

FCC Radio Test Report

FCC ID: LDKDSKH2377

This report concerns: Original Grant

Project No. : 2106H020

Equipment: Cisco Webex Desk Hub

Brand Name : Cisco
Test Model : CD-DSKH
Series Model : N/A

Applicant : Cisco Systems,Inc

Address : 125 West Tasman Drive, San Jose, California ,United States

Manufacturer : Cisco Systems, Inc.

Address : 170 West Tasman Drive, San Jose, CA, USA, 95134

Factory : 1) WISTRON INFOCOMM (ZHONGSHAN) CORPORATION

2) WISTRON MEXICO S.A DE C.V

Address : 1) NO.38 EAST KEJI ROAD, ZHONGSHAN TORCH DEVELOPMENT

ZONE, ZHONGSHAN CITY, GUANGDONG, CHINA

2) CALLE BAUDELIO PÈREZ MUCHARRAS, NO. 420 ORIENTE, COL. ZARAGOZA, CD. JUAREZ, CHIHUAHUA, C.P. 32700,

MEXICO

Date of Receipt : Jun. 21, 2021

Date of Test : Jun. 21, 2021~Jul. 26, 2021

Issued Date : Oct. 20, 2021

Report Version: R01

Test Sample: Engineering Sample No.:

EUT:SH20210609121 for radiated; SH20210609122 for Conducted;

Adapter: SH20210609121-4, SH20210609121-5

Standard(s) : FCC CFR Title 47, Part 15, Subpart E

FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

ANSI C63.10-2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by: Maker Qi

Maker

Approved by: Ryan Wang

Add: No. 29, Jintang Road, Tangzhen Industry Park, Pudong New Area, Shanghai 201210, China

TEL: +86-021-61765666 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL shall have no liability for any declarations, inferences or generalizations drawn by the client or others from BTL issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

in determining the Pass/Fail results.

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use

Table of Contents	Page
REPORT ISSUED HISTORY	5
1 . SUMMARY OF TEST RESULTS	6
1.1 TEST FACILITY	7
1.2 MEASUREMENT UNCERTAINTY	, 7
1.3 TEST ENVIRONMENT CONDITIONS	7
2 . GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 TEST MODES	11
2.3 PARAMETERS OF TEST SOFTWARE	14
2.4 DUTY CYCLE	18
2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	20
2.6 SUPPORT UNITS	20
3 . AC POWER LINE CONDUCTED EMISSIONS	21
3.1 LIMIT	21
3.2 TEST PROCEDURE	21
3.3 DEVIATION FROM TEST STANDARD	21
3.4 TEST SETUP	22
3.5 EUT OPERATION CONDITIONS	22
3.6 TEST RESULTS	22
4 . RADIATED EMISSIONS	23
4.1 LIMIT	23
4.2 TEST PROCEDURE	24
4.3 DEVIATION FROM TEST STANDARD	25
4.4 TEST SETUP	25
4.5 EUT OPERATION CONDITIONS	26
4.6 TEST RESULTS - 9 KHZ TO 30 MHZ	26
4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	26
4.8 TEST RESULTS - ABOVE 1000 MHZ	26
5 . BANDWIDTH	27
5.1 LIMIT	27
5.2 TEST PROCEDURE	27
5.3 DEVIATION FROM STANDARD	27
5.4 TEST SETUP	28

Table of Contents	Page
5.5 EUT OPERATION CONDITIONS	28
5.6 TEST RESULTS	28
6 . MAXIMUM OUTPUT POWER	29
6.1 LIMIT	29
6.2 TEST PROCEDURE	30
6.3 DEVIATION FROM STANDARD	30
6.4 TEST SETUP	30
6.5 EUT OPERATION CONDITIONS	30
6.6 TEST RESULTS	30
7 . POWER SPECTRAL DENSITY	31
7.1 LIMIT	31
7.2 TEST PROCEDURE	31
7.3 DEVIATION FROM STANDARD	31
7.4 TEST SETUP	32
7.5 EUT OPERATION CONDITIONS	32
7.6 TEST RESULTS	32
8 . MEASUREMENT INSTRUMENTS LIST	33
9 . EUT TEST PHOTOS	35
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	38
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	41
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	42
APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ	45
APPENDIX E - BANDWIDTH	168
APPENDIX F - MAXIMUM OUTPUT POWER	185
APPENDIX G - POWER SPECTRAL DENSITY	227

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Sep. 18, 2021
R01	Correct incorrect writing in page 186.	Oct. 20, 2021

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart E						
Standard(s) Section	` ' I I I I I I I I I I I I I I I I I I		Judgment	Remark		
15.207 15.407(b)	AC Power Line Conducted Emissions	APPENDIX A	PASS			
15.407(b) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS			
15.407(a) 15.407(e)	Bandwidth	APPENDIX E	PASS			
15.407(a)	Maximum Output Power	APPENDIX F	PASS			
15.407(a)	Power Spectral Density	APPENDIX G	PASS			
15.203	Antenna Requirements		PASS	NOTE (2)		
15.407(c)	Automatically Discontinue Transmission		PASS	NOTE (3)		

Note:

- (1) "N/A" denotes test is not applicable in this test report.
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.
- (3) During no any information transmission, the EUT can automatically discontinue transmission and become standby mode for power saving. the EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

	transmitting from remote device and verify whether it
(4)	For UNII-1 this device was functioned as a
	○ Outdoor access point device
	☐ Indoor access point device
	☐ Fixed point-to-point access points device
	☐ Client device

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 29, Jintang Road, Tangzhen Industry Park, Pudong New Area, Shanghai 201210, China

BTL's Test Firm Registration Number for FCC: 476765

BTL's Designation Number for FCC: CN1241

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U, (dB)
SH-C01	CISPR	150 kHz ~ 30 MHz	2.64

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
		9 KHz~30 MHz	-	2.16
		30 MHz~200 MHz	V	4.04
	CISPR	30 MHz~200 MHz	Ι	2.90
SH-CB02		200 MHz~1,000 MHz	V	3.76
		200 MHz~1,000 MHz	Ι	3.82
		1GHz ~ 6GHz	ı	4.56
		6GHz ~ 18GHz	-	4.14
		18 ~ 26.5 GHz	-	3.48
		26.5 ~ 40 GHz	-	3.64

C. Conducted test:

Parameter	U
Output Power	±0.95 dB
Occupied Channel Bandwidth	±3.8 %
Power Spectral Density	±0.86 dB
Temperature	±0.08 °C
Humidity	±1.5 %
Supply voltages	±0.3 %

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	23°C	59%	AC 120V/60Hz	Joven Xiong
Radiated Emissions-9kHz to 30MHz	24°C	58%	AC 120V/60Hz	Forest Li
Radiated Emissions-30MHz to 1000MHz	24°C	58%	AC 120V/60Hz	Forest Li
Radiated Emissions-Above 1000 MHz	24°C	58%	AC 120V/60Hz	Forest Li
Bandwidth	25°C	62%	AC 120V/60Hz	Danny Dang
Maximum Output Power	25°C	62%	AC 120V/60Hz	Danny Dang
Power Spectral Density	25°C	62%	AC 120V/60Hz	Danny Dang

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Cisco Webex Desk Hub
Brand Name	Cisco
Test Model	CD-DSKH
Series Model	N/A
Model Difference(s)	N/A
Software Version	novum1.1.0
Hardware Version	P2A-1
Power Source	DC Voltage supplied from AC/DC adapter. Brand / Model: ACBEL/ ADC027
Power Rating	I/P: AC 100-240V~ 1.8A 50-60Hz O/P: 19.0V 6.32 A ,120.0W
Operation Frequency Band(s)	UNII-1: 5150 MHz ~ 5250 MHz UNII-2A: 5250 MHz ~ 5350 MHz UNII-2C: 5470 MHz ~ 5725 MHz UNII-3: 5725 MHz ~ 5850 MHz
Modulation Type	IEEE 802.11a/n/ac: OFDM
Bit Rate of Transmitter	IEEE 802.11a: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 300 Mbps IEEE 802.11ac: up to 866.6 Mbps
Maximum Output Power _UNII-1 1TX	IEEE 802.11a: 16.27 dBm (0.0424 W)
Maximum Output Power _UNII-2A 1TX	IEEE 802.11a: 16.19 dBm (0.0416 W)
Maximum Output Power _UNII-2C 1TX	IEEE 802.11a: 16.38 dBm (0.0435 W)
Maximum Output Power _UNII-3 1TX	IEEE 802.11a: 16.48 dBm (0.0445 W)
Maximum Output Power _UNII-1 CDD	IEEE 802.11n20: 18.14 dBm (0.0652 W)
Maximum Output Power _UNII-2A CDD	IEEE 802.11n40: 18.22 dBm (0.0664 W)
Maximum Output Power _UNII-2C CDD	IEEE 802.11n40: 18.52 dBm (0.0711 W)
Maximum Output Power _UNII-3 CDD	IEEE 802.11n40: 18.47 dBm (0.0703 W)
Maximum Output Power _UNII-1 Beamforming	IEEE 802.11n40: 18.01 dBm (0.0632 W)
Maximum Output Power _UNII-2A Beamforming	IEEE 802.11n40: 18.11 dBm (0.0647 W)
Maximum Output Power _UNII-2C Beamforming	IEEE 802.11n40: 18.40 dBm (0.0692 W)
Maximum Output PowerUNII-3 Beamforming	IEEE 802.11n40: 18.33 dBm (0.0681 W)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

IEEE 802.11a IEEE 802.11n(HT20) IEEE 802.11ac(VHT20)		IEEE 802.11n(HT40) IEEE 802.11ac(VHT40)		IEEE 802.11ac(VHT80)	
UNII-1		UNII-1		UN	II-1
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230		
44	5220				
48	5240				

IEEE 802.11a IEEE 802.11n(HT20) IEEE 802.11ac(VHT20)		IEEE 802.11n(HT40) IEEE 802.11ac(VHT40)		IEEE 802.11ac(VHT80)	
UNII	-2A	UNII-2A		UNII-2A	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	54	5270	58	5290
56	5280	62	5310		
60	5300				
64	5320				

IEEE 802.11a IEEE 802.11n(HT20) IEEE 802.11ac(VHT20)		IEEE 802.11n(HT40) IEEE 802.11ac(VHT40)		IEEE 802.11ac(VHT80)	
UNII	-2C	UNII-2C		UNII-2C	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	102	5510	106	5530
104	5520	110	5550	122	5610
108	5540	118	5590		
112	5560	126	5630		
116	5580	134	5670		
120	5600				
124	5620				
128	5640				
132	5660				
136	5680				
140	5700				

IEEE 802.11a IEEE 802.11n(HT20) IEEE 802.11ac(VHT20)		IEEE 802.11n(HT40) IEEE 802.11ac(VHT40)		IEEE 802.11ac(VHT80)	
UNII-3		UN	II-3	UNII-3	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795		
157	5785				
161	5805				
165	5825				

3. Antenna Specification:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	Cable antenna	N/A	6.67
2	N/A	N/A	Cable antenna	N/A	6.32

Note:

1) Any transmit signals are correlated with each other, so Directional gain=10log[(10^{G1/20}+10^{G2/20}+...10^{GN/20})2/N]dBi, that is Directional gain=10log[(10^{6.67/20}+10^{6.32/20})2/2]dBi =9.51. So, the UNII-1, UNII-2A and UNII-2C output power limit is 23.98-(9.51-6)=20.47, the UNII-3 output power limit is 30-(9.51-6)=26.49.

The UNII-1, UNII-2A and UNII-2C power spectral density limit is 11-(9.51-6)=7.49, the UNII-3 power spectral density limit is 30-(9.51-6)=26.49.

2) This EUT supports CDD, and all antenna gains are not equal, so Directional gain=10log[(10^{G1/20}+10^{G2/20}+...10^{GN/20})2/N]dBi, that is Directional gain=10log[(10^{6.67/20}+10^{6.32/20})2/2]dBi =9.51. So, the UNII-1, UNII-2A and UNII-2C power spectral density limit is 11-(9.51-6)=7.49, the UNII-3 power spectral density limit is 30-(9.51-6)=26.49.

For power measurements, Directional gain = 6.67dB.

So, the UNII-1, UNII-2A and UNII-2C output power limit is 23.98-(6.67-6)=23.31,

the UNII-3 output power limit is 30-(6.67-6)=29.33.

- 3) Beamforming gain=3 dBi
- 4) The antenna gain and beamforming gain are provided by the manufacturer.

4. Table for Antenna Configuration:

Operating Mode TX Mode	Ant. 1	Ant. 2	Ant. 1 + Ant. 2
IEEE 802.11a	✓	✓	*
IEEE 802.11n(HT20)	✓	✓	✓
IEEE 802.11n(HT40)	✓	✓	✓
IEEE 802.11ac(VHT20)	✓	✓	✓
IEEE 802.11ac(VHT40)	✓	√	✓
IEEE 802.11ac(VHT80)	✓	✓	✓

2.2 TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX A Mode Channel 36/40/48 (UNII-1)
Mode 2	TX N(HT20) Mode Channel 36/40/48 (UNII-1)
Mode 3	TX N(HT40) Mode Channel 38/46 (UNII-1)
Mode 4	TX AC(VHT20) Mode Channel 36/40/48 (UNII-1)
Mode 5	TX AC(VHT40) Mode Channel 38/46 (UNII-1)
Mode 6	TX AC(VHT80) Mode Channel 42 (UNII-1)
Mode 7	TX A Mode Channel 52/60/64 (UNII-2A)
Mode 8	TX N(HT20) Mode Channel 52/60/64 (UNII-2A)
Mode 9	TX N(HT40) Mode Channel 54/62 (UNII-2A)
Mode 10	TX AC(VHT20) Mode Channel 52/60/64 (UNII-2A)
Mode 11	TX AC(VHT40) Mode Channel 54/62 (UNII-2A)
Mode 12	TX AC(VHT80) Mode Channel 58 (UNII-2A)
Mode 13	TX A Mode Channel 100/116/140 (UNII-2C)
Mode 14	TX N(HT20) Mode Channel 100/116/140 (UNII-2C)
Mode 15	TX N(HT40) Mode Channel 102/110/134 (UNII-2C)
Mode 16	TX AC(VHT20) Mode Channel 100/116/140 (UNII-2C)
Mode 17	TX AC(VHT40) Mode Channel 102/110/134 (UNII-2C)
Mode 18	TX AC(VHT80) Mode Channel 106/122 (UNII-2C)
Mode 19	TX A Mode Channel 149/157/165 (UNII-3)
Mode 20	TX N(HT20) Mode Channel 149/157/165 (UNII-3)
Mode 21	TX N(HT40) Mode Channel 151/159 (UNII-3)
Mode 22	TX AC(VHT20) Mode Channel 149/157/165 (UNII-3)
Mode 23	TX AC(VHT40) Mode Channel 151/159 (UNII-3)
Mode 24	TX AC(VHT80) Mode Channel 155 (UNII-3)

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test				
Final Test Mode Description				
Mode 15 TX N(HT40) Mode Channel 134 (UNII-2C)				

Radiated Emissions Test - Below 1GHz				
Final Test Mode	Final Test Mode Description			
Mode 15	Mode 15 TX N(HT40) Mode Channel 134 (UNII-2C)			

	Radiated Emissions Test - Above 1GHz			
Final Test Mode	Description			
Mode 1	TX A Mode Channel 36/40/48 (UNII-1)			
Mode 2	TX N(HT20) Mode Channel 36/40/48 (UNII-1)			
Mode 3	TX N(HT40) Mode Channel 38/46 (UNII-1)			
Mode 6	TX AC(VHT80) Mode Channel 42 (UNII-1)			
Mode 7	TX A Mode Channel 52/60/64 (UNII-2A)			
Mode 8	TX N(HT20) Mode Channel 52/60/64 (UNII-2A)			
Mode 9	TX N(HT40) Mode Channel 54/62 (UNII-2A)			
Mode 12	TX AC(VHT80) Mode Channel 58 (UNII-2A)			
Mode 13	TX A Mode Channel 100/116/140 (UNII-2C)			
Mode 14	TX N(HT20) Mode Channel 100/116/140 (UNII-2C)			
Mode 15	TX N(HT40) Mode Channel 102/110/134 (UNII-2C)			
Mode 18	TX AC(VHT80) Mode Channel 106/122 (UNII-2C)			
Mode 19	TX A Mode Channel 149/157/165 (UNII-3)			
Mode 20	TX N(HT20) Mode Channel 149/157/165 (UNII-3)			
Mode 21	TX N(HT40) Mode Channel 151/159 (UNII-3)			
Mode 24	TX AC(VHT80) Mode Channel 155 (UNII-3)			

Conducted Test				
Final Test Mode	Description			
Mode 1	TX A Mode Channel 36/40/48 (UNII-1)			
Mode 2	TX N(HT20) Mode Channel 36/40/48 (UNII-1)			
Mode 3	TX N(HT40) Mode Channel 38/46 (UNII-1)			
Mode 4	TX AC(VHT20) Mode Channel 36/40/48 (UNII-1)			
Mode 5	TX AC(VHT40) Mode Channel 38/46 (UNII-1)			
Mode 6	TX AC(VHT80) Mode Channel 42 (UNII-1)			
Mode 7	TX A Mode Channel 52/60/64 (UNII-2A)			
Mode 8	TX N(HT20) Mode Channel 52/60/64 (UNII-2A)			
Mode 9	TX N(HT40) Mode Channel 54/62 (UNII-2A)			
Mode 10	TX AC(VHT20) Mode Channel 52/60/64 (UNII-2A)			
Mode 11	TX AC(VHT40) Mode Channel 54/62 (UNII-2A)			
Mode 12	TX AC(VHT80) Mode Channel 58 (UNII-2A)			
Mode 13	TX A Mode Channel 100/116/140 (UNII-2C)			
Mode 14	TX N(HT20) Mode Channel 100/116/140 (UNII-2C)			
Mode 15	TX N(HT40) Mode Channel 102/110/134 (UNII-2C)			
Mode 16	TX AC(VHT20) Mode Channel 100/116/140 (UNII-2C)			
Mode 17	TX AC(VHT40) Mode Channel 102/110/134 (UNII-2C)			
Mode 18	TX AC(VHT80) Mode Channel 106/122 (UNII-2C)			
Mode 19	TX A Mode Channel 149/157/165 (UNII-3)			
Mode 20	TX N(HT20) Mode Channel 149/157/165 (UNII-3)			
Mode 21	TX N(HT40) Mode Channel 151/159 (UNII-3)			
Mode 22	TX AC(VHT20) Mode Channel 149/157/165 (UNII-3)			
Mode 23	TX AC(VHT40) Mode Channel 151/159 (UNII-3)			
Mode 24	TX AC(VHT80) Mode Channel 155 (UNII-3)			

Note

- (1) For AC power line conducted emissions and radiated emission below 1 GHz test, the TX N(HT40) Mode Channel 134 (UNII-2C) is found to be the worst case and recorded.
- (2) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
- (3) The measurements for Output Power are tested, the worst case is IEEE 802.11n(HT40) mode, only the worst cases are documented for other test items.
- (4) The measurements for Output Power are tested, the CDD and Beamforming are recorded in the report. The worst case is CDD and only the worst case is documented for other test items.

