

Radio Test Report (Radiated Spurious Emissions and Conducted Emissions Only)

For

IW-6300H

Supports

2.4 GHz / 5 GHz 802.11 a/ac/b/g/n Wi-Fi radio

FCC ID: LDKESW6300

ISED ID: 2461B-ESW6300

Operating Frequency Band: UNII-2A (5250-5350 MHz)

Against the following Specifications:

47 CFR 15.407 47 CFR 15.209 47 CFR 15.205 RSS-247 issue 2 RSS-Gen issue 5

Cisco Systems 170 West Tasman Drive San Jose, CA 95134

Page No: 1 of 54

Author:	Lafe
Tested By:	
Title: Test Engineers	
	Jose Huamani
	fala P.
	Farida Rahmanzai
Approved By: Title: Compliance Manager	Dous Carefordie
Version:	1.0

This report replaces any previously entered test report under EDCS – ########. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 1526149.

This test report ha	s been electronically authorized and archived using the CISCO Engineering Documer	nt Control system.
SECTION 1: OV	ERVIEW	6
1.1 TEST SUMM	IARY	6
SECTION 2: AS	SESSMENT INFORMATION	7
2.2 Units of M 2.3 Date of te	EASUREMENTSTING (INITIAL SAMPLE RECEIPT DATE TO LAST DATE OF TESTING)UE DATE	7 9
2.5 TESTING FA 2.6 EQUIPMENT	CILITIES	9 10
	SULT SUMMARY	
	JMMARY TABLE	
SECTION 4: SAI	MPLE DETAILS	18
4.1 SAMPLE DE	TAILS	18
APPENDIX A:	RF CONDUCTED EMISSIONS	19
TARGET MAXIN	MUM CHANNEL POWER	
APPENDIX B:	RADIATED SPURIOUS AND AC CONDUCTED EMISSIONS	
B1.1 Se B1.2 Re B1.3 Lir	red Spurious Emissions tup Diagram stricted Bands mits st Procedure	20 22 24
_	Radiated Spurious Emissions Graphical Data Results	
B2.1 Lir B2.2 Te	onducted Emissions mits st Procedures Conducted Emissions Test Data and Graphical Test Results	40 41
APPENDIX C:	LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	46
APPENDIX D:	ABBREVIATION KEY AND DEFINITIONS	47
APPENDIX E:	PHOTOGRAPHS OF TEST SETUPS	48
APPENDIX F:	SOFTWARE USED TO PERFORM TESTING	51
APPENDIX G:	TEST PROCEDURES	52
APPENDIX H:	SCOPE OF ACCREDITATION (A2LA CERTIFICATE NUMBER 1178-01)	53
APPENDIX I:	TEST ASSESSMENT PLAN	54
	Page No: 4 of 54	

Radio Test Repoi	rt No: EDCS - 18329732
APPENDIX J:	WORST CASE JUSTIFICATION

Page No: 5 of 54

Section 1: Overview

1.1 Test Summary

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Specifications

CFR47 Part 15.247 CFR47 Part 15.205 CFR47 Part 15.209

RSS-247 Issue 2: Feb 2017 RSS-Gen Issue 5: Nov 2018

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Radio Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature 15°C to 35°C (54°F to 95°F)

Atmospheric Pressure 860mbar to 1060mbar (25.4" to 31.3")

Humidity 10% to 75*%

e) All AC testing was performed at one or more of the following supply voltages:

110V 60 Hz (+/-20%)

2.2 Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB]

The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss...

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Measurement Uncertainty Values

voltage and power measurements	± 2 dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°.
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%.

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

2.3 Date of testing (initial sample receipt date to last date of testing)

23-Sep-2019 to 13-Nov-2019

2.4 Report Issue Date

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled

2.5 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc. 425 West Tasman Drive (Building 7) San Jose, CA 95134 USA

Headquarters

Cisco Systems, Inc., 170 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers for Industry Canada

Cisco System Site	Address	Site Identifier
Building P, 10m Chamber	125 West Tasman Dr	Company #: 2461N-2
	San Jose, CA 95134	
Building P, 5m Chamber	125 West Tasman Dr	Company #: 2461N-1
	San Jose, CA 95134	
Building I, 5m Chamber	285 W. Tasman Drive	Company #: 2461M-1
	San Jose, California 95134	
Building 7, 5m Chamber	425 E. Tasman Drive	Company #: 2461N-3
	San Jose, California 95134	

Test Engineers

Farida Rahmanzai Jose Huamani

2.6 Equipment Assessed (EUT)

IW-6300H

2.7 EUT Description

IW-6300H is the next generation Industrial Wireless Access Point designed for hazardous location environments known on a go-forward basis as the "IW-6300-Hazloc" or "IW-6300H" model. The IW-6300H supports one 5GHz radio capable of 2x2:2SS and one 2.4 Ghz radio 2x2:2SS with the capability of accommodate 5GHz Mesh and 2.4GHz access simultaneously.

Features Supported:

802.11 AC Wave 2, IP67 rated, and HazLoc Class 1 Division 2 certified Aironet Access Point supporting advanced features.

- --> Light weight and compact size
- --> Improved temperature range: -50C to 75C
- --> Powering Options: AC, DC, and POE In Power
- --> Redundant Power via AC & POE-In
- --> Dual POE Out provides industry leading versatility
- --> IoT Module: Supports a bolt-on module with USB and POE connectivity to enable Wireless HART, ISA 100.11a, and other types of functionality.

IW-6300H has 3 versions,

IW-6300H-AC-X-K9 with ESW-6300-CON-X-K9 is DUPLO with AC Power(100-240V, 50/60Hz) IW-6300H-DC-X-K9 with ESW-6300-CON-X-K9 is DUPLO with DC Power (44-57VDC) IW-6300H-DCW-X-K9 with ESW-6300-CON-X-K9 is DUPLO with DC Power (10.8-36VDC)

Wireless Protocols support

- Wi-Fi: IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac
 - 2.4GHz WLAN Radio Supported Modes:
 - 802.11b (1Mbps 11Mbps)
 - 802.11g (6Mbps 54Mbps)

MIMO single antenna

- 802.11n (HT20, M0 M7)
- 802.11n (HT40, M0 M7)

MIMO dual antenna

- 802.11n (HT20, M0 M15)
- 802.11n (HT40, M0 M15)

5GHz WLAN Radio Supported Modes:

• 802.11a (6Mbps – 54Mbps)

MIMO Single antenna

- 802.11n (HT20, M0 M7)
- 802.11n (VHT20, M0 M7)
- 802.11n (HT40, M0 M7)
- 802.11n (VHT40, M0 M7)

MIMO dual antenna

- 802.11n (HT20, M0 M15)
- 802.11n(VHT20, M0 M15)
- 802.11n (HT40, M0 M15)
- 802.11n (VHT40, M0 M15)

MIMO Single/Dual antenna

- 802.11ac (VHT20, M0 M9)
- 802.11ac (VHT40, M0 M9)
- 802.11ac (VHT80, M0 M9)

Model Differences

IW-6300H-AC-x-K9, IW-6300H-DC-x-K9, IW-6300-DCW-x-K9 and ESW-6300-CON-x-K9, all have the same identical components, electronics circuitries, PCB layout and enclosure.

The only differences are listed as below:

IW-6300H-AC-x-K9 IW-6300H-DC-x-K9 IW-6300-DCW-x-K9 ESW-6300-CON-x-K9

Where "x" can be replaced with another letter to indicate country domain. Domain letters: A, B, C, D, E, F, H, I, L, M, N, Q, R, S, T, Z

Where "AC" is Alternating Current (AC power supply)
Where "DC" is Direct Current (DC power supply), 54V native input
Where "DCW" is Direct Current; wide range 10-36VDC
Where "K9" is encryption software.

Antenna Specification

The following antennas are supported by this product series.

