

Test Report

AIR-CAP3702y-A-K9 AIR-SAP3702y-A-K9

Cisco Aironet 802.11ac Dual Band Access Points

FCC ID: LDK102087 IC: 2461B-102087

Also covers:

AIR-CAP3702y-D-K9, AIR-SAP3702y-D-K9

AIR-CAP3702y-N-K9, AIR-SAP3702y-N-K9

AIR-CAP3702y-Z-K9, AIR-SAP3702y-Z-K9

y = E (External Antenna) or I (Internal Antenna)

5150-5250 MHz

Against the following Specifications:
CFR47 Part 15.407
RSS210

Cisco Systems

170 West Tasman Drive San Jose, CA 95134

Page No: 1 of 337

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

SECTION 1: OVERVIEW	3
1.1 Test Summary	3
SECTION 2: ASSESSMENT INFORMATION	4
2.1 General	
2.2 Date of testing.	
2.3 REPORT ISSUE DATE	
2.4 Testing facilities	
2.5 EQUIPMENT ASSESSED (EUT)	
2.6 EUT DESCRIPTION	
SECTION 4: SAMPLE DETAILS	
APPENDIX A: EMISSION TEST RESULTS	
TARGET MAXIMUM CHANNEL POWER	
99% AND 26DB BANDWIDTH	10
PEAK OUTPUT POWER	17
Power Spectral Density	22
PEAK EXCURSION	153
CONDUCTED SPURIOUS EMISSIONS	
CONDUCTED BANDEDGE	167
CONDUCTED TEST SETUP PHOTO	324
APPENDIX B: EMISSION TEST RESULTS	325
RADIATED SPURIOUS EMISSIONS	325
RADIATED EMISSIONS	333
MAXIMUM PERMISSIBLE EXPOSURE (MPE) CALCULATIONS	335
APPENDIX C: TEST EQUIPMENT/SOFTWARE USED TO PERFORM THE TEST	337

Section 1: Overview

1.1 Test Summary

samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

Emission	Immunity
CFR47 Part 15.407 RSS210	N/A

The specifications listed above represent actual tests performed to demonstrate compliance against the specifications and basic standards listed on the front cover of this report. This list is not a one to one match to the front cover for one or more of the following reasons.

- 1. Basic standards call up many different test phenomena specifications such as the 61000-4-X series. The basic standards define which elements and levels shall be applied from these specifications and as such it is not appropriate to list the individual specifications on the front cover.
- 2. A Standard listed on the front cover may be required in a particular country but is not appropriate for the particular technologies included in the equipment under test. E.g. You cannot test a DC product to the mains Harmonics requirements in EN61000-3-2. See section 3.2.
- 3. Test results against a particular standard or specification may be included in a different test report. See section 3.2 for an EDCS reference of this data.
- 4. Where appropriate, Cisco may have substituted a later revision of a basic standard to those referenced in the specification on the front sheet of this test report. This decision was based upon improved test methodology and repeatability and/or where the newer revision represented a more stringent test.
- 5. Where relevant, testing has been carried out to the requirements of both EN and IEC Specifications. This was possible because of the similarities of the test methods involved and the Cisco EMC test procedures.
- 6. Testing may have been performed to an equivalent test that satisfies the requirements of the standards and specifications listed on the front cover of the report. See section 3.2.
- 7. Where radiated emissions testing has been performed to EN55022/CISPR22 the additional requirements of VCCI: V-3/2006.04, EN55022: 1994 +A1/2 and CAN/CSA- CISPR 22-02 have also been evaluated unless otherwise stated.
- 8. Testing to the requirements of CFR47 Part 15 was performed against the CISPR22 limits. The results are therefore deemed satisfactory evidence of compliance with Industry Canada Interference Causing Equipment Standard ICES-003.
- Where assessment has been performed to CISPR24, all the applicable test requirements may have not been covered.Refer to the results section for the tests performed.

Notes:

- 1) Where a specification listed on the front cover of this report has deviations from the basic standards listed above, the additional technical requirements of the specification were also assessed.
- Where appropriate, Cisco may have substituted a later revision of a basic standard to those referenced in the specification on the front sheet of this test report. This decision was based upon improved test methodology and repeatability and/or where the newer revision represented a more stringent test.
- 3) Where relevant, testing has been carried out to the requirements of both EN and IEC Specifications. This was possible because of the similarities of the test methods involved and the Cisco EMC test procedures.

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature 15°C to 35°C (54°F to 95°F)

Atmospheric Pressure 860mbar to 1060mbar (25.4" to 31.3")

Humidity 10% to 75*%

*[Where applicable] For ESD testing the humidity limits used were 30% to 60% and for EFT/B tests the humidity limits used were 25% to 75%.

e) All AC testing was performed at one or more of the following supply voltages:

110V 60 Hz (+/-20%) 220V 50 Hz (+/-20%)

This report must not be reproduced except in full, without written approval of Cisco Systems.

2.2 Date of testing

18-February-2013 - 08-March-2013

2.3 Report Issue Date

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled

2.4 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc.,
4125 Highlander Parkway
Richfield, OH 44286
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134

USA USA

Test Engineers

James Nicholson

2.5 Equipment Assessed (EUT)

AIR-SAP3702E-A-K9 Cisco Aironet 802.11ac Dual Band Access Point

Page No: 5 of 337

2.6 EUT Description

The 3700 Series Cisco Aironet 802.11ac Dual Band Access Points support the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes.

