

Test Report

AIR-AP1800S-x-K9 AIR-AP1800I-x-K9

(x=B,T)

Cisco Aironet 802.11ac Dual Band Access Points

FCC ID: LDK102112

5250-5350 MHz

Against the following Specifications:

CFR47 Part 15.407

Cisco Systems

170 West Tasman Drive San Jose, CA 95134

Author: Jose Aguirre Approved By: Jim Nicholson

te L Aguine

Tested By: Jose Aguirre **Title:** Technical Leader, Engineering

Revision: 2

This report replaces any previously entered test report under EDCS – **11570957.** This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

Page No: 1 of 62

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

SECTION 1: OVERVIEW	3
SECTION 2: ASSESSMENT INFORMATION	4
2.1 General	4
2.2 Date of testing	6
2.3 REPORT ISSUE DATE	6
2.4 TESTING FACILITIES	
2.5 EQUIPMENT ASSESSED (EUT)	
2.6 EUT DESCRIPTION	7
SECTION 3: RESULT SUMMARY	8
3.1 RESULTS SUMMARY TABLE	8
SECTION 4: SAMPLE DETAILS	10
4.1 Sample Details	10
4.2 System Details	
4.3 MODE OF OPERATION DETAILS	10
APPENDIX A: EMISSION TEST RESULTS	11
CONDUCTED TEST SETUP DIAGRAM	11
TARGET MAXIMUM CHANNEL POWER	
A.1 99% and 26dB Bandwidth	
A.2 MAXIMUM CONDUCTED OUTPUT POWER/ POWER SPECTRAL DENSITY	
A.3 CONDUCTED SPURIOUS EMISSIONS	
A.4 CONDUCTED BANDEDGE	32
APPENDIX B: EMISSION TEST RESULTS	37
RADIATED EMISSION SETUP DIAGRAM-BELOW 1G	
B.1 RADIATED SPURIOUS EMISSIONS	
B.2 RADIATED EMISSIONS 30MHz TO 1GHz	
B.3 AC CONDUCTED EMISSIONS	51
APPENDIX C: LIST OF TEST EQUIPMENT USED TO PERFORM THE TEST	57
APPENDIX E: ABBREVIATION KEY AND DEFINITIONS	61

Section 1: Overview

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Specifications:	
CFR47 Part 15.407	

Measurements were made in accordance with

- ANSI C63.10:2013
- KDB 789033 D02 General UNII Test Procedures New Rules v01r03
- KDB 662911 D01 Multiple Transmitter Output v02r01

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature 15°C to 35°C (54°F to 95°F)

Atmospheric Pressure 860mbar to 1060mbar (25.4" to 31.3")

Humidity 10% to 75*%

e) All AC testing was performed at one or more of the following supply voltages:

110V 60 Hz (+/-20%)

Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB] The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Measurement Uncertainty Values

voltage and power measurements	± 2 dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

2.2 Date of testing

21-Jan-17 - 01-Feb-17

2.3 Report Issue Date

14-Feb-17

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled.

2.4 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc., 125 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers for Industry Canada

Cisco System Site	Address	Site Identifier	
Building P, 10m Chamber	125 West Tasman Dr Company #: 246		
	San Jose, CA 95134		
Building P, 5m Chamber	125 West Tasman Dr	Company #: 2461N-1	
	San Jose, CA 95134		
Building I, 5m Chamber	285 W. Tasman Drive	Company #: 2461M-1	
	San Jose, California 95134		

Test Engineers

Jose Aguirre

2.5 Equipment Assessed (EUT)

AIR-AP1800I-B-K9

2.6 EUT Description

The Cisco Aironet 802.11ac Radio supports the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes.

```
802.11a - Non HT20, One Antenna, 6 to 54 Mbps, 1ss
802.11a - Non HT20, Two Antennas, 6 to 54 Mbps, 1ss
802.11a - Non HT20 Beam Forming, Two Antennas, 6 to 54 Mbps, 1ss
802.11n/ac - HT/VHT20, One Antenna, M0 to M7, 1ss
802.11n/ac - HT/VHT20. Two Antennas. M0 to M7. 1ss
802.11n/ac - HT/VHT20, Two Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT20 STBC, Two Antennas, M0 to M7, 2ss
802.11a - Non HT40, One Antenna, 6 to 54 Mbps, 1ss
802.11a - Non HT40, Two Antennas, 6 to 54 Mbps, 1ss
802.11n/ac - HT/VHT40, One Antenna, M0 to M7, 1ss
802.11n/ac - HT/VHT40, Two Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT40, Two Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT40 STBC, Two Antennas, M0 to M7, 2ss
802.11a - Non HT80, One Antenna, 6 to 54 Mbps, 1ss
802.11a - Non HT80, Two Antennas, 6 to 54 Mbps, 1ss
802.11ac - VHT80, One Antenna, M0 to M9 1ss
802.11ac - VHT80, Two Antennas, M0 to M9 1ss
802.11ac - VHT80, Two Antennas, M0 to M9 2ss
```

The following antennas are supported by this product series.

The data included in this report represent the worst case data for all antennas.

802.11ac - VHT80 STBC, Two Antennas, M0 to M9 2ss

802.11ac - VHT80 Beam Forming, Two Antennas, M0 to M9 1ss 802.11ac - VHT80 Beam Forming, Two Antennas, M0 to M9 2ss

Frequency Part Number		Antenna Type	Antenna Gain (dBi)
2 4 C 🗆 -	BLE Internal	Omni	1 / NA
2.4 GHz	2x2 Internal	Omni	3/5

Page No: 7 of 62

Section 3: Result Summary

3.1 Results Summary Table

Conducted emissions

Basic Standard	Technical Requirements / Details	Result
FCC 15.407	99% & 26 dB Bandwidth: The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW. The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.	Pass
FCC 15.407	Output Power: For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	Pass
FCC 15.407	Power Spectral Density: The maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	Pass
FCC 15.407	Conducted Spurious Emissions / Band-Edge: For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.	Pass
FCC 15.407 FCC 15.209 FCC 15.205	Restricted band: Unwanted emissions must comply with the general field strength set forth in FCC 15.209.	Pass

Radiated Emissions (General requirements)

Basic Standard	Technical Requirements / Details	Result
FCC 15.407 FCC 15.209 FCC 15.205	TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the filed strength limits table in this section.	Pass
FCC 15.207	AC conducted Emissions: Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.	Pass

^{*} MPE calculation is recorded in a separate report

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing.

4.1 Sample Details

Sample No.	Equipment Details	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	AIR-AP1800I-B-K9	Cisco Systems	P2	6fd6a0ba7 4da9f8665 9cfcb8984 f36b9	8.4.1.10	RFDP3AFA037
S02*	AIR-PWRINJ6	Cisco Systems	V01	NA	NA	C15456663000 0247

^(*) S02 are support equipment Power supplies for EUT S01

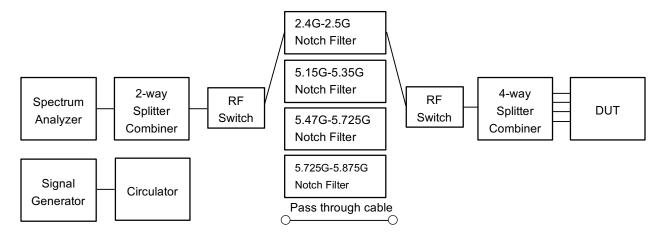
4.2 System Details

System #	Description	Samples
1	AIR-AP1800S-x-K9	S01
2	AIR-PWRINJ6	S02

4.3 Mode of Operation Details

Mode#	Description	Comments
1	Continuous Transmitting	Continuous Transmitting ≥98% duty cycle

All measurements were made in accordance with


- ANSI C63.10:2013
- KDB 789033 D02 General UNII Test Procedures New Rules v01r03
- KDB 662911 D01 Multiple Transmitter Output v02r01

Page No: 10 of 62

Appendix A: Emission Test Results

Conducted Test Setup Diagram

Target Maximum Channel Power

The following table details the maximum supported Total Channel Power for all operating modes.

	Maximum Channel Power (dBm)			
	Frequency (MHz)			
Operating Mode	5260	5300	5320	
Non HT20, 6 to 54 Mbps	16	16	16	
Non HT20 Beam Forming, 6 to 54 Mbps	16	16	16	
HT/VHT20, M0 to M15	16	16	16	
HT/VHT20 Beam Forming, M0 to M15	16	16	16	
HT/VHT20 STBC, M0 to M7	16	16	16	
	5270	5310		
Non HT40, 6 to 54 Mbps	15	15		
HT/VHT40, M0 to M15	15	15		
HT/VHT40 Beam Forming, M0 to M15	15	15		
HT/VHT40 STBC, M0 to M7	15	15		
	5290			
Non HT80, 6 to 54 Mbps	15			
VHT80, M0 to M9, M0 to M9 1-1ss	14			
VHT80 Beam Forming, M0 to M9, M0 to M9 1-1ss	14			
VHT80 STBC, M0 to M9 1ss	14			

Page No: 11 of 62

A.1 99% and 26dB Bandwidth

FCC 15.407 The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.