Frequency	Part Number	Antenna Type	Antenna Gain (dBi)
	AIR-ANT2450V-N	Single Band Omni	5
	AIR-ANT2450V-N-HZ	Single Band Omni, Hazloc	5
2.4 GHz	AIR-ANT2480V-N	Single Band Omni	8
2.4 0112	AIR-ANT2450HG-N	Horizontal Polarized Omni	5
	AIR-ANT2450VG-N	Vertical Polarized Omni	5
	AIR-ANT2413P2M-N	Single Band, Dual Polarized Directional Patch	13
	AIR-ANT5180V-N	Single Band Omni	4
5 CU-	AIR-ANT5150HG-N	Horizontal Polarized Omni	4
5 GHz	AIR-ANT5150VG-N	Vertical Polarized Omni	6
	AIR-ANT5114P2M-N	Single Band, Dual Polarized Directional Patch	8
	AIR-ANT2547V-N=	Dual-band Omni	4/7
	AIR-ANT2547VG-N=	Dual-band Omni, Gray	4/7
2.4 GHz/5GHz	AIR-ANT2547V-N-HZ=	Dual-band Omni, Hazloc	4/7
2.4 GHZ/JGHZ	AIR-ANT2568VG-N	Dual-band Omni	6/8
	AIR-ANT2588P3M-N=	Dual-band/Dual Polarized Directional, Patch	8/8
	AIR-ANT2513P4M-N	Dual-band Polarization Diverse Patch Array	13 / 13

Note: The data included in this report represent the worst case data for all antennas.

Section 3: Result Summary

3.1 Results Summary Table

	RF Conducted Emissions		
Basic Standard	Technical Requirements / Details	Result	
15.407	99% & 26 dB Bandwidth: The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.	Pass See Note1	
	The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.		
15.407	Output Power: (a) (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	Pass See Note1	
15.407	Power Spectral Density: (a) (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bandsthe maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	Pass See Note1	
FCC 15.407	Conducted Spurious Emissions / Band-Edge: (b) (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.25-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.	Pass See Note1	

Note1: See FCC Radio test report EDCS#xxxxxxxx

AC Conducted Emissions		
Basic Standard	Technical Requirements / Details	Result
FCC 15.207	AC conducted Emissions: (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the section, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).	Pass

Radiated Spurious Emissions		
FCC 15.407	Undesirable emission limits: (b) (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.25-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.	Pass
FCC 15.209	TX Radiated emissions limits: (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the table of this subpart.	
FCC 15.407	Restricted band: (b) (7) The provisions of §15.205 apply to intentional radiators operating under this section.	Pass
FCC 15.205	(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed in the table of this subpart.(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209.	

Note2: MPE calculation to be reported in separate report

RF Conducted Emissions		
Basic Standard	Technical Requirements / Details	Result
RSS-247	99% & 26 dB Bandwidth: The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.	Pass See Note3
	The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.	
RSS-247	Power Limits: 6.2.2.1 For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.	Pass See Note3
	Devices, other than devices installed in vehicles, shall comply with the following: a) The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less.; b) The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.	
RSS-247	Power Spectral Density: 6.2.2.1 (a) The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.	Pass See Note3
RSS-247	Conducted Spurious Emissions / Band-Edge: 6.2.2.2 Devices shall comply with the following: a) All emissions outside the band 5250-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p.; or b) All emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. and its power shall comply with the spectral power density for operation within the band 5150-5250 MHz. The device, except devices installed in vehicles, shall be labelled or include in the user manual the following text "for indoor use only."	Pass See Note3

Note3: See RSS Radio test report EDCS#xxxxxxxx

AC Conducted Emissions			
Basic Standard	Technical Requirements / Details	Result	
RSS-Gen	AC Conducted Emissions: Unless stated otherwise in the applicable RSS, for radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in table 4, as measured using a 50 μH / 50 Ω line impedance stabilization network.	Pass	

	Radiated Spurious Emission		
RSS-247	Unwanted emission limits: 6.2.2.2 (a) All emissions outside the band 5250-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p.	Pass	
RSS-Gen	Transmitter emission limits: 8.9 Except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.		
RSS-Gen	Restricted band: 8.10 (b) Unwanted emissions that fall into restricted bands of Table 6 shall comply with the limits specified in RSS-Gen.	Pass	

Note2: MPE calculation to be reported in separate report

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. Please also refer to the "Justification for worst Case test Configuration" section of this report for further details on the selection of EUT samples.

4.1 Sample Details

Tir Gamp	i i danipie betalis					
Sample	Equipment Details	Manufacturer	Hardware	Firmware	Software	Serial Number
No.			Rev.	Rev.	Rev.	
S01	IW-6300H	Cisco	12	9.1.8.1	2.4.26	FOC23241G3L
	(radiated sample)					
S02	IW-6300H	Cisco	12	9.1.8.1	2.4.26	FOC23241G3Q
	(AC conducted sample)					
S03	Air-ANT2513P4M-N	Cisco	Production			MAS19440415
	Antenna					
S04	IW-6300H-AC-X-K9	Delta	Production			DTH2329000P
	Power Supply					

4.2 System Details

System #	Description	Samples
1	IW-6000H	S01, S03, S04
2	IW-6000H	S02, S03, S04

4.3 Mode of Operation Details

Mode (# of Antenna) Setting#	Wi-Fi Mode	Modulation	Data Rate
	Single Mode	Antenna	
1 (single antenna)	802.11a*	BPSK	6 Mbps
2 (single antenna)	802.11an (HT20)	BPSK	6.5 Mbps (MCS0)
3 (single antenna)	802.11an (HT40)	BPSK	13.5 Mbps (MCS0)
4 (single antenna)	802.11ac (VHT20)	BPSK	6.5 Mbps (MCS0)
5 (single antenna)	802.11ac (VHT40)	BPSK	13.5 Mbps (MCS0)
6 (single antenna)	802.11ac (VHT80)	BPSK	29.3 Mbps (MCS0)
	Dual Mode A	Antenna	
7 (dual antenna)	802.11an (HT20)	BPSK	13.0 Mbps (MCS0)
8 (dual antenna)	802.11an (HT40)*	BPSK	27.0 Mbps (MCS0)
9 (dual antenna)	802.11ac (VHT20)	BPSK	13.0 Mbps (MCS0)
10 (dual antenna)	802.11ac (VHT40)	BPSK	27.0 Mbps (MCS0)
11 (dual antenna)	802.11ac (VHT80)	BPSK	58.5 Mbps (MCS0)

Note: Table above represents the worst case scenarios for all modulations and data rate combination of each mode.

Page No: 18 of 54

^{*:} Setting# was determined to be the worst case emissions of all modes and selected for RSE testing.

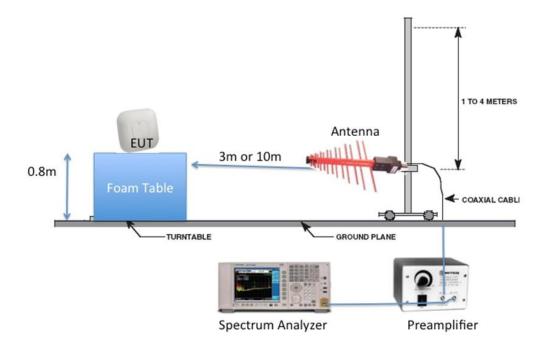
Appendix A: RF Conducted Emissions

Target Maximum Channel Power

The following table details the maximum supported Total Channel Power for all operating modes.