2.3 PARAMETERS OF TEST SOFTWARE

CDD

UNII-1					
Test Software Version		QRCT			
Frequency (MHz)	5180	5200	5240		
IEEE 802.11a	16.00	16.00	16.00		
IEEE 802.11n(HT20)	15.00	15.00	15.00		
IEEE 802.11ac(VHT20)	14.00	14.00	14.00		
Frequency (MHz)	5190	5230			
IEEE 802.11n(HT40)	13.50	15.00			
IEEE 802.11ac(VHT40)	13.50	14.00			
Frequency (MHz)	5210				
IEEE 802.11ac(VHT80)	13.00				

UNII-2A				
Test Software Version		QRCT		
Frequency (MHz)	5260	5300	5320	
IEEE 802.11a	16.00	16.00	16.00	
IEEE 802.11n(HT20)	15.00	15.00	15.00	
IEEE 802.11ac(VHT20)	14.00	14.00	14.00	
Frequency (MHz)	5270	5310		
IEEE 802.11n(HT40)	15.00	13.00		
IEEE 802.11ac(VHT40)	14.00	13.00		
Frequency (MHz)	5290			
IEEE 802.11ac(VHT80)	12.00			

UNII-2C				
Test Software Version		QRCT		
Frequency (MHz)	5500	5580	5700	
IEEE 802.11a	16.00	16.00	16.00	
IEEE 802.11n(HT20)	15.00	15.00	14.50	
IEEE 802.11ac(VHT20)	14.00	14.00	13.50	
Frequency (MHz)	5510	5550	5670	
IEEE 802.11n(HT40)	15.00	15.00	15.00	
IEEE 802.11ac(VHT40)	14.00	14.00	14.00	
Frequency (MHz)	5530	5610		
IEEE 802.11ac(VHT80)	13.50	14.00		

UNII-3			
Test Software Version		QRCT	
Frequency (MHz)	5745	5785	5825
IEEE 802.11a	16.00	16.00	16.00
IEEE 802.11n(HT20)	14.50	15.00	15.00
IEEE 802.11ac(VHT20)	13.50	13.50	14.00
Frequency (MHz)	5755	5795	
IEEE 802.11n(HT40)	15.00	15.00	
IEEE 802.11ac(VHT40)	14.00	14.00	
Frequency (MHz)	5775		
IEEE 802.11ac(VHT80)	14.00		

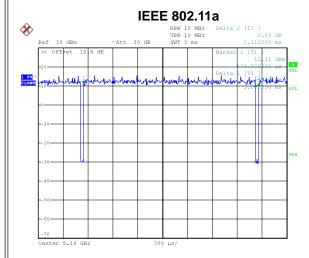
Beamforming

UNII-1			
Test Software Version	QRCT		
Frequency (MHz)	5180	5200	5240
IEEE 802.11n(HT20)	15.00	15.00	15.00
IEEE 802.11ac(VHT20)	14.00	14.00	14.00
Frequency (MHz)	5190	5230	
IEEE 802.11n(HT40)	13.50	15.00	
IEEE 802.11ac(VHT40)	13.50	14.00	
Frequency (MHz)	5210		
IEEE 802.11ac(VHT80)	13.00		

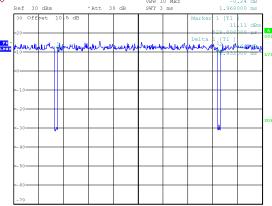
UNII-2A			
Test Software Version		QRCT	
Frequency (MHz)	5260	5300	5320
IEEE 802.11n(HT20)	15.00	15.00	15.00
IEEE 802.11ac(VHT20)	14.00	14.00	14.00
Frequency (MHz)	5270	5310	
IEEE 802.11n(HT40)	15.00	13.00	
IEEE 802.11ac(VHT40)	14.00	13.00	
Frequency (MHz)	5290		
IEEE 802.11ac(VHT80)	12.00		

UNII-2C			
Test Software Version	QRCT		
Frequency (MHz)	5500	5580	5700
IEEE 802.11n(HT20)	15.00	15.00	14.50
IEEE 802.11ac(VHT20)	14.00	14.00	13.50
Frequency (MHz)	5510	5550	5670
IEEE 802.11n(HT40)	15.00	15.00	15.00
IEEE 802.11ac(VHT40)	14.00	14.00	14.00
Frequency (MHz)	5530	5610	
IEEE 802.11ac(VHT80)	13.50	14.00	

UNII-3			
Test Software Version	QRCT		
Frequency (MHz)	5745	5785	5825
IEEE 802.11n(HT20)	14.50	15.00	15.00
IEEE 802.11ac(VHT20)	13.50	13.50	14.00
Frequency (MHz)	5755	5795	
IEEE 802.11n(HT40)	15.00	15.00	
IEEE 802.11ac(VHT40)	14.00	14.00	
Frequency (MHz)	5775		
IEEE 802.11ac(VHT80)	14.00		



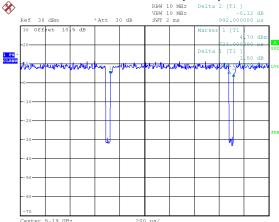
2.4 DUTY CYCLE


If duty cycle is ≥ 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

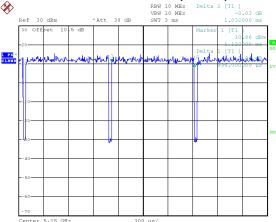
The output power = measured power + duty factor.

The power spectral density = measured power spectral density + duty factor.

IEEE 802.11n(HT20)


Date: 2.JUL.2021 12:00:55

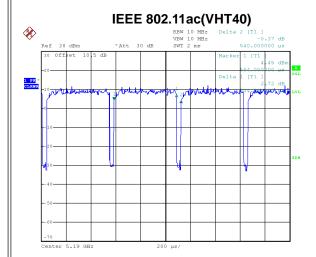
Duty cycle = 2.075 ms / 2.112 ms = 98.25%Duty Factor = $10 \log(1 / \text{Duty cycle}) = 0.08$


Date: 2.JUL.2021 12:02:05

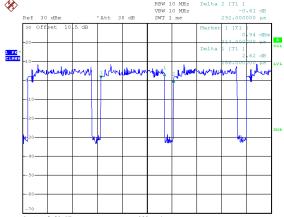
Duty cycle = 1.932 ms / 1.968 ms = 98.17%Duty Factor = $10 \log(1 / \text{Duty cycle}) = 0.08$

IEEE 802.11n(HT40)

IEEE 802.11ac(VHT20)


Date: 2.JUL.2021 12:06:06

Duty cycle = 0.956 ms / 0.992 ms = 96.37%Duty Factor = $10 \log(1 / \text{Duty cycle}) = 0.16$


Date: 2.JUL.2021 12:03:32

Duty cycle = 0.996 ms / 1.032 ms = 96.51%Duty Factor = $10 \log(1 / \text{Duty cycle}) = 0.15$

Date: 2.JUL.2021 12:05:06

Duty cycle = 0.504 ms / 0.540 ms = 93.33% Duty Factor = 10 log(1 / Duty cycle) = 0.30 Date: 2.JUL.2021 12:07:42

Duty cycle = 0.256 ms / 0.292 ms = 87.67%Duty Factor = $10 \log(1 / \text{Duty cycle}) = 0.57$

NOTE:

For IEEE 802.11a / IEEE 802.11n(HT20):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz (Duty cycle >98%).

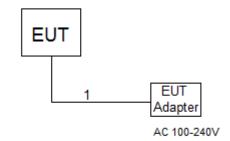
For IEEE 802.11n(HT40):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 2 kHz (Duty cycle < 98%).

For IEEE 802.11ac(VHT20):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz (Duty cycle < 98%).

For IEEE 802.11ac(VHT40):


For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 2 kHz (Duty cycle < 98%).

For IEEE 802.11ac(VHT80):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3.9 kHz (Duty cycle < 98%).

2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.6 SUPPORT UNITS

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	DC	N/A	N/A	1.5M

3. AC POWER LINE CONDUCTED EMISSIONS

3.1 LIMIT

Frequency	Limit (dBµV)	
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 to 56*	56 to 46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

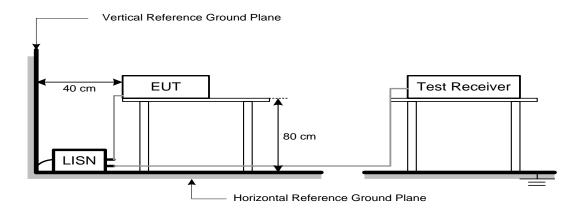
NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameter	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.3 DEVIATION FROM TEST STANDARD

No deviation

3.4 TEST SETUP

3.5 EUT OPERATION CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

The EUT was programmed to be in continuously transmitting/TX mode.

3.6 TEST RESULTS

Please refer to the APPENDIX A.

4. RADIATED EMISSIONS

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS (Above 1000 MHz)

LIMITS OF GIVENAUTED LIMISSION OUT OF THE RESTRICTED BANDS (ABOVE 1000 MITZ)		
Frequency	EIRP Limit	Equivalent Field Strength at 3m
(MHz)	(dBm/MHz)	(dBµV/m)
5150-5250	-27	68.2
5250-5350	-27	68.2
5470-5725	-27	68.2
	-27	68.2
5725-5850	10	105.2
NOTE (2)	15.6	110.8
	27	122.2

NOTE:

(1) The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts)

(2) According to 15.407(b)(4)(i), all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

4.2 TEST PROCEDURE

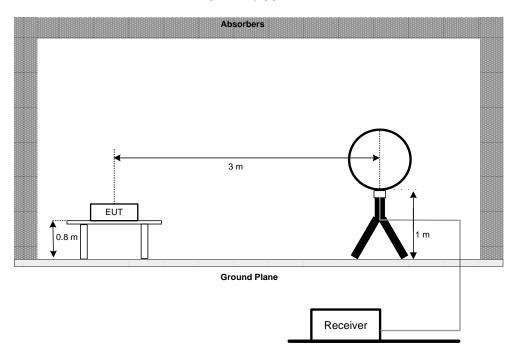
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item –EUT Test Photos.

The following table is the setting of the receiver:

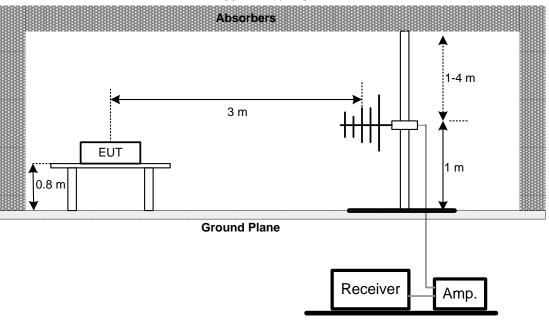
Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz

Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic or 40 GHz, whichever is lower
RBW / VBW	1 MHz / 3 MHz for PK value
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value

Receiver Parameters	Setting	
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector	
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector	
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector	
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector	
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector	
Start ~ Stop Frequency	1 GHz~40 GHz for PK/AVG detector	

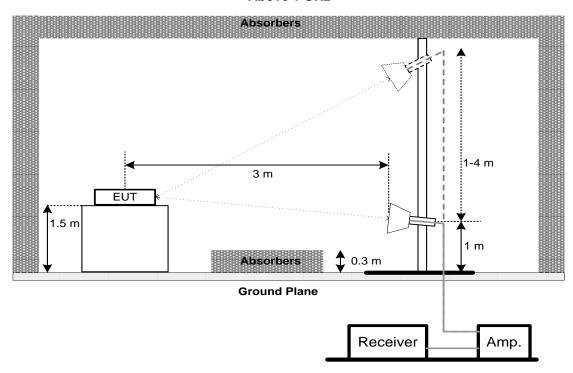


4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP

9 kHz to 30 MHz



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

4.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX C.

4.8 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. BANDWIDTH

5.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.407(a) FCC 15.407(e)	26 dB Bandwidth	-	5150-5250
	26 dB Bandwidth	-	5250-5350
	26 dB Bandwidth	-	5470-5725
	6 dB Bandwidth	Minimum 500 kHz	5725-5850

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below

b. Spectrum Setting: For UNII-1, UNII-2A, UNII-2C:

Spectrum Parameter	Setting
Span Frequency	> 26 dB Bandwidth
RBW	Appromiximately 1% of the emission bandwidth
VBW	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

For UNII-3:

01 01111 01			
Spectrum Parameter	Setting		
Span Frequency	> 6 dB Bandwidth		
RBW	100 kHz		
VBW	300 kHz		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

c. Measured the spectrum width with power higher than 26 dB / 6 dB below carrier.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX E.

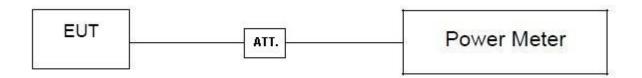
6. MAXIMUM OUTPUT POWER

6.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.407(a)	Maximum Output Power	AP device: 1 Watt (30 dBm) Client device: 250 mW (23.98 dBm)	5150-5250
		250 mW (23.98 dBm)	5250-5350
		250 mW (23.98 dBm)	5470-5725
		1 Watt (30dBm)	5725-5850

Note:

- a. For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- b. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10log B, where B is the 26dB Bandwidth in megahertz.


6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. Test test was performed in accordance with method of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX F.

7. POWER SPECTRAL DENSITY

7.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.407(a)	Power Spectral Density	AP device: 17 dBm/MHz Client device: 11 dBm/MHz	5150-5250
		11 dBm/MHz	5250-5350
		11 dBm/MHz	5470-5725
		30 dBm/500 kHz	5725-5850

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting:

For UNII-1, UNII-2A, UNII-2C:

Spectrum Parameter	Setting
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1 MHz.
VBW	3 MHz.
Detector	RMS
Trace average	100 trace
Sweep Time	Auto

For UNII-3:

Spectrum Parameter	Setting
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	100 kHz.
VBW	300 kHz.
Detector	RMS
Trace average	100 trace
Sweep Time	Auto

Note:

- 1. For UNII-3, according to KDB publication 789033 D02 General UNII Test Procedures New Rules v02r01, section II.F.5., it is acceptable to set RBW at 100kHz and VBW at 300kHz if the spectrum analyzer does not have 500 kHz RBW. Then, add 10 log (500 kHz/100 kHz) to the measured result, i.e. 7 dB.
- 2. During the test of U-NII 3 PSD, the measurement result with RBW=100kHz has been added 7 dB by compensating offset. For example, the cable loss is 13 dB, and the final offset is 13 + 7 = 20 dB when RBW=100kHz is used.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX G.

8. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Line Impedance Stabilisation Network	Schwarzbeck	NNLK 8121	8121-822	Mar. 20, 2022	
2	TWO-LINE V-NETWORK	R&S	ENV216	101340	Aug. 23, 2021	
3	Test Cable	emci	EMCRG400-BM-NM- 10000	170628	Apr. 11, 2022	
4	EMI Test Receiver	R&S	ESCI	100082	Mar. 21, 2022	
5	50Ω Terminator	SHX	TF2-1G-A	17051602	Mar. 20, 2022	
6	50Ω coaxial switch	Anritsu	MP59B	6201750902	Mar. 21, 2022	
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	

	Radiated Emissions - 9 kHz to 30 MHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Loop Antenna	EMCI	EMCI LPA600	275	May. 20, 2022	
2	MXE EMI Receiver	Keysight	N9038A	MY56400088	Mar. 21, 2022	
3	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	

	Radiated Emissions - 30 MHz to 1 GHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	TRILOG Broadband Antenna	Schwarzbeck	VULB 9160	9160-3233	Mar. 26, 2022		
2	Pre-Amplifier	emci	EMC9135	980401	Mar. 20, 2022		
3	MXE EMI Receiver	Keysight	N9038A	MY56400088	Mar. 21, 2022		
4	Test Cable	emci	EMC104-SM-SM-700 0	181020	Apr. 11, 2022		
5	Test Cable	emci	EMC104-SM-SM-250 0	170618	Apr. 11, 2022		
6	Test Cable	emci	EMC104-SM-SM-800	170647	Apr. 11, 2022		
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		

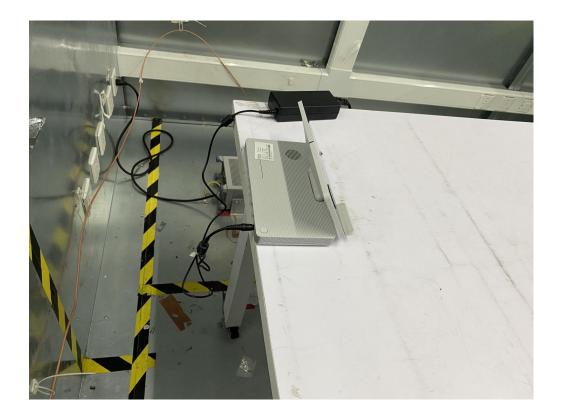
	Radiated Emissions - Above 1 GHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1817	Mar. 26, 2022		
2	Pre-Amplifier	emci	EMC051845SE	980725	Sep. 14, 2021		
3	EXA Spectrum Analyzer	Keysight	N9010A	MY56480579	Mar. 21, 2022		
4	Test Cable	emci	EMC104-SM-SM-700 0	181020	Apr. 11, 2022		
5	Test Cable	emci	EMC104-SM-SM-250 0	170618	Apr. 11, 2022		
6	Test Cable	emci	EMC104-SM-SM-800	170647	Apr. 11, 2022		
7	Double-Ridged Waveguide Horn Antenna	ETS-Lindgren	3116C	00203919	May 19, 2022		
8	Pre-Amplifier	emci	EMC184045B	980265	Apr. 11, 2022		
9	Test Cable	emci	EMC102-SM-SM-800	170335	Apr. 11, 2022		
10	Test Cable	emci	EMC102-KM-KM-250 0	170627	Apr. 11, 2022		
11	MXE EMI Receiver	Keysight	N9038A	MY5640088	Mar. 21, 2022		
12	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		

Bandwidth								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Spectrum Analyzer	R&S	FSP40	100626	May 29, 2022			
2	Attenuator	JUK	ATT-2W6G-S- 10	N/A	N/A			

Output Power							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Peak Power Analyze	Keysight	8990B	MY51000507	Mar. 21, 2022		
2	Wideband Power Sensor	Keysight	N1923A	MY58310003	Mar. 21, 2022		
3	Attenuator	JUK	ATT-2W6G-S- 10	N/A	N/A		

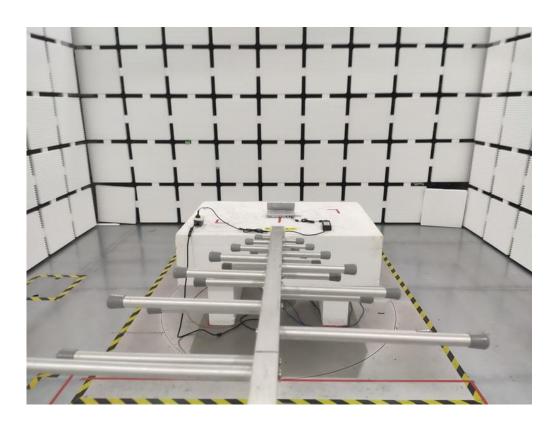
Power Spectral Density								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Spectrum Analyzer	R&S	FSP40	100626	May 29, 2022			
2	Attenuator	JUK	ATT-2W6G-S- 10	N/A	N/A			

Remark: "N/A" denotes no model name, serial no. or calibration specified.


All calibration period of equipment list is one year.

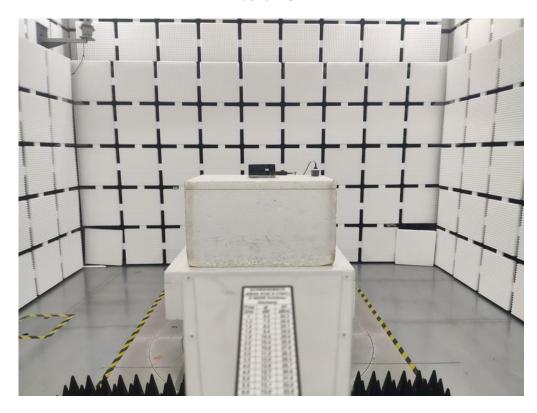
9. EUT TEST PHOTOS

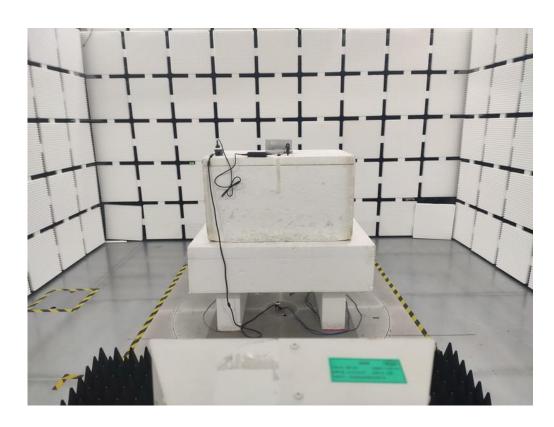




Radiated Emissions Test Photos

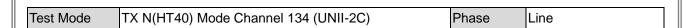
30 MHz to 1 GHz

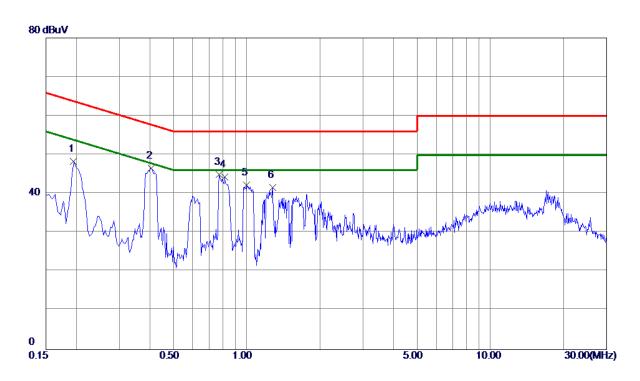




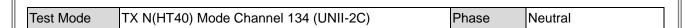
Radiated Emissions Test Photos

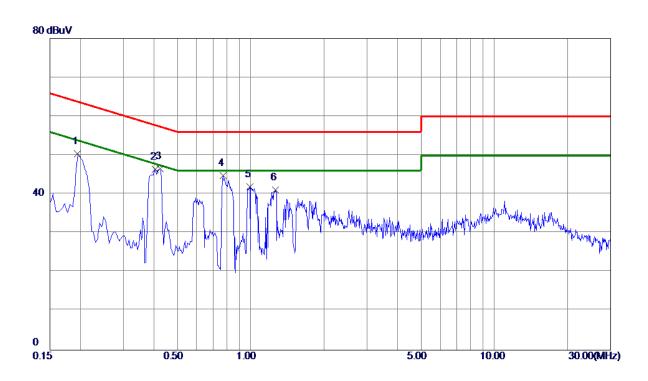
Above 1 GHz





APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS



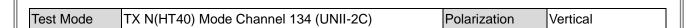


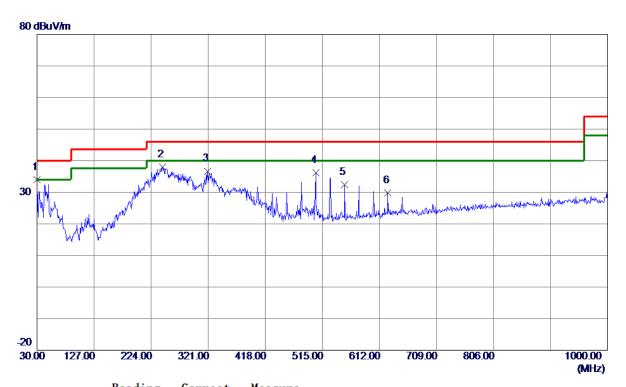
No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0. 1949	38. 61	9. 74	48. 35	63.83	-15.48	Peak	
2 *	0.4065	36. 84	9. 78	46.62	57.72	-11. 10	Peak	
3	0.7710	35. 07	9. 82	44.89	56.00	-11. 11	Peak	
4	0.8115	34.46	9.82	44. 28	56.00	-11.72	Peak	
5	1.0005	32. 33	9.84	42. 17	56.00	-13.83	Peak	
6	1. 2750	31.75	9. 86	41.61	56.00	-14.39	Peak	

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.
 The test result has included the cable loss.

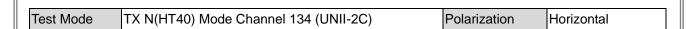
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0. 1949	40.73	9.71	50.44	63.83	-13. 39	Peak	
2	0.4065	36. 70	9. 76	46.46	57.72	-11. 26	Peak	
3 *	0.4245	36. 83	9. 76	46. 59	57.36	-10.77	Peak	
4	0.7710	35. 02	9.81	44.83	56.00	-11. 17	Peak	
5	0.9915	32. 14	9.82	41.96	56.00	-14.04	Peak	
6	1.2660	31. 30	9. 84	41. 14	56.00	-14.86	Peak	

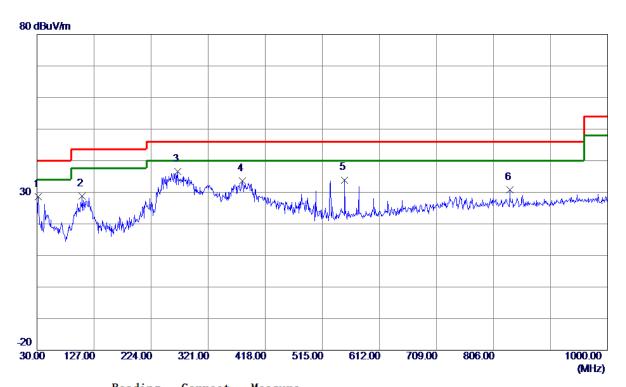
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.
- (3) The test result has included the cable loss.




APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ Note: The measured value have enough margin over 20dB than the limit, therefore they are not reported.

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

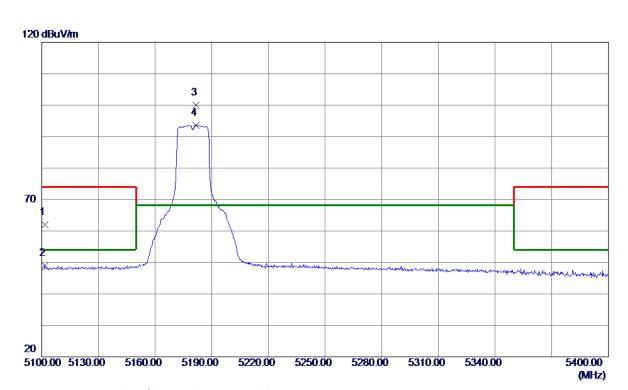




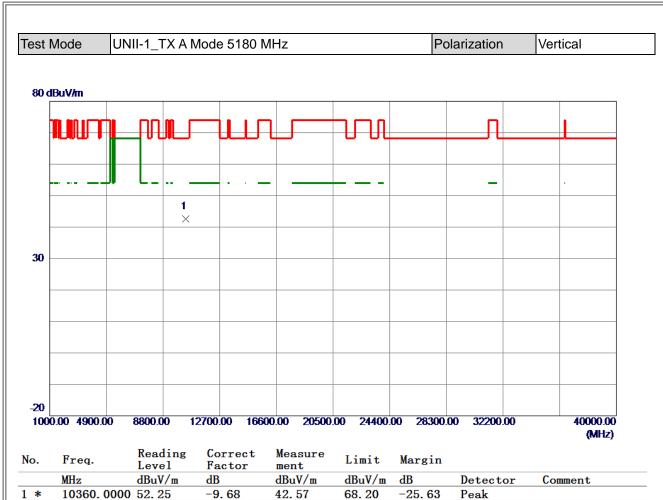
No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	30.0000	52. 36	-18.45	33. 91	40.00	-6. 09	Peak	
2	243.8850	55. 50	-17. 58	37.92	46.00	-8 . 0 8	Peak	
3	320.0300	51.74	-15.04	36. 70	46.00	-9. 30	Peak	
4	503.8450	47.28	-11. 15	36. 13	46.00	-9.87	Peak	
5	552.8300	42.90	-10.43	32.47	46.00	-13.53	Peak	
6	626. 5500	38. 70	-8.84	29.86	46.00	-16. 14	Peak	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	31.9400	46. 87	-18. 34	28. 53	40.00	-11.47	Peak	
2	106.6300	48. 99	-20. 21	28. 78	43.50	-14.72	Peak	
3 *	269. 1050	53. 27	-16. 59	36. 68	46.00	-9. 32	Peak	
4	378.7150	47.30	-13. 78	33. 52	46.00	-12.48	Peak	
5	552.8300	44.33	-10.43	33. 90	46.00	-12. 10	Peak	
6	833.6450	37. 19	-6. 42	30.77	46.00	-15. 23	Peak	

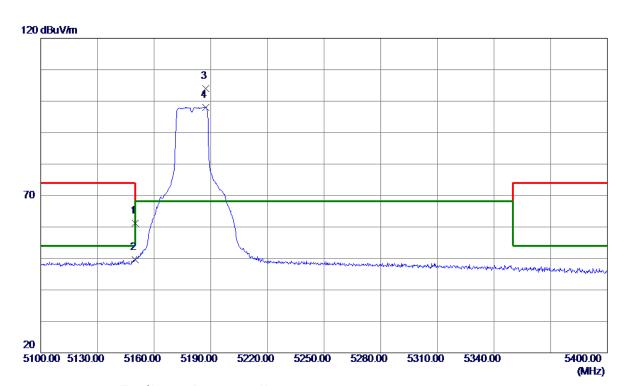

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ

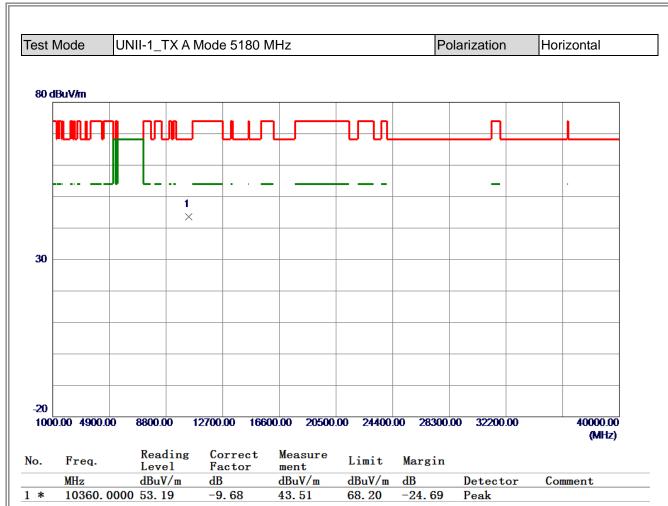


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	5101. 5000	23. 92	38. 06	61. 98	74.00	-12.02	Peak	
2	5101. 5000	10.96	38. 06	49.02	54.00	-4.98	AVG	
3 *	5181.6000	62. 18	37. 75	99. 93	68. 20	31.73	Peak	No limit
4	5181. 6000	55. 90	37.75	93. 65	68. 20	25. 45	AVG	No limit

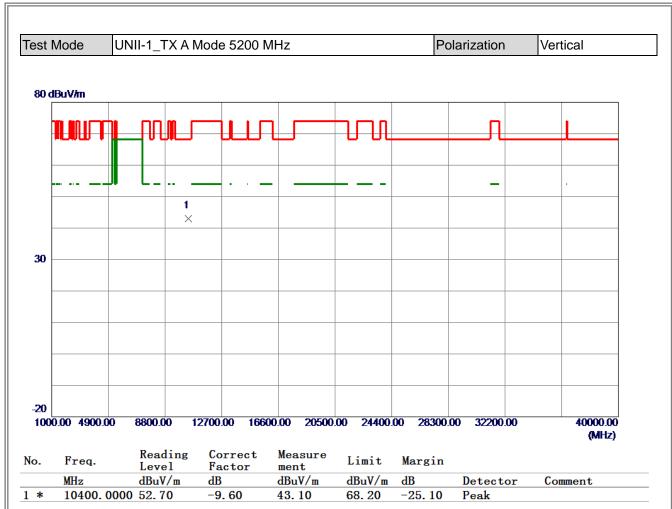
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

