

UNII-7 (6525 – 6875 MHz) Wi-Fi Radio Test Report (Radiated Spurious Emissions Only)

For

IW9165DH-B (5/6 GHz Radio) IW9165DH-A (5/6 GHz Radio)

Supports

5/6 GHz 802.11 a/n/ac/ax Wi-Fi + Bluetooth LE v5.0 + GNSS radio

FCC ID: LDKIW9165DH ISED: 2461A-IW9165DH

Equipment Class: 6SD

Against the following Specifications:
47 CFR 15.205
47 CFR 15.209
CFR47 Part 15.407

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134

Page No: 1 of 38

Author: Danh Le	Lafe
Tested By: Farida Rahmanzai Title: Test Engineer	fala P.
Approved By: Howard Ji Title: Compliance Manager	And E
Revision	1.0

This report replaces any previously entered test report under EDCS – ########. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 24449925

Table of Contents

SECTION 1: OVERVIEW	
1.1 Test Summary	
SECTION 2: ASSESSMENT INFORMATION	
2.1 General	
2.2 Units of Measurement	
2.3 DATE OF TESTING (INITIAL SAMPLE RECEIPT DATE TO LAST DATE OF TESTING)	
2.4 REPORT ISSUE DATE	
2.5 TESTING FACILITIES	
2.6 EQUIPMENT ASSESSED (EUT).	8
2.7 EUT DESCRIPTION	8
SECTION 3: RESULT SUMMARY	10
SECTION 4: SYSTEM DETAILS AND MODE OF OPERATION	11
4.1 Sample Details	11
4.2 System Details	
4.3 MODE OF OPERATION DETAILS	
APPENDIX A: EMISSION TEST RESULTS	12
A.1 Setup Diagram	12
A.2 RADIATED SPURIOUS EMISSIONS TEST REQUIREMENTS & LIMITS	
A.3 LIMIT CONVERSION (POWER TO FIELD STRENGTH)	
A.4 TEST PROCEDURE	18
A.5 TX RADIATED SPURIOUS EMISSIONS GRAPHICAL DATA RESULTS	19
APPENDIX B: LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	31
APPENDIX C: ABBREVIATION KEY AND DEFINITIONS	32
APPENDIX D: PHOTOGRAPHS OF TEST SETUPS	33
APPENDIX E: SOFTWARE USED TO PERFORM TESTING	34
APPENDIX F: TEST PROCEDURES	35
APPENDIX G: SCOPE OF ACCREDITATION (A2LA CERTIFICATE NUMBER 1178-01)	36
APPENDIX H: TEST ASSESSMENT PLAN	37
APPENDIX I: WORST CASE HISTIFICATION	35

Page No: 3 of 38

Radio Test Report No: EDCS - 24733402
--

Section 1: Overview

1.1 Test Summary

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Specifications	
47 CFR 15.205	
47 CFR 15.209	
47 CFR 15.407	

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Radio Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature 15°C to 35°C (54°F to 95°F)

Atmospheric Pressure 860mbar to 1060mbar (25.4" to 31.3")

Humidity 10% to 75*%

e) All AC testing was performed at one or more of the following supply voltages:

110V 60 Hz (+/-20%)

2.2 Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB]

The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss..

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Page No: 5 of 38

Measurement Uncertainty Values

voltage and power measurements	± 2 dB
RF Output Power, conducted	± 2 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7 MHz
temperature measurements	± 0.54°C
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

$$30 \text{ MHz} - 40 \text{GHz}$$
 +/- 0.38 dB

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

2.3 Date of testing (initial sample receipt date to last date of testing)

06-September-2023 to 11-September-2023

2.4 Report Issue Date

22-Januar-2024

2.5 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc. 125 West Tasman Drive (Building P) San Jose, CA 95134 USA

Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134 USA

Test Engineer

Farida Rahmanzai

Page No: 7 of 38

2.6 Equipment Assessed (EUT)

IW9165DH with embedded 5/6GHz radio module.

2.7 EUT Description

The Catalyst IW9165 Series addresses the growing need for reliable client wireless connectivity to mission-critical applications as organizations automate processes and operations. It comes with two 2x2 radios, features an industrial design, and is packed with advanced features.

The Cisco Catalyst IW9165D Heavy Duty Access Point is designed to make wireless backhaul deployment simple. It comes with a built-in directional antenna that enables long-range, high-throughput connectivity anywhere fiber is not an option. The external antenna ports let you quickly extend your network to new places when needed and choose the right antenna based on the use cases and deployment architectures. With heavy-duty IP67 design, the Catalyst IW9165D is certified to operate under wet, dusty, and extreme temperature conditions.