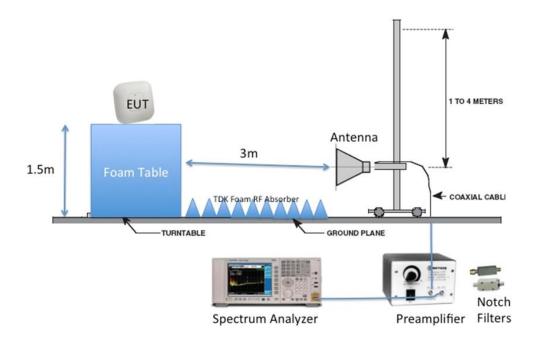
	Maximun Power	
	Frequen	cy (MHz)
Operating Mode		

Page No: 19 of 54


Appendix B: Radiated Spurious and AC Conducted Emissions

Testing Laboratory: Cisco Systems, Inc., 425 East Tasman Drive, San Jose, CA 95134, USA

B.1 Radiated Spurious Emissions


B1.1 Setup Diagram

Below 1G (Preamp used is optional)

Above 1G

B1.2 Restricted Bands

15.407 (b) (7) The provisions of 15.205 apply to intentional radiators operating under this section

15.205 (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. Refer to limit section for detailed limits.

Restricted Bands for FCC				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	Above 38.6	
13.36-13.41				

RSS-Gen 8.10

- (b) Unwanted emissions that fall into restricted bands of <u>Table 6</u> shall comply with the limits specified in RSS-Gen.
- (c) Unwanted emissions that do not fall within the restricted frequency bands of <u>Table 6</u> shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

Table 6 Restricted Bands

MHz	MHz	GHz
0.090-0.110	74.8-75.2	9.0-9.2
2.1735-2.1905	108-138	9.3-9.5
3.020-3.026	156.52475-156.52525	10.6-12.7
4.125-4.128	156.7-156.9	13.25-13.4
4.17725-4.17775	240-285	14.47-14.5
4.20725-4.20775	322-335.4	15.35-16.2
5.677-5.683	399.9-410	17.7-21.4
6.215-6.218	608-614	22.01-23.12
6.26775-6.26825	960-1427	23.6-24.0
6.31175-6.31225	1435-1626.5	31.2-31.8
8.291-8.294	1645.5-1646.5	36.43-36.5
8.362-8.366	1660-1710	Above 38.6
8.37625-8.38675	1718.8-1722.2	*
8.41425-8.41475	2200-2300	
12.29-12.293	2310-2390	
12.51975-12.52025	2655-2900	
12.57675-12.57725	3260-3267	
13.36-13.41	3332-3339	
16.42-16.423	3345.8-3358	
16.69475-16.69525	3500-4400	
16.80425-16.80475	4500-5150	
25.5-25.67	5350-5460	
37.5-38.25	7250-7750	
73-74.6	8025-8500	

B1.3 Limits

Below 1 GHz

FCC 15.209

The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the table specified in the table in FCC§15.209(a).

FCC15.407

(b) (6) Unwanted emissions below 1GHz must comply with general field strength limits set forth in §15.209.

RSS-Gen 8.9: Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission

	General Field Strength Limits Table			
Frequency (MHz)	Field strength (uV/meter)	Field strength (dBuV/meter)	Measurement distance (meters)	
30-88	100**	40 Qp	3	
88-216	150**	43.5 Qp	3	
216-960	200**	46 Qp	3	
Above 960	500	54 Av / 74 Pk	3	

Above 1 GHz

15.407 (b) *Undesirable emission limits*. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

RSS-247 6.2.2.2

a) All emissions outside the band 5250-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p

Limit Conversion (power to field strength)

The field strength limit in $dB\mu V$ can be converted from power (logarithmic) by using the field strength (linear) approach formula as follows:

$$V/m = \frac{\sqrt{30 \times Pt \times gt}}{d}$$

where: **pt** = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unit less),

E = electric field strength in V/m,

d = measurement distance in meters (m).

From the equation above, unit conversion from log => linear with a known power limit of -27 dBm.

(1) Conversion from dBm to Watt

$$dBm to Watts W = 10((dBm - 30)/10)$$

$$P(W) = 10^{(-27 - 120)/20}$$

$$= 10^{-5.7}$$

$$= 1.995 \times 10^{-6}$$

(2) Convert from Watt to field strength

a. Convert from Watt to V/m @ 3m distance

V/m =
$$\frac{\sqrt{30 \times Pt \times gt}}{3}$$

= $\frac{\sqrt{30 \times 0.000001995 \times 1}}{3}$
= **0.00257**

b. Convert field strength to power density (V/m to dBµV/m)

$$dB\mu V/m = 20 \log (V/m) + 120$$

= 68.2

B1.4 Test Procedure

Ref. ANSI C63.10-2013 section 6.5 & 6.6, Cispr16-1-1

ANSI C63.10: 2013 section 4.1.4 / section 12.7.5 (Quasi-Peak), section 12.7.6 (peak), section 12.7.3 (average)

Test parameters

- (i) Span = Entire frequency range or segment if necessary.
- (ii) Reference Level = 80 dBuV
- (iii) RBW = 100 kHz (less than or equal to 1 GHz); 1 MHz (above 1 GHz)
- (iv) VBW \geq 3 x RBW
- (v) Detector = Peak & Quasi-Peak (frequency range 30 MHz to 1 GHz);

Peak & Average (frequency range above 1 GHz); Change VBW to 10 Hz for average measurement

(vi) Sweep Time = Couple

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

30MHz - 18GHz,

Save plots: Peak plot (Vertical and Horizontal) @3m

Above 18 GHz,

Save plots: Peak plot (Vertical and Horizontal) @1m

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

Note: The data displayed on the plots detailed in the graphical test results section were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements.

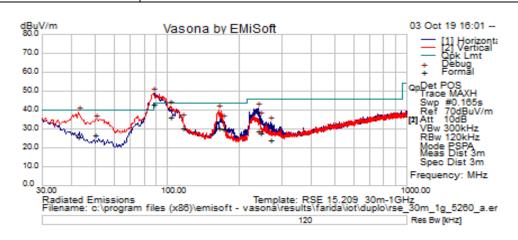
This report represents the worst case data for all supported operating modes with antenna which has maximum gain.

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
	EUT	IW-6300H with Air-ANT2513P4M-N antenna	\checkmark	
1	Support	IW-6300H-AC-X-K9 power supply		\checkmark

Mode Setting#	Wi-Fi Mode	Modulation	Data Rate
1 (single antenna)	802.11a*	BPSK	6 Mbps
8 (dual antenna)	802.11an (HT40)*	BPSK	27.0 Mbps (MCS0)

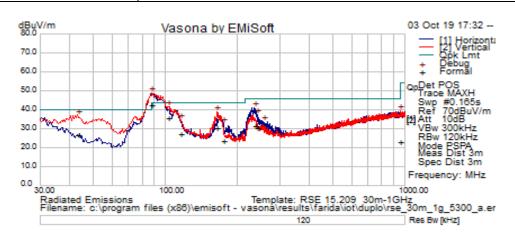
Tested By:	Date of testing:
Test Engineer(s): Farida Rahmanzai, Jose Huamani	23-Sep-2019 – 11-Oct-2019
Test Result: PASS	


Test Equipment

See Appendix C for list of test equipment

B1.5 TX Radiated Spurious Emissions Graphical Data Results

Subtest Date:	03-Oct-2019
Engineer	Farida Rahmanzai Jose Huamani
Lab Information	Building 7, 5m Anechoic
Subtest Title	Transmitter Spurious Emissions
Frequency Range	30MHz - 1GHz
Comments on the above Test Results	802.11a , Tx Channel 52 (5260 MHz)


Title: TX Spurious Emissions from 30MHz-1GHz – Ch52 (5260 MHz)

Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	_		Limit (dBuV)	Margin	Results Pass / Fail	Comments
87.41375	34.74	0.98	7.5	43.22	Quasi Max	V	107	215	50*	-6.78	Pass	See notes
42.4665	12.86	0.67	12.12	25.66	Quasi Max	V	386	32	40	-14.34	Pass	
102.9353	24.52	1.06	10.69	36.26	Quasi Max	V	104	136	43.5	-7.24	Pass	
164.063	17.02	1.36	11.8	30.18	Quasi Max	V	105	137	43.5	-13.32	Pass	
239.624	15.69	1.62	11.7	29	Quasi Max	Н	163	207	46	-17	Pass	
49.901	17.86	0.75	8.04	26.65	Quasi Max	V	162	207	40	-13.35	Pass	
115.6965	16.24	1.13	13.27	30.64	Quasi Max	Н	254	235	43.5	-12.86	Pass	
170.9675	17.06	1.39	11.3	29.75	Quasi Max	Н	145	199	43.5	-13.75	Pass	
243.9728	14.27	1.63	11.7	27.59	Quasi Max	Н	149	217	46	-18.41	Pass	
269.7763	9.29	1.72	13.2	24.21	Quasi Max	Н	121	187	46	-21.79	Pass	

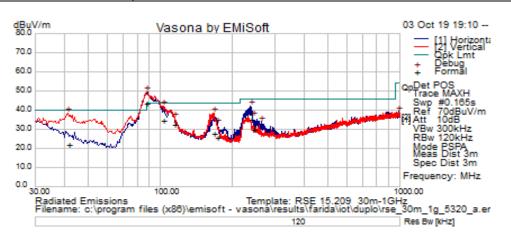
Note1: 87.41MHz is determined to be non-radio related signal. FCC part15.109 class A limit applied. Also see FCC Part15.109 test report.

Note2: * means FCC part15.109 class A limit.

Subtest Date:	03-Oct-2019
Engineer	Farida Rahmanzai Jose Huamani
Lab Information	Building 7, 5m Anechoic
Subtest Title	Transmitter Spurious Emissions
Frequency Range	30MHz - 1GHz
Comments on the above Test Results	802.11a , Tx Channel 60 (5300 MHz)

Title: TX Spurious Emissions from 30MHz-1GHz – Ch60 (5300 MHz)

									`			
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity			Limit (dBuV)	Margin	Results Pass / Fail	Comments
87.13	33.87	0.98	7.5	42.35	Quasi Max	Н	252	269	50*	-7.65	Pass	See notes
102.553	24.26	1.05	10.61	35.92	Quasi Max	Н	206	273	43.5	-7.58	Pass	
43.0555	14.35	0.68	11.67	26.7	Quasi Max	V	155	151	40	-13.3	Pass	
164.3655	16.98	1.36	11.8	30.14	Quasi Max	V	132	170	43.5	-13.36	Pass	
235.1478	18.45	1.6	11.5	31.55	Quasi Max	Н	132	106	46	-14.45	Pass	
956.3023	-2.87	3.26	22.5	22.89	Quasi Max	V	329	187	46	-23.11	Pass	
242.1733	16.9	1.62	11.7	30.22	Quasi Max	Н	140	221	46	-15.78	Pass	
116.0778	12.53	1.13	13.32	26.98	Quasi Max	Н	274	80	43.5	-16.52	Pass	
174.3485	10.77	1.4	11.1	23.27	Quasi Max	V	166	315	43.5	-20.23	Pass	

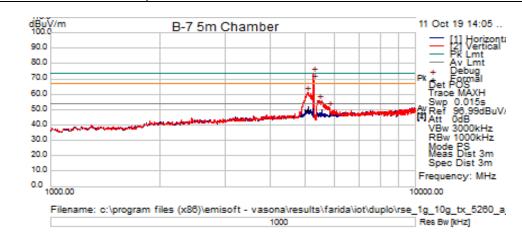

Note1: 87.13MHz is determined to be non-radio related signal. FCC part15.109 class A limit applied.

Also see FCC Part15.109 test report.

Note2: * means FCC part15.109 class A limit.

Subtest Date:	03-Oct-2019
Engineer	Farida Rahmanzai Jose Huamani
Lab Information	Building 7, 5m Anechoic
Subtest Title	Transmitter Spurious Emissions
Frequency Range	30MHz - 1GHz
Comments on the above Test Results	802.11a , Tx Channel 64 (5320 MHz)

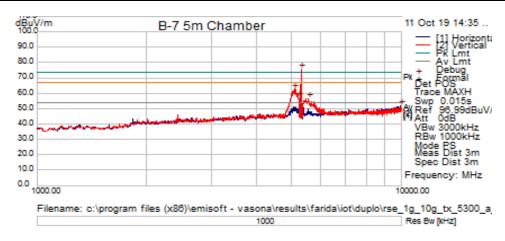
Title: TX Spurious Emissions from 30MHz-1GHz – Ch64 (5320 MHz)


									`			
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity			Limit (dBuV)	Margin	Results Pass / Fail	Comments
87.59425	35.04	0.98	7.5	43.52	Quasi Max	Н	179	259	50*	-6.48	Pass	See notes
102.778	23.11	1.05	10.66	34.82	Quasi Max	V	122	153	43.5	-8.68	Pass	
41.25975	8.48	0.67	13.02	22.16	Quasi Max	V	302	61	40	-17.84	Pass	
238.0203	21.69	1.61	11.6	34.9	Quasi Max	Н	107	217	46	-11.1	Pass	
167.4485	14.69	1.37	11.56	27.62	Quasi Max	Н	125	361	43.5	-15.88	Pass	
114.1328	18.44	1.12	13.03	32.59	Quasi Max	Н	282	236	43.5	-10.91	Pass	
242.7903	16.32	1.62	11.7	29.65	Quasi Max	Н	140	224	46	-16.35	Pass	
173.196	12.85	1.39	11.18	25.42	Quasi Max	V	107	139	43.5	-18.08	Pass	

Note1: 87.59MHz is determined to be non-radio related signal. FCC part15.109 class A limit applied. Also see FCC Part15.109 test report.

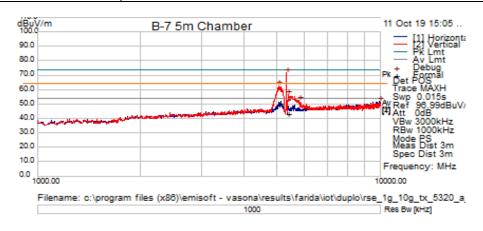
Note2: * means FCC part15.109 class A limit.

Subtest Date:	11-Oct-2019
Engineer	Farida Rahmanzai
	Jose Huamani
Lab Information	Building 7, 5m Anechoic
Subtest Title	Transmitter Spurious Emissions
Frequency Range	1GHz - 10GHz
Comments on the above Test	802.11a , Tx Channel 52 (5260 MHz)
Results	



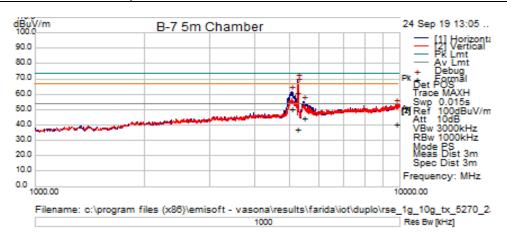
Title: TX Spurious Emissions from 1GHz-10GHz – Ch 52 (5260 MHz)

Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)	Limit (dBuV	Margin (dB)	Results Pass / Fail	Comments
5252.5	69.84	9.44	-5.64	73.63	Peak	V	100	17	N/A	N/A	Ignored	Fundamental
5269.4	65.51	9.46	-5.62	69.35	Peak	V	150	336	N/A	N/A	Ignored	Fundamental
5055.625	57.8	9.24	-5.85	61.19	Peak	V	100	335	68.2	-7.01	Pass	RB
5054.12	46.41	9.24	-5.85	49.8	Average	V	100	334	54	-4.2	Pass	RB
5471.875	51.6	9.71	-5.22	56.1	Peak	V	100	330	68.2	-12.1	Pass	
5803.75	46.58	10.04	-5.03	51.59	Peak [Scan]	V	100	338	54	-16.61	Pass	