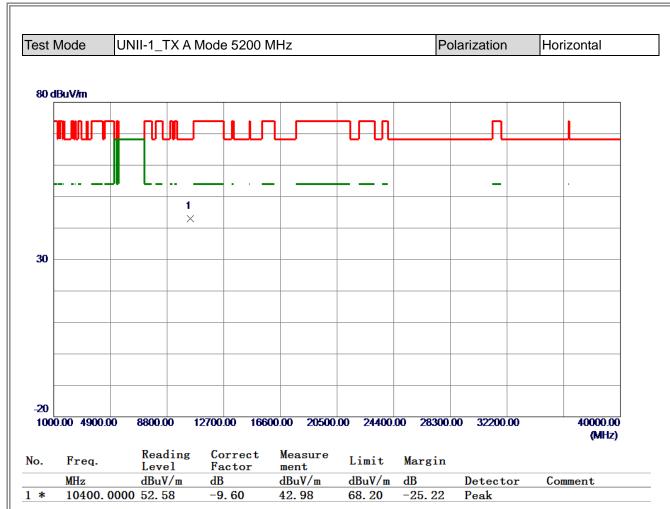


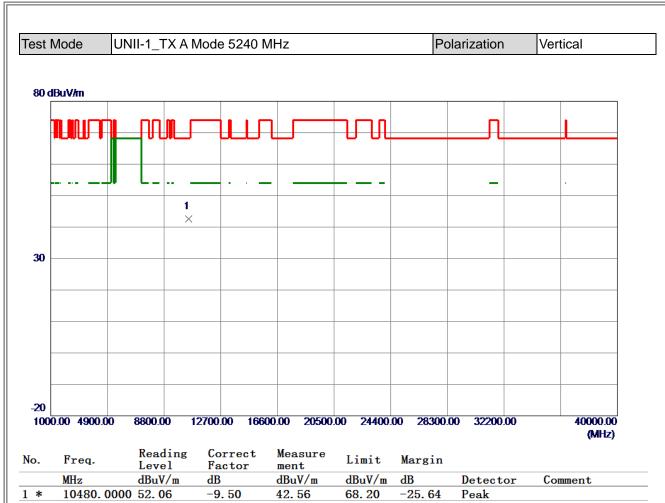
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

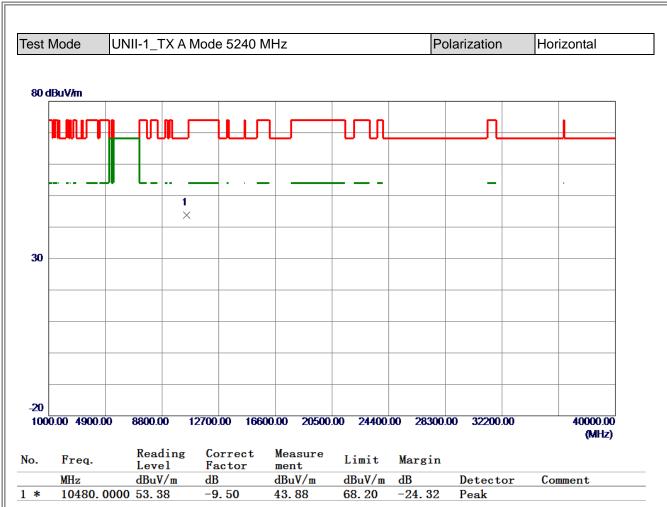


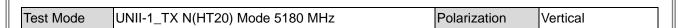
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	5150.0000	23. 27	37.88	61. 15	74.00	-12.85	Peak	
2	5150.0000	11.73	37.88	49.61	54.00	-4.39	AVG	
3 *	5187. 3000	66. 25	37. 73	103. 98	68. 20	35. 78	Peak	No limit
4	5187. 3000	60. 28	37.73	98. 01	68. 20	29.81	AVG	No limit

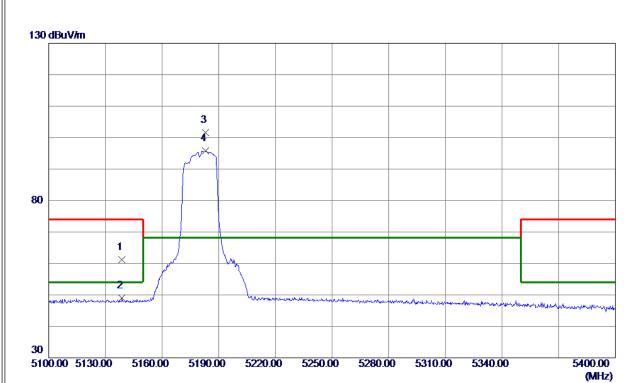

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

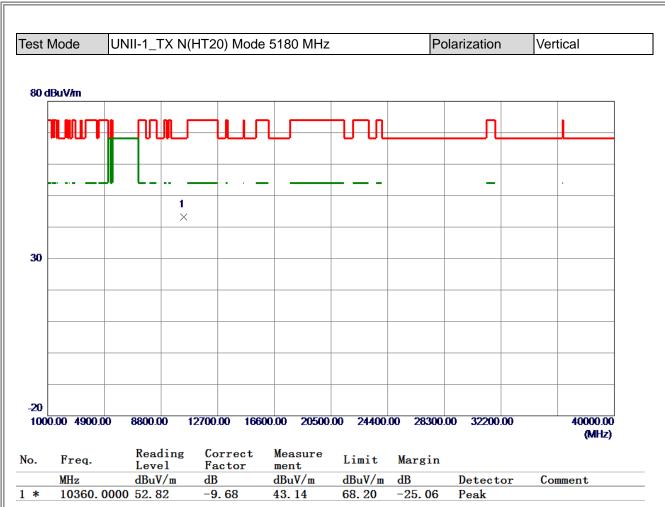

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

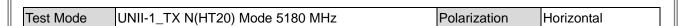

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

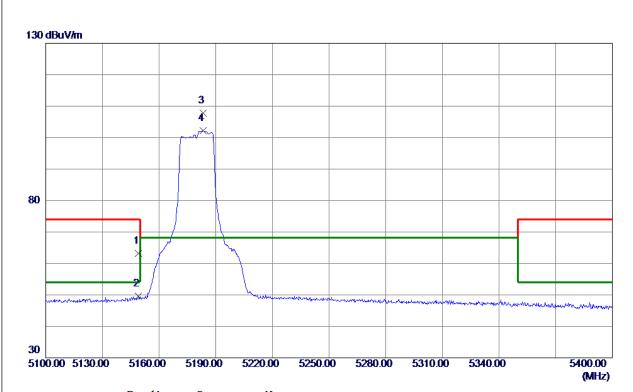


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

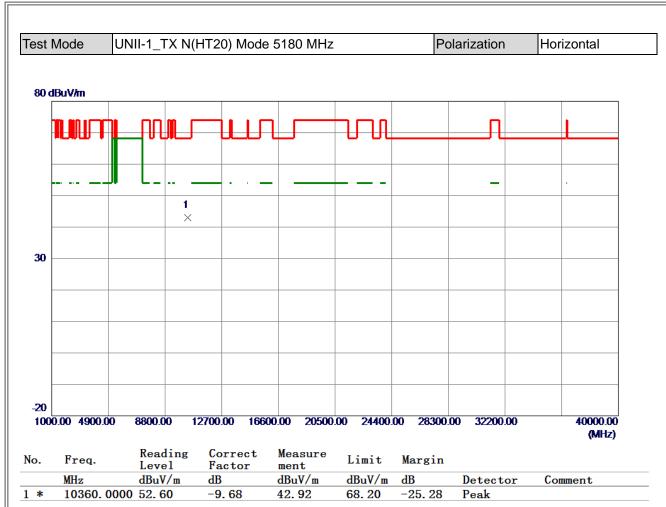


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	5138.7000	23. 34	37. 92	61. 26	74.00	-12.74	Peak	
2	5138.7000	11. 10	37. 92	49.02	54.00	-4.98	AVG	
3 *	5183. 1000	63. 93	37. 75	101.68	68. 20	33.48	Peak	No limit
4	5183. 1000	58. 00	37.75	95. 75	68. 20	27. 55	AVG	No limit

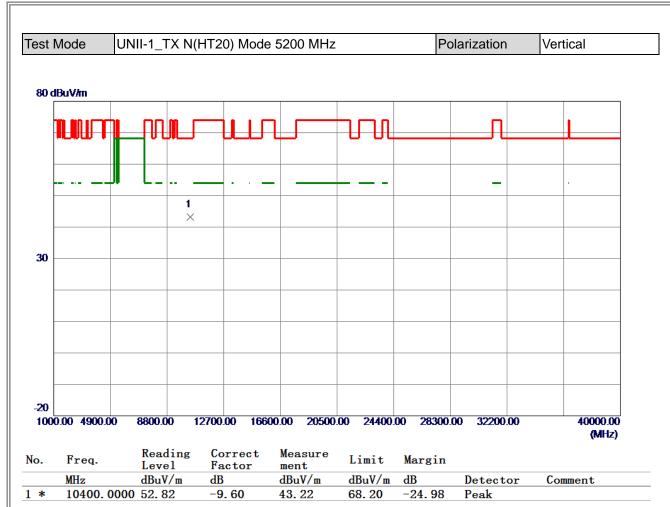

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

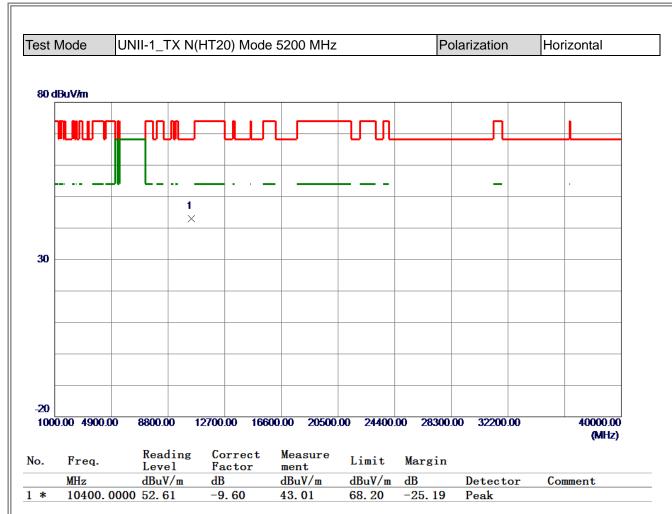


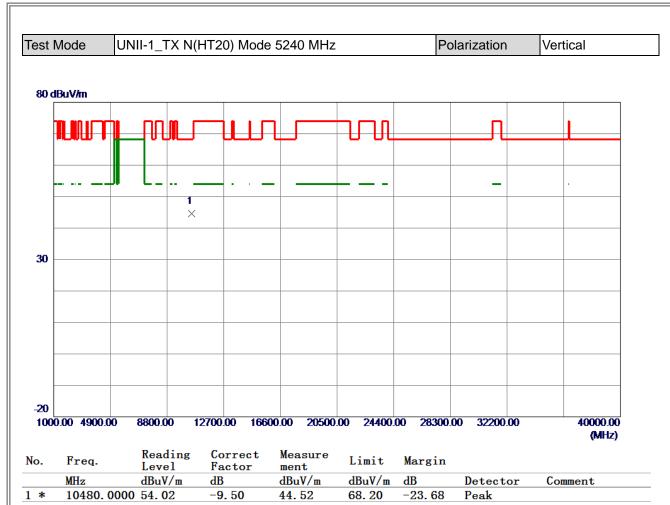
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

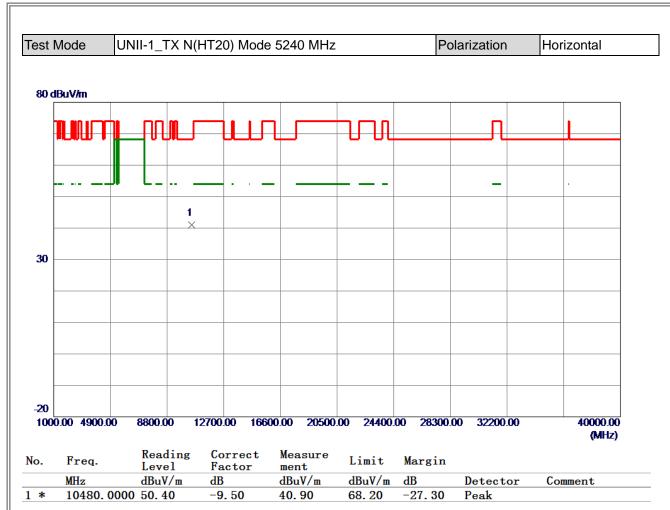


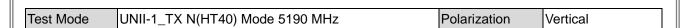
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	5148. 9000	25. 29	37.88	63. 17	74.00	-10.83	Peak	
2	5148. 9000	11.66	37.88	49. 54	54.00	-4.46	AVG	
3 *	5183. 4000	70.09	37.74	107.83	68. 20	39. 63	Peak	No limit
4	5183. 4000	64. 46	37.74	102. 20	68. 20	34.00	AVG	No limit


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

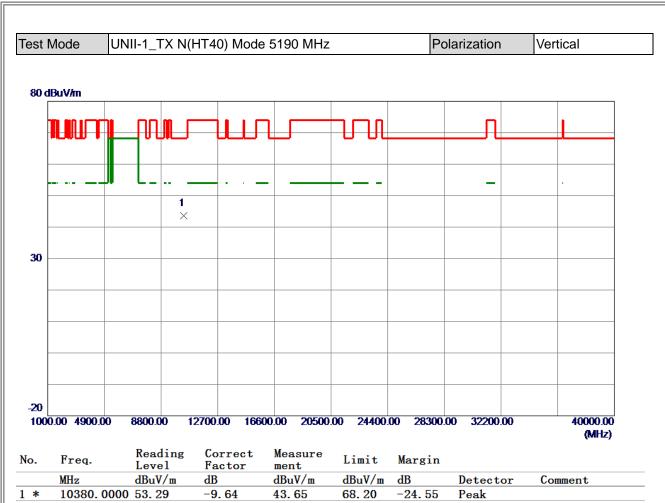

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

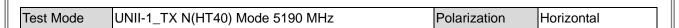

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

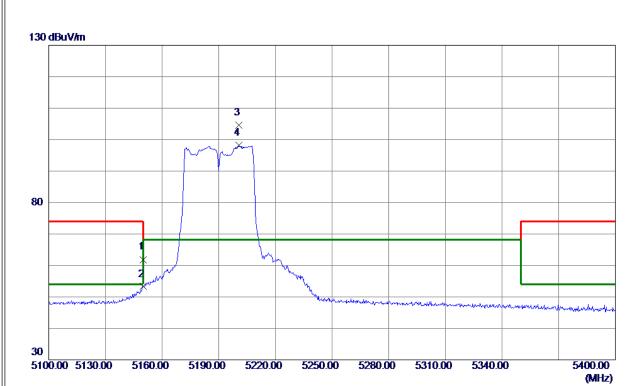


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

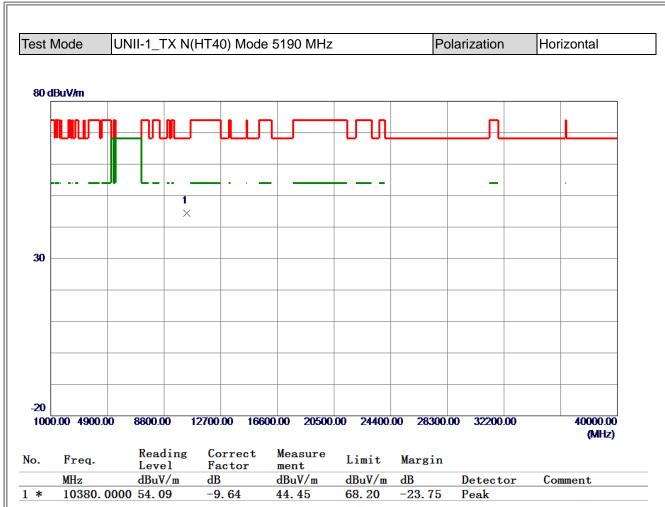


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	5150.0000	24. 13	37.88	62. 01	74.00	-11.99	Peak	
2	5150.0000	11.82	37.88	49.70	54.00	-4.30	AVG	
3 *	5203.8000	59. 80	37. 67	97.47	68. 20	29. 27	Peak	No limit
4	5203. 8000	53. 96	37.67	91. 63	68. 20	23. 43	AVG	No limit

