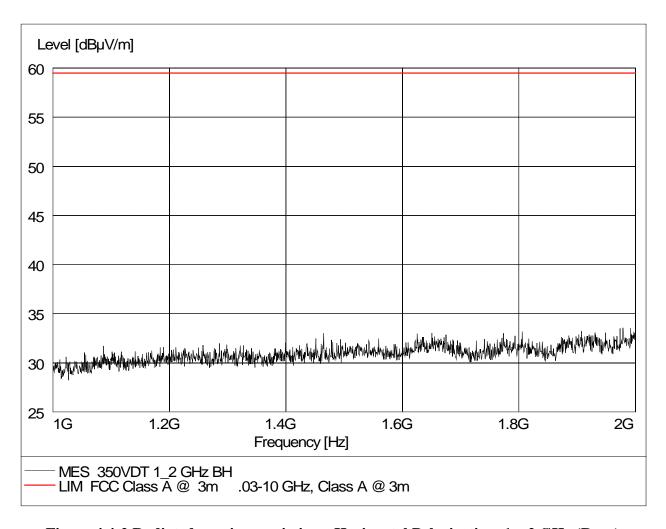


Figure 4.4-2 Radiated spurious emissions, Horizontal Polarization, 1 – 2 GHz (Rear)

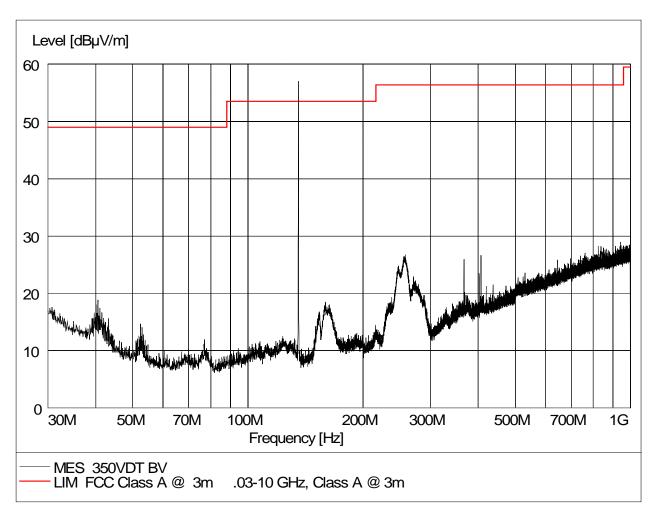


Figure 4.4-3 Radiated spurious emissions, Vertical Polarization, 30 MHz – 1 GHz (Rear)

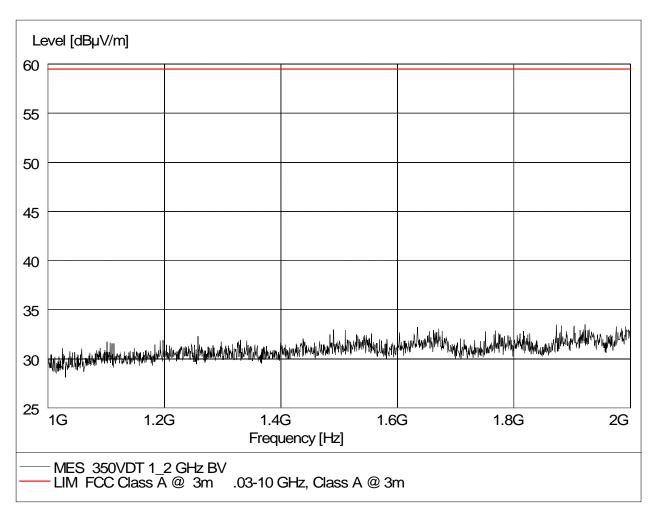


Figure 4.4-4 Radiated spurious emissions, Vertical Polarization, 1 - 2GHz (Rear)

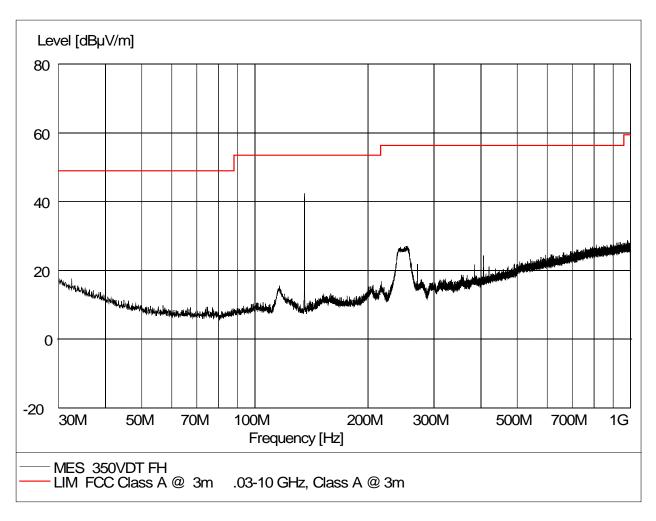


Figure 4.4-5 Radiated spurious emissions, Horizontal Polarization, 30MHz-1GHz (Front)