IW9165DH Key Features:

- Dual radio 5GHz, 5/6GHz
- Directional & External (2 x N Type) antennas
- 2x2 MIMO 2SS, Max data rate 3.6 Gbps
- BTLE, GNSS radio
- CURWB mode provides reliable wireless connectivity.
- RJ45, M12 1 x 2.5Gbps, 1x 1 Gbps
- Dual power input PoE-in & 24-48VDC
- Dual mounting options Pole & Wall mount
- IP67

Wireless Protocols support

- Wi-Fi: IEEE 802.11a, 802.11n, 802.11ac, 802.11ax
- Bluetooth Low Energy v5.0: IEEE 802.15 (1Mbps & 2Mbps, single stream)
- GNSS (Global Navigation Satellite System) receiver

5/6 GHz radio specification:

- 802.11a (5 GHz band only): 6, 9, 12, 18, 24, 36, 48, 54 Mbps
- 802.11n (5 GHz band only): HT20 and HT40, MCS0 to 15
- 802.11ac (5 GHz band only): VHT20 MCS0 to 8, 1 or 2 spatial streams

∘ VHT80, VHT160 MCS0 to 9, 1 or 2 spatial streams

• 802.11ax: ∘ HE20, HT40, HE80, and HE160 MCS0 to 11, 1 or 2 spatial streams

Page No: 8 of 38

The following antennas are supported by this product series.

The data included in this report represent the worst-case data for all antennas.

Please note the following antenna gain information was provided by the customer (Cisco Business Unit):

Frequency	Part Number	Antenna Type	Peak Antenna Gain (dBi)
5/6 GHz	IW-ANT-OMH-2567-N	Tri-band 2.4Ghz 4dBi, 5/6GHz 7dBi	7.0
		Omnidirectional Collinear Array Antenna,	
		Horizontally Polarized, N male connector	

Model/PID differences

All PIDs have identical components, PCB layout, electronics circuitries and enclosure. The only difference is domain code selected in the software.

The model differences are described below:

IW9165DH-B represents U.S PID with US domain code selected

IW9165DH-A represents Canada PID with Canada domain code selected.

IW9165DH-ROW represents Worldwide PID, except for US & CAN, with ROW domain code selected.

Section 3: Result Summary

Radiated Emissions (General requirements)

Basic Standard	Technical Requirements / Details	Result
FCC 15.407	TX Spurious Emissions in non-restricted bands: (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:	
	(b) (6) For transmitters operating within the 5.925–7.125 GHz band: Any emissions outside of the 5.925–7.125 GHz band must not exceed an e.i.r.p. of −27 dBm/MHz.	
	(b) (9) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.	
FCC 15.209	(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the field strength limits table in this section.	
FCC 15.407	TX Spurious Emissions in restricted bands: (b) (10) The provisions of § 15.205 apply to intentional radiators operating under this section.	Pass
FCC 15.205	(a) Except as shown in <u>paragraph (d)</u> of this section, only spurious emissions are permitted in any of the frequency bands listed in the restriction band table of this section.	
	(b) Except as provided in <u>paragraphs (d)</u> and <u>(e)</u> of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209	
FCC 15.209	(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the field strength limits table in this section.	

Page No: 10 of 38

Section 4: System Details and Mode of Operation

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. Please also refer to the "Justification for worst Case test Configuration" section of this report for further details on the selection of EUT samples.

4.1 Sample Details

4.1 Sample Details				
Sample Number	Equipment Details	Serial Number	CISCO Part Number	Radio FW Version
S01	IW9165DH with embedded 6GHz radio module.	FOC27095C9Z	68-103412-03	WLAN.HK.2.4.c2-00211- QCAHKSWPL_SILICO
S02	IW-PWRADPT-MFIT4PN Liteon AC Adaptor	LIN26292022	341-101392-01	

4.2 System Details

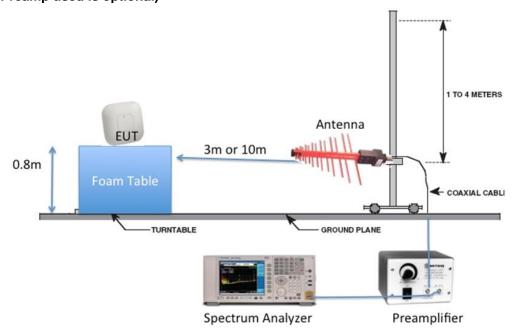
System #	Description	Samples
1	IW9165DH w/ embedded Wi-Fi Radio module + external power supply	S01, S02

4.3 Mode of Operation Details

Mode #	Wi-Fi Mode	Modulation	Data Rate	BW
1. Transmit	2x2 MIMO 802.11ax/HE20	MIMO-OFDM	M0h1	20MHz

Note: Table above represents the worst-case scenarios for all modulations and data rate combination of each mode. The TX modes in the table above were determined to be the worst-case emissions of all TX modes and selected for RSE testing.

Page No: 11 of 38



Appendix A: Emission Test Results

Testing Laboratory: Cisco Systems, Inc., 125 West Tasman Drive, San Jose, CA 95134, USA

A.1 Setup Diagram

Radiated Emission Setup Diagram-Below 1G (Preamp used is optional)

Note: The radiated spurious emissions test setup referenced to KDB789033 D02, v02r01, Section II (G)(3)(b)(i)), the EUT antenna ports were terminated with 50Ω loads.

Radiated Emission Setup Diagram-Above 1G

Note: The radiated spurious emissions test setup referenced to KDB789033 D02, v02r01, Section II (G)(3)(b)(i)), the EUT antenna ports were terminated with 50Ω loads.