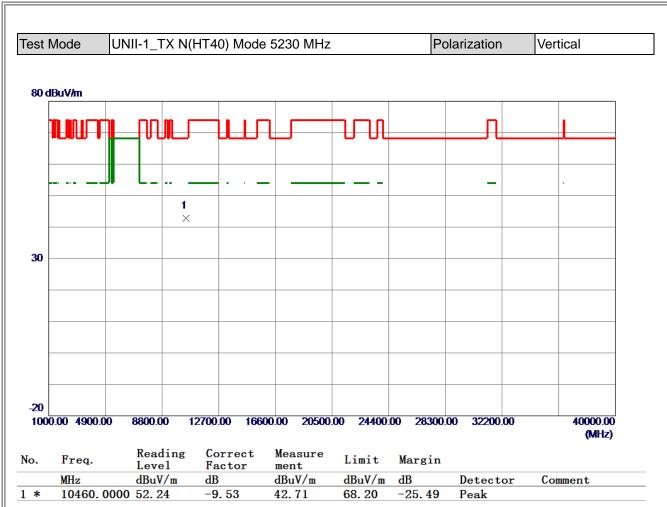

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

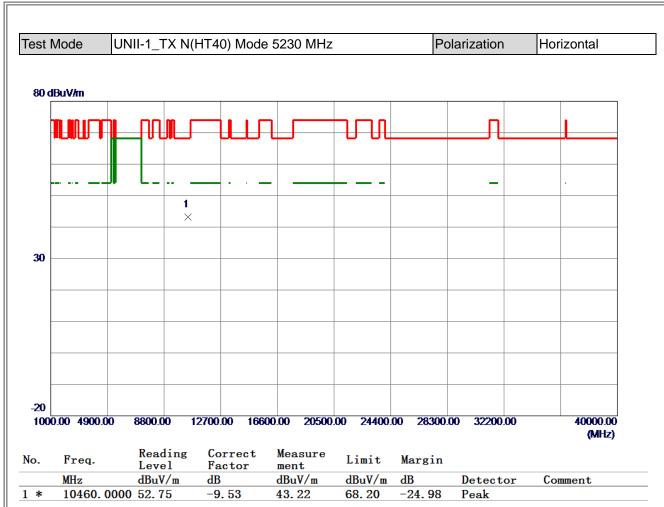


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

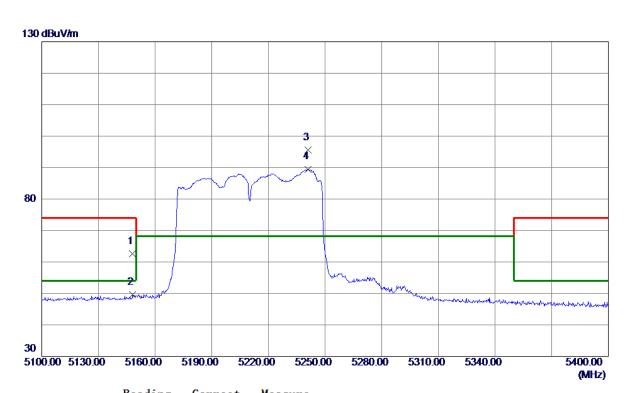


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	5150.0000	24.02	37.88	61. 90	74.00	-12. 10	Peak	
2	5150.0000	15. 42	37.88	53. 30	54.00	-0.70	AVG	
3 *	5200.6500	66. 87	37. 68	104.55	68. 20	36. 35	Peak	No limit
4	5200. 6500	60. 49	37.68	98. 17	68. 20	29. 97	AVG	No limit


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

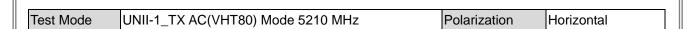
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

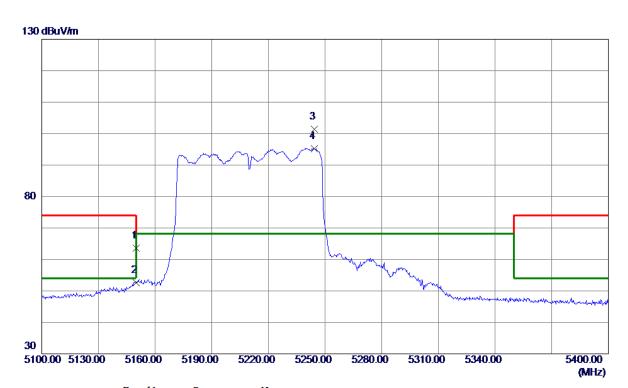


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

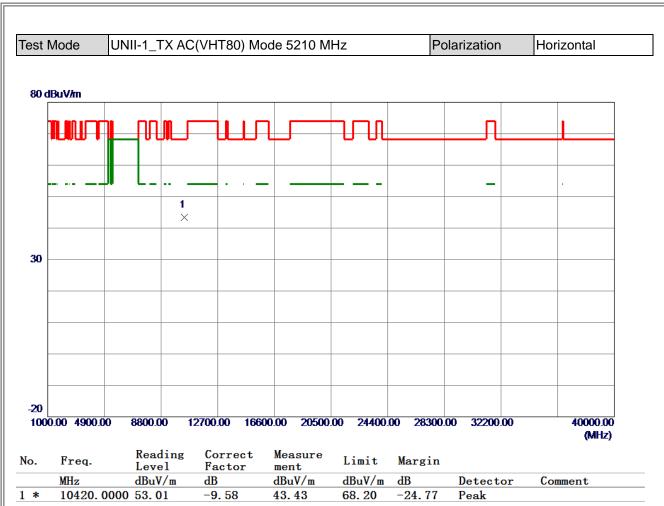


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	5148. 0000	24. 78	37.88	62. 66	74.00	-11. 34	Peak	
2	5148. 0000	11.70	37. 88	49. 58	54.00	-4.42	AVG	
3 *	5240.8500	57. 90	37.62	95. 52	68. 20	27. 32	Peak	No limit
4	5240. 8500	51.88	37.62	89. 50	68. 20	21. 30	AVG	No limit

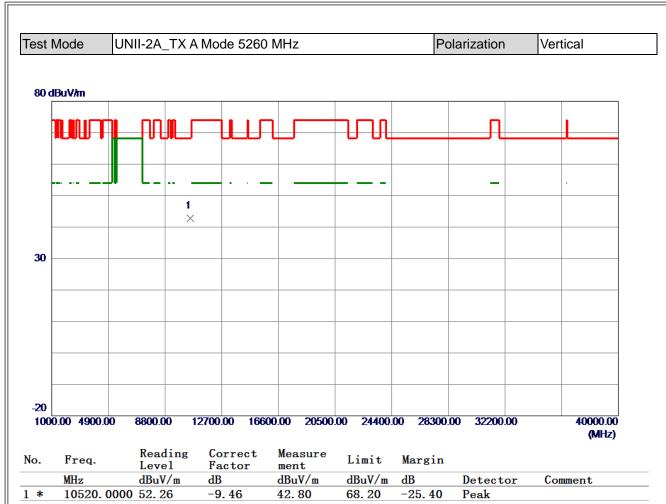

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

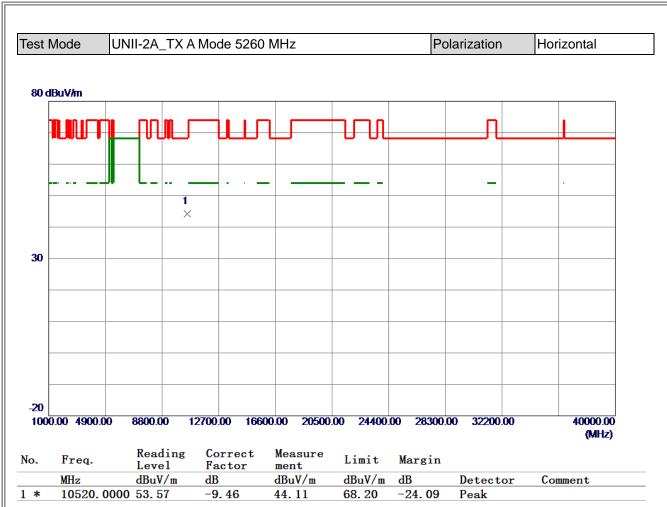


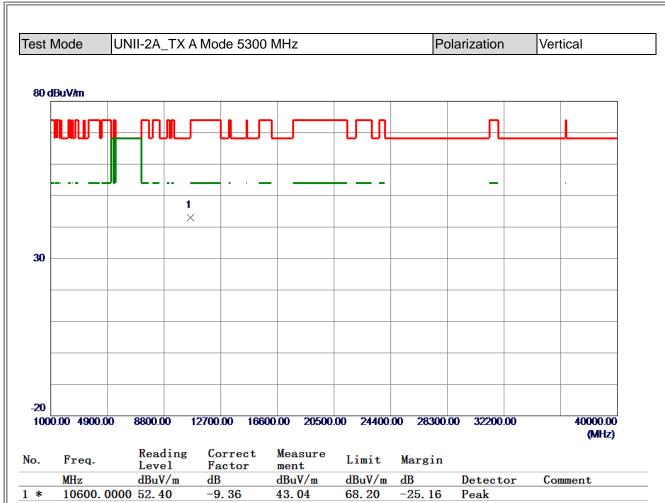
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

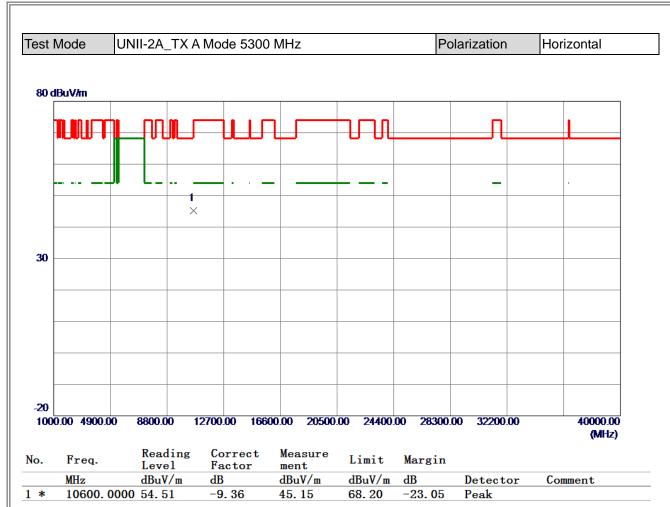


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	5150.0000	25. 64	37.88	63. 52	74.00	-10.48	Peak	
2	5150.0000	14.74	37.88	52. 62	54.00	-1.38	AVG	
3 *	5244. 3000	63. 69	37.62	101. 31	68. 20	33. 11	Peak	No limit
4	5244. 3000	57.62	37.62	95. 24	68. 20	27.04	AVG	No limit

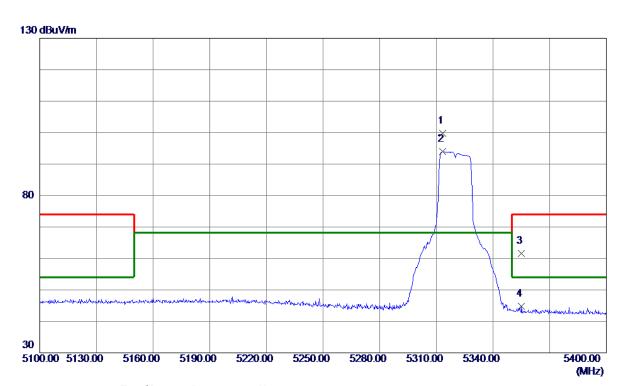

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

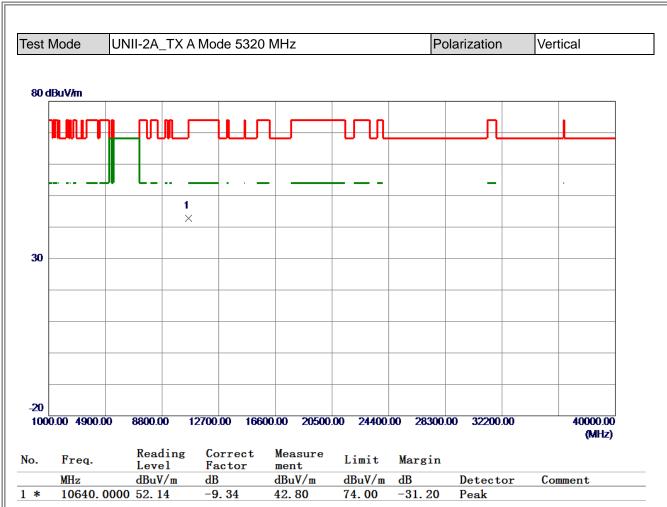

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

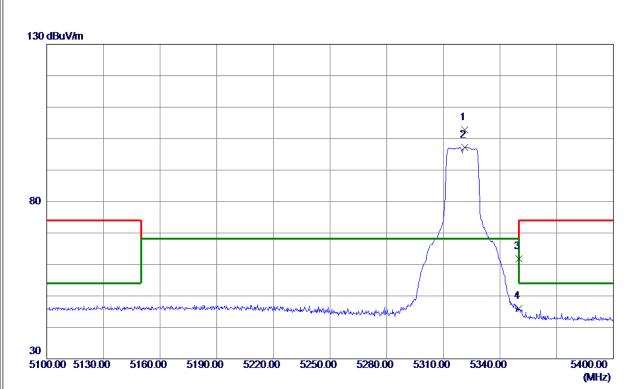


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

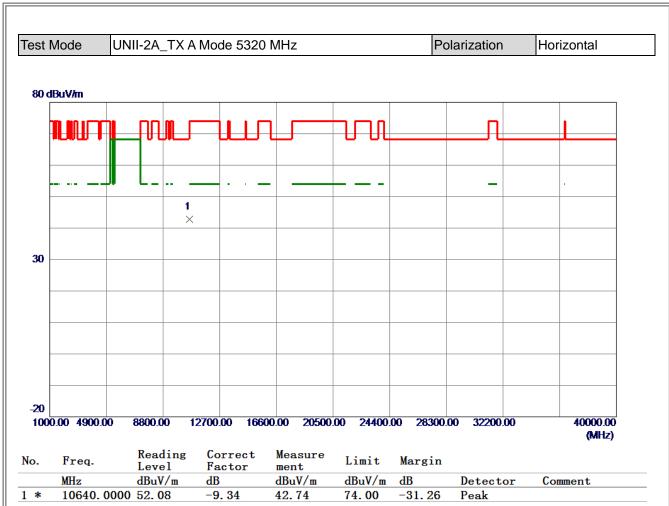


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	5313. 3000	62. 20	37. 59	99. 79	68. 20	31. 59	Peak	No limit
2	5313. 3000	56. 33	37. 59	93. 92	68. 20	25. 72	AVG	No limit
3	5355. 1500	23.86	37.76	61.62	74.00	-12. 38	Peak	
4	5355. 1500	6. 98	37.76	44.74	54.00	-9. 26	AVG	

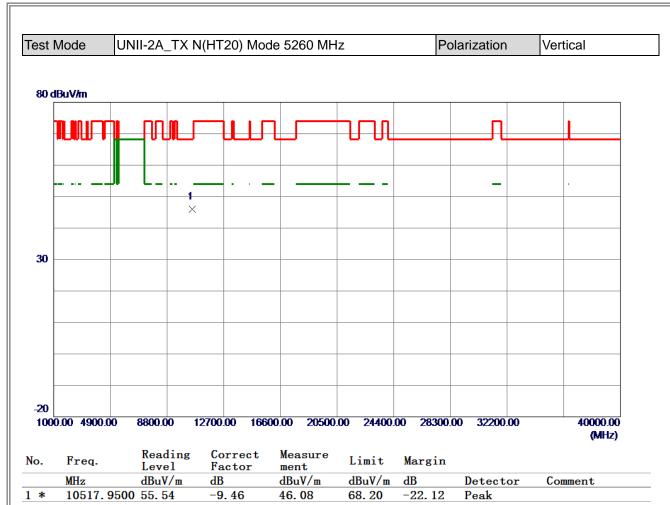
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

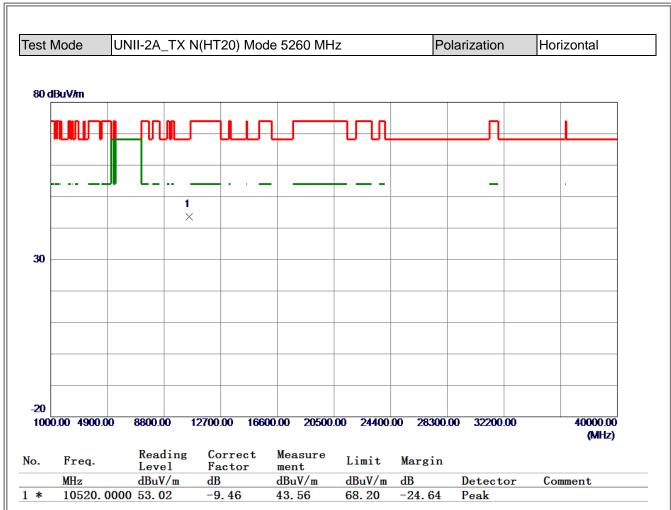


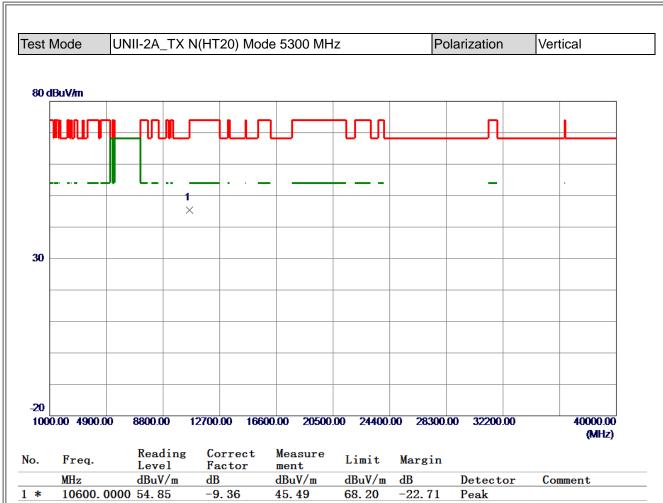
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