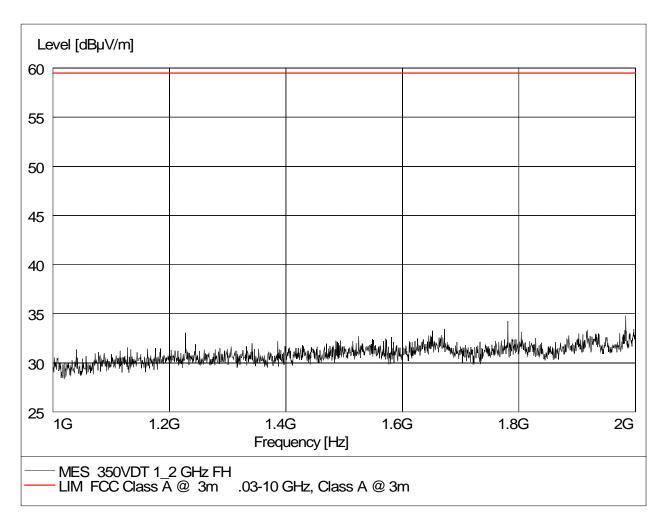


Figure 4.4-6 Radiated spurious emissions, Horizontal Polarization, 1 - 2GHz (Front)

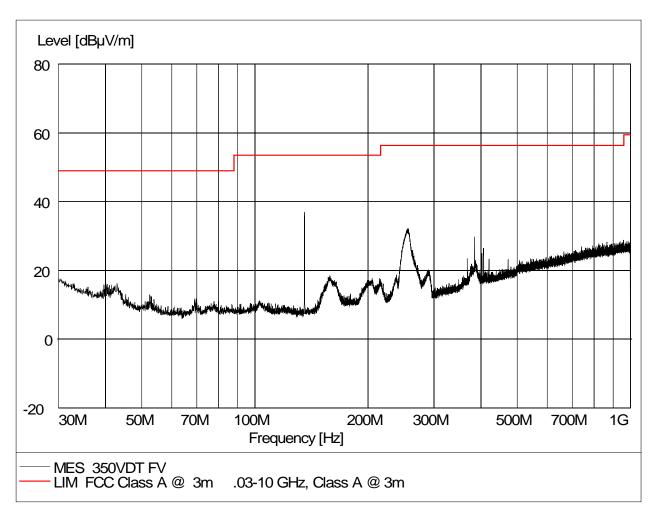


Figure 4.4-7 Radiated spurious emissions, Vertical Polarization, 30MHz - 1GHz (Front)

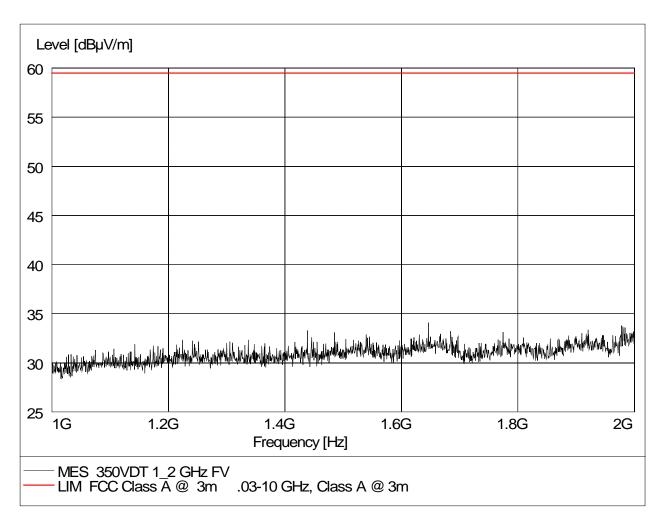


Figure 4.4-8 Radiated spurious emissions, Vertical Polarization, 1 - 2GHz (Front)