Subtest Date:	11-Oct-2019
Engineer	Farida Rahmanzai
	Jose Huamani
Lab Information	Building 7, 5m Anechoic
Subtest Title	Transmitter Spurious Emissions
Frequency Range	1GHz - 10GHz
Comments on the above Test	802.11a , Tx Channel 60 (5300 MHz)
Results	

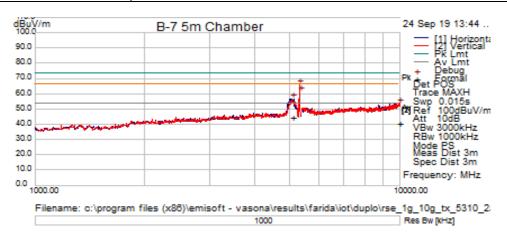
Title: TX Spurious Emissions from 1GHz-10GHz - Ch 60 (5300 MHz) Cab Limit Results Frequency Raw **AF** Level Height Margin Azt Loss **Detector Polarity** (dBuV Pass / **Comments** (MHz) (dBuV) (dB) (dBuV) (Deg) (dB)(cm) (dB) Fail 5308.75 71.92 9.52 -5.55 75.89 Peak ٧ 125 333 N/A N/A Ignored Fundamental 5089.375 59.52 9.29 -5.86 62.95 ٧ 125 -5.25 RB Peak 344 68.2 **Pass** RB 5087.48 47.42 9.29 -5.87 50.83 Average ٧ 126 343 54 -3.17 **Pass** 5218.75 54 ٧ 9.41 -5.74 57.66 Peak 150 68.2 -10.54333 **Pass** 5556.25 52.17 9.73 -5.06 56.84 ٧ 125 336 68.2 -11.36 Peak Pass

Subtest Date:	11-Oct-2019
Engineer	Farida Rahmanzai
	Jose Huamani
Lab Information	Building 7, 5m Anechoic
Subtest Title	Transmitter Spurious Emissions
Frequency Range	1GHz - 10GHz
Comments on the above Test	802.11a , Tx Channel 64 (5320 MHz)
Results	



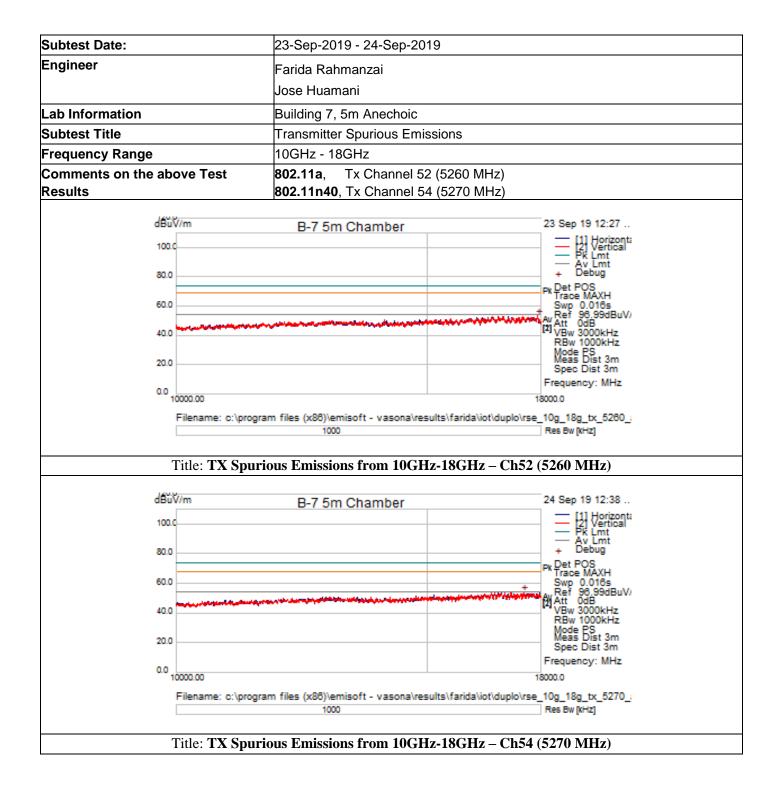
Title: TX Spurious Emissions from 1GHz-10GHz – Ch64 (5320 MHz)

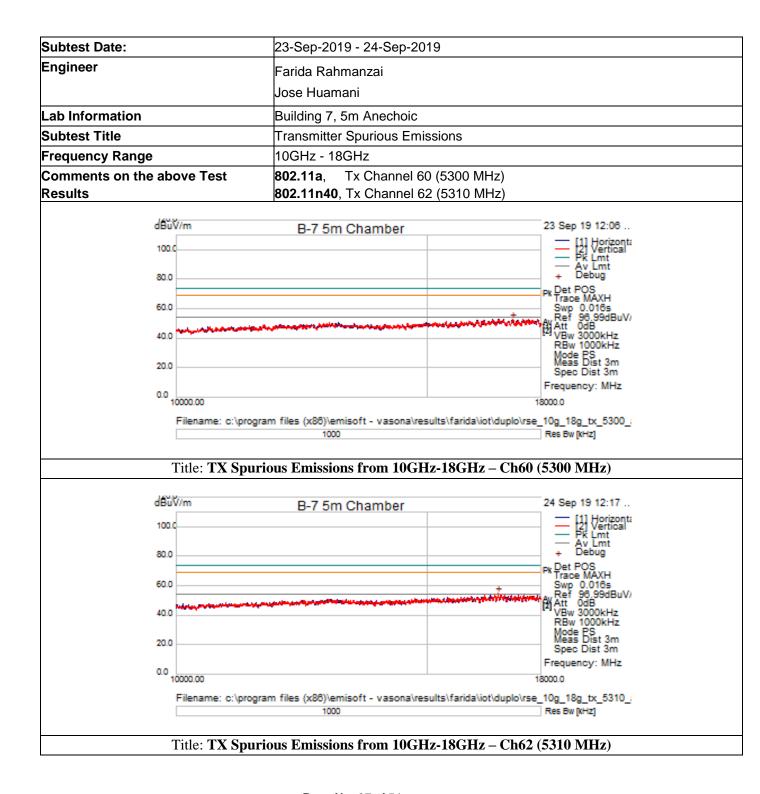
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)	Azt (Deg)		Margin	Results Pass / Fail	Comments
5320	67.47	9.53	-5.51	71.49	Peak	V	125	338	N/A	N/A	Ignored	Fundamental
5055.625	59.35	9.24	-5.85	62.74	Peak	V	150	340	68.2	-5.46	Pass	RB
5076.14	47.4	9.28	-5.9	50.78	Average	V	151	337	54	-3.22	Pass	RB
5381.875	52.22	9.55	-5.56	56.21	Peak	V	125	338	68.2	-11.99	Pass	RB
5380.685	39.24	9.55	-5.56	43.23	Average	V	126	337	54	-10.77	Pass	RB
5798.125	47.39	10.02	-4.94	52.47	Peak	V	125	342	68.2	-15.73	Pass	


Subtest Date:	24-Sep-2019
Engineer	Farida Rahmanzai Jose Huamani
Lab Information	Building 7, 5m Anechoic
Subtest Title	Transmitter Spurious Emissions
Frequency Range	1GHz - 10GHz
Comments on the above Test	802.11n40 , Tx Channel 54 (5270 MHz)
Results	