A.2 Radiated Spurious Emissions Test Requirements & Limits

Emissions on frequency or frequencies which are outside the necessary bandwidth and level of which may be reduced without effecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Page No: 14 of 38

Restricted bands Limits

FCC 15.407 (b) (10) The provisions of 15.205 apply to intentional radiators operating under this section.

FCC 15.205 (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35 apply to these measurements.

Restricted Bands for FCC				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	Above 38.6	
13.36-13.41				

Non-Restricted Bands Limits

Below 1 GHz

FCC 15.209

The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the table specified in the table in FCC§15.209(a).

FCC15.407

(b) (9) Unwanted emissions below 1GHz must comply with general field strength limits set forth in §15.209.

General Field Strength Limits Table										
Frequency (MHz)	Field strength (uV/meter)	Field strength (dBuV/meter)	Measurement distance (meters)							
30-88	100**	40 Qp	3							
88-216	150**	43.5 Qp	3							
216-960	200**	46 Qp	3							
Above 960	500	54 Av / 74 Pk	3							

Above 1 GHz

FCC15.407

(b) *Undesirable emission limits*. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.925 – 7.125 GHz band(s): All emissions outside of the 5.925 – 7.125 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz

Page No: 16 of 38

A.3 Limit Conversion (power to field strength)

The field strength limit in dBµV can be converted from power (logarithmic) by using the field strength (linear) approach formula as follows:

$$V/m = \frac{\sqrt{30 \times Pt \times gt}}{d}$$

where: **pt** = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unit less),

E = electric field strength in V/m,

d = measurement distance in meters (m).

From the equation above, unit conversion from log => linear with a known power limit of -27 dBm.

(1) Conversion from dBm to Watt

dBm to Watts W = 10((dBm - 30)/10)

$$P(W) = 10^{(-27 - 120)/20}$$

$$= 10^{-5.7}$$

$$= 1.995 \times 10^{-6}$$

(2) Convert from Watt to field strength

a. Convert from Watt to V/m @ 3m distance

V/m =
$$\frac{\sqrt{30 \times Pt \times gt}}{3}$$

= $\frac{\sqrt{30 \times 0.000001995 \times 1}}{3}$
= 0.00257

b. Convert field strength to power density (V/m to dBµV/m)

$$dB\mu V/m = 20 log (V/m) + 120$$

= 68.2

A.4 Test Procedure

Ref. ANSI C63.10: 2013 section 5 / section 6.5, section 6.6

Test Procedure

- 1.Place EUT on the tabletop 80cm above ground below 1GHz scan and 1.5m above 1GHz scan with @3m test distance from measuring antenna from 30MHz 40GHz preferably. If necessary due to instrument setup capabilities in higher frequency range, 1m test distance can be used.
- 2. Turn on the lowest radio operating frequency in continuous transmit mode.
- 3. Use Vasona software to configure the Spectrum analyzer test parameters as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer).
- 4. Allow Vasona software to initiate the pre-scan and identify all emissions close to the limits.
- 5. Manually fine tune all identified emissions and use the marker function to determine the maximum spurs amplitude level.
- 6. Record at least 6 highest identified emissions with amplitude relative to the limits. Emissions more than 20 dB below the peak limits do not need to be reported.
- 7. For all emissions identified in the restricted bands, perform formal measurement.
- 8. Capture graphs and record pertinent measurement data.
- 9. Repeat step 2-8 with middle and highest operating radio frequency.

Note: Vasona software shall automatically control the movement of the antenna height from 1m - 4m and rotation of the turntable from 0° - 360° and perform the measurement for all identified emissions.

Ref. ANSI C63.10: 2013 section 4.1.4 / section 12.7.5 (Quasi-Peak), section 12.7.6 (peak), section 12.7.7.3 (average), Cispr16-1-1

Test parameters

- (i) Span = Entire frequency range or segment if necessary.
- (ii) Reference Level ≥ 10dB headroom between Spectrum analyzer's ceiling and top carrier signal
- (iii) RBW = 100 kHz (less than or equal to 1 GHz); 1 MHz (above 1 GHz)
- (iv) VBW $\geq 3 \times RBW$
- (v) Detector = Peak & Quasi-Peak (frequency range 30 MHz to 1 GHz);

Peak & Average (frequency range above 1 GHz); Change VBW to 10 Hz for average measurement (vi) Sweep Time = Couple

Note: The data displayed on the plots detailed in the graphical test results section were measured using

a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements.