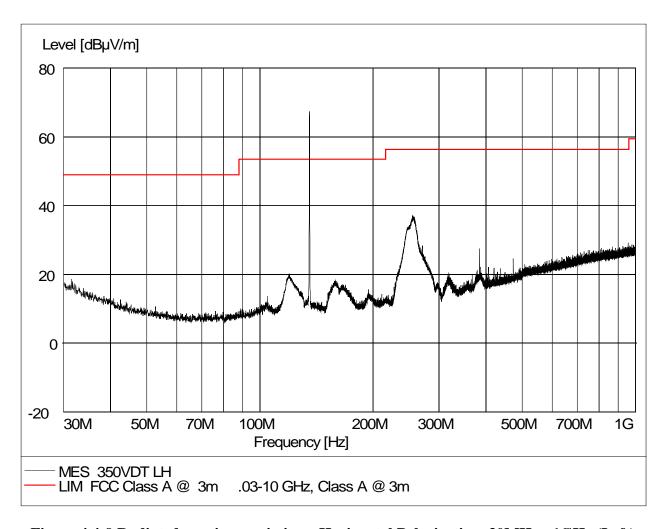


Figure 4.4-9 Radiated spurious emissions, Horizontal Polarization, 30MHz - 1GHz (Left)

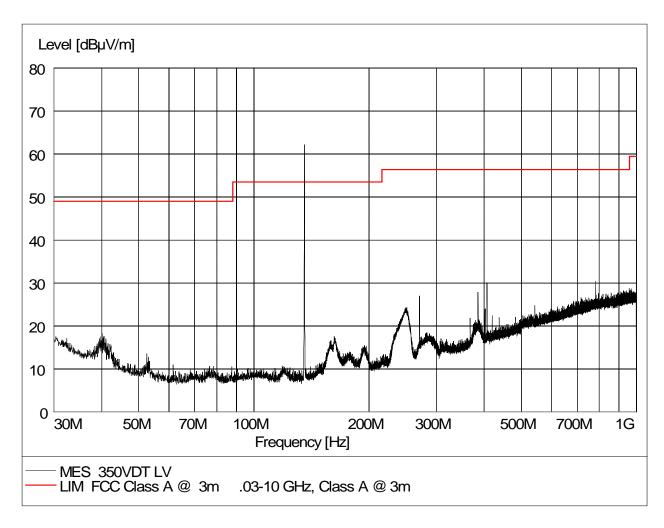


Figure 4.4-10 Radiated spurious emissions, Vertical Polarization, 30MHz - 1GHz (Left)

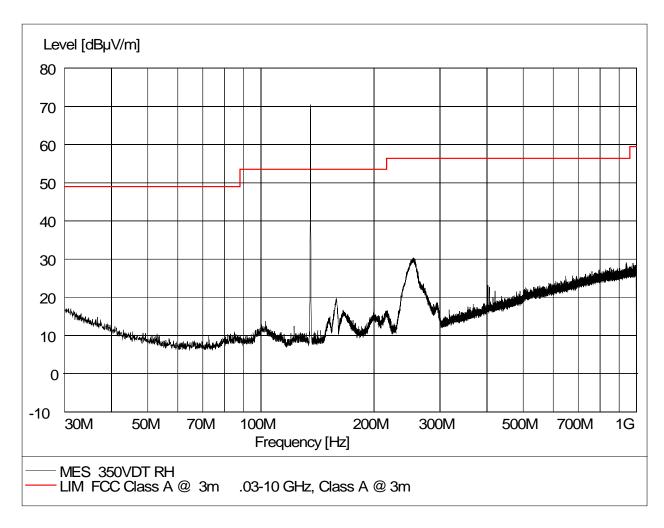


Figure 4.4-11 Radiated spurious emissions, Horizontal Polarization, 30MHz - 1GHz (Right)

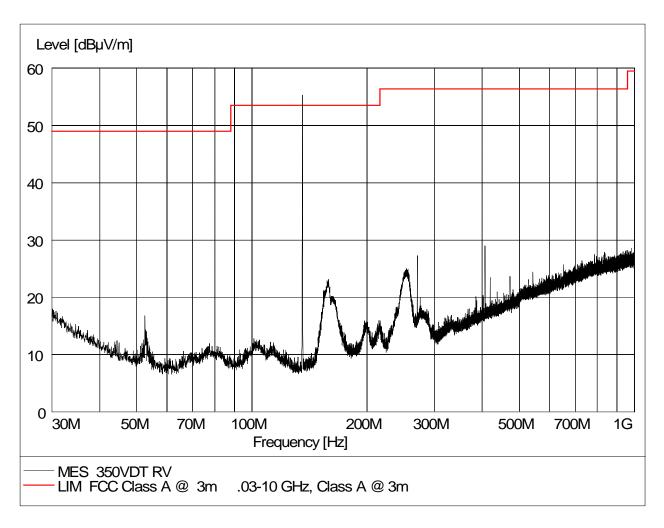


Figure 4.4-12 Radiated spurious emissions, Vertical Polarization, 30MHz - 1GHz (Right)