The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

Test Procedure

Ref. ANSI C63.10: 2013 Section 6.9.3

99% BW and EBW (-26dB)

Test Procedure

- 1. Set the radio in the continuous transmitting mode.
- 2. Allow the trace to stabilize.
- 3. Setting the x-dB bandwidth mode to -26dB and OBW power function to 99% within the measurement set up function.
- 4. Select the automatic OBW measurement function of an instrument to perform bandwidth measurement.
- 5. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 Section 6.9.3

99% BW and EBW (-26dB)	
Test parameters	
Span = 1.5 x to 5.0 times OBW	
RBW = approx. 1% to 5% of the OBW	
VBW ≥ 3 x RBW	
Detector = Peak or where practical sample shall be used	
Trace = Max. Hold	

System Number	Description Samples		System under test	Support equipment
_	EUT	S01	>	
1	Support	S02		<

Tested By :	Date of testing:	
Jose Aguirre	21-Jan-17 - 01-Feb-17	
Test Result : PASS		

See Appendix C for list of test equipment


Page No: 12 of 62

Frequency (MHz)	Mode	Data Rate (Mbps)	26dB BW (MHz)	99% BW (MHz)
F200	Non HT20, 6 to 54 Mbps	6	20.6	17.187
5260	HT/VHT20, M0 to M15	m0	21.5	18.215
5070	Non HT40, 6 to 54 Mbps	6	39.7	35.470
5270	HT/VHT40, M0 to M15	m0	40.3	36.075
5200	Non HT80, 6 to 54 Mbps	6	83.3	75.713
5290	VHT80, M0 to M9, M0 to M9 1-1ss	m0x1	83.6	75.852
F200	Non HT20, 6 to 54 Mbps	6	20.7	17.217
5300	HT/VHT20, M0 to M15	m0	21.5	18.199
F240	Non HT40, 6 to 54 Mbps	6	39.6	35.444
5310	HT/VHT40, M0 to M15	m0	40.3	36.111
F220	Non HT20, 6 to 54 Mbps	6	20.7	17.303
5320	HT/VHT20, M0 to M15	m0	21.5	18.192

A.2 Maximum Conducted Output Power/ Power Spectral Density

15.407 (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

15.407 (5) The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Referencing "644545 D03 Guidance for IEEE 802.11ac v01", covering signals that cross the boundary between two adjacent UNII bands, the FCC describes a procedure to measure EBW, power, and PSD in each UNII band. For the case of a 160MHz signal equally distributed between UNII-1 and UNII-2a, we apply the following alternate procedure.

Rather than measure:

- The half of the signal in UNII-1, measured against the 30dBm power / 17dBm/MHz PSD limits
- The half of the signal in UNII-2a, measured against the 24dBm power / 11dBm/MHz PSD limits

If a 160MHz signal (equally distributed between the two bands) produces a total power of 27dBm across the entire 160 MHz EBW, the total power in each band would be half of the total, or 24dBm (which meets both the UNII-1 and UNII-2a limits), and would have a PSD no greater than 11dBm/MHz in either sub-band.

Given these facts, we have measured the complete 160 MHz EBW (across both sub-bands) against 27dBm power and 11dBm/MHz PSD limits, rather than individual sub band measurements against the individual sub band limits."

Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03 ANSI C63.10: 2013

Output Power

Test Procedure

- 1. Set the radio in the continuous transmitting mode at full power
- 2. Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer band-power measurement function with band limits set equal to the EBW or the OBW band edges.
- 3. Capture graphs and record pertinent measurement data.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03 ANSI C63.10: 2013 section 12.3.2.2 Method SA-1

Output Power

Test parameters

Span = >1.5 times the OBW

RBW = 1MHz

VBW ≥ 3 x RBW

Sweep = Auto couple

Detector = sample

Trace = Trace Average 100

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various

Page No: 15 of 62

antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. (See ANSI C63.10 section 14.3.2.2)

System Number	Description	Samples	System under test	Support equipment
4	EUT	S01	✓	
'	Support	S02		✓

Tested By :	Date of testing:
Jose Aguirre	21-Jan-17 - 01-Feb-17
Test Result : PASS	

See Appendix C for list of test equipment

Maximum Output Power

Frequency (MHz) Tx Paths Correlated Antenna Gain (dBi) Tx 1 Max Power (dBm) Tx 2 Max Power (dBm)						
납 Mode 본 명	Limit (dBm)	Margin (dB)				
Non HT20, 6 to 54 Mbps 1 5 13.0 13.0	23.4	10.4				
Non HT20, 6 to 54 Mbps 2 5 13.0 12.0 15.5	23.4	7.9				
Non HT20 Beam Forming, 6 to 54 Mbps 2 8 13.0 12.0 15.5	21.4	5.9				
HT/VHT20, M0 to M7 1 5 13.2 13.2	23.6	10.4				
HT/VHT20, M0 to M7 2 5 13.2 12.1 15.7	23.6	7.9				
HT/VHT20, M8 to M15 2 5 13.2 12.1 15.7	23.6	7.9				
HT/VHT20 Beam Forming, M0 to M7 2 8 13.2 12.1 15.7	21.6	5.9				
HT/VHT20 Beam Forming, M8 to M15 2 5 13.2 12.1 15.7	23.6	7.9				
HT/VHT20 STBC, M0 to M7 2 5 13.2 12.1 15.7	23.6	7.9				
Non HT40, 6 to 54 Mbps 1 5 12.4 12.4	24.0	11.6				
Non HT40, 6 to 54 Mbps 2 5 12.4 11.5 15.0	24.0	9.0				
HT/VHT40, M0 to M7 1 5 12.9 12.9	24.0	11.1				
R HT/VHT40, M0 to M7 2 5 12.9 12.0 15.5 HT/VHT40, M8 to M15 2 5 12.9 12.0 15.5	24.0	8.5				
\(\text{S} \) HT/VHT40, M8 to M15 \(2 \) 5 \(12.9 \) 12.0 \(15.5 \)	24.0	8.5				
HT/VHT40 Beam Forming, M0 to M7 2 8 12.9 12.0 15.5	22.0	6.5				
HT/VHT40 Beam Forming, M8 to M15 2 5 12.9 12.0 15.5	24.0	8.5				
HT/VHT40 STBC, M0 to M7 2 5 12.9 12.0 15.5	24.0	8.5				
Non HT80, 6 to 54 Mbps 1 5 12.1 12.1	24.0	11.9				
Non HT80, 6 to 54 Mbps 2 5 11.1 10.8 14.0	24.0	10.0				
VHT80, M0 to M9 1ss 1 5 11.1 11.1	24.0	12.9				
S VHT80, M0 to M9 1ss 2 5 11.1 10.7 13.9 VHT80, M0 to M9 2ss 2 5 11.1 10.7 13.9	24.0	10.1				
No. VHT80, M0 to M9 2ss 2 5 11.1 10.7 13.9	24.0	10.1				
VHT80 Beam Forming, M0 to M9 1ss 2 8 10.0 9.8 12.9	22.0	9.1				
VHT80 Beam Forming, M0 to M9 2ss 2 5 11.1 10.7 13.9	24.0	10.1				
VHT80 STBC, M0 to M9 1ss 2 5 11.1 10.7 13.9	24.0	10.1				
Non HT20, 6 to 54 Mbps 1 5 12.7 12.7	23.4	10.7				
Non HT20, 6 to 54 Mbps 2 5 12.7 12.7 15.7	23.4	7.7				
Non HT20 Beam Forming, 6 to 54 Mbps 2 8 12.7 12.7 15.7	21.4	5.7				
HT/VHT20, M0 to M7 1 5 12.6 12.6 12.6	23.6	11.0				
HT/VHT20, M0 to M7 2 5 12.6 12.7 15.7	23.6	7.9				
HT/VHT20, M8 to M15 2 5 12.6 12.7 15.7	23.6	7.9				
HT/VHT20 Beam Forming, M0 to M7 2 8 12.6 12.7 15.7	21.6	5.9				

Page No: 17 of 62



			1		1			
	HT/VHT20 Beam Forming, M8 to M15	2	5	12.6	12.7	15.7	23.6	7.9
	HT/VHT20 STBC, M0 to M7	2	5	12.6	12.7	15.7	23.6	7.9
	Non HT40, 6 to 54 Mbps	1	5	11.2		11.2	24.0	12.8
	Non HT40, 6 to 54 Mbps	2	5	11.2	11.5	14.4	24.0	9.6
	HT/VHT40, M0 to M7	1	5	11.5		11.5	24.0	12.5
10	HT/VHT40, M0 to M7	2	5	11.5	11.8	14.7	24.0	9.3
53	HT/VHT40, M8 to M15	2	5	11.5	11.8	14.7	24.0	9.3
	HT/VHT40 Beam Forming, M0 to M7	2	8	10.5	10.8	13.7	22.0	8.3
	HT/VHT40 Beam Forming, M8 to M15	2	5	11.5	11.8	14.7	24.0	9.3
	HT/VHT40 STBC, M0 to M7	2	5	11.5	11.8	14.7	24.0	9.3
	Non HT20, 6 to 54 Mbps	1	5	12.4		12.4	23.4	11.0
	Non HT20, 6 to 54 Mbps	2	5	12.4	13.2	15.8	23.4	7.6
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	12.4	13.2	15.8	21.4	5.6
	HT/VHT20, M0 to M7	1	5	12.4		12.4	23.6	11.2
5320	HT/VHT20, M0 to M7	2	5	12.4	13.2	15.8	23.6	7.8
Ω	HT/VHT20, M8 to M15	2	5	12.4	13.2	15.8	23.6	7.8
	HT/VHT20 Beam Forming, M0 to M7	2	8	12.4	13.2	15.8	21.6	5.8
	HT/VHT20 Beam Forming, M8 to M15	2	5	12.4	13.2	15.8	23.6	7.8
	HT/VHT20 STBC, M0 to M7	2	5	12.4	13.2	15.8	23.6	7.8