Page No: 18 of 38

49.8305

161.6598

18.62

15.62

0.58

0.96

8.49

12.12

27.69

28.7

A.5 TX Radiated Spurious Emissions Graphical Data Results

•					lissions Grapincai Data Nesults								
Subtest Da	te			11-9	Sept-2023								
Subtest Tit	le			Trai	nsmitter Spu	ırious Em	issions						
Frequency	Range			30N	30MHz - 1GHz								
Mode					2x2 MIMO 802.11ax/HE20 (Refer to section 4.3 for mode of operation								
0 1 -	41		-1 D	deta		(0505 NAL							
Comments	on the a				Channel 17	`	IZ)		44.0 00	44.04			
		dBuV/n	n 		Vasona by EN	MiSoft			11 Sep 23				
		60.0							– Qók	Horizont: Vertical Lmt			
		50.0							+ Deb	ug			
									Det POS Trace M	S AXH			
	40.0 Swp #0.1s Swp #0.1s Ref 70dBuV/m												
		30.0	AND SAN		A PARTY OF THE PAR	W. Company	Section of Living		(2) Att 0dE VBw 300	3)kHz			
		20.0		AND TO				+++	RBw 100 Mode Meas Di				
		10.0						+++	Meas Di Spec Di	st 3m st 3m			
		0.0							Frequency	r: MHz			
		30.00 Ra	diated Em	issions	100.00	Template: f	RȘE 15,209	30m-16	1000.00 3Hz				
		FII	ename: c:	program files	s (x86)\emisoft -	vasona\result 10		gnum m2	Res Bw (kH:				
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments	
31.33225	5.46	0.46	20.56	26.48	Quasi-pk	Н	297	220	40	-13.52	Pass		
148.191	48.191 20.4 0.92 12.63 3				Quasi-pk	Н	261	242	43.5	-9.56	Pass		
43.76025	43.76025 20.67 0.55 11.48 3				Quasi-pk	V	127	265	40	-7.3	Pass		
71.081	20.87	0.62	8.29	29.78	Quasi-pk	V	124	337	40	-10.22	Pass		
86.6715	20.55	0.69	7.71	28.95	Quasi-pk	V	100	294	40	-11.05	Pass		
208.8885	17.48	1.11	12.03	30.61	Quasi-pk	V	104	266	43.5	-12.89	Pass		
193.7475	16.41	1.06	11.83	29.31	Quasi-pk	Н	163	282	43.5	-14.19	Pass		

Quasi-pk

Quasi-pk

159

105

Н

40

43.5

16

242

-12.31

-14.8

Pass

Pass

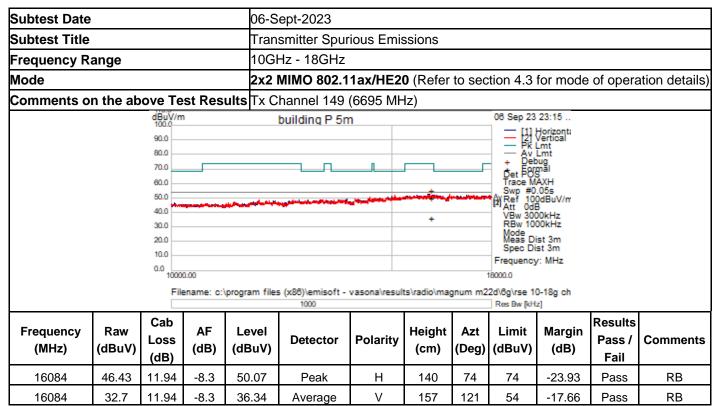
Subtest Date			06-S	06-Sept-2023							
Subtest Title				smitter Spur	ious Emis	ssions					
Frequency Range				z - 10GHz							
Mode					1ax/HF2	0 (Refer	to sec	tion 4 3	for mode	of opera	ation details)
Comments on the	above 7	Test Res					101 111000	от орого	ation dotailo)		
	dBu\			building P 5m		·		06 Sep 23	13:13		
		<u></u>						— Pk — Av + Det PO! Trace M Swp #0 + Av Ref 10 (g) Att	S AXH .055s odBuV/m dB J0kHz 00kHz sist 3m st 3m /: MHz		
		Filename: c:\	program files	s (x86)\emisoft -	vasona\result 1000	ts\radio\mag	gnum m2	2d\6g\rse 1- Res Bw (kH	•		
Frequency (MHz) Raw (dBuV) Cab Loss (dB) (dB) (dB) Detector Polarity Polarity (cm) (Deg) (dBuV) Margin (dBuV) Results Pass / Fail								Comments			
6539.5 95.2	23 6.94	-14.6	87.57	Peak [Scan]	V	150	41			Ignored	fundamental
9851.5 50.2	.24 8.7 -12.96 45.98 Peak [Scan] H 400					400	100	54	-8.02	Pass	Noise floor