Table 4.1-1 Radiated Spurious Emission, OATS Measurements

GENERAL DYNAMICS

C4 Systems

FCC Equip. Mode:	Radiated Te CM-350 VHF			itter		_	Tes	Test Date: t Technician:	5/20/2013 R.Johnston		
Model#:	CM-350 (V2)	VDT				_ м	easurement	Distance (m)	10		
Serial#:	2V5000001					_	Equ	ipment Class			
						32°C 10%R.H. BP 9			BP 92.	92.6 kpa	
Frequency MHz	SA Reading (dBuV)	Az	Ht cm	Pol	Antenna Factor	Cable/Attn. Loss	Pre Amp dB	Emission (dBuV/m)	Spec Limit (dBuV/m)	Pass/ Fail	Comments:
$F_0 = 135.5$											
271.000	12.4	FR	100.00	V	12.8	10.5	0.0	35.7	74.0	PASS	2nd Harmonic
406.500	10.0	FR	100.00	\mathbf{v}	15.8	11.4	0.0	37.2	74.0	PASS	3rd Harmonic
542.000	32.0	F	100.00	v	18.8	12.5	0.0	63.3	74.0	PASS	4th in Ambient
542.000	15.0	F	100.00	V	18.8	12.5	0.0	46.3	74.0	PASS	10kHz BW
Fo = 131.35											
262.7	11.0	F	100.00	v	12.4	10.4	0.0	33.8	74.0	PASS	2nd @ Noise Floor
394.05	13.0	В	282.00	v	19.7	12.5	0.0	45.2	74.0		3rd @ Noise Floor
525.4	32.0	В	217.00	Н	19.7	12.5	0.0	64.2	74.0		4th in Ambient
Fo=119											
238.00	16.0	BL	100.00	v	15.5	11.0	0.0	42.5	74.0	PASS	2nd @ Noise Floor
357.00	15.0	В	310.00	v	18.0	12.2	0.0	45.2	74.0		3rd @ Noise Floor
476.00	40.0	В	303.00	Н	18.0	12.2	0.0	70.2	74.0		4th in Ambient

4.5 Modulation Characteristics

Figure 4.5-1 illustrates the test setup used for measuring the audio response of the modulator with respect to the requirements of 47 CFR Part 2.1047 (a). Data was taken and recorded with the HP 4195A audio network analyzer. The graphs recorded, Figures 4.5-2 and 4.5-3, illustrate the audio frequency response of the modulator for both 25 kHz and 8.33 kHz channel spacing. These measurements were performed by project personnel on CM-350 (V2) VDT S/N 2V5000005.

Radio Model				
Number:	CM-35	0 (V2) VDT		
Radio Serial Number	2V5000005			
Radio Hardware				
Version	Pilot			
Radio Software				
Version	Micro	1.39	SBV	1.38
	Boot	4.05	Web	5.05
	CPLD	F00V009		