Maximum Transmit Output Power, 5320 MHz, Non HT20 Beam Forming, 6 to 54 Mbps

Antenna A Antenna B

Power Spectral Density

	Power Spectral Density				<u> </u>	ı		
Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Tx 2 PSD (dBm/MHz)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	5	2.6		2.6	11.0	8.4
	Non HT20, 6 to 54 Mbps	2	8	2.6	1.3	5.0	9.0	4.0
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	2.6	1.3	5.0	9.0	4.0
	HT/VHT20, M0 to M7	1	5	2.4		2.4	11.0	8.6
5260	HT/VHT20, M0 to M7	2	8	2.4	1.1	4.8	9.0	4.2
5	HT/VHT20, M8 to M15	2	5	2.4	1.1	4.8	11.0	6.2
	HT/VHT20 Beam Forming, M0 to M7	2	8	2.4	1.1	4.8	9.0	4.2
	HT/VHT20 Beam Forming, M8 to M15	2	5	2.4	1.1	4.8	11.0	6.2
	HT/VHT20 STBC, M0 to M7	2	5	2.4	1.1	4.8	11.0	6.2
	Non HT40, 6 to 54 Mbps	1	5	-0.1		-0.1	11.0	11.1
	Non HT40, 6 to 54 Mbps	2	8	-0.1	-1.3	2.4	9.0	6.6
	HT/VHT40, M0 to M7	1	5	-0.8		-0.8	11.0	11.8
5270	HT/VHT40, M0 to M7	2	8	-0.8	-1.9	1.7	9.0	7.3
52	HT/VHT40, M8 to M15	2	5	-0.8	-1.9	1.7	11.0	9.3
	HT/VHT40 Beam Forming, M0 to M7	2	8	-0.8	-1.9	1.7	9.0	7.3
	HT/VHT40 Beam Forming, M8 to M15	2	5	-0.8	-1.9	1.7	11.0	9.3
	HT/VHT40 STBC, M0 to M7	2	5	-0.8	-1.9	1.7	11.0	9.3
	Non HT80, 6 to 54 Mbps	1	5	-4.4		-4.4	11.0	15.4
	Non HT80, 6 to 54 Mbps	2	8	-4.4	-4.9	-1.6	9.0	10.6
	VHT80, M0 to M9 1ss	1	5	-5.2		-5.2	11.0	16.2
290	VHT80, M0 to M9 1ss	2	8	-6.2	-6.5	-3.3	9.0	12.3
52	VHT80, M0 to M9 2ss	2	5	-6.2	-6.5	-3.3	11.0	14.3
	VHT80 Beam Forming, M0 to M9 1ss	2	8	-6.2	-6.5	-3.3	9.0	12.3
	VHT80 Beam Forming, M0 to M9 2ss	2	5	-6.2	-6.5	-3.3	11.0	14.3
	VHT80 STBC, M0 to M9 1ss	2	5	-6.2	-6.5	-3.3	11.0	14.3
					T .	-		
	Non HT20, 6 to 54 Mbps	1	5	2.1		2.1	11.0	8.9
	Non HT20, 6 to 54 Mbps	2	8	2.1	1.8	5.0	9.0	4.0
5300	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	2.1	1.8	5.0	9.0	4.0
5,	HT/VHT20, M0 to M7	1	5	1.7		1.7	11.0	9.3
	HT/VHT20, M0 to M7	2	8	1.7	1.7	4.7	9.0	4.3
	HT/VHT20, M8 to M15	2	5	1.7	1.7	4.7	11.0	6.3

Page No: 20 of 62

	HT/VHT20 Beam Forming, M0 to M7	2	8	1.7	1.7	4.7	9.0	4.3
	HT/VHT20 Beam Forming, M8 to M15	2	5	1.7	1.7	4.7	11.0	6.3
	HT/VHT20 STBC, M0 to M7	2	5	1.7	1.7	4.7	11.0	6.3
	Non HT40, 6 to 54 Mbps	1	5	-0.6		-0.6	11.0	11.6
	Non HT40, 6 to 54 Mbps	2	8	-0.6	0.0	2.7	9.0	6.3
	HT/VHT40, M0 to M7	1	5	-1.2		-1.2	11.0	12.2
5310	HT/VHT40, M0 to M7	2	8	-2.3	-2.0	0.9	9.0	8.1
53	HT/VHT40, M8 to M15	2	5	-2.3	-2.0	0.9	11.0	10.1
	HT/VHT40 Beam Forming, M0 to M7	2	8	-2.3	-2.0	0.9	9.0	8.1
	HT/VHT40 Beam Forming, M8 to M15	2	5	-2.3	-2.0	0.9	11.0	10.1
	HT/VHT40 STBC, M0 to M7	2	5	-2.3	-2.0	0.9	11.0	10.1
	Non HT20, 6 to 54 Mbps	1	5	1.9		1.9	11.0	9.1
	Non HT20, 6 to 54 Mbps	2	8	1.9	2.4	5.2	9.0	3.8
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	1.9	2.4	5.2	9.0	3.8
0	HT/VHT20, M0 to M7	1	5	1.3		1.3	11.0	9.7
5320	HT/VHT20, M0 to M7	2	8	1.3	2.4	4.9	9.0	4.1
ų)	HT/VHT20, M8 to M15	2	5	1.3	2.4	4.9	11.0	6.1
	HT/VHT20 Beam Forming, M0 to M7	2	8	1.3	2.4	4.9	9.0	4.1
	HT/VHT20 Beam Forming, M8 to M15	2	5	1.3	2.4	4.9	11.0	6.1
	HT/VHT20 STBC, M0 to M7	2	5	1.3	2.4	4.9	11.0	6.1

Power Spectral Density, 5320 MHz, Non HT20, 6 to 54 Mbps

Antenna A Antenna B

A.3 Conducted Spurious Emissions

15.407 (b) *Undesirable emission limits.* Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section.

Use formula below to substitute conducted measurements in place of radiated measurements

 $E[dB\mu V/m] = EIRP[dBm] - 20 log(d[meters]) + 104.77$, where E = field strength and <math>d = 3 meter

- 1) Average Plot, Limit= -41.25 dBm eirp
- 2) Peak plot, Limit = -21.25 dBm eirp

Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03 ANSI C63.10: 2013

Conducted Spurious Emissions

Test Procedure

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Place the radio in continuous transmit mode. Use the procedures in KDB 789033 D02 General UNII Test Procedures New Rules v01r03 to substitute conducted measurements in place of radiated measurements.
- 3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).
- 4. Record the marker waveform peak to spur difference. Also measure any emissions in the restricted bands.
- 5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.
- 6. Capture graphs and record pertinent measurement data.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03 ANSI C63.10: 2013 section 12.7.7.3 (average) & 12.7.6 (peak)

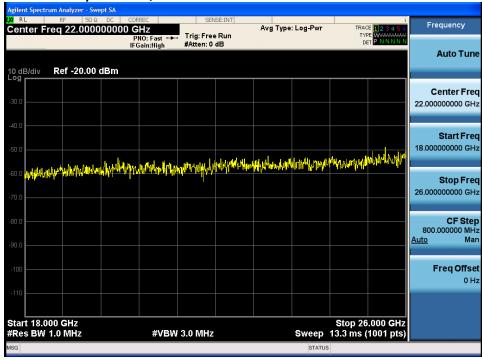
Conducted Spurious Emissions Test parameters
Span = 30MHz to 18GHz / 18GHz to 40GHz RBW = 1 MHz
VBW ≥ 3 x RBW for Peak, 1kHz for Average
Sweep = Auto couple
Detector = Peak
Trace = Max Hold.

System Number	Description	Samples	System under test	Support equipment
4	EUT	S01	✓	
'	Support	S02		<

Tested By :	Date of testing:
Jose Aguirre	21-Jan-17 - 01-Feb-17
Test Result : PASS	