Non HT/VHT-20, One Antenna, 6 to 54 Mbps

Non HT/VHT-20, Two Antennas, 6 to 54 Mbps

Non HT/VHT-20, Three Antennas, 6 to 54 Mbps

Non HT/VHT-20, Four Antennas, 6 to 54 Mbps

Non HT/VHT-20 Beam Forming, Two Antennas, 6 to 54 Mbps

Non HT/VHT-20 Beam Forming, Three Antennas, 6 to 54 Mbps

Non HT/VHT-20 Beam Forming, Four Antennas, 6 to 54 Mbps

HT/VHT-20, One Antenna, M0 to M7, m0.1 to m9.1

HT/VHT-20, Two Antennas, M0 to M15, m0.1 to m9.2

HT/VHT-20, Three Antennas, M0 to M23, m0.1 to m9.3

HT/VHT-20, Four Antennas, M0 to M23, m0.1 to m9.3

HT/VHT-20 STBC, Two Antennas, M0 to M7, m0.1 to m9.1

HT/VHT-20 STBC, Three Antennas, M0 to M7, m0.1 to m9.1

HT/VHT-20 STBC, Four Antennas, M0 to M7, m0.1 to m9.1

HT/VHT-20 Beam Forming, Two Antennas, M0 to M15, m0.1 to m9.2

HT/VHT-20 Beam Forming, Three Antennas, M0 to M23, m0.1 to m9.3

HT/VHT-20 Beam Forming, Four Antennas, M0 to M23, m0.1 to m9.3

Non HT/VHT-40 Duplicate, One Antenna, 6-54 Mbps

Non HT/VHT-40 Duplicate, Two Antennas, 6-54 Mbps

Non HT/VHT-40 Duplicate, Three Antennas, 6-54 Mbps

Non HT/VHT-40 Duplicate, Four Antennas, 6-54 Mbps

HT/VHT-40, One Antenna, M0 to M7, m0.1 to m9.1

HT/VHT-40, Two Antennas, M0 to M15, m0.1 to m9.2

HT/VHT-40, Three Antennas, M0 to M23, m0.1 to m9.3

HT/VHT-40, Four Antennas, M0 to M23, m0.1 to m9.3

HT/VHT-40 STBC, Two Antennas, M0 to M7, m0.1 to m9.1

HT/VHT-40 STBC, Three Antennas, M0 to M7, m0.1 to m9.1

HT/VHT-40 STBC, Four Antennas, M0 to M7, m0.1 to m9.1

HT/VHT-40 Beam Forming, Two Antennas, M0 to M15, m0.1 to m9.2

HT/VHT-40 Beam Forming, Three Antennas, M0 to M23, m0.1 to m9.3

HT/VHT-40 Beam Forming, Four Antennas, M0 to M23, m0.1 to m9.3

Page No: 6 of 337

Non VHT-80 Duplicate, One Antenna, 6-54 Mbps Non VHT-80 Duplicate, Two Antennas, 6-54 Mbps Non VHT-80 Duplicate, Three Antennas, 6-54 Mbps

Non VHT-80 Duplicate, Four Antennas, 6-54 Mbps

VHT-80, One Antenna, M0 to M7, m0.1 to m9.1

VHT-80, Two Antennas, M0 to M15, m0.1 to m9.2 VHT-80, Three Antennas, M0 to M23, m0.1 to m9.3

VHT-80, Four Antennas, M0 to M23, m0.1 to m9.3

VHT-80 STBC, Two Antennas, M0 to M7, m0.1 to m9.1 VHT-80 STBC, Three Antennas, M0 to M7, m0.1 to m9.1 VHT-80 STBC, Four Antennas, M0 to M7, m0.1 to m9.1

VHT-80 Beam Forming, Two Antennas, M0 to M15, m0.1 to m9.2 VHT-80 Beam Forming, Three Antennas, M0 to M23, m0.1 to m9.3 VHT-80 Beam Forming, Four Antennas, M0 to M23, m0.1 to m9.3

The following antennas are supported by this product series.

The data included in this report represent the worst case data for all antennas.

Frequency	Part Number	Antenna Type	Antenna Gain (dBi)				
	AIR-ANT2524DB-R	Dual-resonant black dipole	2/4				
	AIR-ANT2524DW-R Dual-resonant white dipole						
0415	AIR-ANT2524DG-R	Dual-resonant gray dipole	2/4				
2.4 / 5	AIR-ANT2524V4C-R	Dual-resonant ceiling mount omni (4-pack)	2/4				
GHz	AIR-ANT2535SDW-R	Dual-resonant "stubby" monopole	3/5				
OTIZ	Internal	Omni	4/4				
	AIR-ANT2544V4M-R	Dual-resonant omni (4-pack)	4/4				
	AIR-ANT2566P4W-R	Dual-resonant "directional" antenna (4-pack)	6/6				

Page No: 7 of 337

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. Please also refer to the "Justification for worst Case test Configuration" section of this report for further details on the selection of EUT samples.

4.1 Sample Details (Photographs of the test samples, where appropriate can be found in appendix H)

Sample No.	Equipment Details	Part Number	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	AIR-SAP3702E-A-K9		Cisco Systems	NA	NA	NA	
S02	AIR-PWR-B	341-0306-01	Cisco Systems	NA	NA	NA	

4.2 System Details

System #	Description	Samples
1	EUT	S01, S02

4.3 Mode of Operation Details

Mode#	Description	Comments
1	Continuous Transmitting	Continuous Transmitting

All tests in this report were performed as described in FCC KDB 662911 D01

Page No: 8 of 337

Appendix A: Emission Test Results

Testing Laboratory: Cisco Systems, Inc., 4125 Highlander Parkway, Richfield, OH, USA

Target Maximum Channel Power

The following table details the maximum supported Total Channel Power for all operating modes.

	Maximum Channel Power (dBm) Frequency (MHz)				
Operating Mode	5180 5240				
Non HT-20, 6 to 54 Mbps	13	14			
Non HT-20 Beam Forming, 6 to 54 Mbps	11	13			
HT-20, M0 to M23, M0.1 to M9.3	14	14			
HT-20 STBC, M0 to M7, M0.1 to M9.1	14	14			
HT-20 Beam Forming, M0 to M23, M0.1 to M9.3	14	14			
	5180/5200 5220/524				
Non HT-40 Duplicate, 6 to 54 Mbps	15	17			
HT-40, M0 to M23, M0.1 to M9.3	16	17			
HT-40 STBC, M0 to M7, M0.1 to M9.1	16	17			
HT-40 Beam Forming, M0 to M23, M0.1 to M9.3	16	17			
	5180/5200	/5220/5240			
Non HT-80 Duplicate, 6 to 54 Mbps	16				
HT-80, M0 to M23, M0.1 to M9.3	16				
HT-80 STBC, M0 to M7, M0.1 to M9.1	16				
HT-80 Beam Forming, M0 to M23, M0.1 to M9.3	16				

Page No: 9 of 337

99% and 26dB Bandwidth

Connect the antenna port(s) to the spectrum analyzer input. Using the spectrum analyzer Channel Bandwidth mode, configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency: Frequency from table below

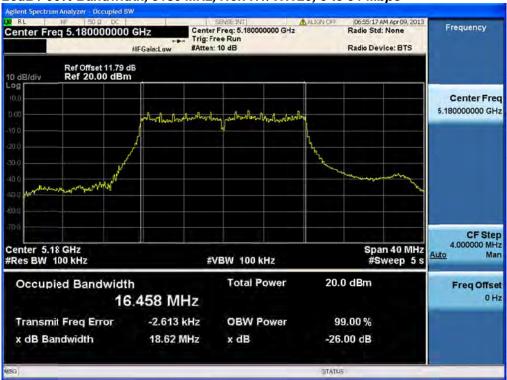
Span: 2 x Nominal Bandwidth (e.g. 40MHz for a 20MHz channel)