Subtest Date	•			06-S	06-Sept-2023							
Subtest Title	!			Tran	smitter Spur	ious Emi	ssions					
Frequency R	ange			10GI	Hz - 18GHz							
Mode				2x2	MIMO 802.1	1ax/HE2	0 (Refer	to sec	tion 4.3	for mode	of opera	ation details)
Comments o	n the ab	ove Te	st Res	ults Tx C	x Channel 117 (6535 MHz)							
		dBuV/n	1		building P 5n	n	•		06 Sep 23	22:41		
		90.0							_ [1]	Horizonta Vertical		
		80.0							— PR	Lmt Lmt		
		70.0				п			_ + Det	oug		
		60.0							Det F8	giai S		
		50.0							_ . Swp #0	.05s		
		40.0	-	والإدبينات بيبانات ويوا	And in contrast of the last of	of sales of sales of the sales			Att Odi			
		30.0					+		VBw 300 RBw 10			
		20.0							Mode Meas D			
		10.0							Spec Di	st 3m		
		0.0							Frequency	y: MHz		
		1000	0.00						18000.0			
		Fil	ename: c:	program files	s (x86)\emisoft -	vasona\resul	ts\radio\ma	gnum m2	2d\8g\rse 1	0-18g ch		
					1000				Res Bw [kH	z]		
l _					l	l	Results					
Frequency	Raw	Loss	AF	Level	Detector	Polarity	Height	Azt	Limit	Margin	Pass /	Comments
(MHz)	(dBuV)	(dB)	(dB)	(dBuV)			(cm)	(Deg)	(dBuV)	(dB)	Fail	
15856	46.65	11.87	-8.43	50.09	Peak	V	159	314	74	-23.91	Pass	RB
15856		11.87	-8.43	36.41		Н	374	324	54	-17.59		RB
10000	32.97	11.07	-o.43	J 30.41	Average] П	J 3/4	J 324) 4	-17.09	Pass	I ND

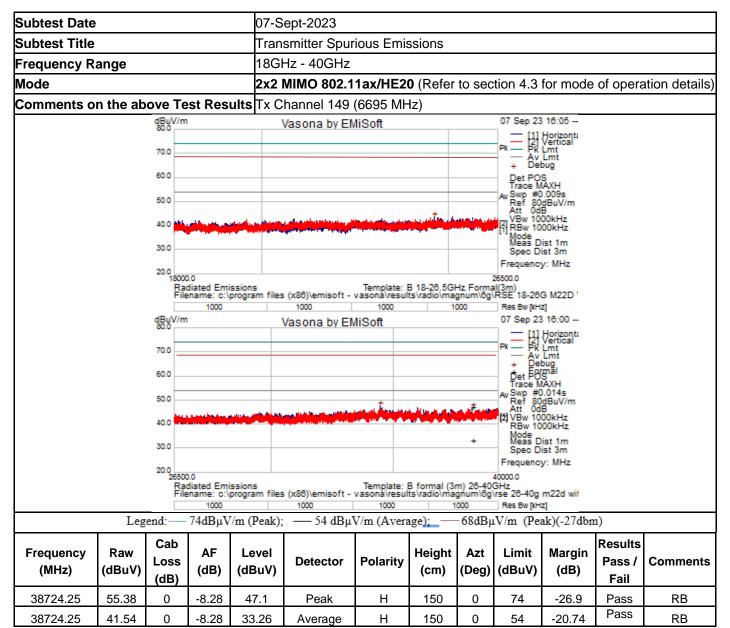
Note: RB means restricted band

Subtest Date				07-S	07-Sept-2023							
Subtest Title					smitter Spur	ious Em	issions					
Frequency Ra	ange			18GI	Hz - 40GHz							
Mode				2x2	MIMO 802.1	1ax/HE	20 (Refer	to sec	tion 4.3	for mode	of opera	ation details)
Comments or	n the ab	ove T	est Res	ults Tx C	hannel 117	(6535 M	Hz)					
		dBuV/n	n		Vasona by EN	/liSoft			07 Sep 2			
		70.0							-	Horizonta Vertical Lmt		
									→ — Av	Lmt bug		
	60.0								Det PO Trace M	MAXH		
	50.0								Av Swp #6	0.009s)dBuV/m B		
		40.0	terrible a little sea	والمالية الم			all made a	أبالاخا	VBw 10	00kHz		
		30.0			The second second			17. 444	Mode Meas D	ist 1m		
				Spec Dist 3m Frequency: MHz								
		20.0 1800		26500.0 d Emissions Template: B 18-28.5GHz Formal(3m) e: o:\program files (x88)\emisoft - vasona\results\radio\magnum\8g\RSE 18-28G M22D '								
		Fi		program files								
		dBuV/n	1000 n	,	Vasona by EN	1000 MiSoft		000	_ Res Bw [kH 07 Sep 2	-		
		80.0			1001100721				Pk = [1]	Horizonta Vertical		
		70.0							PK — PK	Lmt Lmt bug		
		60.0							– Det Þö	IS a		
		50.0							Trace M	0.014s		
			والمامل الم		and the outerhead date.			CANADA	Att 0d)dBuV/m iB i00kHz		
		40.0			والمتكاف والمتحد المراسية والمتحد				+ Mode Heas	000kHz		
		30.0							Spec D	ist 3m		
		20.0	00.0						Frequenc	y: MHz		
		Ra	adiated Emi	issions program files	4000.0 Sions Template: B formal (3m) 26-40GHz Secretary files (x98)) conice for the property of the property 8-40GHz 28 40GHz 2							
			1000	program russ	ogram files (x88)\emisoft - vasonà\results\radio\màagnum\8g\rse 26-40g m22d wil 1000 1000 Res Bw [kHz]							
	Leg	end:	-74dBμV	/m (Peak);	54 dBμ\	V/m (Ave	rage <u>);</u> —	-68dBµ	ιV/m (Pe	ak)(-27dbn	n)	
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
39937.56	54.93	0	-6.29	48.64	Peak	Н	150	0	74	-25.36	Pass	RB
39937.56	40.95	0	-6.29	34.66	Average	Н	150	0	54	-19.34	Pass	RB