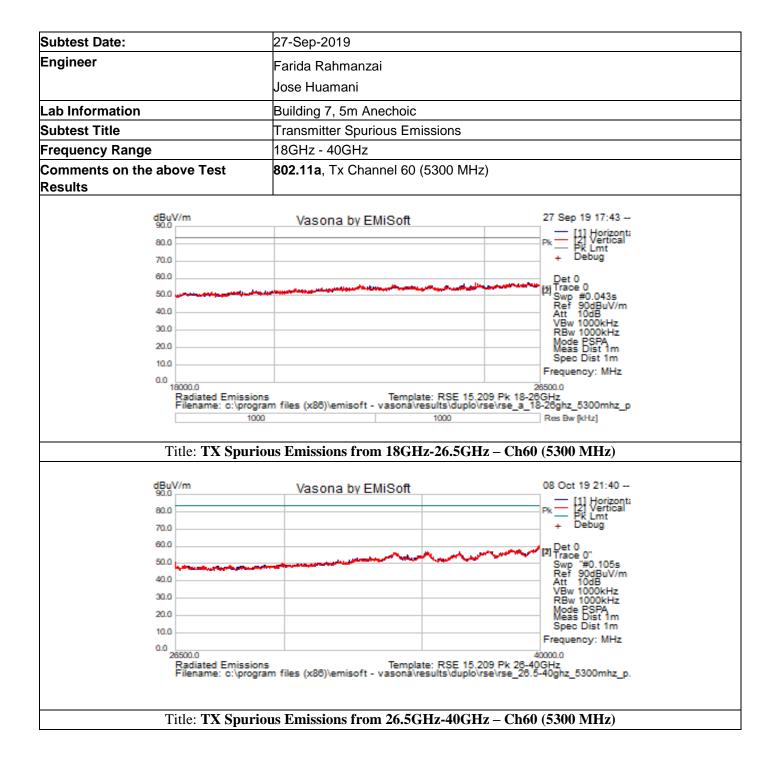
Title: TX Spurious Emissions from 1GHz-10GHz – Ch54 (5270 MHz)

Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity	Height (cm)		Limit (dBuV)	Margin	Results Pass / Fail	Comments
5258.125	66.28	9.1	-5.64	69.75	Peak	Н	100	320	N/A	N/A	Ignored	Fundamental
5269.375	64.11	9.13	-5.62	67.62	Peak	V	100	309	N/A	N/A	Ignored	Fundamental
5050	58.95	8.91	-5.87	62	Peak	Н	100	308	68.2	-6.2	Pass	RB
5051.468	47.54	8.92	-5.86	50.6	Average	Н	100	309	54	-3.4	Pass	RB
5235.625	54.81	9.08	-5.78	58.1	Peak	Н	225	308	68.2	-10.1	Pass	
5449.375	51.56	9.24	-5.37	55.44	Peak	Н	100	306	68.2	-12.76	Pass	RB
5449.965	40.52	9.24	-5.36	44.41	Average	Н	101	309	54	-9.59	Pass	RB


Subtest Date:	24-Sep-2019
Engineer	Farida Rahmanzai Jose Huamani
Lab Information	Building 7, 5m Anechoic
Subtest Title	Transmitter Spurious Emissions
Frequency Range	1GHz - 10GHz
Comments on the above Test Results	802.11n40 , Tx Channel 62 (5310 MHz)


Title: TX Spurious Emissions from 1GHz-10GHz – Ch62 (5310 MHz)

•												
Frequency (MHz)	Raw (dBuV)	Cab Loss (dB)	AF (dB)	Level (dBuV)	Detector	Polarity			Limit (dBuV)	Margin	Results Pass / Fail	Comments
5303.125	62.63	9.15	-5.56	66.22	Peak [Scan]	V	125	318	N/A	N/A	Ignored	Fundamental
5325.625	58.02	9.17	-5.53	61.65	Peak [Scan]	Н	125	304	N/A	N/A	Ignored	Fundamental
5061.25	53.58	8.93	-5.83	56.68	Peak [Scan]	Н	100	321	68.2	-11.52	Pass	RB
5062.27	41.78	8.93	-5.83	44.87	Average	Н	99	322	54	-9.13	Pass	RB



Subtest Date:	23-Sep-2019					
Engineer	Farida Rahmanzai					
	Jose Huamani					
Lab Information	Building 7, 5m Anechoic					
Subtest Title	Transmitter Spurious Emissions					
Frequency Range	10GHz - 18GHz					
Comments on the above Test	802.11a , Tx Channel 64 (5320 MHz)					
Results						
d ≙ ŭV/m	B-7 5m Chamber 23 Sep 19 10:48					
100.0	Il Horizont:					
80.0	AV Lint + Debug					
60.0	Pk Det POS Trace MAXH Swp 0.018s					
40.0	Av Ret 0dB (4) Att 0dB (4) VBw 3000kHz RBw 1000kHz					
20.0	Mode PS Meas Dist 3m Spec Dist 3m					
0.0						
Filename: c:\progra	am files (x86)\emisoft - vasona\results\farida\iot\duplo\rse_10g_18g_tx_5320_;					
	1000 Res Bw [kHz]					
Title: TX Spuri	ious Emissions from 10GHz-18GHz – Ch64 (5320 MHz)					

B.2 AC Conducted Emissions

B2.1 Limits

FCC 15.207: (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 ohms line impedance stabilization network (LISN).

	Conducted Limits		
Frequency of Emission (MHz)	Quasi-Peak	Average	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 – 5	56	46	
5 – 30	60	50	

RSS-Gen 8.8: Unless stated otherwise in the applicable RSS, for radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in table 4 (AC power-line conducted emissions limit), as measured using a 50 μ H / 50 Ω line impedance stabilization network. This requirement applies for the radio frequency voltage measured between each power line and the ground terminal of each AC power-line mains cable of the EUT.

B2.2 Test Procedures

Ref: C63.10:2013, section 6.2.2

Section 6.2.2 Measurement requirements

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument, or where permitted or required, the emission currents on the power line sensed by a current probe. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer, and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements, using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having a 50 Ω input impedance. All other ports are terminated in 50 Ω loads. Figure 5, Figure 6, and Figure 7 show typical test setups for ac power-line conducted emissions testing (see 6.13). For information about the use of a RF-shielded (screen) room, vertical conducting plane and voltage probe, see ANSI C63.4.

Tabletop devices shall be placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screen) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

Section 6.2.5 Final ac power-line conducted emission measurements

Based on the exploratory tests of the EUT performed in 6.2.4, the one EUT cable configuration and arrangement and mode of operation that produced the emission with the highest amplitude relative to the limit is selected for the final measurement, while applying the appropriate modulating signal to the EUT. If the EUT is relocated from an exploratory test site to a final test site, the highest emissions shall be remaximized at the final test location before final ac powerline conducted emission measurements are performed. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment in the system) is then performed for the full frequency range for which the EUT is being tested for compliance without further variation of the EUT arrangement, cable positions, or EUT mode of operation. If the EUT is comprised of equipment units that have their own separate ac power connections, e.g., floor-standing equipment with independent power cords for each shelf that are able to connect directly to the ac power network, each current-carrying conductor of one unit is measured while the other units are connected to a second (or more) LISN(s). All units shall be separately measured. If a power strip is provided by the manufacturer, to supply all of the units making up the EUT, only the conductors in the power cord of the power strip shall be measured.

Record the six highest EUT emissions relative to the limit of each of the current-carrying conductors of the power cords of the equipment that comprises the EUT over the frequency range specified by the procuring or regulatory agency.

Ref. C63.10-2013 section 6.2

Test Procedure

- 1. Using Vasona software, configure the spectrum analyzer as shown above (be sure to enter all losses between the transmitter output and the spectrum analyzer).
- 2. Set the radio in continuous transmit mode.
- 3. Connect cable end to LISN Hot port and other cable end to the spectrum Analyzer/EMC receiver RF input port. Terminate the LISN neutral port with a 50 Ω impedance terminator.
- 4. Sweep the frequency range from 150 kHz to 30 MHz (segment if necessary)
- 5. Use the peak marker function to determine the maximum amplitude level.
- 6. Center marker frequency and perform final measurement using applicable detector (Quasi-Pk/Average).
- 7. Record at least 6 highest reading for the worst case operating modes in Quasipeak/Average.
- 8. Repeat the test on Neutral lead.
- 9. Repeat step 3-7 with the radio sets in the Receiver mode.
- 10. Record at least 6 highest reading in Quasi-peak/Average

Ref. C63.10-2013 section 4 / CISPR16-1-1

Test Parameters

Span = Entire frequency range or segment if necessary.