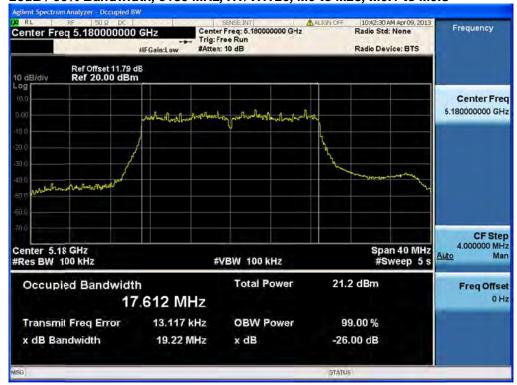
Reference Level: 20 dBm Attenuation: 10 dB Sweep Time: 5 s

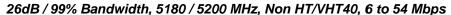
Resolution Bandwidth: 1%-3% of 26 dB Bandwidth Video Bandwidth: ≥Resolution Bandwidth

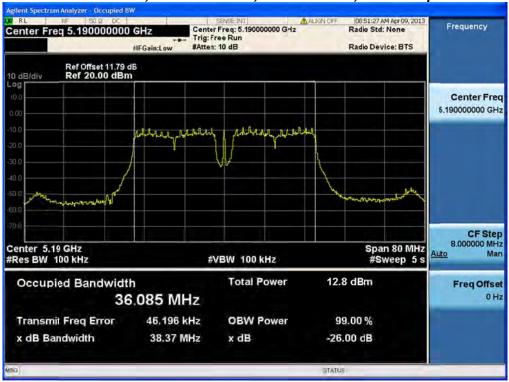
X dB Bandwidth: 26 dB Detector: Peak Trace: Single

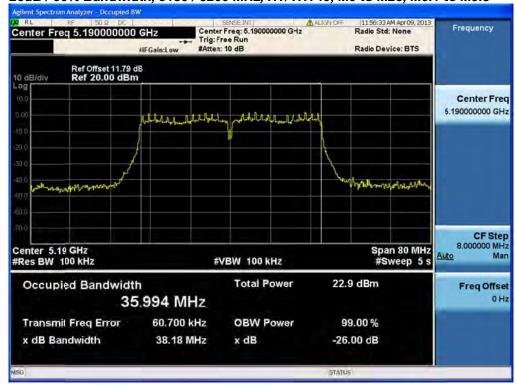
Place the radio in continuous transmit mode. View the transmitter waveform on the spectrum analyzer, and record the pertinent measurements:

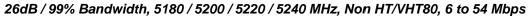

Page No: 10 of 337


Frequency (MHz)	Mode	Data Rate (Mbps)	26dB BW (MHz)	99% BW (MHz)
5180	Non HT/VHT20, 6 to 54 Mbps	6	<u>18.6</u>	16.5
3160	HT/VHT20, M0 to M23, M0.1 to M9.3	m0	<u>19.2</u>	17.6
5180/5200	Non HT/VHT40, 6 to 54 Mbps	6	<u>38.4</u>	36.1
5180/5200	HT/VHT40, M0 to M23, M0.1 to M9.3	m0	<u>38.2</u>	36
5180/5200	Non HT/VHT80, 6 to 54 Mbps	6	<u>79.1</u>	75.8
5220/5240	HT/VHT80, M0 to M23, M0.1 to M9.3	m0x1	<u>79.8</u>	75.8
5220/5240	Non HT/VHT40, 6 to 54 Mbps	6	<u>38.5</u>	36.1
3220/3240	HT/VHT40, M0 to M23, M0.1 to M9.3	m0	<u>38.2</u>	36
5240	Non HT/VHT20, 6 to 54 Mbps	6	<u>18.6</u>	16.5
3240	HT/VHT20, M0 to M23, M0.1 to M9.3	m0	<u>19.3</u>	17.6

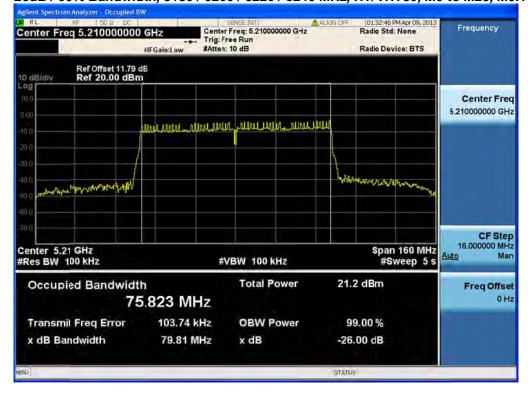


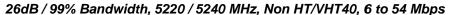

26dB / 99% Bandwidth, 5180 MHz, HT/VHT20, M0 to M23, M0.1 to M9.3


Page No: 12 of 337

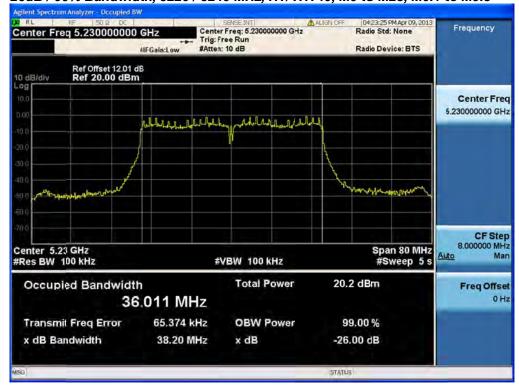


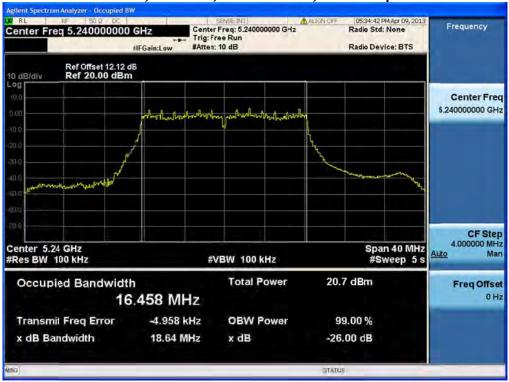

26dB / 99% Bandwidth, 5180 / 5200 MHz, HT/VHT40, M0 to M23, M0.1 to M9.3

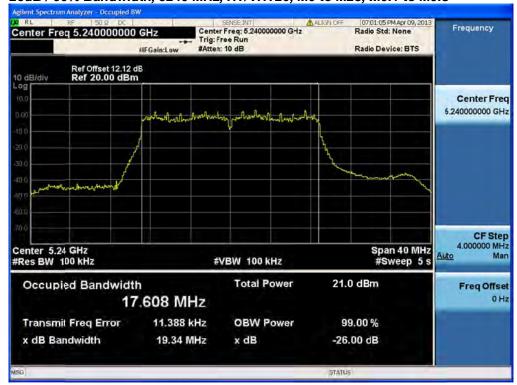

Page No: 13 of 337



26dB / 99% Bandwidth, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80, M0 to M23, M0.1 to M9.3


Page No: 14 of 337


26dB / 99% Bandwidth, 5220 / 5240 MHz, HT/VHT40, M0 to M23, M0.1 to M9.3


Page No: 15 of 337

26dB / 99% Bandwidth, 5240 MHz, HT/VHT20, M0 to M23, M0.1 to M9.3

Page No: 16 of 337

Peak Output Power

15.407: For the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The smallest 26dB bandwidth for all channels is 18.6 MHz. The maximum conducted output power is calculated as 4dBm+10*log(18.6MHz) = 16.7dBm

The maximum supported antenna gain is 6dBi. The peak correlated gain for each mode is listed in the table below.