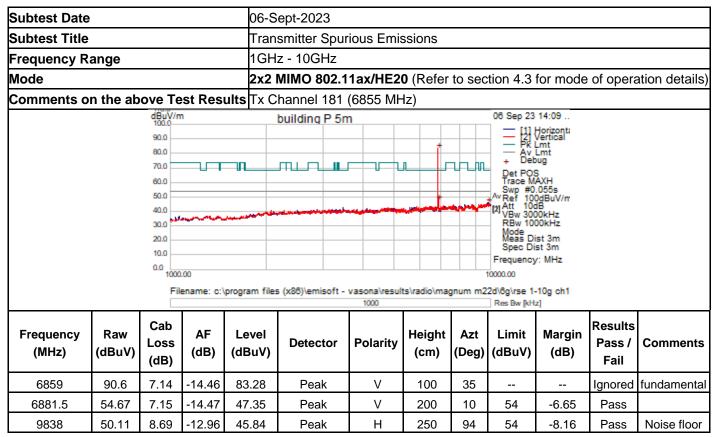
Note: RB means restricted band



Subtest Da	te			11-Sept-2023								
Subtest Tit	le			Trans	smitter Spur	ious Emis	ssions					
Frequency	Range			30MI	Hz - 1GHz							
Mode				2x2 l	MIMO 802.1	1ax/HE20	0 (Refer	to sec	tion 4.3	for mode	of opera	tion details)
Comments	on the a	above Te	est Res	ults Tx C	hannel 149 ((6695 MH	lz)					
		dBuV/m	1	, , , , ,	Vasona by EN	/liSoft			11 Sep 23			
60.0							— [2] — Oph + Det	Horizont: Vertical Lmt oug				
	# Debug Op + Formal Det POS Trace MAXH Swp #0.1s Ref 70dBuV/m Att 0dB VBw 300kHz RBw 100kHz Mode Meas Dist 3m Spec Dist 3m Spec Dist 3m Frequency: MHz 1000 Radiated Emissions Filename: c:\program files (x88)\emisoft - vasona\results\radio\r											
Frequency (MHz)	Raw (dBuV)	Loss Detector Polarity Yes Pass / Comments										
42.00675	19.67	0.54	12.67	32.88	Quasi-pk	V	104	287	40	-7.12	Pass	
70.166	21.77	0.62	8.27	30.66	Quasi-pk	V	158	180	40	-9.34	Pass	
146.4328	19.02	0.91	12.71	32.63	Quasi-pk	Н	251	298	43.5	-10.87	Pass	
30.2065	5.26	0.46	21.28	27	27 Quasi-pk V 313 292 40 -13 Pass							

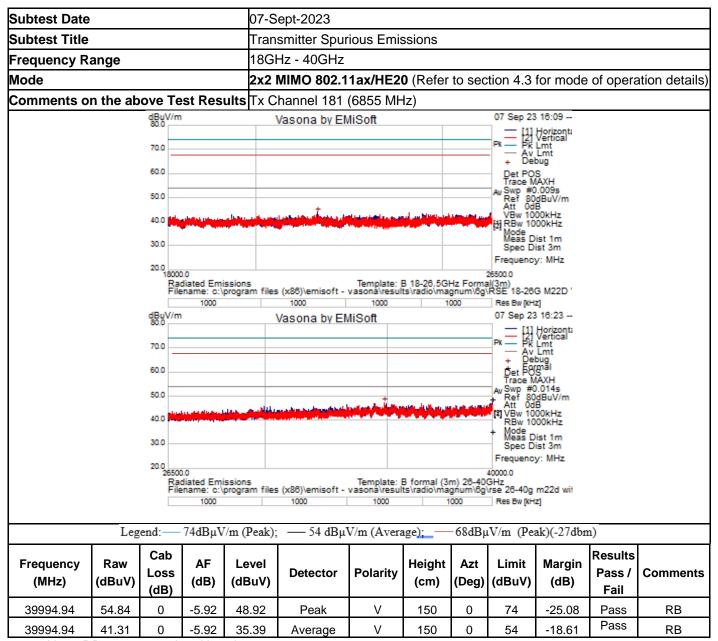

Subtest Date 06-Sept-2023										
Subtest Title		Tran	smitter Spur	ious Emis	ssions					
Frequency Range		1GH:	z - 10GHz							
Mode		2x2 l	MIMO 802.1	1ax/HE20	0 (Refer	to sec	tion 4.3	for mode	of opera	ation details)
Comments on the above To	est Resu	I lts Tx C	hannel 149 ((6695 MH	łz)					
dBuV//	m		building P 5m	1			06 Sep 23	13:49		
90.0							<u> </u>	Horizont: Vertical Lmt		
80.0							- Pk	Lmt Lmt		
70.0		71					+ Det	-		
60.0							 Trace M 	AXH .055s		
50.0							₩Ref 10	0dBuV/m		
40.0		يعلق البيطراني ومعليات	-		A PROPERTY OF		[2] Att 100 VBw 300	00kHz		
30.0							RBw 10 Mode Meas Di			
20.0							Spec Di	st 3m		
9.0							Frequency	/: MHz		
100	0.00						10000.00			
F	ilename: c:\p	rogram files	(x86)\emisoft - v		ts\radio\mag	gnum m2		•		
				1000		1	Res Bw [kH	z]		
Frequency Raw Cab	AF	Level	Detector	Polarity	Height	Azt	Limit	Margin	Results Pass /	Comments
(MHz) (dBuV) Loss (dB)	(MH_2) (dB_1) (dB_2)				(cm)	(Deg)	(dBuV)	(dB)	Fass /	Comments
6697 95.11 7.05	-14.5	87.66	Peak [Scan]	V	150	41			Ignored	fundamental
9973 49.88 8.75	9973 49.88 8.75 -12.65 45			V	350	50	54	-8.02	Pass	Noise floor