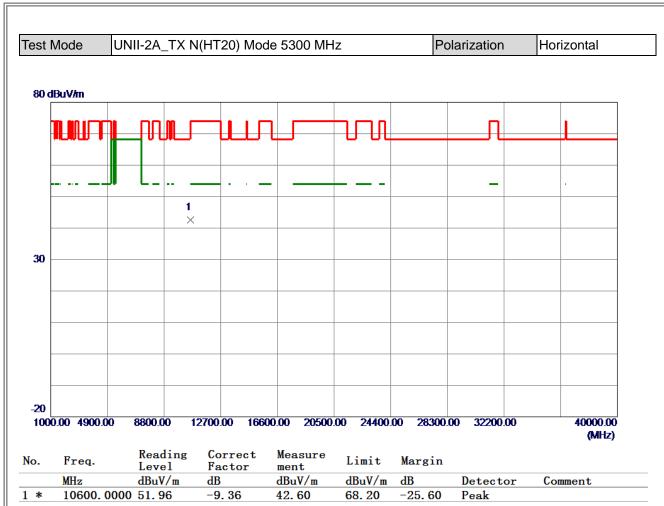


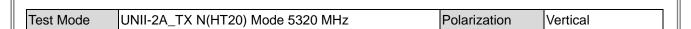
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	5321. 4000	65. 22	37.62	102.84	68. 20	34.64	Peak	No limit
2	5321. 4000	59. 66	37. 62	97. 28	68. 20	29.08	AVG	No limit
3	5350.0000	24.01	37.74	61.75	74.00	-12. 25	Peak	
4	5350. 0000	8. 20	37.74	45. 94	54.00	-8.06	AVG	

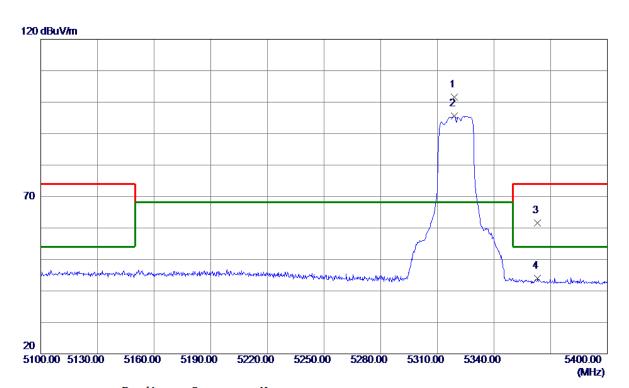

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

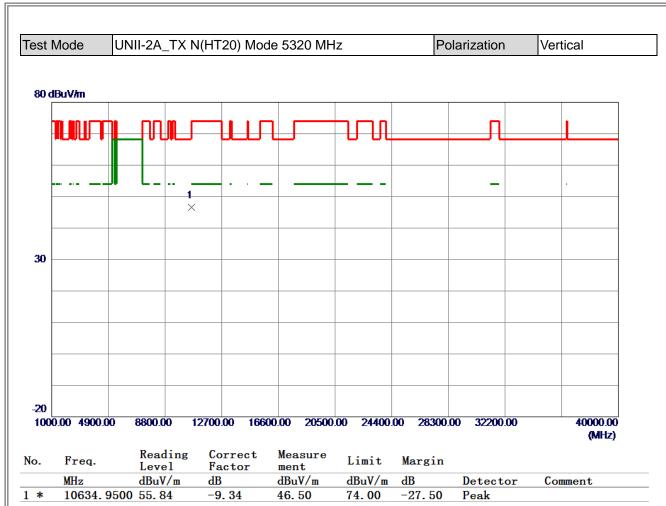

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

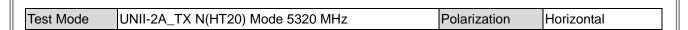

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

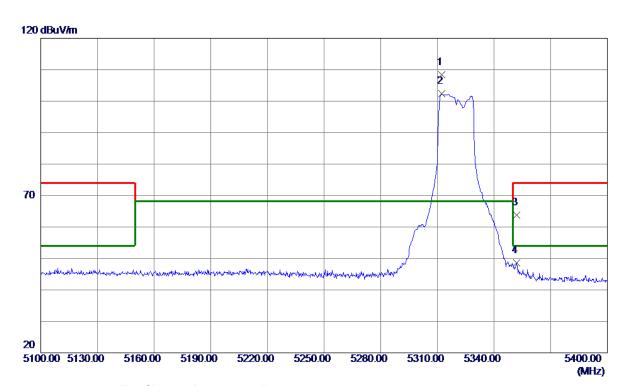


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

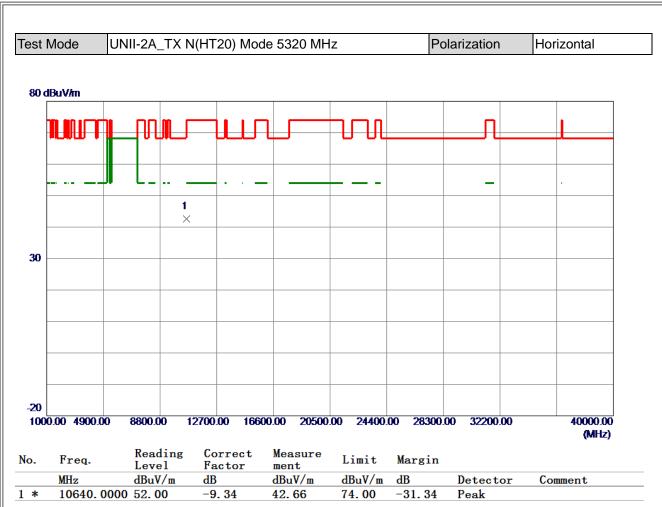


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	5318.8500	63. 96	37. 61	101. 57	68. 20	33. 37	Peak	No limit
2	5318.8500	57. 93	37.61	95. 54	68. 20	27.34	AVG	No limit
3	5363. 1000	23.82	37. 79	61. 61	74.00	-12.39	Peak	
4	5363. 1000	6. 27	37.79	44.06	54.00	-9. 94	AVG	

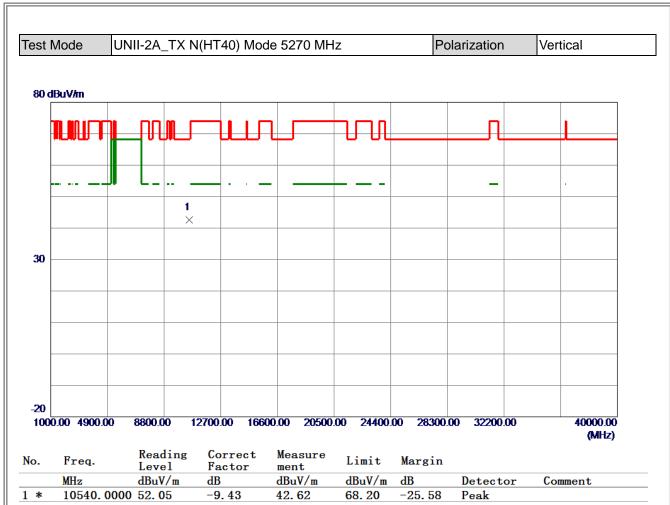

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

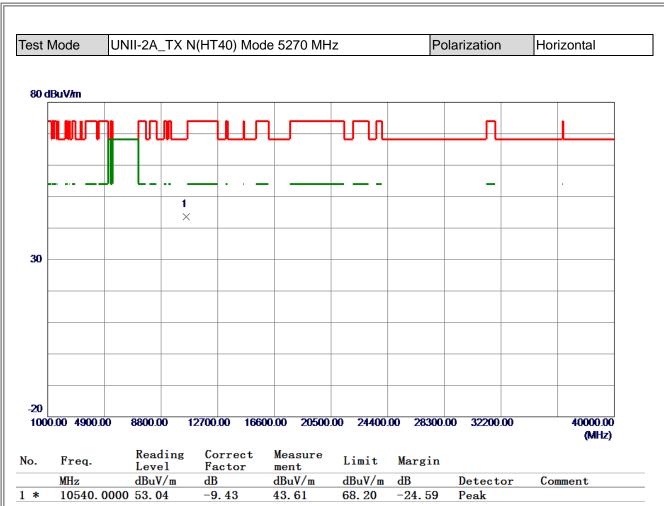


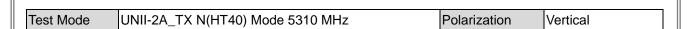
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

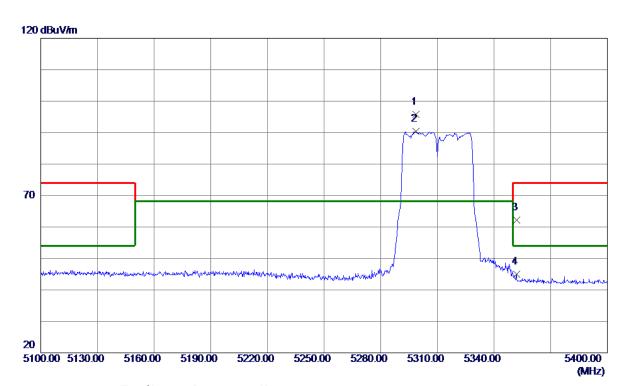


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	5312. 4000	70. 76	37. 59	108. 35	68. 20	40. 15	Peak	No limit
2	5312.4000	64.73	37. 59	102. 32	68. 20	34. 12	AVG	No limit
3	5352. 1500	25. 98	37. 75	63.73	74.00	-10. 27	Peak	
4	5352. 1500	10. 78	37.75	48. 53	54.00	-5. 47	AVG	

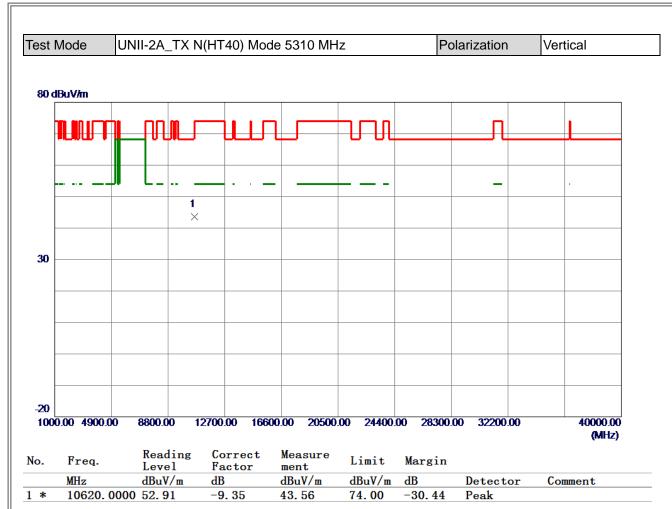

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

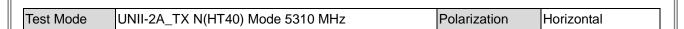

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

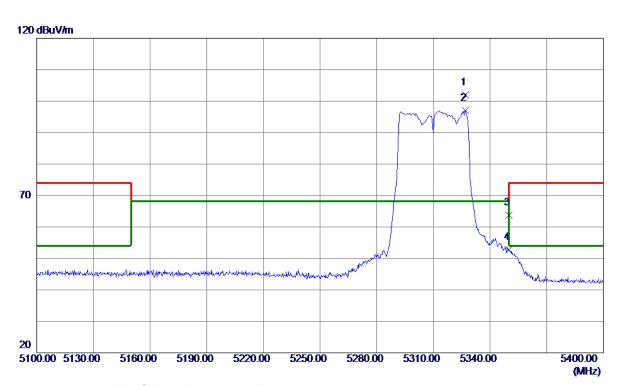


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

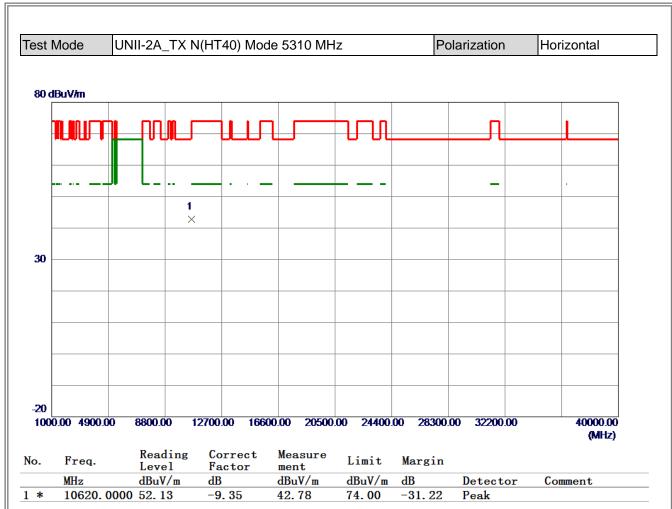


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	5298.7500	58. 27	37. 54	95. 81	68. 20	27.61	Peak	No limit
2	5298.7500	52.83	37. 54	90. 37	68. 20	22. 17	AVG	No limit
3	5351.8500	24. 55	37.74	62. 29	74.00	-11.71	Peak	
4	5351.8500	7. 28	37.74	45. 02	54.00	-8. 98	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

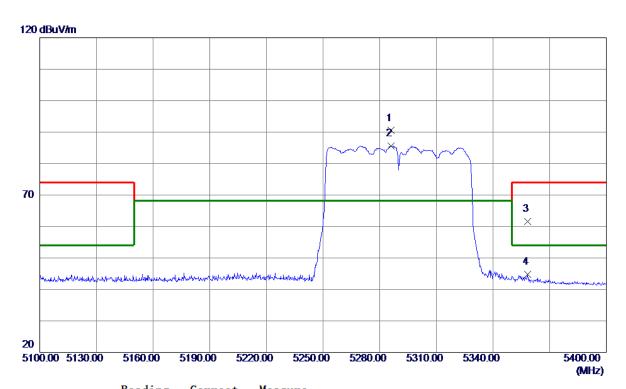


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

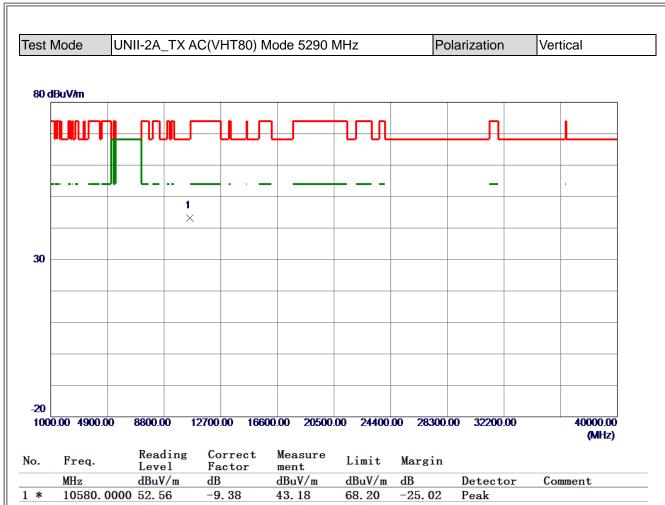


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	5327. 1000	64.45	37. 64	102.09	68. 20	33.89	Peak	No limit
2	5327. 1000	59. 43	37.64	97. 07	68. 20	28. 87	AVG	No limit
3	5350. 0000	26. 11	37.74	63.85	74.00	-10. 15	Peak	
4	5350. 0000	14. 99	37.74	52. 73	54.00	-1. 27	AVG	

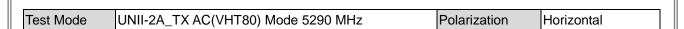
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