Page No: 23 of 62

See Appendix C for list of test equipment


Page No: 24 of 62

Conducted Spurs Peak, All Antennas

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Spur Power (dBm)	Tx 2 Spur Power (dBm)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	5	-65.0		-60.0	-41.25	18.8
	Non HT20, 6 to 54 Mbps	2	5	-65.0	-68.8	-58.5	-41.25	17.2
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-65.0	-68.8	-55.5	-41.25	14.2
00	HT/VHT20, M0 to M7	1	5	-66.2		-61.2	-41.25	20.0
5260	HT/VHT20, M0 to M7	2	5	-66.2	-70.1	-59.7	-41.25	18.5
	HT/VHT20, M8 to M15	2	5	-66.2	-70.1	-59.7	-41.25	18.5
	HT/VHT20 Beam Forming, M0 to M7	2	8	-66.2	-70.1	-56.7	-41.25	15.5
	HT/VHT20 Beam Forming, M8 to M15	2	5	-66.2	-70.1	-59.7	-41.25	18.5
	HT/VHT20 STBC, M0 to M7	2	5	-66.2	-70.1	-59.7	-41.25	18.5
	Non HT40, 6 to 54 Mbps	1	5	-65.8		-60.8	-41.25	19.6
	Non HT40, 6 to 54 Mbps	2	5	-65.8	-70.1	-59.4	-41.25	18.2
	HT/VHT40, M0 to M7	1	5	-66.9		-61.9	-41.25	20.7
5270	HT/VHT40, M0 to M7	2	5	-66.9	-69.9	-60.1	-41.25	18.9
52	HT/VHT40, M8 to M15	2	5	-66.9	-69.9	-60.1	-41.25	18.9
	HT/VHT40 Beam Forming, M0 to M7	2	8	-66.9	-69.9	-57.1	-41.25	15.9
	HT/VHT40 Beam Forming, M8 to M15	2	5	-66.9	-69.9	-60.1	-41.25	18.9
	HT/VHT40 STBC, M0 to M7	2	5	-66.9	-69.9	-60.1	-41.25	18.9
	Non HT80, 6 to 54 Mbps	1	5	-68.7		-63.7	-41.25	22.5
	Non HT80, 6 to 54 Mbps	2	5	-68.7	-69.1	-60.9	-41.25	19.6
	VHT80, M0 to M9 1ss	1	5	-66.6		-61.6	-41.25	20.4
290	VHT80, M0 to M9 1ss	2	5	-70.1	-70.3	-62.2	-41.25	20.9
52	VHT80, M0 to M9 2ss	2	5	-70.1	-70.3	-62.2	-41.25	20.9
	VHT80 Beam Forming, M0 to M9 1ss	2	8	-70.1	-70.3	-59.2	-41.25	17.9
	VHT80 Beam Forming, M0 to M9 2ss	2	5	-70.1	-70.3	-62.2	-41.25	20.9
	VHT80 STBC, M0 to M9 1ss	2	5	-70.1	-70.3	-62.2	-41.25	20.9
	Non HT20, 6 to 54 Mbps	1	5	-67.6		-62.6	-41.25	21.4
	Non HT20, 6 to 54 Mbps	2	5	-67.6	-68.9	-60.2	-41.25	18.9
00	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-67.6	-68.9	-57.2	-41.25	15.9
5300	HT/VHT20, M0 to M7	1	5	-68.1		-63.1	-41.25	21.9
	HT/VHT20, M0 to M7	2	5	-68.1	-68.6	-60.3	-41.25	19.1
	HT/VHT20, M8 to M15	2	5	-68.1	-68.6	-60.3	-41.25	19.1

Page No: 26 of 62

	HT/VHT20 Beam Forming, M0 to M7	2	8	-68.1	-68.6	-57.3	-41.25	16.1
	HT/VHT20 Beam Forming, M8 to M15	2	5	-68.1	-68.6	-60.3	-41.25	19.1
	HT/VHT20 STBC, M0 to M7	2	5	-68.1	-68.6	-60.3	-41.25	19.1
	Non HT40, 6 to 54 Mbps	1	5	-64.6		-59.6	-41.25	18.4
	Non HT40, 6 to 54 Mbps	2	5	-64.6	-71.2	-58.7	-41.25	17.5
	HT/VHT40, M0 to M7	1	5	-65.1		-60.1	-41.25	18.9
5310	HT/VHT40, M0 to M7	2	5	-68.0	-71.0	-61.2	-41.25	20.0
53	HT/VHT40, M8 to M15	2	5	-68.0	-71.0	-61.2	-41.25	20.0
	HT/VHT40 Beam Forming, M0 to M7	2	8	-68.0	-71.0	-58.2	-41.25	17.0
	HT/VHT40 Beam Forming, M8 to M15	2	5	-68.0	-71.0	-61.2	-41.25	20.0
	HT/VHT40 STBC, M0 to M7	2	5	-68.0	-71.0	-61.2	-41.25	20.0
	Non HT20, 6 to 54 Mbps	1	5	-68.4		-63.4	-41.25	22.2
	Non HT20, 6 to 54 Mbps	2	5	-68.4	-70.5	-61.3	-41.25	20.1
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-68.4	-70.5	-58.3	-41.25	17.1
0	HT/VHT20, M0 to M7	1	5	-68.6		-63.6	-41.25	22.4
5320	HT/VHT20, M0 to M7	2	5	-68.6	-68.9	-60.7	-41.25	19.5
4)	HT/VHT20, M8 to M15	2	5	-68.6	-68.9	-60.7	-41.25	19.5
	HT/VHT20 Beam Forming, M0 to M7	2	8	-68.6	-68.9	-57.7	-41.25	16.5
	HT/VHT20 Beam Forming, M8 to M15	2	5	-68.6	-68.9	-60.7	-41.25	19.5
	HT/VHT20 STBC, M0 to M7	2	5	-68.6	-68.9	-60.7	-41.25	19.5

Conducted Spurs Average, 5260 MHz, Non HT20 Beam Forming, 6 to 54 Mbps

Antenna A Antenna B

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)		Tx 2 Spur Power (dBm)	Total Conducted Spur (dBm)	Limit (dBm)	Margin (dB)
	Non HT20, 6 to 54 Mbps	1	5	-53.7		-48.7	-21.25	27.5
	Non HT20, 6 to 54 Mbps	2	5	-53.7	-52.9	-45.3	-21.25	24.0
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-53.7	-52.9	-42.3	-21.25	21.0
00	HT/VHT20, M0 to M7	1	5	-52.4		-47.4	-21.25	26.2
5260	HT/VHT20, M0 to M7	2	5	-52.4	-51.5	-43.9	-21.25	22.7
	HT/VHT20, M8 to M15	2	5	-52.4	-51.5	-43.9	-21.25	22.7
	HT/VHT20 Beam Forming, M0 to M7	2	8	-52.4	-51.5	-40.9	-21.25	19.7
	HT/VHT20 Beam Forming, M8 to M15	2	5	-52.4	-51.5	-43.9	-21.25	22.7
	HT/VHT20 STBC, M0 to M7	2	5	-52.4	-51.5	-43.9	-21.25	22.7
				1	1			
	Non HT40, 6 to 54 Mbps	1	5	-53.4		-48.4	-21.25	27.2
	Non HT40, 6 to 54 Mbps	2	5	-53.4	-53.1	-45.2	-21.25	24.0
	HT/VHT40, M0 to M7	1	5	-53.0		-48.0	-21.25	26.8
5270	HT/VHT40, M0 to M7	2	5	-53.0	-53.8	-45.4	-21.25	24.1
52	HT/VHT40, M8 to M15	2	5	-53.0	-53.8	-45.4	-21.25	24.1
	HT/VHT40 Beam Forming, M0 to M7	2	8	-53.0	-53.8	-42.4	-21.25	21.1
	HT/VHT40 Beam Forming, M8 to M15	2	5	-53.0	-53.8	-45.4	-21.25	24.1
	HT/VHT40 STBC, M0 to M7	2	5	-53.0	-53.8	-45.4	-21.25	24.1
	Non HT80, 6 to 54 Mbps	1	5	-56.5		-51.5	-21.25	30.3
	Non HT80, 6 to 54 Mbps	2	5	-56.5	-59.4	-49.7	-21.25	28.5
	VHT80, M0 to M9 1ss	1	5	-56.6		-51.6	-21.25	30.4
290	VHT80, M0 to M9 1ss	2	5	-57.8	-51.7	-45.7	-21.25	24.5
52	VHT80, M0 to M9 2ss	2	5	-57.8	-51.7	-45.7	-21.25	24.5
	VHT80 Beam Forming, M0 to M9 1ss	2	8	-57.8	-51.7	-42.7	-21.25	21.5
	VHT80 Beam Forming, M0 to M9 2ss	2	5	-57.8	-51.7	-45.7	-21.25	24.5
	VHT80 STBC, M0 to M9 1ss	2	5	-57.8	-51.7	-45.7	-21.25	24.5
	Non HT20, 6 to 54 Mbps	1	5	-52.9		-47.9	-21.25	26.7
	Non HT20, 6 to 54 Mbps	2	5	-52.9	-52.4	-44.6	-21.25	23.4
0	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-52.9	-52.4	-41.6	-21.25	20.4
5300	HT/VHT20, M0 to M7	1	5	-53.9		-48.9	-21.25	27.7
ų,	HT/VHT20, M0 to M7	2	5	-53.9	-52.2	-45.0	-21.25	23.7
	HT/VHT20, M8 to M15	2	5	-53.9	-52.2	-45.0	-21.25	23.7
	HT/VHT20 Beam Forming, M0 to M7	2	8	-53.9	-52.2	-42.0	-21.25	20.7

Page No: 29 of 62

_								
	HT/VHT20 Beam Forming, M8 to M15	2	5	-53.9	-52.2	-45.0	-21.25	23.7
	HT/VHT20 STBC, M0 to M7	2	5	-53.9	-52.2	-45.0	-21.25	23.7
	Non HT40, 6 to 54 Mbps	1	5	-56.2		-51.2	-21.25	30.0
	Non HT40, 6 to 54 Mbps	2	5	-56.2	-58.0	-49.0	-21.25	27.7
	HT/VHT40, M0 to M7	1	5	-58.0		-53.0	-21.25	31.8
10	HT/VHT40, M0 to M7	2	5	-58.5	-54.9	-48.3	-21.25	27.1
53	HT/VHT40, M8 to M15	2	5	-58.5	-54.9	-48.3	-21.25	27.1
	HT/VHT40 Beam Forming, M0 to M7	2	8	-58.5	-54.9	-45.3	-21.25	24.1
	HT/VHT40 Beam Forming, M8 to M15	2	5	-58.5	-54.9	-48.3	-21.25	27.1
	HT/VHT40 STBC, M0 to M7	2	5	-58.5	-54.9	-48.3	-21.25	27.1
	Non HT20, 6 to 54 Mbps	1	5	-55.5		-50.5	-21.25	29.3
	Non HT20, 6 to 54 Mbps	2	5	-55.5	-57.8	-48.5	-21.25	27.2
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-55.5	-57.8	-45.5	-21.25	24.2
	HT/VHT20, M0 to M7	1	5	-56.5		-51.5	-21.25	30.3
5320	HT/VHT20, M0 to M7	2	5	-56.5	-56.0	-48.2	-21.25	27.0
5	HT/VHT20, M8 to M15	2	5	-56.5	-56.0	-48.2	-21.25	27.0
	HT/VHT20 Beam Forming, M0 to M7	2	8	-56.5	-56.0	-45.2	-21.25	24.0
	HT/VHT20 Beam Forming, M8 to M15	2	5	-56.5	-56.0	-48.2	-21.25	27.0
	HT/VHT20 STBC, M0 to M7	2	5	-56.5	-56.0	-48.2	-21.25	27.0