Connect the antenna port(s) to the spectrum analyzer input. Place the radio in continuous transmit mode. Configure the spectrum analyzer as shown below.

Enable "Channel Power" function of analyzer

Center Frequency: Frequency from table below

Span: 20 MHz (must be greater than 26dB bandwidth, adjust as necessary)

Ref Level Offset: Correct for attenuator and cable loss.

Reference Level: 20 dBm Attenuation: 20 dB

Sweep Time: 100ms, Single sweep

Resolution Bandwidth: 1 MHz
Video Bandwidth: 3 MHz
Detector: Sample

Trace: Trace Average 100 traces in Power Averaging Mode

Integration BW: =99 % BW from 99% Bandwidth Data

After averaging 100 traces of the transmitter waveform on the spectrum analyzer, record the spectrum analyzer Channel Power.

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units.

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Tx 2 Max Power (dBm)	Tx 3 Max Power (dBm)	Tx 4 Max Power (dBm)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
	Non HT/VHT20, 6 to 54 Mbps	1	6	<u>13.4</u>				13.4	16.7	3.3
	Non HT/VHT20, 6 to 54 Mbps	2	6	<u>8.7</u>	<u>8.6</u>			11.7	16.7	5.0
	Non HT/VHT20, 6 to 54 Mbps	3	6	<u>4.8</u>	<u>4.5</u>	<u>5.1</u>		9.6	16.7	7.1
	Non HT/VHT20, 6 to 54 Mbps	4	6	<u>2.8</u>	<u>2.5</u>	<u>3.1</u>	<u>3.0</u>	8.9	16.7	7.8
	Non HT/VHT20 Beam Forming, 6 to 54 Mbps	2	9	<u>7.8</u>	<u>7.6</u>			10.7	13.7	3.0
	Non HT/VHT20 Beam Forming, 6 to 54 Mbps	3	11	<u>3.7</u>	<u>3.5</u>	<u>4.1</u>		8.5	11.9	3.4
	Non HT/VHT20 Beam Forming, 6 to 54 Mbps	4	12	<u>1.8</u>	<u>1.5</u>	<u>2.1</u>	<u>2.0</u>	7.9	10.7	2.8
	HT/VHT20, M0 to M7, M0.1 to M9.1	1	6	<u>14.4</u>				14.4	16.8	2.4
	HT/VHT20, M0 to M7, M0.1 to M9.1	2	6	<u>8.6</u>	<u>8.6</u>			11.6	16.9	5.2
	HT/VHT20, M8 to M15, M0.2 to M9.2	2	6	<u>10.5</u>	<u>10.6</u>			13.6	16.9	3.3
	HT/VHT20, M0 to M7, M0.1 to M9.1	3	6	<u>4.7</u>	<u>4.6</u>	<u>5.2</u>		9.6	16.9	7.3
	HT/VHT20, M8 to M15, M0.2 to M9.2	3	6	<u>7.6</u>	<u>7.7</u>	<u>8.1</u>		12.6	16.9	4.3
0	HT/VHT20, M16 to M23, M0.3 to M9.3	3	6	<u>9.5</u>	<u>9.6</u>	<u>10.0</u>		14.5	16.9	2.4
5180	HT/VHT20, M0 to M7, M0.1 to M9.1	4	6	<u>2.9</u>	<u>2.6</u>	<u>3.2</u>	<u>3.1</u>	9.0	16.9	7.9
۵,	HT/VHT20, M8 to M15, M0.2 to M9.2	4	6	<u>5.7</u>	<u>5.7</u>	<u>6.2</u>	<u>5.9</u>	11.9	16.9	5.0
	HT/VHT20, M16 to M23, M0.3 to M9.3	4	6	<u>7.6</u>	<u>7.7</u>	<u>8.1</u>	<u>7.9</u>	13.8	16.9	3.0
	HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1	2	9	<u>7.6</u>	<u>7.7</u>			10.7	13.9	3.2
	HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2	2	6	<u>10.5</u>	<u>10.6</u>			13.6	16.9	3.3
	HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1	3	11	<u>4.7</u>	<u>4.6</u>	<u>5.2</u>		9.6	12.1	2.5
	HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2	3	8	<u>7.6</u>	<u>7.7</u>	<u>8.1</u>		12.6	15.1	2.5
	HT/VHT20 Beam Forming, M16 to M23, M0.3 to M9.3	3	6	<u>9.5</u>	<u>9.6</u>	<u>10.0</u>		14.5	16.9	2.4
	HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1	4	12	<u>1.7</u>	<u>1.7</u>	2.2	<u>2.0</u>	7.9	10.9	3.0
	HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2	4	9	<u>4.7</u>	<u>4.6</u>	<u>5.2</u>	<u>5.1</u>	10.9	13.9	2.9
	HT/VHT20 Beam Forming, M16 to M23, M0.3 to M9.3	4	7	<u>6.9</u>	<u>6.7</u>	7.2	<u>6.9</u>	12.9	15.7	2.7
	HT/VHT20 STBC, M0 to M7, M0.1 to M9.1	2	6	<u>10.5</u>	<u>10.6</u>			13.6	16.9	3.3
	HT/VHT20 STBC, M0 to M7, M0.1 to M9.1	3	6	<u>7.6</u>	<u>7.7</u>	<u>8.1</u>		12.6	16.9	4.3
	HT/VHT20 STBC, M0 to M7, M0.1 to M9.1	4	6	<u>5.7</u>	<u>5.7</u>	<u>6.2</u>	<u>5.9</u>	11.9	16.9	5.0