Reference Level = 70 dBuV

RBW = 9 kHz

VBW ≥ 3 x RBW

Sweep Time = Couple

Detector = Quasi-Peak & Average

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
0	EUT	IW-6300H with Air-ANT2513P4M-N antenna	\checkmark	
2	Support	IW-6300H-AC-X-K9 power supply		\checkmark

Mode Setting#	Wi-Fi Mode	Modulation	Data Rate	
1 (single antenna)	802.11a*	BPSK	6 Mbps	

Tested By:	Date of testing:
Test Engineer(s): Farida Rahmanzai, Jose Huamani	13-Nov-2019
Test Result: PASS	

Test Equipment

See Appendix C for list of test equipment

B2.3 AC Conducted Emissions Test Data and Graphical Test Results

Subtest Date:			13-Nov-20	 019						
Engineer			Farida Ra							
			Jose Huamani							
Lab Informa	ation			Building 7, formal immunity room						
Subtest Titl	е			Conducte	d Emissions					
Frequency	Range			150 kHz -	30 MHz					
Comments	on the a	above Tes	it	TX Ch60	(5300 MHz) v	with BPSK mo	dulation -	- 6 Mbps		
Results										
dB 70.	uV .0			Vasona	by EMiSor	ft		13 N	lov 19 00:1	3 -
									- [1] Live - 21 Neutra	al
60.	0 +							Qp_	- Opk Lmt - Av Imt	
50.	o 🗚 🗀							+	Debug	
	7 %		<i>t</i> a .			\dashv $ $ $ $ $ $ $ $		AV De	et POS	
40.	°) {\	M.				#1		Sv	vp #0.74s	
30.	o V	Mary	r int			, Jan Jan Jan	الالا	— Re	ef 70dBuV t 10dB	
	+ /		14 17	عراج أرواها		Add to the same		VE	w 30kHz	
20.	.0	+ +	. 	THY WAR AND THE PROPERTY OF TH						
10.	0			The state of the s						
				Frequency: MHz					Z	
0.0			1.00		10.0)	30.00			
Power Line Conducted Er		ucted En	nissions	ift	Temp	late: LISt	A Cond	Class B	20/	
Filename: c:\program file		grami file:	s (xoo) veni	isort - vasor	a vesuits voupio	vradio (ce)		00HZ_1X_3 Bw (kHz)	301	
		AC Con	ducted	Emission	s Test Resu	It Tables for 8	302.11a /			
Frequency	Raw	Cab Loss	Factors	Level	Detector	Lines	Limit	Margin	Results	Comments
(MHz)	(dBuV)	(dB)	(dB)	(dBuV)		(Live/Neutral)	(dBuV)	(dB)	Pass / Fail	
0.171138	29.93	21.06	0.1	51.1	Quasi Peak	Live	64.91	-13.81	Pass	TX / Ch 60
0.171138	5.21	21.06	0.1	26.38	Average	Live	54.91	-28.53	Pass	TX / Ch 60
0.270519	18.76	20.55	0.08	39.39	Quasi Peak	Live	61.1	-21.72	Pass	TX / Ch 60
0.270519	-0.8	20.55	0.08	19.82	Average	Live	51.1	-31.28	Pass	TX / Ch 60
0.355476	13.42	20.24	0.07	33.73	Quasi Peak	Live	58.83	-25.1	Pass	TX / Ch 60
0.355476	-3.24	20.24	0.07	17.08	Average	Live	48.83	-31.76	Pass	TX / Ch 60
0.560571	23.72	19.98	0.07	43.77	Quasi Peak	Live	56	-12.23	Pass	TX / Ch 60
0.560571	8.6	19.98	0.07	28.65	Average	Live	46	-17.35	Pass	TX / Ch 60
0.58767	19.67	19.98	0.06	39.7	Quasi Peak	Live	56	-16.3	Pass	TX / Ch 60
0.58767	3.78	19.98	0.06	23.81	Average	Live	46	-22.19	Pass	TX / Ch 60
9.352782	16.59	20.14	0.11	36.84	Quasi Peak	Live	60	-23.16	Pass	TX / Ch 60
9.352782	16.63	20.14	0.11	36.89	Average	Live	50	-13.11	Pass	TX / Ch 60

Subtest Date:	13-Nov-20	019					
Engineer	Farida Ra						
	Jose Huamani						
		, formal imm	unity room				
Subtest Title		d Emissions					
Frequency Range	150 kHz -						
Comments on the above Test	TX Ch60	(5300 MHz) v	with BPSK mo	dulation -	- 6 Mbps		
Results dRuV	Vacana	by EMiCod	4		13 N	13 Nov 19 00:13 -	
dBuV 70.0	Vasulla	by EMiSof	IL			- [1] Live	
60.0					=	- [2] Neutra - Ook Lmt	al
Ā. T			-		Q p	- Av Lmt	
50.0					Av r	Eorgial	
40.0					Ĭr	ace MAXH	
## \(\frac{1}{2}				hou.	Re	vp #0.745 ef 70dBuV	
30.0 + 10 10 10 10 10 10 10 10 10 10 10 10 10	1	فالعرب ومراوي المراال	Hip by the contract of the con	J.	At VE	t 10dB 3w 30kHz	
20.0	TY WARRAN		Դիների _{Արդի}	lle.	RI IZI ŘE	Bw 9kHz	
+ + +	['	["	Jana Miles	ET INC	ode PSPA	
10.0						unnesse Mills	_
0.0	100					uency: MHz	2
0.15 Power Line Conducted En	1.00 nissions		10.00 Temp	late: LISI	30.00 N A Cond	Class B	
Filename: c:\program file	s (x86)\em	isoft - vason	ia\results\duplo	\radio\ce\	CE_120V	60Hz_Tx_5	300
AC Conducted	9 Res Bw [KHz] Emissions Test Result Tables for 802.11a / TX Ch60						
Frequency Raw Cab Loss Factors (MHz) (dBuV) (dB) (dB)	Level (dBuV)	Detector	Lines (Live/Neutral)	Limit (dBuV)	Margin (dB)	Results Pass / Fail	Comments
0.232638 20.23 20.72 0.08	41.03	Quasi Peak	Neutral	62.35	-21.33	Pass	TX / Ch 60
0.232638 -2.66 20.72 0.08	18.14	Average	Neutral	52.35	-34.21	Pass	TX / Ch 60
0.480582 11.39 19.98 0.07	31.44	Quasi Peak	Neutral	56.33	-24.89	Pass	TX / Ch 60
0.480582 -2.1 19.98 0.07	17.95	Average	Neutral	46.33	-28.38	Pass	TX / Ch 60
0.749751 18.89 19.98 0.07	38.93	Quasi Peak	Neutral	56	-17.07	Pass	TX / Ch 60
0.749751 3.77 19.98 0.07	23.81	Average	Neutral	46	-22.19	Pass	TX / Ch 60
8.345967 15.14 20.13 0.08	35.35	Quasi Peak	Neutral	60	-24.65	Pass	TX / Ch 60
8.345967 14.66 20.13 0.08	34.87	Average	Neutral	50	-15.13	Pass	TX / Ch 60
8.775804 15.15 20.13 0.11	35.39	Quasi Peak		60	-24.61	Pass	TX / Ch 60
8.775804 14.61 20.13 0.11	34.85	Average	Neutral	50	-15.15	Pass	TX / Ch 60
8.921454 17.25 20.14 0.1	37.48	Quasi Peak	Neutral	60	-22.52	Pass	TX / Ch 60
8.921454 17.1 20.14 0.1	37.33	Average	Neutral	50	-12.67	Pass	TX / Ch 60