Conducted Spurs Peak, 5260 MHz, HT/VHT20 Beam Forming, M0 to M7

Antenna A Antenna B

A.4 Conducted Bandedge

15.205 / 15.209 - Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Use formula below to substitute conducted measurements in place of radiated measurements

E[dBμV/m] = EIRP[dBm] - 20 log(d[meters]) + 104.77, where E = field strength and d = 3 meter

- 1) Average Plot, Limit= -41.25 dBm eirp
- 2) Peak plot, Limit = -21.25 dBm eirp

Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r03 ANSI C63.10: 2013

Conducted Bandedge

Test Procedure

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Place the radio in continuous transmit mode. Use the procedures in ANSI C63.10: 2013 to substitute conducted measurements in place of radiated measurements.
- 3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).
- 4. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.
- 5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.
- 6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands
- 7. Capture graphs and record pertinent measurement data.

Ref. ANSI C63.10: 2013 section 12.7.6 (peak) & 12.7.7.3 (average, Method VB-A (Alternative))

Conducted Bandedge Test parameters restricted Band RBW = 1 MHz VBW ≥ 3 x RBW for Peak, 100Hz for Average Sweep = Auto couple Detector = Peak Trace = Max Hold.

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	✓	
1	Support	S02		>

Tested By :	Date of testing:
Jose Aguirre	21-Jan-17 - 01-Feb-17
Test Result : PASS	

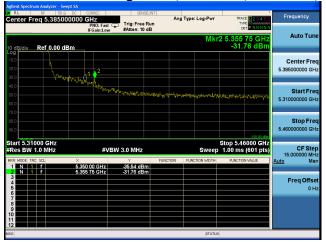
See Appendix C for list of test equipment

Page No: 32 of 62

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	Non HT80, 6 to 54 Mbps	1	5	-47.3		-42.3	-41.25	1.1
	Non HT80, 6 to 54 Mbps	2	5	-51.7	-54.4	-44.8	-41.25	3.6
	VHT80, M0 to M9 1ss	1	5	-50.8		-45.8	-41.25	4.6
5290	VHT80, M0 to M9 1ss	2	5	-50.8	-53.2	-43.8	-41.25	2.6
52	VHT80, M0 to M9 2ss	2	5	-50.8	-53.2	-43.8	-41.25	2.6
	VHT80 Beam Forming, M0 to M9 1ss	2	8	-53.7	-54.2	-42.9	-41.25	1.7
	VHT80 Beam Forming, M0 to M9 2ss	2	5	-50.8	-53.2	-43.8	-41.25	2.6
	VHT80 STBC, M0 to M9 1ss	2	5	-50.8	-53.2	-43.8	-41.25	2.6
	Non HT40, 6 to 54 Mbps	1	5	-49.7		-44.7	-41.25	3.5
	Non HT40, 6 to 54 Mbps	2	5	-49.7	-54.3	-43.4	-41.25	2.2
	HT/VHT40, M0 to M7	1	5	-48.6		-43.6	-41.25	2.4
5310	HT/VHT40, M0 to M7	2	5	-48.6	-53.4	-42.4	-41.25	1.1
53	HT/VHT40, M8 to M15	2	5	-48.6	-53.4	-42.4	-41.25	1.1
	HT/VHT40 Beam Forming, M0 to M7	2	8	-53.5	-55.7	-43.5	-41.25	2.2
	HT/VHT40 Beam Forming, M8 to M15	2	5	-48.6	-53.4	-42.4	-41.25	1.1
	HT/VHT40 STBC, M0 to M7	2	5	-48.6	-53.4	-42.4	-41.25	1.1
	Non HT20, 6 to 54 Mbps	1	5	-53.4		-48.4	-41.25	7.2
	Non HT20, 6 to 54 Mbps	2	5	-53.4	-56.0	-46.5	-41.25	5.3
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-53.4	-56.0	-43.5	-41.25	2.3
0	HT/VHT20, M0 to M7	1	5	-52.7		-47.7	-41.25	6.5
5320	HT/VHT20, M0 to M7	2	5	-52.7	-56.2	-46.1	-41.25	4.9
4)	HT/VHT20, M8 to M15	2	5	-52.7	-56.2	-46.1	-41.25	4.9
	HT/VHT20 Beam Forming, M0 to M7	2	8	-52.7	-56.2	-43.1	-41.25	1.9
	HT/VHT20 Beam Forming, M8 to M15	2	5	-52.7	-56.2	-46.1	-41.25	4.9
	HT/VHT20 STBC, M0 to M7	2	5	-52.7	-56.2	-46.1	-41.25	4.9

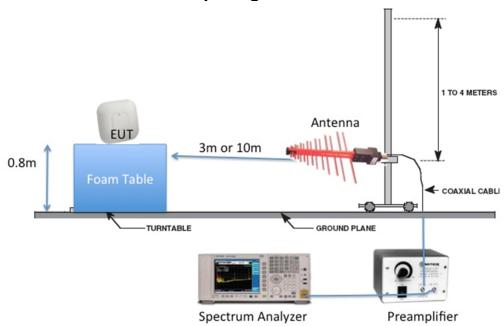
Page No: 33 of 62

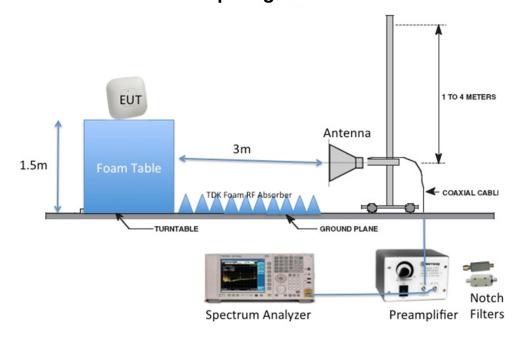
Conducted Bandedge Average, 5290 MHz, Non HT80, 6 to 54 Mbps


Antenna A

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Bandedge Level (dBm)	Tx 2 Bandedge Level (dBm)	Total Tx Bandedge Level (dBm)	Limit (dBm)	Margin (dB)
	Non HT80, 6 to 54 Mbps	1	5	-35.3		-30.3	-21.25	9.1
	Non HT80, 6 to 54 Mbps	2	5	-35.3	-42.0	-29.5	-21.25	8.2
	VHT80, M0 to M9 1ss	1	5	-33.1		-28.1	-21.25	6.9
5290	VHT80, M0 to M9 1ss	2	5	-40.9	-43.2	-33.9	-21.25	12.6
52	VHT80, M0 to M9 2ss	2	5	-40.9	-43.2	-33.9	-21.25	12.6
	VHT80 Beam Forming, M0 to M9 1ss	2	8	-40.9	-43.2	-30.9	-21.25	9.6
	VHT80 Beam Forming, M0 to M9 2ss	2	5	-40.9	-43.2	-33.9	-21.25	12.6
	VHT80 STBC, M0 to M9 1ss	2	5	-40.9	-43.2	-33.9	-21.25	12.6
	Non HT40, 6 to 54 Mbps	1	5	-38.8		-33.8	-21.25	12.6
	Non HT40, 6 to 54 Mbps	2	5	-38.8	-46.4	-33.1	-21.25	11.9
	HT/VHT40, M0 to M7	1	5	-31.8		-26.8	-21.25	5.6
5310	HT/VHT40, M0 to M7	2	5	-37.8	-45.3	-32.1	-21.25	10.8
53	HT/VHT40, M8 to M15	2	5	-37.8	-45.3	-32.1	-21.25	10.8
	HT/VHT40 Beam Forming, M0 to M7	2	8	-37.8	-45.3	-29.1	-21.25	7.8
	HT/VHT40 Beam Forming, M8 to M15	2	5	-37.8	-45.3	-32.1	-21.25	10.8
	HT/VHT40 STBC, M0 to M7	2	5	-37.8	-45.3	-32.1	-21.25	10.8
	Non HT20, 6 to 54 Mbps	1	5	-48.3		-43.3	-21.25	22.1
	Non HT20, 6 to 54 Mbps	2	5	-48.3	-43.6	-37.3	-21.25	16.1
	Non HT20 Beam Forming, 6 to 54 Mbps	2	8	-48.3	-43.6	-34.3	-21.25	13.1
0	HT/VHT20, M0 to M7	1	5	-45.7		-40.7	-21.25	19.5
5320	HT/VHT20, M0 to M7	2	5	-45.7	-47.8	-38.6	-21.25	17.4
Ľ	HT/VHT20, M8 to M15	2	5	-45.7	-47.8	-38.6	-21.25	17.4
	HT/VHT20 Beam Forming, M0 to M7	2	8	-45.7	-47.8	-35.6	-21.25	14.4
	HT/VHT20 Beam Forming, M8 to M15	2	5	-45.7	-47.8	-38.6	-21.25	17.4
	HT/VHT20 STBC, M0 to M7	2	5	-45.7	-47.8	-38.6	-21.25	17.4

Conducted Bandedge Peak, 5310 MHz, HT/VHT40, M0 to M7


Antenna A


Appendix B: Emission Test Results

Testing Laboratory: Cisco Systems, Inc., 125 West Tasman Drive, San Jose, CA 95134, USA

Radiated Emission Setup Diagram-Below 1G

Radiated Emission Setup Diagram-Above 1G

Page No: 37 of 62

B.1 Radiated Spurious Emissions

- **15.407** (b) *Undesirable emission limits.* Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
 - (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz.