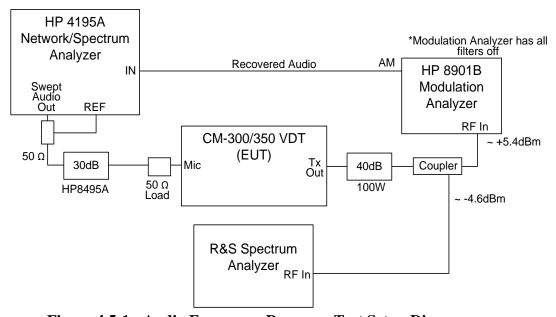


Figure 4.5-1 Audio Frequency Response Test Setup Diagram

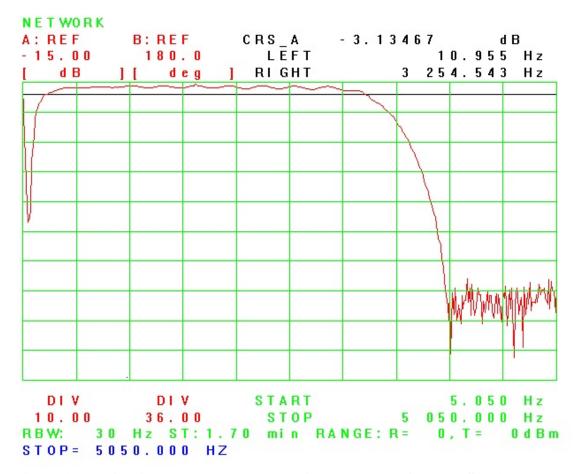


Figure 4.5-2 Audio Frequency Response Curve, 25 kHz Channel Spacing

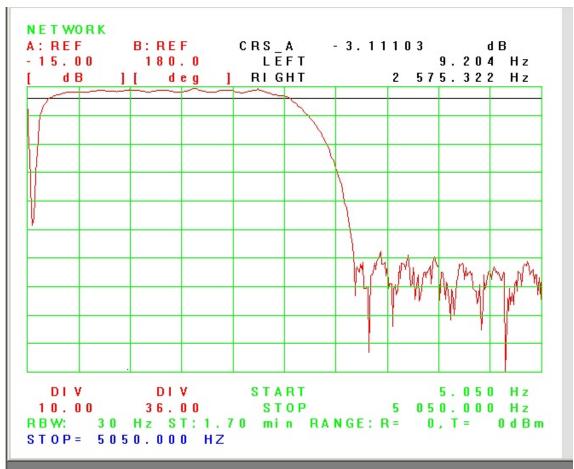
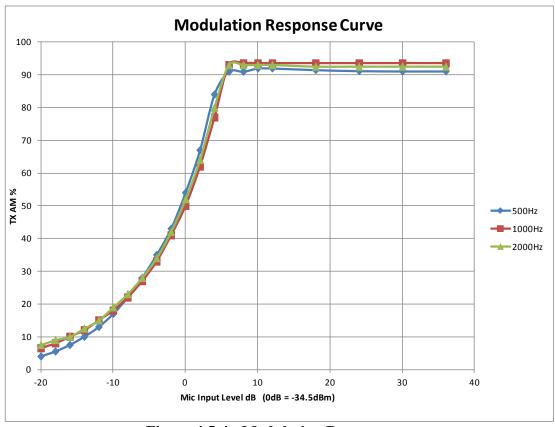


Figure 4.5-3 Audio Frequency Response Curve, 8.33 kHz Channel Spacing


Data was also taken to illustrate the percentage of modulation versus the modulation input voltage in accordance with 47 CFR Part 2.1047 (b). The requirements of 47 CFR Part 87.141 also applies to the CM-350 (V2) VDT specifying that, when A3E emission is used, the modulation percentage must not exceed 100 percent.

This data was taken while holding the audio frequency at 500 Hz, 1 kHz and 2 kHz and a peak frequency taken from the audio frequency response results, into the CM-350 (V2) VDT.

Figure 4.5-4 shows the modulation response for each of three tones while the input voltage was varied. The frequency is held constant and the modulation is read from an HP 8901B modulation analyzer. These measurements were performed by project personnel on CM-350 (V2) VDT S/N 2V5000107.

REV

Radio Model				
Number:	CM-35	0 (V2) VDT		
Radio Serial Number	2V5000107			
Radio Hardware				
Version	FAT			
Radio Software				
Version	Micro	1.39	SBV	1.38
	Boot	4.05	Web	5.05
	CPLD	F00V009		

Figure 4.5-4 Modulation Response

4.6 Frequency Stability

The CM-350 (V2) VDT was tested for frequency stability in accordance with the requirements of 47 CFR Part 2.1055 when operated in a CW mode at maximum rated power over the temperature range of -30°C to +50°C in 10°C steps. This included testing at three (3) operating frequencies (119 MHz, 131.35 MHz, and 135.5 MHz). The stability requirement specified in 47 CFR Part 87.133 is 20 parts per million (ppm).

Frequency stability was also measured over an input power voltage range of 85% to 115% for AC power and for DC power battery backup operation. These voltage settings are shown in Table 4.6-1.

Table 4.6-1 Frequency Stability Input Voltage Settings

Nominal Power	85%	115%
120 VAC	102 VAC	138 VAC
24 VDC	20.4 VDC	27.6 VDC

The CM-350 (V2) VDT is only rated to operate at 24 VDC, -10%/+20% VDC, i.e. 21.6 VDC to 28.8 VDC. The testing indicates that the unit continues to meet the 20ppm requirement to a minimum voltage level of approximately 21.3 VDC, at which point the unit automatically shuts down. Although the 85% minimum level (+20.4VDC) was not reached, frequency stability below 21.3 VDC is a non-issue since the radio shuts off.