Note: RB means restricted band



Note: RB means restricted band

Subtest Dat	łο			11-S	11-Sept-2023								
Subtest Titl					•	iouo Emis	niono						
					Transmitter Spurious Emissions								
Frequency	Range				30MHz - 1GHz								
Mode 2x2 MIMO 802.11ax/HE2								to sec	tion 4.3	for mode	of opera	ition details)	
Comments on the above Test Results Tx Channel 181 (6855 MHz)													
dBuV/m Vasona by EMiSoft 11 Sep 23 16:15													
									= [2]	Horizonta Vertical			
		60.0							_ + Det	k Lmt bug			
		50.0							Det PO	S			
		40.0 ±	-		i.	+			Trace M Swp #0	.1s			
		30.0	with.t	. That	A Area				(a) Ref 70 Att 0di	В			
		20.0	The same						VBw 300 RBw 10	0kHz			
									Mode Meas D	ist 3m			
		10.0							- Spec Di Frequency				
		0.0			00.00				1000.00	•			
		Ra File	diated Emi ename: c:\	ssions program files	(x86)\emisoft -	Template: F vasona\result	RSE 15.209 ts\radio\mag	30m-19 gnum m2	3Hz 2d\6g\rse 3	0m-1g cl			
						10	0		Res Bw [kH	z]	·		
Frequency	Raw	Cab	AF	Level			Height	Azt	Limit	Margin	Results		
(MHz)	(dBuV)	Loss	(dB)	(dBuV)	Detector	Polarity	(cm)		(dBuV)	(dB)	Pass /	Comments	
(1411 12)	(ubuv)	(dB)	(GD)	(ubuv)			(CIII)	(Deg)	(abav)	(GD)	Fail		
43.75625	20.83	0.55	11.49	32.87	Quasi-pk	V	132	190	40	-7.13	Pass		
70.5875	22.85	0.62	8.28	31.75	Quasi-pk	V	130	210	40	-8.25	Pass		
151.036	151.036 21.34 0.92 12.51				Quasi-pk	Н	171	252	43.5	-8.72	Pass		
194.7088	194.7088 17.86 1.06 11.93 3				Quasi-pk	Н	102	224	43.5	-12.65	Pass		
31.24075	.24075 5.42 0.46 20.63 26			26.52	Quasi-pk	V	230	32	40	-13.48	Pass		
51.10125	1.10125 17.2 0.51 8.12 25				Quasi-pk	V	151	175	40	-14.17	Pass		


Note: Where limits are specified by regulations for both average and peak detection, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement

Subtest Date	!			07-S	ept-2023								
Subtest Title				Tran	smitter Spur	ious Emi	ssions						
Frequency R	ange			10GI	Hz - 18GHz								
Mode				2x2	2x2 MIMO 802.11ax/HE20 (Refer to section 4.3					n 4.3 for mode of operation details			
Comments o	n the ab	ove Te	st Res	ults Tx C	Tx Channel 181 (6855 MHz)							<u> </u>	
		dBuV/n	1	I	building P 5n	<u> </u>		07 Sep 23	00:08				
		90.0							_ [1]	Horizonta Vertical			
									— PŔ	Lmt Lmt			
	70.0									ug _.			
						_			Det F8	mai			
		60.0					-		_ Swp #0	.05s			
		50.0	-	-		-			Ref 10 Att 0d	0dBuV/m			
		40.0					+		VBw 30	00kHz			
		30.0							RBw 10 Mode Meas D				
		20.0							- Meas D Spec Di	ist 3m ist 3m			
		10.0							Frequency	y: MHz			
		0.0	0.00						18000.0				
		File	ename: c:	orogram files	s (x86)\emisoft -	vasona\resu	lts\radio\ma	anum m2	2d\fig\rse 1	0-18a ch			
				,	1000				Res Bw [kH	_			
		Cab	AF								Results		
Frequency	Raw	Loss	Level	Detector	Polority	Height	Azt	Limit	Margin	Pass /	Comments		
(MHz)	(MHz) I(dRuV)I i I(dR) I(dRi				Detector	Polarity	(cm)	(Deg)	(dBuV)	(dB)		Comments	
	, ,	(dB)	` ′	, ,			` ′	` 0,	` /	<u> </u>	Fail		
16176	46.55	11.99	-8.35	50.18	Peak	Н	242	28	74	-23.82	Pass	RB	
16176	33.12	11.99	-8.35	36.76	Average	Н	242	28	54	-17.24	Pass	RB	