15.205 / 15.209

- (7) The provisions of 15.205 apply to intentional radiators operating under this section.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in 15.209.

Ref. ANSI C63.10: 2013 section 12.7.6 (peak) & 12.7.7.3 (average)

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span: 1GHz - 18 GHz/18GHz-26G/26GHz-40GHz

Reference Level: 80 dBuV
Attenuation: 10 dB
Sweep Time: Coupled
Resolution Bandwidth: 1MHz

Video Bandwidth: 3 MHz for peak, 1 KHz for average

Detector: Peak

Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

Save 2 plots: 1) Average plot (Vertical and Horizontal), Limit= 54dBuV/m @3m

2) Peak plot (Vertical and Horizontal), Limit = 74dBuV/m @3m

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

This report represents the worst case data for all supported operating modes and antennas. There are no measurable emissions above 18 GHz.

System Number	Description	Samples	System under test	Support equipment
1	EUT	S01	>	
	Support	S02		>

Tested By :	Date of testing:
Jose Aguirre	21-Jan-17 - 01-Feb-17
Test Result : PASS	

See Appendix C for list of test equipment

Page No: 38 of 62

B.1.A Transmitter Radiated Spurious Emissions-Average Worst Case

Frequency (MHz)	Mode	Data Rate (Mbps)	Spurious Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)
5260	Non HT/VHT20, 6 to 54 Mbps	6	51.0	54.0	3.0
5270	HT/VHT40, M0 to M15	m0	51.0	54.0	3.0
5280	Non HT/VHT20, 6 to 54 Mbps	m0x1	50.4	54.0	3.6
5290	HT/VHT80, M0 to M15	6	51.1	54.0	2.9
5310	HT/VHT40, M0 to M15	m0	50.9	54.0	3.1
5320	Non HT/VHT20, 6 to 54 Mbps	6	50.8	54.0	3.2

Page No: 39 of 62

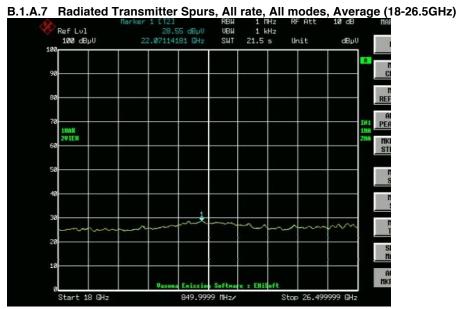
B.1.A.1 Radiated Transmitter Spurs, 5260 MHz, Non HT/VHT20, 6 to 54 Mbps, Average (1-18GHz)

B.1.A.2 Radiated Transmitter Spurs, 5270 MHz, HT/VHT40, M0 to M15 Average (1-18GHz)

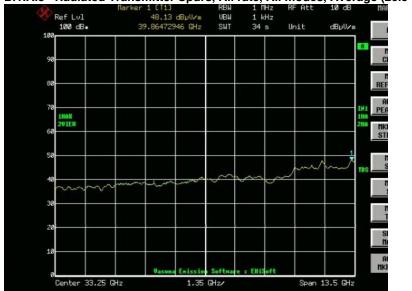
B.1.A.3 Radiated Transmitter Spurs, 5280 MHz, Non HT/VHT20, 6 to 54 Mbps, Average (1-18GHz)

B.1.A.4 Radiated Transmitter Spurs, 5290 MHz, HT/VHT80, M0 to M15, Average (1-18GHz)

B.1.A.5 Radiated Transmitter Spurs, 5310 MHz, HT/VHT40, M0 to M15, Average (1-18GHz)



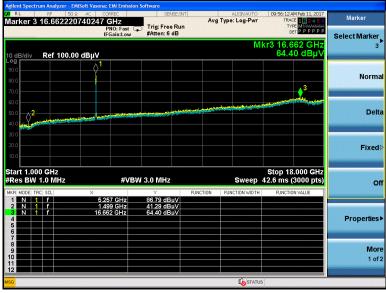
B.1.A.6 Radiated Transmitter Spurs, 5320 MHz, Non HT/VHT20, 6 to 54 Mbps, Average (1-18GHz)



B.1.A.8 Radiated Transmitter Spurs, All rate, All modes, Average (26.5- 40GHz)

No emissions seen above 18GHz. The plots above are representative of all modes tested.

B.1.P Transmitter Radiated Spurious Emissions-Peak worst case

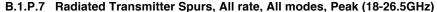

			Spurious Emission		
Frequency (MHz)	Mode	Data Rate (Mbps)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)
5260	Non HT/VHT20, 6 to 54 Mbps	6	63.6	74.0	10.4
5270	HT/VHT40, M0 to M15	m0	64.4	74.0	9.6
5280	Non HT/VHT20, 6 to 54 Mbps	6	65.2	74.0	8.8
5290	HT/VHT80, M0 to M15	m0x1	64.4	74.0	9.6
5310	HT/VHT40, M0 to M15	m0	64.1	74.0	9.9
5320	Non HT/VHT20, 6 to 54 Mbps	6	64.3	74.0	9.7

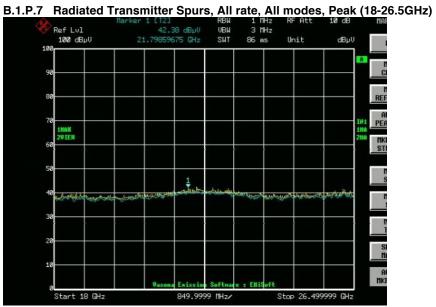
B.1.P.1 Radiated Transmitter Spurs, 5260 MHz, Non HT/VHT20, 6 to 54 Mbps, (1-18GHz)

B.1.P.2 Radiated Transmitter Spurs, 5270 MHz, HT/VHT40, M0 to M15, Peak (1-18GHz)

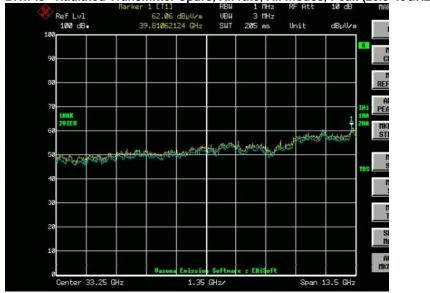
B.1.P.4 Radiated Transmitter Spurs, 5280 MHz, Non HT/VHT20, 6 to 54 Mbps, Peak (1-18GHz)

B.1.P.3 Radiated Transmitter Spurs, 5290 MHz, VHT80, M0 to M9, M0 to M9 1.1, Peak (1-18GHz)


B.1.P.5 Radiated Transmitter Spurs, 5310 MHz, HT/VHT40, M0 to M15, Peak (1-18GHz)



B.1.P.6 Radiated Transmitter Spurs, 5320 MHz, Non HT/VHT20, 6 to 54 Mbps, Peak (1-18GHz)



B.1.P.8 Radiated Transmitter Spurs, All rate, All modes, Peak (26.5-40GHz)

No emissions seen above 18GHz. The plots above are representative of all modes tested.

B.2 Radiated Emissions 30MHz to 1GHz

FCC 15.205 / 15.209

- (7) The provisions of 15.205 apply to intentional radiators operating under this section.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in 15.209.

Ref. ANSI C63.10: 2013 section 6.5

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span: 30MHz – 1GHz
Reference Level: 80 dBuV
Attenuation: 10 dB
Sweep Time: Coupled
Resolution Bandwidth: 100kHz
Video Bandwidth: 300kHz

Detector: Peak for Pre-scan, Quasi-Peak

Compliance shall be determined using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak

detection.

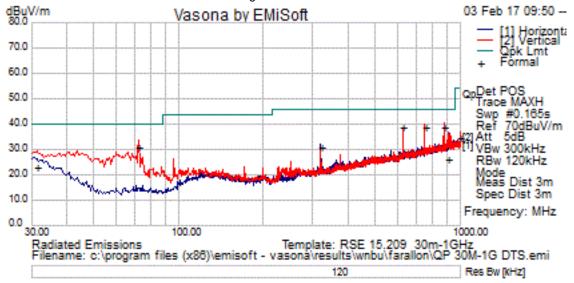
Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

This report represents the worst case data for all supported operating modes and antennas.