Page No: 18 of 337

	Non HT/VHT40, 6 to 54 Mbps	1	6	<u>15.2</u>				15.2	17.0	1.8
	Non HT/VHT40, 6 to 54 Mbps	2	6	<u>11.8</u>	<u>12.2</u>			15.0	17.0	2.0
	Non HT/VHT40, 6 to 54 Mbps	3	6	<u>8.2</u>	<u>8.1</u>	<u>8.5</u>		13.0	17.0	4.0
	Non HT/VHT40, 6 to 54 Mbps	4	6	<u>6.2</u>	<u>5.9</u>	<u>6.5</u>	<u>6.2</u>	12.2	17.0	4.8
	HT/VHT40, M0 to M7, M0.1 to M9.1	1	6	<u>15.8</u>				15.8	17.0	1.2
	HT/VHT40, M0 to M7, M0.1 to M9.1	2	6	<u>11.7</u>	<u>12.0</u>			14.9	17.0	2.1
	HT/VHT40, M8 to M15, M0.2 to M9.2	2	6	<u>12.7</u>	<u>13.1</u>			15.9	17.0	1.1
	HT/VHT40, M0 to M7, M0.1 to M9.1	3	6	<u>8.0</u>	<u>8.0</u>	<u>8.3</u>		12.9	17.0	4.1
	HT/VHT40, M8 to M15, M0.2 to M9.2	3	6	<u>10.9</u>	<u>10.9</u>	<u>11.3</u>		15.8	17.0	1.2
	HT/VHT40, M16 to M23, M0.3 to M9.3	3	6	10.9	<u>10.9</u>	11.3		15.8	17.0	1.2
0	HT/VHT40, M0 to M7, M0.1 to M9.1	4	6	6.0	<u>5.9</u>	<u>6.5</u>	6.4	12.2	17.0	4.8
5180/5200	HT/VHT40, M8 to M15, M0.2 to M9.2	4	6	8.9	<u>8.9</u>	9.2	<u>8.9</u>	15.0	17.0	2.0
/08	HT/VHT40, M16 to M23, M0.3 to M9.3	4	6	9.9	<u>9.9</u>	10.3	<u>9.9</u>	16.0	17.0	1.0
51	HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1	2	9	9.9	9.9			12.9	14.0	1.1
	HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2	2	6	<u>12.7</u>	13.1			15.9	17.0	1.1
	HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1	3	11	6.0	<u>5.9</u>	<u>6.5</u>		10.9	12.2	1.3
	HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2	3	8	8.9	<u>8.9</u>	9.2		13.8	15.2	1.4
	HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3	3	6	10.9	10.9	11.3		15.8	17.0	1.2
	HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1	4	12	3.9	3.8	4.5	4.2	10.1	11.0	0.9
	HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2	4	9	7.0	7.0	7.7	<u>7.4</u>	13.3	14.0	0.7
	HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3	4	7	8.9	8.9	9.2	8.9	15.0	15.8	0.8
	HT/VHT40 STBC, M0 to M7, M0.1 to M9.1	2	6	<u>12.7</u>	13.1			15.9	17.0	1.1
	HT/VHT40 STBC, M0 to M7, M0.1 to M9.1	3	6	10.9	10.9	11.3		15.8	17.0	1.2
	HT/VHT40 STBC, M0 to M7, M0.1 to M9.1	4	6	8.9	<u>8.9</u>	9.2	8.9	15.0	17.0	2.0
	Non HT/VHT80, 6 to 54 Mbps	1	6	<u>16.5</u>				16.5	17.0	0.5
	Non HT/VHT80, 6 to 54 Mbps	2	6	<u>13.1</u>	13.4			16.3	17.0	0.7
	Non HT/VHT80, 6 to 54 Mbps	3	6	11.2	11.4	11.7		16.2	17.0	0.8
	Non HT/VHT80, 6 to 54 Mbps	4	6	9.1	9.3	9.7	9.5	15.4	17.0	1.6
0	HT/VHT80, M0 to M7, M0.1 to M9.1	1	6	<u>15.6</u>				15.6	17.0	1.4
524	HT/VHT80, M0 to M7, M0.1 to M9.1	2	6	<u>12.6</u>	13.1			15.9	17.0	1.1
07/0	HT/VHT80, M8 to M15, M0.2 to M9.2	2	6	12.6	13.1			15.9	17.0	1.1
522	HT/VHT80, M0 to M7, M0.1 to M9.1	3	6	10.9	11.1	11.4		15.9	17.0	1.1
/00	HT/VHT80, M8 to M15, M0.2 to M9.2	3	6	10.9	11.1	11.4		15.9	17.0	1.1
5180/5200/5220/5240	HT/VHT80, M16 to M23, M0.3 to M9.3	3	6	10.9	11.1	11.4		15.9	17.0	1.1
180	HT/VHT80, M0 to M7, M0.1 to M9.1	4	6	9.0	9.0	9.4	9.2	15.2	17.0	1.8
5,	HT/VHT80, M8 to M15, M0.2 to M9.2	4	6	9.9	10.0	10.4	10.1	16.1	17.0	0.9
	HT/VHT80, M16 to M23, M0.3 to M9.3	4	6	9.9	10.0	10.4	10.1	16.1	17.0	0.9
	HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1	2	9	9.9	10.0			13.0	14.0	1.0
	HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2	2	6	12.6	13.1			15.9	17.0	1.1
	HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1	3	11	<u>6.0</u>	<u>5.9</u>	<u>6.4</u>		10.9	12.2	1.3