Appendix C: List of Test Equipment Used to perform the test

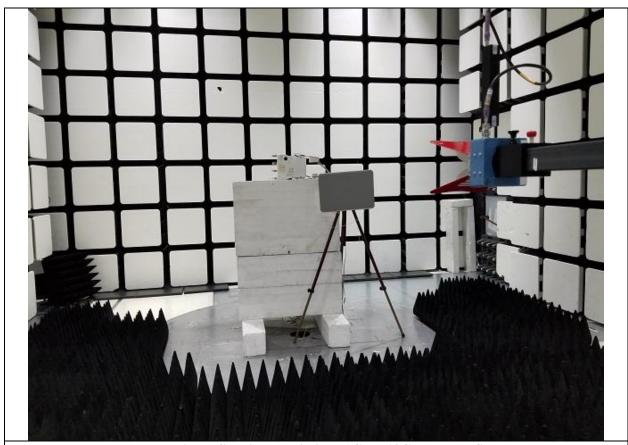
Equip#	Manufacturer/ Model	Description	Last Cal	Next Due	Test Item			
	Test Equipment used for Radiated Emissions							
CIS008113	Cisco/NSA 5m Chamber	NSA 5m Chamber	01-Oct-19	01-Oct-20	B1			
CIS037581	ETS Lindgren / 3117	Double Ridged Guide Horn Antenna	25-Jan-19	25-Jan-20	B1			
CIS039131	Cisco / TH0118	Mast Mount Preamplifier Array, 1-18GHz	25-Feb-19	25-Feb-20	B1			
CIS038404	Sunol Sciences / JB1	Combination Bi-Log Antenna, 30MHz-2GHz	31-Jan-19	31-Jan-20	B1			
CIS036710	Cisco/1840	18-40GHz EMI Test Head/Verification Fixture	12-Aug-19	12-Aug-20	B1			
CIS018231	Rohde & Schwarz /ESI 40(ESIB 40)	EMI RECEIVER TEST 20Hz-40GHz	07-Mar-19	07-Mar-20	B1			
CIS042012	Rohde & Schwarz / ESCI	EMI Test Receiver	12-Aug-19	12-Aug-20	B1			
CIS040604	Agilent / E4440A	Precision Spectrum Analyzer	19-Oct-18	19-Oct-20	B1			
CIS047311	Huber+ Suhner/Sucoflex 106PA	RF Coaxial Cable, to 18GHz, 8.5 m	30-Sep-19	30-Sep-20	B1			
CIS055178	Huber+ Suhner/Sucoflex 106PA	RF Coaxial Cable, to 18GHz, 8.5 m	30-Sep-19	30-Sep-20	B1			
CIS025660	Micro-Coax / UFB311A-1- 0840-504504	RF Coaxial Cable, to 18GHz, 8.5 m	30-Sep-19	30-Sep-20	B1			
CIS025640	Micro-Coax / UFB311A-0- 2720-520520	Coaxial Cable, 272.0 in. to 18GHz	30-Sep-19	30-Sep-20	B1			
CIS056059	Wainwright Instruments/ WRCJV8-5200-5250-5350- 5400-40SS	SMA Band Reject Filter 5.250GHz to 5.350GHz	10-Aprl-19	10-Apr-20	B1			
	Test Equ	ipment used for AC Conducted En	nissions					
CIS41955	Rohde & Schwarz / ESCI	EMI Test Receiver	25-Apr-19	25-Apr-20	B2			
CIS08187	Fisher Custom Com / FCC-450B-2.4-N	Pulse Limiter	15-May-19	15-May-20	B2			
CIS019210	TTE / H785-150K-50-21378	High Pass Filter 150KHz	25-Feb-19	25-Feb-20	B2			
CIS05039	Fisher Custom Com / 50/250-50-2-02	LISN (9kHz-30MHz)	21-Feb-19	21-Feb-20	B2			
CIS034158	Fisher Custom Com / 50-2-RA- NEMA-5-20R	LISN Receptacle Adaptor	21-Feb-19	21-Feb-20	B2			
CIS040532	Coleman / RG-223	25 ft RG-223 Cable	04-Dec-18	04-Dec-19	B2			
51663	Bird / 5-T-MB	50Ω termination	04-Dec-18	04-Dec-19	B2			

Appendix D: Abbreviation Key and Definitions

The following table defines abbreviations used within this test report.

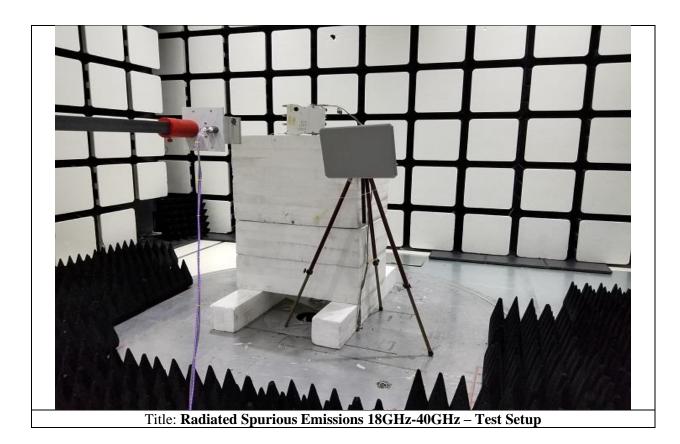
Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
TAP	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	A	Amp
L3	Line 3	μА	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
N	Neutral Line	R	Return
S	Supply	AC	Alternating Current

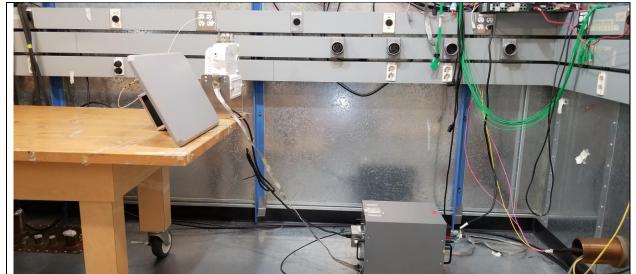
Page No: 47 of 54



Appendix E: Photographs of Test Setups

Title: Radiated Spurious Emissions Test Setup





Title: Radiated Spurious Emissions 1GHz-18GHz – Test Setup

Title: Conducted Emissions 150KHz-30MHz – Test Setup

Appendix F: Software Used to Perform Testing

EMIsoft Vasona, version 6.024

Appendix G:Test Procedures

Measurements were made in accordance with

- KDB 789033 D02 General UNII Test Procedures New Rules v02r01
- KDB 662911 MIMO
- ANSI C63.4 2014 Unintentional Radiators
- ANSI C63.10 2013 Intentional Radiators

Test procedures are summarized below:

FCC 5GHz Test Procedures	EDCS # 1445048		
FCC 5GHz RSE Test Procedures	EDCS # 1511600		

Appendix H: Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

Appendix I: Test Assessment Plan

Compliance Test Plan (Excel) EDCS# 18357550 Target Power Tables EDCS# 18295686

Appendix J: Worst Case Justification

All 3 orientations (Z, Y, Z) of the EUT were assessed by performing pre-scan. The Z orientation was determined to be the worst case orientation.

Worst Case Mode: Worst case mode shall be the mode that produces the highest power level based on conducted power measurement.

Also see Appendix A the test report.

Compliance testing for Radiated Spurious and AC Conducted Emissions shall be performed with the highest gain antenna installed.

All formal data can be found in EDCS# 18295686