System Number	Description	Samples	System under test	Support equipment
1	EUT	S01	>	
	Support	S02		>

Tested By :	Date of testing:
Jose Aguirre	21-Jan-17 - 01-Feb-17
Test Result : PASS	


See Appendix C for list of test equipment

Page No: 49 of 62

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Test Results

iesi nesi	rest nesults										
Frequency	Raw	Cable	AF dB	Level	Measurement	Pol	Hgt cm	Azt Deg	Limit	Margin	Pass
MHz	dBuV	Loss		dBuV/m	Туре				dBuV/m	dB	/Fail
874.988	14.4	2.6	22.1	39	Quasi Max	V	101	77	46	-7	Pass
749.986	15.7	2.4	20.8	38.9	Quasi Max	V	103	133	46	-7.1	Pass
72.138	22.3	0.8	8.1	31.1	Quasi Max	V	189	360	40	-8.9	Pass
624.994	17.5	2.2	19.4	39	Quasi Max	V	120	95	46	-7	Pass
909.735	1	2.6	22.5	26.1	Quasi Max	V	109	270	46	-19.9	Pass
31.282	2.3	0.4	20.3	23.1	Quasi Max	V	115	74	40	-16.9	Pass
319.993	15.6	1.6	13.9	31	Quasi Max	Н	120	76	46	-15	Pass
999.984	8.4	2.7	23.3	34.5	Quasi Max	V	102	338	54	-19.5	Pass

B.3 AC Conducted Emissions

FCC 15.207 (a) & RSS-Gen 8.8 / LP0002:2.3 Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.

Measurement Procedure

Accordance with ANSI C63.10:2013 section 6.2

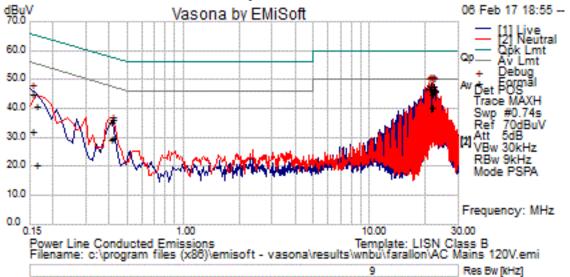
Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span: 150 KHz – 30 MHz

Attenuation: 10 dB
Sweep Time: Coupled
Resolution Bandwidth: 9 KHz
Video Bandwidth: 30 KHz

Detector: Quasi-Peak / Average

System Number	Description	Samples	System under test	Support equipment
	EUT	S01	>	
1	Support	S02		✓


Tested By :	Date of testing:
Jose Aguirre	21-Jan-17 - 01-Feb-17
Test Result : PASS	

See separate EMC test report for test data.

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

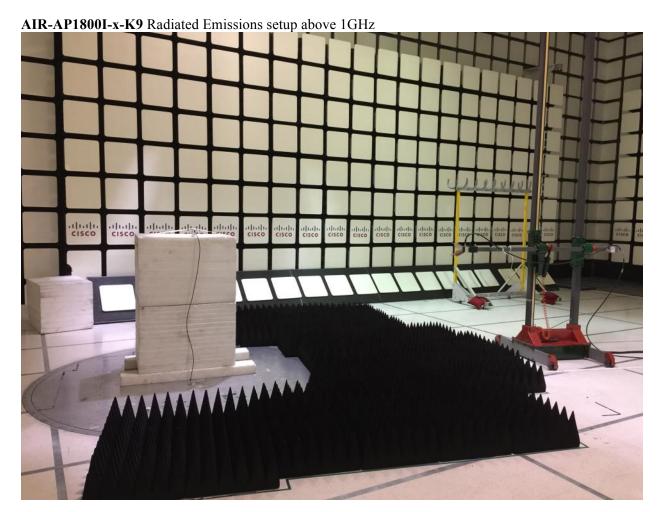
Test Results

Frequency	Raw dBuV	Cable Loss	Factors dB	Level	Measurement	Line	Limit	Margin dB	Pass /Fail
MHz				dBuV	Type		dBuV		
21.661	24.2	20.4	0.3	44.9	Quasi Peak	Live	60	-15.1	Pass
0.155	24	21	0.1	45.1	Quasi Peak	Live	65.7	-20.6	Pass
21.063	27.4	20.4	0.3	48.1	Quasi Peak	Live	60	-11.9	Pass
22.255	25.9	20.4	0.3	46.6	Quasi Peak	Live	60	-13.4	Pass
0.416	16.2	20	0	36.2	Quasi Peak	Live	57.5	-21.3	Pass
22.056	27.1	20.4	0.3	47.9	Quasi Peak	Live	60	-12.1	Pass
21.858	25.6	20.4	0.3	46.3	Quasi Peak	Live	60	-13.7	Pass
20.866	26.1	20.4	0.3	46.8	Quasi Peak	Live	60	-13.2	Pass
22.058	27.3	20.4	0.3	48	Quasi Peak	Neutral	60	-12	Pass
21.66	24.5	20.4	0.3	45.2	Quasi Peak	Neutral	60	-14.8	Pass
0.41	15.5	20	0	35.6	Quasi Peak	Neutral	57.6	-22.1	Pass
21.859	25.8	20.4	0.3	46.4	Quasi Peak	Neutral	60	-13.6	Pass
0.163	19.8	21	0.1	40.8	Quasi Peak	Neutral	65.3	-24.5	Pass
21.065	27.3	20.4	0.3	48	Quasi Peak	Neutral	60	-12	Pass
20.867	26.1	20.4	0.3	46.8	Quasi Peak	Neutral	60	-13.2	Pass
22.256	25.4	20.4	0.3	46.2	Quasi Peak	Neutral	60	-13.8	Pass
21.661	19.8	20.4	0.3	40.5	Average	Live	50	-9.5	Pass
0.155	11.1	21	0.1	32.2	Average	Live	55.7	-23.6	Pass
21.063	27.3	20.4	0.3	48	Average	Live	50	-2	Pass
22.255	25.8	20.4	0.3	46.5	Average	Live	50	-3.5	Pass
0.416	9.6	20	0	29.6	Average	Live	47.5	-17.9	Pass
22.056	27.1	20.4	0.3	47.8	Average	Live	50	-2.2	Pass
21.858	25.5	20.4	0.3	46.2	Average	Live	50	-3.8	Pass
20.866	26.1	20.4	0.3	46.8	Average	Live	50	-3.2	Pass
22.058	27.2	20.4	0.3	47.9	Average	Neutral	50	-2.1	Pass
21.66	19.6	20.4	0.3	40.3	Average	Neutral	50	-9.7	Pass
0.41	9.5	20	0	29.6	Average	Neutral	47.6	-18.1	Pass
21.859	25.7	20.4	0.3	46.4	Average	Neutral	50	-3.6	Pass
0.163	-0.4	21	0.1	20.6	Average	Neutral	55.3	-34.7	Pass
21.065	27.1	20.4	0.3	47.7	Average	Neutral	50	-2.3	Pass
20.867	26.1	20.4	0.3	46.8	Average	Neutral	50	-3.2	Pass
22.256	25.4	20.4	0.3	46.1	Average	Neutral	50	-3.9	Pass

Page No: 52 of 62

Photographs of setup

This is a dual band 2.4GHz / 5GHz device. All ports in this test set up photo are connected as all testing is automated. Section 2.6 of this test report given an overview of the different Tx antenna combinations used by this device.



AIR-AP18001-x-K9 Radiated Emissions setup 30MHz – 1GHz

Appendix C: List of Test Equipment Used to perform the test

	Test Equipment used for Radiated Emissions								
Equip No	Model Manufacturer	Description	Last Cal	Next Cal	Test Item				
CIS041929	iBTHP-5-DB9 Newport	5 inch Temp/RH/Press Sensor w/20ft cable	22-Dec-16	22-Dec-17	B.1, B.2, B.3				
CIS001937	NSA 5m Chamber Cisco	NSA 5m Chamber	12-Feb-16	12-Feb-17	B.3				
CIS049535	Above 1GHz Site Cal Cisco	Above 1GHz CISPR Site Validation	13-Feb-16	13-Feb-17	B.1, B.2				
CIS028072	1840 Cisco	18-40GHz EMI Test Head	22-Feb-16	22-Feb-17	B.1, B.2				
CIS045588	JB1 Sunol Sciences	Combination Antenna, 30MHz-2GHz	9-Mar-16	9-Mar-17	B.3				
CIS042000	E4440A Agilent	Spectrum Analyzer	6-Jul-16	6-Jul-17	B.1, B.2				
CIS037581	3117 ETS-Lindgren	Horn Antenna	7-Oct-16	7-Oct-17	B.1, B.2				
CIS045098	TH0118 Cisco	Mast Mount Preamplifier Array, 1-18GHz	31-Oct-16	31-Oct-17	B.1, B.2				
CIS033602	CSY-NMNM-80-273001 Midwest Microwave	RF Coaxial Cable, to 18GHz	8-Nov-16	8-Nov-17	B.1, B.2, B.3				
CIS030443	UFB311A-0-1560-520520 Micro-Coax	RF Coaxial Cable, to 18GHz	8-Nov-16	8-Nov-17	B.1, B.2, B.3				
CIS008024	SF106A Huber + Suhner	3 meter Sucoflex cable	8-Nov-16	8-Nov-17	B.1, B.2, B.3				
CIS024201	FSEK30 Rohde & Schwarz	Spectrum Analyzer 20Hz - 40GHz	23-Nov-16	23-Nov-17	B.1, B.2				
CIS037235	50CB-015 JFW	GPIB Control Box	Cal not Required	Cal not Required	B.1, B.2				
CIS035244	926-8ME Klein Tools	8 Meter Tape Measure	Cal not Required	Cal not Required	B.1, B.2, B.3				
CIS043124	Above 1GHz Site Cal Cisco	Above 1GHz Cispr Site Verification	14-Jan-16	14-Jan-17	B.1, B.2				
CIS043124	Above 1GHz Site Cal Cisco	Above 1GHz Cispr Site Verification	14-Jan-17	14-Jan-18	B.1, B.2				
CIS047300	N9038A Agilent Technologies	MXE EMI Receiver 20Hz to 26.5 Ghz	28-Jan-16	28-Jan-17	B.1, B.2, B.3				
CIS047299	N9030A	PXA Signal Analyzer, 3Hz to 44GHz	17-Oct-16	17-Oct-17	B.1, B.2, B.3				
CIS030559	Agilent Technologies UFB311A-1-0950-504504 Micro-Coax	RF Coaxial Cable, to 18GHz, 95 in	15-Feb-16	15-Feb-17	B.1, B.2, B.3				
CIS020975	UFB311A-0-1344-520520 Micro-Coax	RF Coaxial Cable, to 18GHz, 134.4 in	17-Feb-16	17-Feb-17	B.1, B.2, B.3				
CIS019630	ESI 40(ESIB 40) Rohde & Schwarz	EMI Test Receiver, 20Hz - 40GHz	22-Feb-16	22-Feb-17	B.1, B.2				
CIS008447	NSA 10m Chamber	NSA 10m Chamber	14-Oct-16	14-Oct-17	B.3				
CIS036710	Cisco 1840 Cisco	18-40GHz EMI Test Head/Verification Fixture	17-Nov-16	17-Nov-17	B.1, B.2				
CIS030652	JB1 Sunol Sciences	Combination Antenna, 30MHz-2GHz	16-Dec-16	16-Dec-17	B.3				