Page No: 19 of 337

	HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2	3	8	<u>9.0</u>	<u>9.0</u>	<u>9.4</u>		13.9	15.2	1.3
	HT/VHT80 Beam Forming, M16 to M23, M0.3 to M9.3	3	6	<u>10.9</u>	<u>11.1</u>	<u>11.4</u>		15.9	17.0	1.1
	HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1	4	12	<u>3.9</u>	<u>3.9</u>	<u>4.4</u>	<u>4.4</u>	10.2	11.0	0.8
	HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2	4	9	<u>7.0</u>	<u>7.0</u>	<u>7.4</u>	<u>7.4</u>	13.2	14.0	0.8
	HT/VHT80 Beam Forming, M16 to M23, M0.3 to M9.3	4	7	<u>9.0</u>	<u>9.0</u>	<u>9.4</u>	<u>9.2</u>	15.2	15.8	0.6
	HT/VHT80 STBC, M0 to M7, M0.1 to M9.1	2	6	<u>12.6</u>	<u>13.1</u>			15.9	17.0	1.1
	HT/VHT80 STBC, M0 to M7, M0.1 to M9.1	3	6	<u>10.9</u>	<u>11.1</u>	<u>11.4</u>		15.9	17.0	1.1
	HT/VHT80 STBC, M0 to M7, M0.1 to M9.1	4	6	<u>9.9</u>	<u>10.0</u>	<u>10.4</u>	<u>10.1</u>	16.1	17.0	0.9
	Non HT/VHT40, 6 to 54 Mbps	1	6	<u>16.8</u>				16.8	17.0	0.2
	Non HT/VHT40, 6 to 54 Mbps	2	6	<u>12.5</u>	<u>13.1</u>			15.8	17.0	1.2
	Non HT/VHT40, 6 to 54 Mbps	3	6	<u>8.5</u>	<u>8.9</u>	<u>8.9</u>		13.5	17.0	3.5
	Non HT/VHT40, 6 to 54 Mbps	4	6	<u>6.4</u>	<u>6.9</u>	<u>6.9</u>	<u>6.9</u>	12.8	17.0	4.2
	HT/VHT40, M0 to M7, M0.1 to M9.1	1	6	<u>16.5</u>				16.5	17.0	0.5
	HT/VHT40, M0 to M7, M0.1 to M9.1	2	6	<u>12.3</u>	<u>12.9</u>			15.6	17.0	1.4
	HT/VHT40, M8 to M15, M0.2 to M9.2	2	6	<u>13.3</u>	<u>14.0</u>			16.7	17.0	0.3
	HT/VHT40, M0 to M7, M0.1 to M9.1	3	6	<u>8.5</u>	9.0	<u>8.9</u>		13.6	17.0	3.4
	HT/VHT40, M8 to M15, M0.2 to M9.2	3	6	<u>11.3</u>	<u>11.9</u>	<u>11.8</u>		16.4	17.0	0.6
	HT/VHT40, M16 to M23, M0.3 to M9.3	3	6	<u>11.3</u>	<u>11.9</u>	<u>11.8</u>		16.4	17.0	0.6
40	HT/VHT40, M0 to M7, M0.1 to M9.1	4	6	<u>6.5</u>	<u>6.8</u>	<u>7.1</u>	<u>7.1</u>	12.9	17.0	4.1
5220/5240	HT/VHT40, M8 to M15, M0.2 to M9.2	4	6	<u>9.4</u>	<u>10.0</u>	<u>9.8</u>	<u>9.7</u>	15.8	17.0	1.2
20/	HT/VHT40, M16 to M23, M0.3 to M9.3	4	6	<u>10.4</u>	<u>11.0</u>	<u>10.9</u>	<u>10.6</u>	16.8	17.0	0.2
52	HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1	2	9	<u>10.4</u>	<u>11.0</u>			13.7	14.0	0.3
	HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2	2	6	<u>13.3</u>	<u>14.0</u>			16.7	17.0	0.3
	HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1	3	11	<u>6.5</u>	<u>6.8</u>	<u>7.1</u>		11.6	12.2	0.6
	HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2	3	8	<u>9.4</u>	<u>10.0</u>	<u>9.8</u>		14.5	15.2	0.7
	HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3	3	6	<u>11.3</u>	<u>11.9</u>	<u>11.8</u>		16.4	17.0	0.6
	HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1	4	12	<u>4.4</u>	<u>4.8</u>	<u>5.1</u>	<u>5.0</u>	10.9	11.0	0.1
	HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2	4	9	<u>7.8</u>	<u>8.0</u>	<u>8.2</u>	<u>7.9</u>	14.0	14.0	0.0
	HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3	4	7	<u>9.4</u>	<u>10.0</u>	<u>9.8</u>	<u>9.7</u>	15.8	15.8	0.0
	HT/VHT40 STBC, M0 to M7, M0.1 to M9.1	2	6	<u>13.3</u>	<u>14.0</u>			16.7	17.0	0.3
	HT/VHT40 STBC, M0 to M7, M0.1 to M9.1	3	6	<u>11.3</u>	<u>11.9</u>	<u>11.8</u>		16.4	17.0	0.6
	HT/VHT40 STBC, M0 to M7, M0.1 to M9.1	4	6	<u>9.4</u>	<u>10.0</u>	<u>9.8</u>	<u>9.7</u>	15.8	17.0	1.2

								_	_	_
	Non HT/VHT20, 6 to 54 Mbps	1	6	<u>14.0</u>				14.0	16.7	2.7
	Non HT/VHT20, 6 to 54 Mbps	2	6	<u>9.5</u>	<u>10.1</u>			12.8	16.7	3.9
	Non HT/VHT20, 6 to 54 Mbps	3	6	<u>5.6</u>	<u>6.0</u>	<u>6.2</u>		10.7	16.7	6.0
	Non HT/VHT20, 6 to 54 Mbps	4	6	<u>3.9</u>	<u>4.0</u>	<u>4.2</u>	<u>4.0</u>	10.0	16.7	6.7
	Non HT/VHT20 Beam Forming, 6 to 54 Mbps	2	9	<u>9.5</u>	<u>10.1</u>			12.8	13.7	0.9
	Non HT/VHT20 Beam Forming, 6 to 54 Mbps	3	11	<u>3.9</u>	<u>4.0</u>	<u>4.2</u>		8.8	11.9	3.1
	Non HT/VHT20 Beam Forming, 6 to 54 Mbps	4	12	<u>1.7</u>	<u>2.0</u>	2.0	2.0	7.9	10.7	2.8
	HT/VHT20, M0 to M7, M0.1 to M9.1	1	6	<u>14.0</u>				14.0	16.9	2.9
	HT/VHT20, M0 to M7, M0.1 to M9.1	2	6	<u>9.3</u>	<u>9.8</u>			12.6	16.9	4.3
	HT/VHT20, M8 to M15, M0.2 to M9.2	2	6	<u>10.2</u>	<u>10.8</u>			13.5	16.8	3.3
	HT/VHT20, M0 to M7, M0.1 to M9.1	3	6	<u>5.4</u>	<u>5.9</u>	<u>6.0</u>		10.5	16.9	6.3
	HT/VHT20, M8 to M15, M0.2 to M9.2	3	6	<u>8.5</u>	<u>8.9</u>	<u>8.7</u>		13.5	16.9	3.4
	HT/VHT20, M16 to M23, M0.3 to M9.3	3	6	<u>9.3</u>	<u>9.8</u>	<u>9.8</u>		14.4	16.9	2.5
5240	HT/VHT20, M0 to M7, M0.1 to M9.1	4	6	<u>3.5</u>	<u>3.7</u>	<u>4.0</u>	<u>3.9</u>	9.8	16.9	7.1
5	HT/VHT20, M8 to M15, M0.2 to M9.2	4	6	<u>6.4</u>	<u>6.9</u>	<u>7.0</u>	<u>7.0</u>	12.9	16.9	4.0
	HT/VHT20, M16 to M23, M0.3 to M9.3	4	6	<u>7.5</u>	<u>8.0</u>	<u>8.0</u>	<u>7.7</u>	13.8	16.9	3.1
	HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1	2	9	<u>7.5</u>	<u>8.0</u>			10.8	13.9	3.1
	HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2	2	6	<u>10.2</u>	<u>10.8</u>			13.5	16.8	3.3
	HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1	3	11	<u>4.4</u>	<u>4.7</u>	<u>5.0</u>		9.5	12.1	2.6
	HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2	3	8	<u>6.4</u>	<u>6.9</u>	<u>7.0</u>		11.5	15.1	3.5
	HT/VHT20 Beam Forming, M16 to M23, M0.3 to M9.3	3	6	<u>9.3</u>	<u>9.8</u>	<u>9.8</u>		14.4	16.9	2.5
	HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1	4	12	<u>1.4</u>	<u>1.9</u>	<u>1.9</u>	<u>1.9</u>	7.8	10.9	3.1
	HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2	4	9	<u>4.4</u>	<u>4.7</u>	<u>5.0</u>	<u>4.9</u>	10.8	13.9	3.1
	HT/VHT20 Beam Forming, M16 to M23, M0.3 to M9.3	4	7	<u>6.4</u>	<u>6.9</u>	<u>7.0</u>	<u>7.0</u>	12.9	15.7	2.8
	HT/VHT20 STBC, M0 to M7, M0.1 to M9.1	2	6	<u>10.2</u>	<u>10.8</u>			13.5	16.8	3.3
	HT/VHT20 STBC, M0 to M7, M0.1 to M9.1	3	6	<u>8.5</u>	<u>8.9</u>	<u>8.7</u>		13.5	16.9	3.4
	HT/VHT20 STBC, M0 to M7, M0.1 to M9.1	4	6	<u>6.4</u>	<u>6.9</u>	<u>7.0</u>	<u>7.0</u>	12.9	16.9	4.0
	HT/VHT20 STBC, M0 to M7, M0.1 to M9.1 HT/VHT20 STBC, M0 to M7, M0.1 to M9.1	3	6	10.2 8.5	10.8 8.9	<u>8.7</u>		13.5 13.5	16.8 16.9	