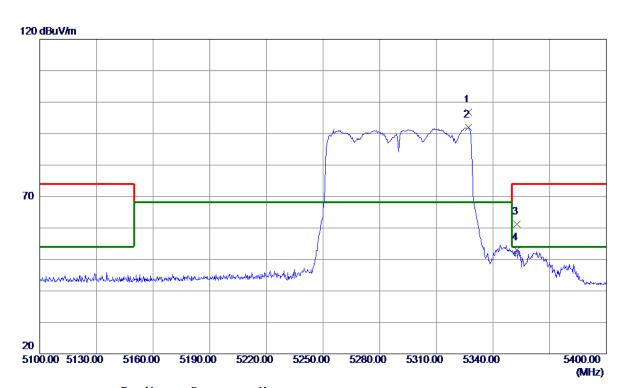


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

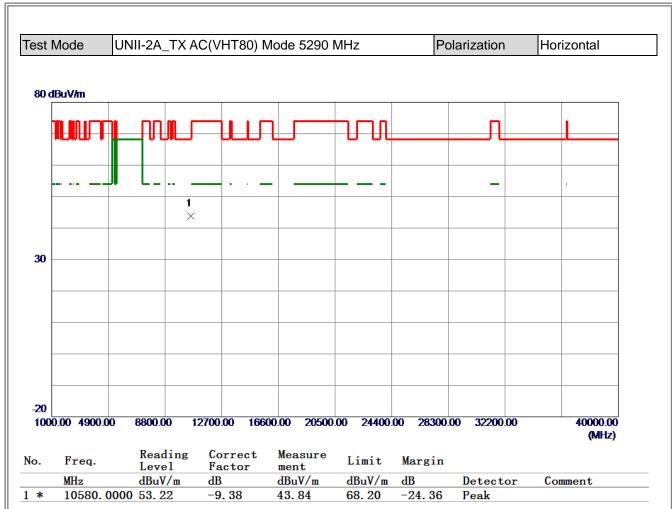


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	5285.8500	52. 94	37. 56	90. 50	68. 20	22. 30	Peak	No limit
2	5285.8500	48.05	37. 56	85. 61	68. 20	17.41	AVG	No limit
3	5358. 4500	23.74	37.77	61. 51	74.00	-12.49	Peak	
4	5358. 4500	6. 95	37.77	44.72	54.00	-9. 28	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

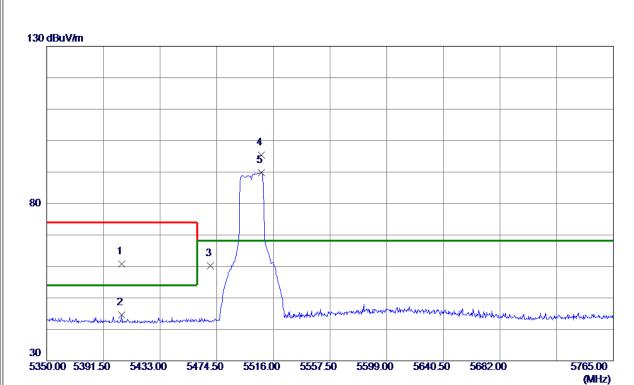


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

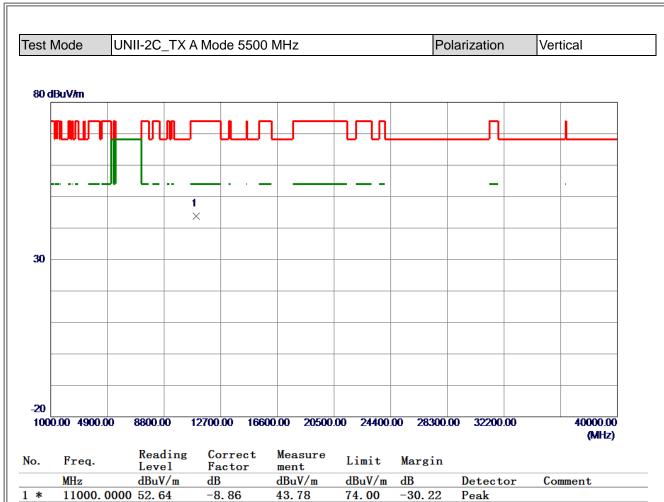


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	5326. 9500	59. 07	37. 64	96. 71	68. 20	28. 51	Peak	No limit
2	5326. 9500	54. 27	37.64	91. 91	68. 20	23.71	AVG	No limit
3	5352. 6000	23. 36	37. 75	61. 11	74.00	-12.89	Peak	
4	5352. 6000	15. 18	37.75	52. 93	54.00	-1.07	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

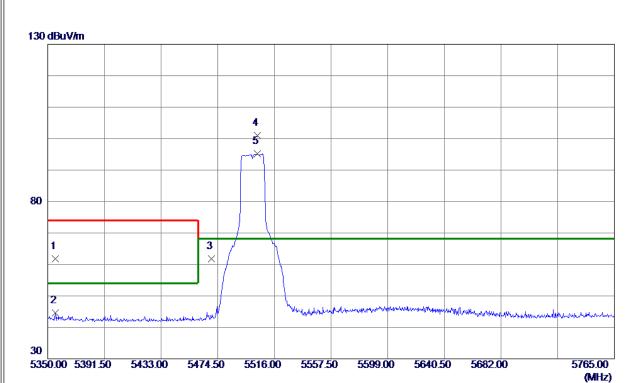


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

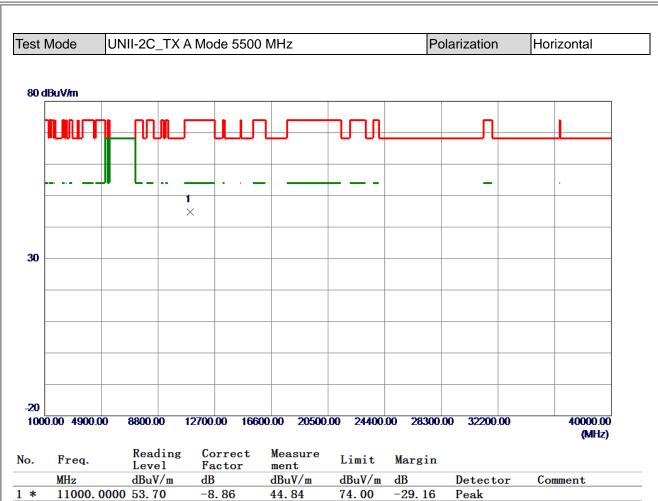


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	5404.9880	22. 90	37. 95	60.85	74.00	-13. 15	Peak	
2	5404.9880	6.73	37. 95	44.68	54.00	-9. 32	AVG	
3	5470.0000	22.00	38. 15	60. 15	68. 20	−8. 0 5	Peak	
4 *	5507. 2850	57.06	38. 25	95. 31	68. 20	27. 11	Peak	No limit
5	5507. 2850	51. 53	38. 25	89. 78	68. 20	21. 58	AVG	No limit

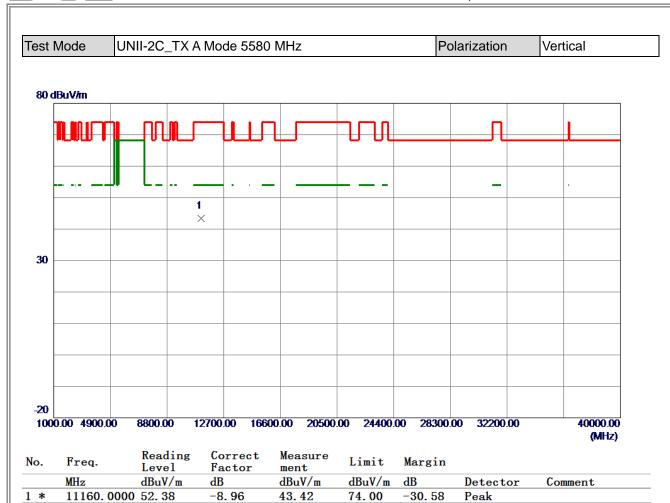
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

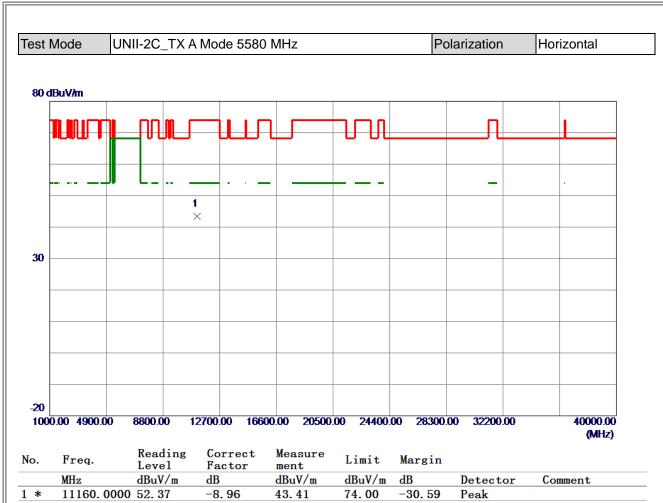


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

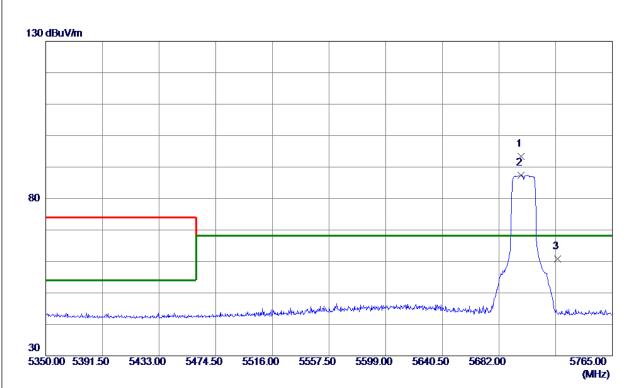


JP., V /			
abuv/m	dB	Detector	Comment
74.00	-12. 15	Peak	
54.00	-9.47	AVG	
68. 20	-6. 45	Peak	
68. 20	32.84	Peak	No limit
68. 20	26. 97	AVG	No limit
	54. 00 68. 20 68. 20	74. 00 -12. 15 54. 00 -9. 47 68. 20 -6. 45 68. 20 32. 84	74.00 -12.15 Peak 54.00 -9.47 AVG 68.20 -6.45 Peak 68.20 32.84 Peak

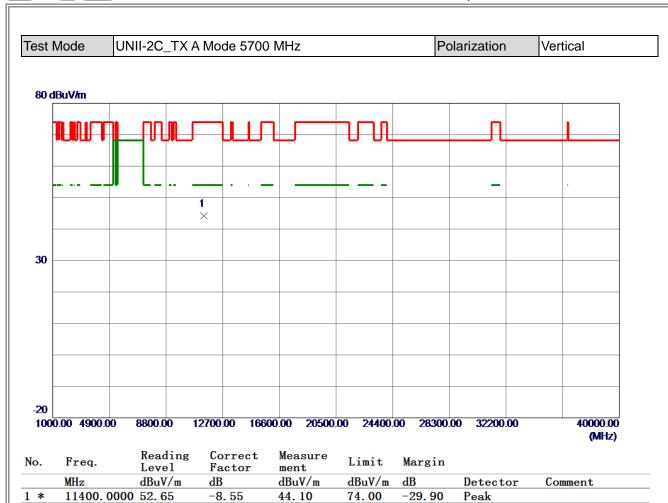

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

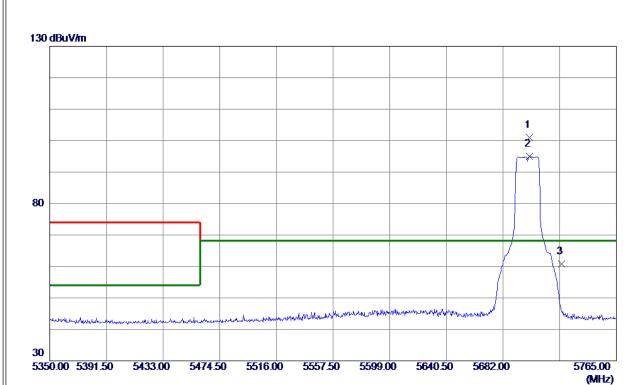


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

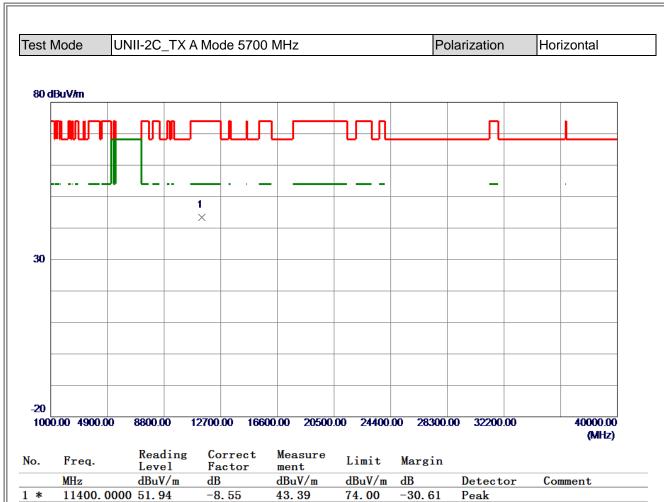


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	5698. 1850	55. 05	38. 40	93. 45	68. 20	25. 25	Peak	No limit
2	5698. 1850	49. 01	38. 40	87.41	68. 20	19. 21	AVG	No limit
3	5725. 0000	22. 30	38. 50	60.80	68. 20	-7.40	Peak	

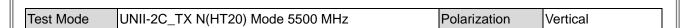
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

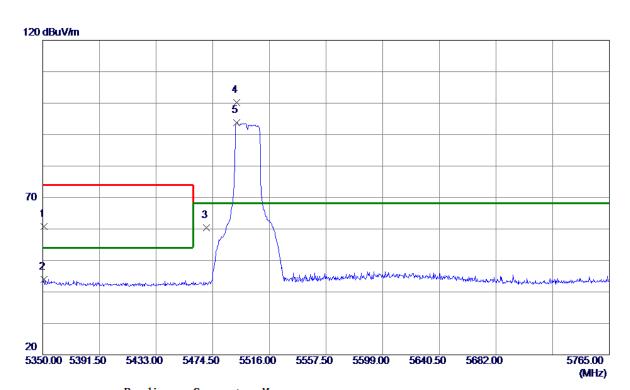


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

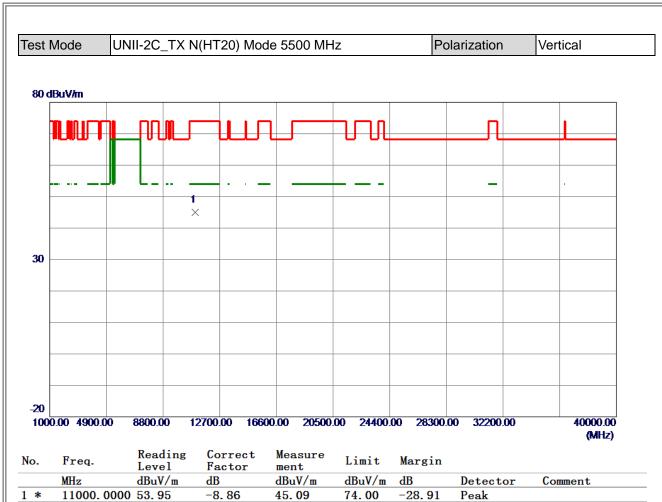


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	5701. 5050	62. 59	38. 41	101.00	68. 20	32.80	Peak	No limit
2	5701. 5050	56. 54	38. 41	94. 95	68. 20	26.75	AVG	No limit
3	5725. 0000	22. 39	38. 50	60.89	68. 20	-7.31	Peak	

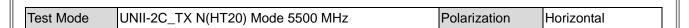

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

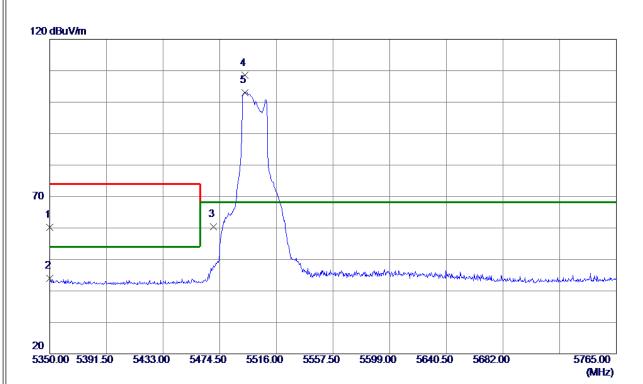


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

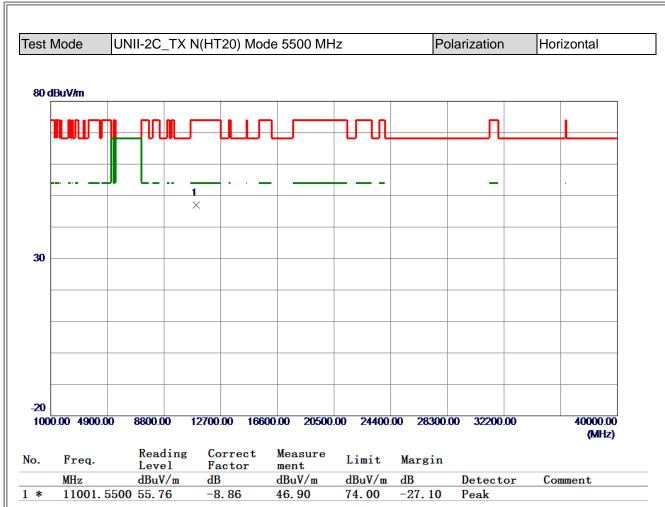


MHz dBuV/m dB dBuV/m dBuV/	
	m dB Detector Comment
1 5351.0379 23.07 37.74 60.81 74.00	-13.19 Peak
2 5351.0379 6.34 37.74 44.08 54.00	-9.92 AVG
3 5470.0000 22.32 38.15 60.47 68.20	-7.73 Peak
4 * 5492. 1370 61. 92 38. 22 100. 14 68. 20	31.94 Peak No limit
5 5492. 1370 55. 59 38. 22 93. 81 68. 20	25.61 AVG No limit