The frequency stability data is illustrated below and was performed by project personnel on the CM-350 (V2) VDT S/Ns 2V5000007 and 2V500005. The radio met the 20ppm frequency stability requirement across the specified temperature and voltage ranges.

Radio Model					
Number:	CM-350 (V2) VDT				
Radio Serial Number	2V5000	005			
Radio Hardware					
Version	Pilot				
Radio Software					
Version	Micro	1.39	SBV	1.38	
	Boot	4.05	Web	5.05	
	CPLD	F00V009			
Radio Model					
Number:	CM-35	0 (V2) VDT			
Radio Serial Number	2V5000	007			
Radio Hardware					
Version	Pilot				
Radio Software					
Version	Micro	1.39	SBV	1.38	
	Boot	4.05	Web	5.05	
	CPLD	F00V009			

CAGE CODE

1VPW8

Temperature vs. Frequency Stability

-30 C

SN 2V5000007

Set Frequency	119.000	119.000	119.000	119.000
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	119000018	119000018	119000018	119000017
Frequency				
Offset	18	18	18	17
PPM	.151	.151	.151	.142
RF Power CW	31.62	31.62	31.62	31.62

Set Frequency	131.350	131.350	131.350	131.350
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	131.350032	131.350032	131350029	131350025
Frequency				
Offset	32	32	29	25
PPM	.243	.243	.220	.190
RF Power CW	30.90	30.90	31.62	32.35

Set Frequency	135.500	135.500	135.500	135.500
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	135500026	135500025	135500023	135500021
Frequency				
Offset	26	25	23	21
PPM	.191	.184	.169	.154
RF Power CW	32.35	32.35	33.11	33.11

Set Frequency	119.000	119.000	119.000	119.000
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	119000018	119000018	119000018	119000017
Frequency				
Offset	18	18	18	17
PPM	.151	.151	.151	.142
RF Power CW	30.19	30.90	30.90	31.62

Set Frequency	131.350	131.350	131.350	131.350
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	131350019	131350019	131350019	131350019
Frequency				
Offset	19	19	19	19
PPM	.144	.144	.144	.144
RF Power CW	33.11	33.11	33.11	33.11

Set Frequency	135.500	135.500	135.500	135.500
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	135500019	135500020	135500020	135500020
Frequency				
Offset	19	20	20	20
PPM	.140	.147	.147	.147
RF Power CW	33.88	33.88	33.88	33.88

Set Frequency	119.000	119.000	119.000	119.000
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	119000002	119000001	119000000	119000000
Frequency				
Offset	2	1	0	0
PPM	.016	.008	0	0
RF Power CW	33.35	32.35	32.35	32.35

Set Frequency	131.350	131.350	131.350	131.350
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	131350010	131350009	131350005	131350002
Frequency				
Offset	10	9	5	2
PPM	.076	.068	.038	.015
RF Power CW	33.88	33.88	33.88	33.88

Set Frequency	135.500	135.500	135.500	135.500
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	135500014	135500015	135500014	135500011
Frequency				
Offset	14	15	14	11
PPM	.103	.110	.103	.081
RF Power CW	32.35	32.35	32.35	33.88

Set Frequency	119.000	119.000	119.000	119.000
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	119000002	118999998	118999994	118999994
Frequency				
Offset	2	2	6	6
PPM	.016	.016	.050	.050
RF Power CW	31.62	31.62	32.35	33.11

Set Frequency	131.350	131.350	131.350	131.350
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	131349993	131349993	1313499995	1313499996
Frequency				
Offset	7	7	5	4
PPM	.053	.053	.038	.30
RF Power CW	33.88	34.67	34.67	34.67

Set Frequency	135.500	135.500	135.500	135.500
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	135499996	135499997	135499998	135499999
Frequency				
Offset	4	3	2	1
PPM	.029	.022	.014	.007
RF Power CW	34.67	34.67	34.67	35.48

Set Frequency	119.000	119.000	119.000	119.000
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	119000004	119000004	119000004	119000005
Frequency				
Offset	4	4	4	5
PPM	.033	.033	.033	.042
RF Power CW	33.88	33.88	33.88	33.88