Page No: 21 of 337

Power Spectral Density

15.407: For the band 5.15-5.25 GHz, the peak power spectral density shall not exceed 4 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum supported antenna gain is 6dBi. The peak correlated gain for each mode is listed in the table below.

Connect the antenna port(s) to the spectrum analyzer input. Place the radio in continuous transmit mode. Configure the spectrum analyzer as shown below.

Enable "Channel Power" function of analyzer

Center Frequency: Frequency from table below

Span: 20 MHz (must be greater than 26dB bandwidth, adjust as necessary)

Ref Level Offset: Correct for attenuator and cable loss.

Reference Level: 20 dBm Attenuation: 20 dB

Sweep Time: 100ms, Single sweep

Resolution Bandwidth: 1 MHz Video Bandwidth: 3 MHz Detector: Sample

Trace: Trace Average 100 traces in Power Averaging Mode

Integration BW: =99 % BW from 99% Bandwidth Data

After averaging 100 traces of the transmitter waveform on the spectrum analyzer, perform a Marker Peak Search function, and record this value as the Power Spectral Density.

The "measure-and-sum technique" is used for measuring the power spectral density of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear units.

Page No: 22 of 337

Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Tx 2 PSD (dBm/MHz)	Tx 3 PSD (dBm/MHz)	Tx 4 PSD (dBm/MHz)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
	Non HT/VHT20, 6 to 54 Mbps	1	6	<u>3.0</u>				3.0	4.0	1.0
	Non HT/VHT20, 6 to 54 Mbps	2	6	<u>-1.7</u>	<u>-1.8</u>			1.3	4.0	2.7
	Non HT/VHT20, 6 to 54 Mbps	3	6	<u>-5.5</u>	<u>-5.6</u>	<u>-5.1</u>		-0.6	4.0	4.6
	Non HT/VHT20, 6 to 54 Mbps	4	6	<u>-7.5</u>	<u>-7.9</u>	<u>-7.4</u>	<u>-7.3</u>	-1.5	4.0	5.5
	Non HT/VHT20 Beam Forming, 6 to 54 Mbps	2	9	<u>-2.8</u>	<u>-2.9</u>			0.2	1.0	0.8
	Non HT/VHT20 Beam Forming, 6 to 54 Mbps	3	11	<u>-6.6</u>	<u>-7.0</u>	<u>-6.4</u>		-1.9	-0.8	1.1
	Non HT/VHT20 Beam Forming, 6 to 54 Mbps	4	12	<u>-8.4</u>	<u>-8.6</u>	<u>-8.1</u>	<u>-8.2</u>	-2.3	-2.0	0.3
	HT/VHT20, M0 to M7, M0.1 to M9.1	1	6	<u>4.0</u>				4.0	4.0	0.0
	HT/VHT20, M0 to M7, M0.1 to M9.1	2	6	<u>-2.2</u>	<u>-1.8</u>			1.0	4.0	3.0
	HT/VHT20, M8 to M15, M0.2 to M9.2	2	6	<u>-0.2</u>	<u>-0.1</u>			2.9	4.0	1.1
	HT/VHT20, M0 to M7, M0.1 to M9.1	3	6	<u>-6.1</u>	<u>-5.9</u>	<u>-5.4</u>		-1.0	4.0	5.0
	HT/VHT20, M8 to M15, M0.2 to M9.2	3	6	<u>-3.1</u>	<u>-3.0</u>	<u>-2.7</u>		1.8	4.0	2.2
C	HT/VHT20, M16 to M23, M0.3 to M9.3	3	6	<u>-1.0</u>	<u>-1.0</u>	<u>-0.6</u>		3.9	4.0	0.1
5180	HT/VHT20, M0 to M7, M0.1 to M9.1	4	6	<u>-7.9</u>	<u>-8.0</u>	<u>-7.7</u>	<u>-7.7</u>	-1.8	4.0	5.8
u)	HT/VHT20, M8 to M15, M0.2 to M9.2	4	6	<u>-4.9</u>	<u>-4.8</u>	<u>-4.4</u>	<u>-4.8</u>	1.3	4.0	2.7
	HT/VHT20, M16 to M23, M0.3 to M9.3	4	6	<u>-3.1</u>	<u>-3.0</u>	<u>-2.7</u>	<u>-2.6</u>	3.2	4.0	0.8
	HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1	2	9	<u>-3.1</u>	<u>-3.0</u>			0.0	1.0	1.0
	HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2	2	6	<u>-0.2</u>	<u>-0.1</u>			2.9	4.0	1.1
	HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1	3	11	<u>-6.1</u>	<u>-5.9</u>	<u>-5.4</u>		-1.0	-0.8	0.2
	HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2	3	8	<u>-3.1</u>	<u>-3.0</u>	<u>-2.7</u>		1.8	2.2	0.4
	HT/VHT20 Beam Forming, M16 to M23, M0.3 to M9.3	3	6	<u>-1.0</u>	<u>-1.0</u>	<u>-0.6</u>		3.9	4.0	0.1
	HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1	4	12	<u>-8.8</u>	<u>-9.0</u>	<u>-8.6</u>	<u>-8.6</u>	-2.7	-2.0	0.7
	HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2	4	9	<u>-6.1</u>	<u>-5.9</u>	<u>-5.4</u>	<u>-5.3</u>	0.4	1.0	0.6
	HT/VHT20 Beam Forming, M16 to M23, M0.3 to M9.3	4	7	<u>-3.9</u>	<u>-3.8</u>	<u>-3.5</u>	<u>-4.0</u>	2.2	2.8	0.6
	HT/VHT20 STBC, M0 to M7, M0.1 to M9.1	2	6	<u>-0.2</u>	<u>-0.1</u>			2.9	4.0	1.1
	HT/VHT20 STBC, M0 to M7, M0.1 to M9.1	3	6	<u>-3.1</u>	<u>-3.0</u>	<u>-2.7</u>		1.8	4.0	2.2
	HT/VHT20 STBC, M0 to M7, M0.1 to M9.1	4	6	<u>-4.9</u>	<u>-4.8</u>	<u>-4.4</u>	<u>-4.8</u>	1.3	4.0	2.7