Note: RB means restricted band

Note: RB means restricted band

Appendix B: List of Test Equipment Used to perform the test

Equip#	Manufacturer/ Model	Last Cal	Next Due	
	Radiate	d Emissions 30MHz – 1GHz		
CIS008448	Cisco/NSA 5m Chamber	NSA 5m Chamber	29-Aug-2023	29-Aug-2024
CIS058263	ROHDE & SCHWARZ/ ESW44	EMI TEST RECEIVER, 44Ghz	22-Aug-2023	22-Aug-2024
CIS039114	Sunol Sciences / JB1	Combination Bi-Log Antenna, 30MHz-2GHz	14-Nov-2022	14-Nov-2023
CIS056158	Huber+Suhner Sucoflex 104PEA	Sucoflex N Type blue 7ft cable	01-Aug-2023	01-Aug-2024
CIS021117	Micro-Coax / UFB311A-0- 2484-520520	RF Coaxial Cable, 272.0 in. - 18GHz	12-Sep-2022	12-Sep-2023
CIS063527	Micro-Coax / UFB311A	RF Coaxial Cable	01-Jan-2023	01-Jan-2024
	Radiate	d Emissions 1GHz – 18GHz		
CIS040597	Cisco/Above 1GHz Site Cal	1GHz Cispr Site Verification	23-Jun-2023	23-Jun-2024
CIS041202	ETS Lindgren / 3117	Double Ridged Horn Antenna	25-Apr-2023	25-Apr-2024
CIS063061	Cisco / TstHd1	External Preamplifier Array, 1-18GHz	06-Jul-2023	06-Jul-2024
CIS058263	ROHDE & SCHWARZ/ ESW44	EMI TEST RECEIVER, 44Ghz	22-Aug-2023	22-Aug-2024
CIS056158	Huber+Suhner Sucoflex 104PEA	Sucoflex N Type blue 7ft cable	01-Aug-2023	01-Aug-2024
CIS021117	Micro-Coax / UFB311A-0- 2484-520520	RF Coaxial Cable, 272.0 in. - 18GHz	12-Sep-2022	12-Sep-2023
CIS063527	Micro-Coax / UFB311A	RF Coaxial Cable	01-Jan-2023	01-Jan-2024
CIS064482	RF Lambda/ RHPF23G08G40	40GHz High Pass Filter	06-Sept-2023	06-Sep-2024
	Radiated	Emissions 18GHz – 40GHz		
CIS40597	Cisco/Above 1GHz Site Cal	1GHz Cispr Site Verification	23-Jun-2023	23-Jun-2024
CIS58778	ETS Lindgren/3116C	18-40 GHz, Horn Antenna	19-Sep-2022	19-Sep-2023
CIS59871	Cisco/Test Head 1840.2	18-40GHz test head, includes Pre-Amp, Ant Cable, 6inch formable cable to amp input, 15V pwr pack,+	23-Feb-2023	23-Feb-2024
CIS59832	ROHDE & SCHWARZ/ ESW44	31-Oct-2022	31-Nov-2023	

Page No: 31 of 38

Appendix C: Abbreviation Key and Definitions

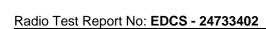
The following table defines abbreviations used within this test report.

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
TAP	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	A	Amp
L3	Line 3	μΑ	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
N	Neutral Line	R	Return
S	Supply	AC	Alternating Current

Page No: 32 of 38

Appendix D: Photographs of Test Setups

EUT Photos have been omitted from this test report. Photos can be found in the supplementary exhibit included in the submission and EDCS# 23771099


Page No: 33 of 38

Appendix E: Software Used to Perform Testing

EMIsoft Vasona, version 6.083 RF Automation version ### NA

Page No: 34 of 38

Appendix F: Test Procedures

Measurements were made in accordance with:

- KDB 987694
 - o 987594 D01 U-NII 6GHz General Requirements v02r02
 - 987594 D02 U-NII 6 GHz EMC Measurement v02r01
- KDB 789033
 - o 789033 D02 General UNII Test Procedures New Rules v02r01
- KDB 662911 MIMO
- ANSI C63.10 2013 Intentional Radiators

Test procedures are summarized below:

FCC 6GHz Test Procedures	EDCS # 23507622
FCC 5GHz RSE Test Procedures	EDCS # 1511600

Page No: 35 of 38

Appendix G: Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at: http://www.a2la.org/scopepdf/1178-01.pdf

Page No: 36 of 38

Appendix H: Test Assessment Plan

Compliance Test Plan (Excel) EDCS# 24733406 Target Power Tables EDCS# 23409888

Page No: 37 of 38

Appendix I: Worst Case Justification

Worst case modes were selected according to ANSI C63.10 2013 Section 5.6.2.2, 6.3.1

All 3 orientations $(Z,\,Y,\,Z)$ of the EUT were assessed by performing pre-scan.

The Y orientation was determined to be the worst-case orientation.

Page No: 38 of 38