Set Frequency	131.350	131.350	131.350	131.350
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	131350002	131350002	131350003	131350004
Frequency				
Offset	2	2	3	4
PPM	.015	.015	.022	.030
RF Power CW	35.48	35.48	35.48	35.48

Set Frequency	135.500	135.500	135.500	135.500
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	135499997	135499998	135500000	135500001
Frequency				
Offset	3	2	0	1
PPM	.022	.014	0	.007
RF Power CW	33.88	33.88	34.67	35.48

Set Frequency	119.000	119.000	119.000	119.000
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	119000006	119000006	119000005	119000004
Frequency				
Offset	6	6	5	4
PPM	.050	.050	.042	.033
RF Power CW	33.11	33.11	33.88	34.67

Set Frequency	131.350	131.350	131.350	131.350
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	131350004	131500003	131350002	131350002
Frequency				
Offset	4	3	2	2
PPM	.030	.022	.015	.015
RF Power CW	36.30	36.30	37.15	37.15

Set Frequency	135.500	135.500	135.500	135.500
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	135500002	135500001	135500001	135500000
Frequency				
Offset	2	1	1	0
PPM	.014	.007	.007	0
RF Power CW	37.15	37.15	37.15	37.15

Set Frequency	119.000	119.000	119.000	119.000
(MHz)	MHz	MHz	MHz	MHz
Time	0 minutes	2 minutes	5 minutes	10 minutes
Measured	119000001	119000001	119000002	119000003
Frequency				
Offset	1	1	2	3
PPM	.008	.008	.016	.025
RF Power CW	35.48	35.48	35.48	35.48

Set Frequency	131.350	131.350 MHz	131.350 MHz	131.350 MHz	
(MHz)	MHz				
Time	0 minutes	2 minutes	5 minutes	10 minutes	
Measured	131349999	131350000	131350000	131349999	
Frequency					
Offset	1	0	0	1	
PPM	.007	0	0	.007	
RF Power CW	37.15	37.15	37.15	37.15	

Set Frequency	135.500	135.500 MHz	135.500 MHz	135.500 MHz	
(MHz)	MHz				
Time	0 minutes	2 minutes	5 minutes	10 minutes	
Measured	135499997	135499998	135499998	135500000	
Frequency					
Offset	3	2	2	0	
PPM	.022	.014	.014	0	
RF Power CW	34.67	36.30	36.30	37.15	

Set Frequency	119.000	119.000	119.000	119.000	
(MHz)	MHz	MHz	MHz	MHz	
Time	0 minutes	2 minutes	5 minutes	10 minutes	
Measured	119000009	119000009	119000010	119000010	
Frequency					
Offset	9	9	10	10	
PPM	.075	.075	.073	.073	
RF Power CW	33.88	34.67	35.48	35.48	

Set Frequency	131.350	131.350	131.350	131.350		
(MHz)	MHz MHz MH		MHz	MHz		
Time	0 minutes 2 minutes		5 minutes	10 minutes		
Measured	1313500011	1313500011	1313500012			
Frequency						
Offset	11	11 12		12		
PPM	PPM .083		.091	.091		
RF Power CW	38.01	38.01	38.01	38.90		

Set Frequency	135.500	135.500 MHz	135.500 MHz	135.500 MHz	
(MHz)	MHz				
Time	0 minutes	2 minutes	5 minutes	10 minutes	
Measured	135500012	135500013	135500013	135500013	
Frequency					
Offset	12	13	13	13	
PPM	.088	.095	.095	.095	
RF Power CW	er CW 38.01 38.01		38.01	38.90	

Set Frequency	119.000	119.000	119.000	119.000		
(MHz)	MHz	MHz MHz M		MHz		
Time	0 minutes	2 minutes	5 minutes	10 minutes		
Measured	119000004	119000005	119000005	119000008		
Frequency						
Offset	4	5	5	8		
PPM	.033	.042	.042	.067		
RF Power CW	38.01	38.01	38.01	38.01		

Set Frequency	131.350	131.350	131.350	131.350	
(MHz)	MHz	MHz	MHz MHz		
Time	0 minutes 2 minutes		5 minutes	10 minutes	
Measured	131349998	131350000	131349998	131350004	
Frequency					
Offset	2	0	2	4	
PPM	.015	0	.015	.030	
RF Power CW	39.81	39.81	39.81	39.81	

Set Frequency	135.500	135.500	135.500	135.500	
(MHz)	MHz	MHz MHz		MHz	
Time	0 minutes	2 minutes	5 minutes	10 minutes	
Measured	135499989	135499989	135499991	135499997	
Frequency					
Offset	11	11	9	3	
PPM	.081	.081	.066	.022	
RF Power CW	37.15	38.01	38.01	39.81	