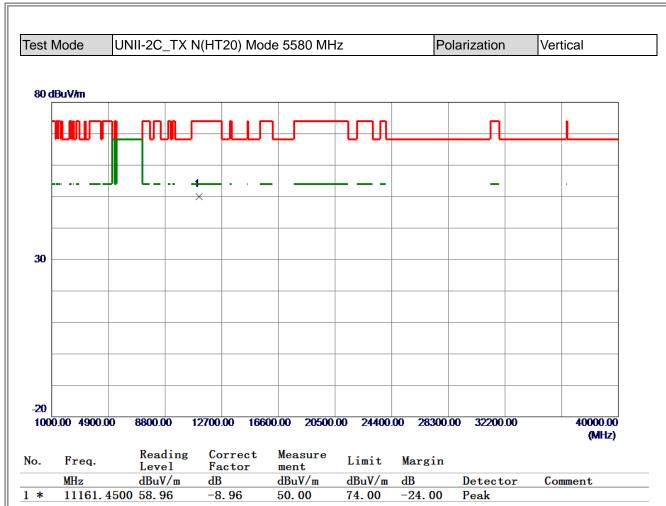

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

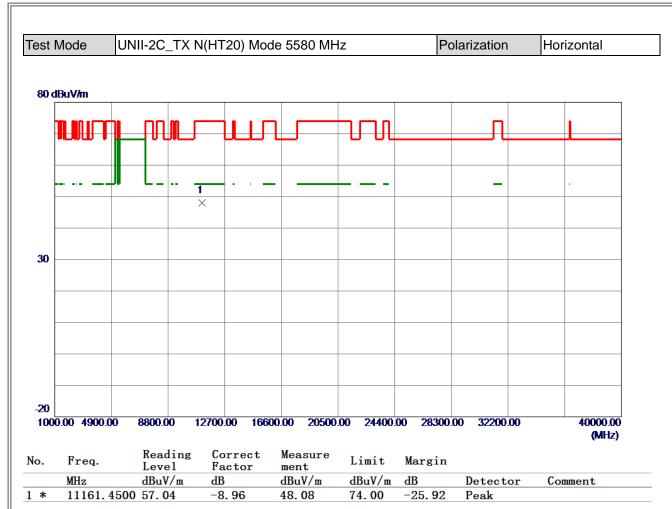


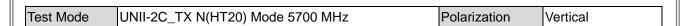
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

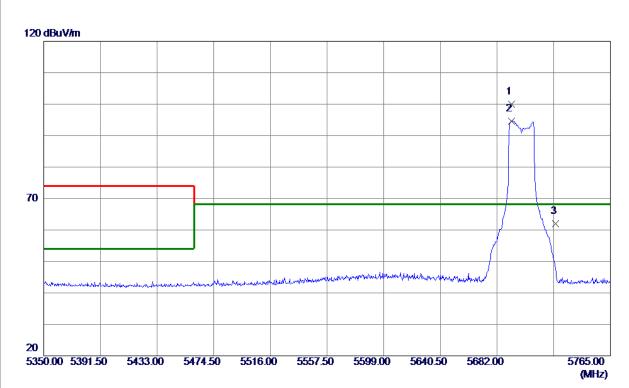


No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	5350.0000	22. 42	37.74	60. 16	74.00	-13.84	Peak	
2	5350.0000	6. 21	37.74	43.95	54.00	-10.05	AVG	
3	5470.0000	22. 28	38. 15	60.43	68. 20	-7.77	Peak	
4 *	5492.7599	70. 28	38. 22	108. 50	68. 20	40.30	Peak	No limit
5	5492.7599	64.79	38. 22	103. 01	68. 20	34.81	AVG	No limit

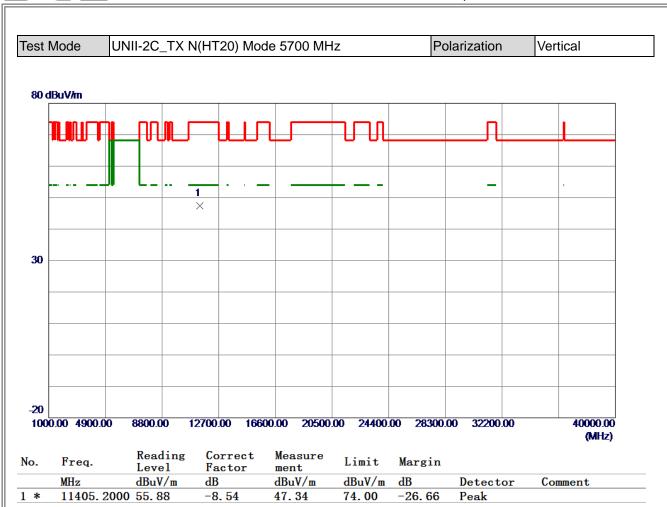

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

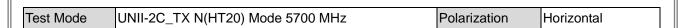

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

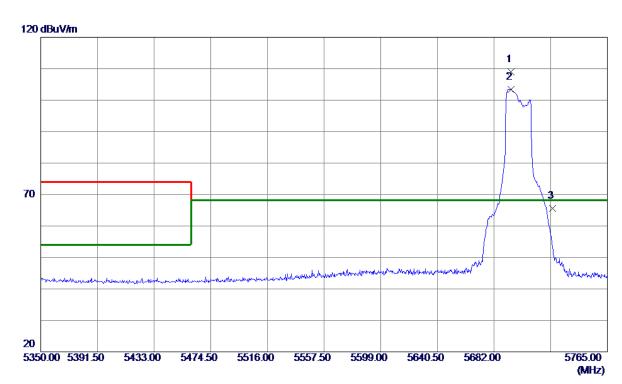


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

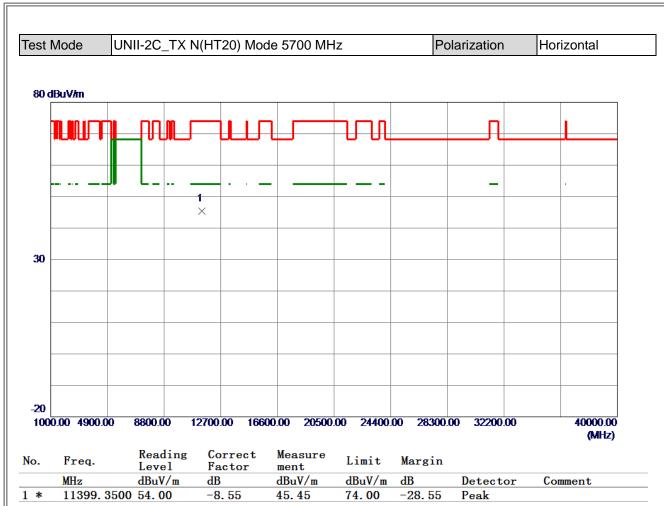


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	5692. 3750	61.60	38. 40	100.00	68. 20	31.80	Peak	No limit
2	5692. 3750	56. 16	38. 40	94. 56	68. 20	26. 36	AVG	No limit
3	5725. 0000	23.41	38. 50	61. 91	68. 20	-6. 29	Peak	

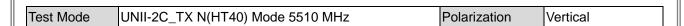

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

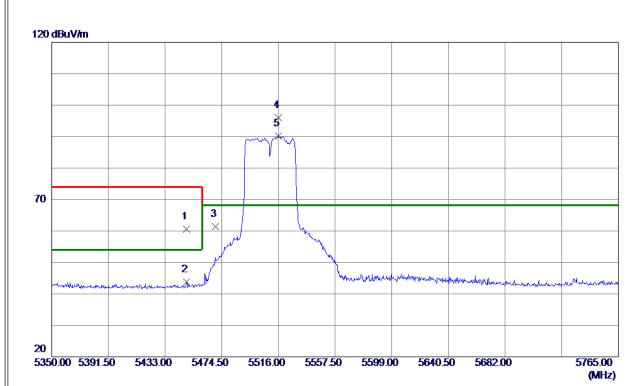


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

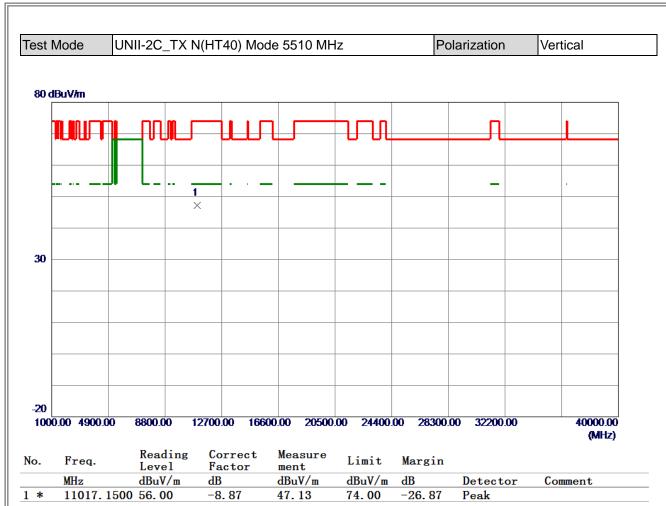


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	5694. 2430	70.63	38. 40	109.03	68. 20	40.83	Peak	No limit
2	5694. 2430	65. 06	38. 40	103.46	68. 20	35. 26	AVG	No limit
3	5725. 0000	27.03	38. 50	65. 53	68. 20	-2.67	Peak	

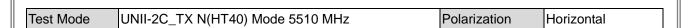

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

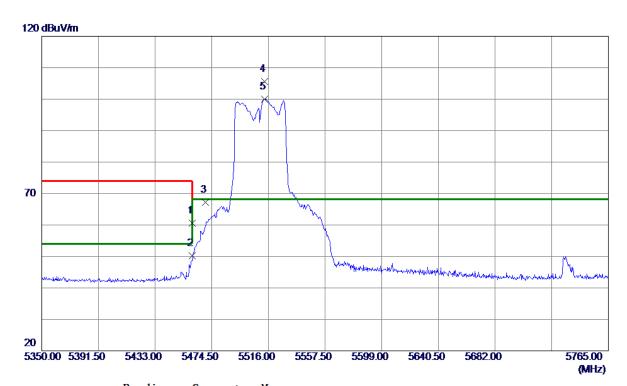


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

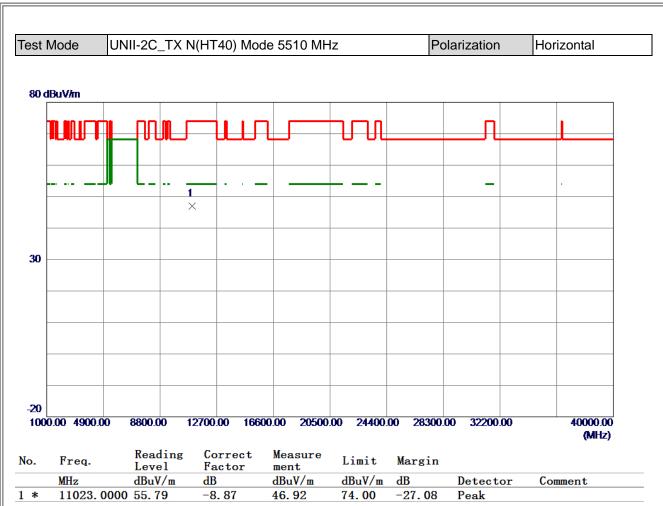


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	5448.7700	22. 59	38. 09	60.68	74.00	-13. 32	Peak	
2	5448.7700	5. 64	38. 09	43.73	54.00	-10.27	AVG	
3	5470.0000	23. 22	38. 15	61. 37	68. 20	-6.83	Peak	
4 *	5516.0000	57. 78	38. 26	96. 04	68. 20	27.84	Peak	No limit
5	5516.0000	51.86	38. 26	90. 12	68. 20	21.92	AVG	No limit

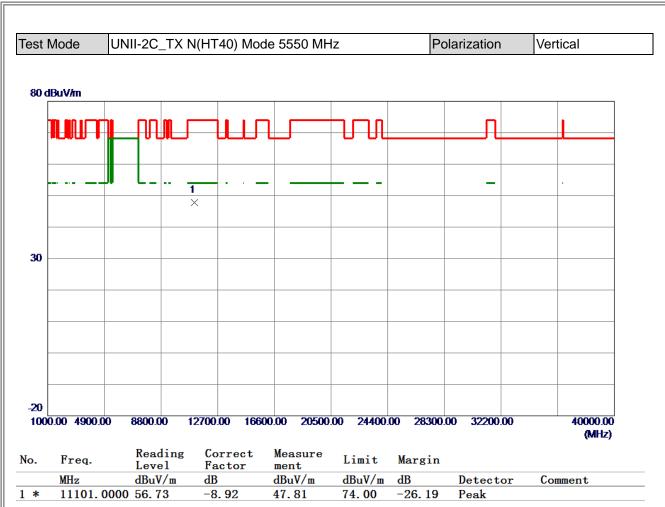

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

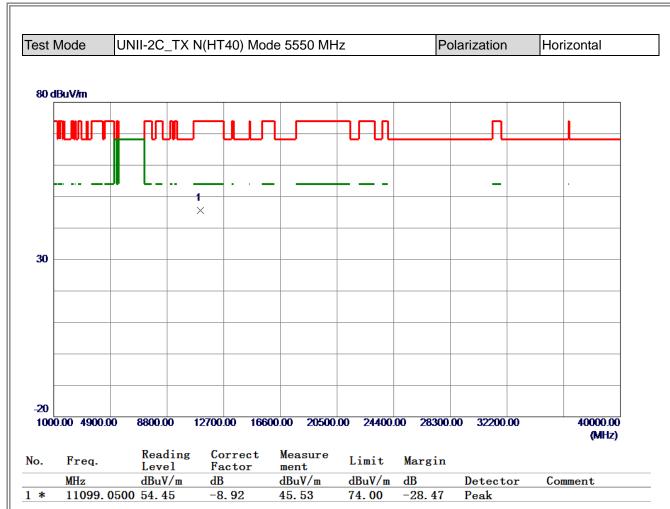


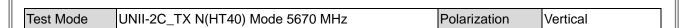
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

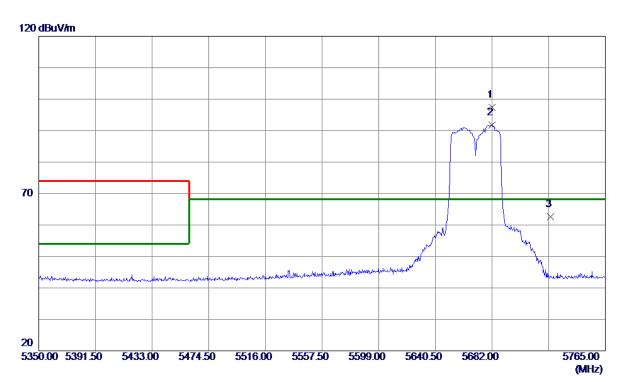


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	5460.0000	22. 49	38. 12	60.61	74.00	-13. 39	Peak	
2	5460.0000	12. 02	38. 12	50. 14	54.00	-3.86	AVG	
3	5470.0000	29. 12	38. 15	67. 27	68. 20	-0. 93	Peak	
4 *	5513. 3020	67. 27	38. 25	105. 52	68. 20	37. 32	Peak	No limit
5	5513. 3020	61. 78	38. 25	100.03	68. 20	31.83	AVG	No limit

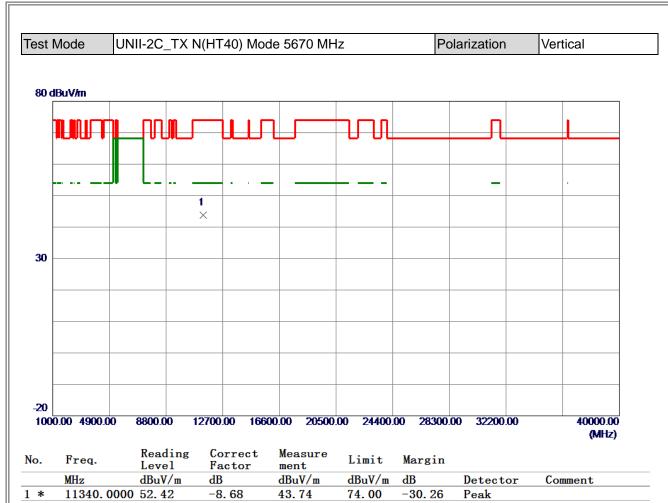

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	5682. 0000	58. 99	38. 39	97. 38	68. 20	29. 18	Peak	No limit
2	5682.0000	53. 40	38. 39	91. 79	68. 20	23. 59	AVG	No limit
3	5725. 0000	24.06	38. 50	62. 56	68. 20	-5. 64	Peak	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.