Page No: 57 of 62

Equip No	Model	Description	Last Cal	Next Cal	Test Item
Equip No	Manufacturer	Description	Lust cui	itext cui	rest item
CIS051642	Sucoflex 106PA	RF N Type Cable 8.5m	11-Feb-16	11-Feb-17	B.4
	Huber+Suhner				
CIS030559	UFB311A-1-0950-504504 Micro-Coax	RF Coaxial Cable, to 18GHz, 95 in	15-Feb-16	15-Feb-17	B.4
CIS020975	UFB311A-0-1344-520520	RF Coaxial Cable, to 18GHz, 134.4 in	17-Feb-16	17-Feb-17	B.4
	Micro-Coax				
CIS046717	5-T-MB	5W 50 Ohm BNC Termination 4GHz	9-Mar-16	9-Mar-17	B.4
	Bird				
CIS008510	FCC-450B-2.4-N	Instrumentation Limiter	16-May-16	16-May-17	B.4
	Fischer Custom Communications				
CIS023796	FCC-LISN-PA-520R	POWER ADAPTOR, POLARIZED 120VAC	27-Jul-16	27-Jul-17	B.4
	Fischer Custom Communications				
CIS023794	FCC-LISN-50/250-50-2-02	LISN	27-Jul-16	27-Jul-17	B.4
	Fischer Custom Communications				
CIS019206	H785-150K-50-21378	High Pas Filter,Fo=150kHz	13-Sep-16	13-Sep-17	B.4
	TTE				
CIS005687	73 III	Digital Multimeter	3-Nov-16	3-Nov-17	B.4
	Fluke				
CIS041929	iBTHP-5-DB9	5 inch Temp/RH/Press Sensor w/20ft cable	22-Dec-16	22-Dec-17	B.4
	Newport				
CIS054645	33-428	Tape measure 8 meter	Cal Not	Cal Not	B.4
	Stanley		Required	Required	

	Test Equipmen	nt used for AC Mains Conducted En	nissions		
Equip No	Model	Description	Last Cal	Next Cal	Test Item
	Manufacturer				
CIS051642	Sucoflex 106PA	RF N Type Cable 8.5m	11-Feb-16	11-Feb-17	B.4
	Huber+Suhner				
CIS030559	UFB311A-1-0950-504504	RF Coaxial Cable, to 18GHz, 95 in	15-Feb-16	15-Feb-17	B.4
	Micro-Coax				
CIS020975	UFB311A-0-1344-520520	RF Coaxial Cable, to 18GHz, 134.4 in	17-Feb-16	17-Feb-17	B.4
	Micro-Coax				
CIS046717	5-T-MB	5W 50 Ohm BNC Termination 4GHz	9-Mar-16	9-Mar-17	B.4
	Bird				
CIS008510	FCC-450B-2.4-N	Instrumentation Limiter	16-May-16	16-May-17	B.4
	Fischer Custom Communications				
CIS023796	FCC-LISN-PA-520R	POWER ADAPTOR, POLARIZED 120VAC	27-Jul-16	27-Jul-17	B.4
	Fischer Custom Communications				
CIS023794	FCC-LISN-50/250-50-2-02	LISN	27-Jul-16	27-Jul-17	B.4
	Fischer Custom Communications				
CIS019206	H785-150K-50-21378	High Pas Filter,Fo=150kHz	13-Sep-16	13-Sep-17	B.4
	TTE				
CIS005687	73 III	Digital Multimeter	3-Nov-16	3-Nov-17	B.4
	Fluke				
CIS041929	iBTHP-5-DB9	5 inch Temp/RH/Press Sensor w/20ft cable	22-Dec-16	22-Dec-17	B.4
	Newport				
CIS054645	33-428	Tape measure 8 meter	Cal Not	Cal Not	B.4
	Stanley		Required	Required	

Test Equipment used for RF Conducted Tests					
Equip No	Model Manufacturer	Description	Last Cal	Next Cal	Test Item
CIS049445	BRC50704-02 Micro-Tronics	Notch Filter, SB:5.470-5.725GHz, to 12GHz	12-Apr-16	12-Apr-17	A1 thru A6
CIS035038	BRC50703-02 Micro-Tronics	Notch Filter, SB:5.150-5.350GHz, to 11GHz	6-Jul-16	6-Jul-17	A1 thru A6
CIS055561	F120-S1S1-48 MegaPhase	SMA Cable 48"	15-Jul-16	15-Jul-17	A1 thru A6
CIS054635	F120-S1S1-48 Megaphase	SMA cable 48"	15-Jul-16	15-Jul-17	A1 thru A6
CIS055588	BWS30-W2 Aeroflex	SMA 30dB Attenuator	21-Jul-16	21-Jul-17	A1 thru A6
CIS055578	BWS20-W2 Aeroflex	SMA 20dB Attenuator	21-Jul-16	21-Jul-17	A1 thru A6
CIS054656	BRC50705-02 Micro-Tronics	Band Reject Filter	19-Sep-16	19-Sep-17	A1 thru A6
CIS054653	BRM50702-02 Micro-Tronics	Notch Filter, SB:2.400-2.500GHz, to 18GHz	19-Sep-16	19-Sep-17	A1 thru A6
CIS055858	SMSM-A2PH-012 Dynawave	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
CIS055856	SMSM-A2PH-012 Dynawave	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
CIS055849	SMSM-A2PH-012 Dynawave	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
CIS055848	SMSM-A2PH-012 Dynawave	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
CIS055847	SMSM-A2PH-012 Dynawave	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
CIS055846	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6

Page No: 59 of 62

	Dynawave				
CIS055845	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
	Dynawave				
CIS055844	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
	Dynawave				
CIS055843	SMSM-A2PH-012	12" SMA Cable	29-Sep-16	29-Sep-17	A1 thru A6
	Dynawave				
CIS055842	SMSM-A2PH-012	12" SMA cable	29-Sep-16	29-Sep-17	A1 thru A6
	Dynawave				
CIS055874	SMSM-A2PH-024	24" SMA Cable	7-Oct-16	7-Oct-17	A1 thru A6
	Dynawave				
CIS055872	SMSM-A2PH-024	24" SMA Cable	7-Oct-16	7-Oct-17	A1 thru A6
	Dynawave				
CIS055868	SMSM-A2PH-024	24" SMA Cable	7-Oct-16	7-Oct-17	A1 thru A6
	Dynawave				
CIS055867	SMSM-A2PH-024	24" SMA Cable	7-Oct-16	7-Oct-17	A1 thru A6
	Dynawave				
CIS055885	SMSM-A2PH-018	18" SMA Cable	10-Oct-16	10-Oct-17	A1 thru A6
	Dynawave				
CIS055170	RFLT4WDC40GK	4 Way Power Divider 40GHz	29-Nov-16	29-Nov-17	A1 thru A6
	RF Lambda				
CIS050721	N9030A	PXA Signal Analyzer	30-Mar-16	30-Mar-17	A1 thru A6
	Keysight				
CIS054303	N5182B	MXG X-Series RF Vector Signal Generator	6-Apr-16	6-Apr-17	A1 thru A6
	Keysight				
CIS055099	SMART2200RM2U	Power Supply	Cal Not	Cal Not	A1 thru A6
	Tripp-Lite		Required	Required	
CIS055094	PXI-1042	Chassis	Cal Not	Cal Not	A1 thru A6
	National Instruments		Required	Required	

Appendix E: Abbreviation Key and Definitions

The following table defines abbreviations used within this test report.

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
TAP	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10 ³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	н	Horizontal
CDN	Coupling/Decoupling Network	٧	Vertical
LISN	Line Impedance Stabilization	dB	decibel
	Network		
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	Α	Amp
L3	Line 3	μΑ	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value,	μS	Micro Second (1x10 ⁻⁶)
	as indicated by the measuring device		
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
N	Neutral Line	R	Return
S	Supply	AC	Alternating Current

Page No: 61 of 62

End