FCC Freq	Stab vs	Input Voltage			DATE: 4/24-4/2	25		Tested By: K.W	'agstaff
		UUT SN: 2V500	0005		Model: CM-350	0 (V2) V	HF Tran	smitter	
	* Alert	LED ON	** Fail	LED ON					
		Freq: 119.000 I	MHz						
		2 MIN			5 MIN			10 MIN	
	AC/	Frequency	ppm	AC/	Frequency	ppm	AC/	Frequency	ppm
Input	DC	Counter	from	DC	Counter	from	DC	Counter	from
Voltage	PWR	Reading	Nom	PWR	Reading	Nom	PWR	Reading	Nom
20.40		J	UUT Sh	uts off a	t Voltages Lower	than ~21	.3 Volts		
					To the good and th				
21.40	21.33	119000012	-0.10	21.39	119000013	-0.11	21.41	119000015	-0.13
24.00	24.10	119000007	-0.06		119000009		24.00		-0.09
27.60	27.65	118999999	0.01	27.68	119000005	-0.04	27.76	119000014	-0.12
	102.08	119000015		102.08	119000017	-0.14	102.08	119000022	
120	120.10	119000024	-0.20	120.10	119000027	-0.23	120.10	119000030	-0.25
138	137.95	119000050	-0.42	137.94	119000049	-0.41	137.94	119000048	-0.40
		Freq: 131.350 I	MHz						
		2 MIN			5 MIN			10 MIN	
	AC/	Frequency	ppm	AC/	Frequency	ppm	AC/	Frequency	ppm
Input	DC	Counter	from	DC	Counter	from	DC	Counter	from
Voltage	PWR	Reading	Nom	PWR	Reading	Nom	PWR	Reading	Nom
20.4			UUT Sh	uts off a	t Voltages Lower	than ~21	.3 Volts	ı	
					Ü				
21.40	21.36	131350019	-0.14	21.32	131350019	-0.14	21.36	131350023	-0.18
24.00	23.99	131350051	-0.39	24.01	131350052	-0.40	24.09	131350054	
27.60	27.73	131350020	-0.15	27.68	131350025	-0.19	27.76	131350031	-0.24
102	102.08	131350011	-0.08	102.08	131350012	-0.09	102.08	131350015	-0.11
120	120.10	131350035	-0.27	120.10	131350035	-0.27	120.10	131350035	-0.27
138	137.94	131350049	-0.37	137.95	131350056	-0.43	137.95	131350057	-0.43
		Freq: 135.500 I	MHz						
		2 MIN			5 MIN			10 MIN	
	AC/	Frequency	ppm	AC/	Frequency	ppm	AC/	Frequency	ppm
Input	DC	Counter	from	DC	Counter	from	DC	Counter	from
Voltage	PWR	Reading	Nom	PWR	Reading	Nom	PWR	Reading	Nom
20.4			UUT Sh	uts off a	t Voltages Lower	than ~21	.3 Volts		
21.40	21.41	135500025	-0.18	21.32	135500026	-0.19	21.36	135500029	-0.21
24.00	24.05	135500046		24.01	135500046		24.09		
27.60		135500035					27.76		
102	102.08	135500026	-0.19	102.08	135500028	-0.21	102.08	135500031	-0.23
120	120.10	135500037	-0.27	120.10	135500038	-0.28	120.10	135500039	-0.29
138	137.95	135500047	-0.35	137.95	135500048	-0.35	137.95	135500050	-0.37

SIZE A CAGE CODE 1VPW8 REV

12-P57599R SHEET 67

4.7 RF Output Power and Final Amplifier Voltage/Current

The RF output power was measured at the output terminals of the transmitter and provided below:

119.000 MHz +46.6 dBm 131.35 MHz +46.9 dBm 135.5 MHz +46.8 dBm

Paragraph 2.1033(c)(8) indicates that the DC voltage and DC current applied into the final radio frequency amplifying device shall be specified for normal operation over the power range. These measurement readings are provided below:

- 1) DC Voltage into Final RF Amplifier: 28 Volts DC, nominal
- 2) DC Current in the Final RF Amplifier: 11.0 Amps (@35W output power)

5.0 CONCLUSIONS

The NEXCOM II CM-350 (V2) VHF Digital Transmitter (VDT) complies with the applicable sections of 47 CFR Parts 2 and 87 required for FCC certification.