Page No: 23 of 337

Non HT/VHT40, 6 to 54 Mbps											
Non HT/VHT40, 6 to 54 Mbps		Non HT/VHT40, 6 to 54 Mbps	1	6	<u>2.1</u>				2.1	4.0	1.9
Non HT/VHT40, M to M 54 Mbps		Non HT/VHT40, 6 to 54 Mbps	2	6	<u>-1.4</u>	<u>-1.3</u>			1.7	4.0	2.3
HT/VHT40, M0 to M7, M0.1 to M9.1		Non HT/VHT40, 6 to 54 Mbps	3	6	<u>-5.1</u>	<u>-4.8</u>	<u>-4.6</u>		-0.1	4.0	4.1
HT/VHT40, M0 to M7, M0.1 to M9.1 HT/VHT40, M0 to M15, M0.2 to M9.2 2 6 0.06 0.3 2.6 4.0 1.4 HT/VHT40, M0 to M7, M0.1 to M9.1 3 6 5.3 5.8 5.5 -0.8 4.0 4.8 HT/VHT40, M0 to M7, M0.1 to M9.2 3 6 5.4 2.2 2.3 2.5 4.0 1.5 HT/VHT40, M0 to M7, M0.1 to M9.2 3 6 2.4 2.2 2.3 2.5 4.0 1.5 HT/VHT40, M0 to M7, M0.1 to M9.1 4 6 2.5 7.5 7.7 7.1 7.1 1.3 4.0 5.3 HT/VHT40, M0 to M7, M0.1 to M9.1 HT/VHT40, M0 to M7, M0.1 to M9.1 HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1 HT/VHT80, M0 to M7,		Non HT/VHT40, 6 to 54 Mbps	4	6	<u>-6.9</u>	<u>-7.5</u>	<u>-6.8</u>	<u>-6.8</u>	-1.0	4.0	5.0
HT/VHT40, M8 to M15, M0.2 to M9.2 A		HT/VHT40, M0 to M7, M0.1 to M9.1	1	6	<u>2.4</u>				2.4	4.0	1.6
HT/VHT40, M0 to M7, M0.1 to M9.1 HT/VHT40, M16 to M15, M0.2 to M9.2 3 6 2.4 2.2 2.3 2.5 4.0 1.5 HT/VHT40, M16 to M23, M0.3 to M9.3 3 6 2.4 2.2 2.2 2.3 2.5 4.0 1.5 HT/VHT40, M16 to M23, M0.3 to M9.3 3 6 2.4 2.2 2.2 7.7 7.1 7.1 1.3 4 0 6 7.5 7.7 7.1 7.1 1.3 4 0 6 7.5 9.2 7.7 7.1 1.5 HT/VHT40, M16 to M23, M0.3 to M9.2 4 0 6 3.6 3.8 3.3 3.5 2.5 2.5 4.0 1.5 HT/VHT40, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M10 to M7, M0.1 to M9.1 HT/VHT40 Beam Forming, M10 to M7, M0.1 to M9.1 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 STBC, M0 to M7, M0.1 to M9.1 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 STBC, M0 to M7, M0.1 to M9.1 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT80, M16 to M23, M0.3 to M9.3 HT		HT/VHT40, M0 to M7, M0.1 to M9.1	2	6	<u>-1.8</u>	<u>-1.3</u>			1.5	4.0	2.5
HT/VHT40, M8 to M15, M0.2 to M9.2 HT/VHT40, M16 to M23, M0.3 to M9.3 3 6 2.4 2.2 2.3 2.3 2.5 4.0 1.5 HT/VHT40, M16 to M23, M0.3 to M9.3 3 6 2.4 2.2 2.3 2.3 2.5 4.0 1.5 HT/VHT40, M16 to M23, M0.3 to M9.3 4 6 2.4 2.2 2.3 2.3 2.5 4.0 1.5 HT/VHT40, M16 to M23, M0.3 to M9.2 4 6 2.4 2.2 2.3 3.3 3.5 2.5 4.0 1.5 HT/VHT40, M16 to M23, M0.3 to M9.3 4 6 3.6 3.8 3.3 3.3 3.5 2.5 4.0 1.5 HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1 2 9 3.6 3.8 0.7 1.0 1.7 HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1 3 11 2.5 7.7 7.1 7.1 2.7 2.7 0.8 1.9 HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2 2 6 0.6 0.6 0.3 HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2 3 8 4.5 4.5 4.4 0.3 2.2 1.9 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 3 6 2.4 2.2 2.3 2.5 4.0 1.5 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 4 7 4.5 9.8 9.2 9.2 3.4 2.0 1.4 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 4 7 4.5 4.5 4.4 4.4 4.4 1.6 2.8 1.2 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 4 7 4.5 4.5 4.4 4.4 4.4 1.6 2.8 1.2 HT/VHT40 STBC, M0 to M7, M0.1 to M9.1 3 6 2.4 2.2 2.3 2.5 4.0 1.5 HT/VHT40 STBC, M0 to M7, M0.1 to M9.1 3 6 2.4 2.2 2.3 2.5 4.0 1.5 HT/VHT80, 6 to 54 Mbps 1 6 2.6 3.4 2.2 2.3 2.5 4.0 1.5 HT/VHT80, M0 to M7, M0.1 to M9.1 1 6 2.6 3.3 4.5 4.5 4.4 4.4 1.6 4.0 3.4 Non HT/VHT80, 6 to 54 Mbps 2 6 3.4 2.6 0.0 0.0 4.0 4.0 Non HT/VHT80, 6 to 54 Mbps 3 6 5.3 4.8 5.0 0.0 4.0 4.0 Non HT/VHT80, M0 to M7, M0.1 to M9.1 1 6 2.6 4.5 3.2 0.0 0.0 4.0 4.0 HT/VHT80, M0 to M7, M0.1 to M9.1 1 6 6 2.6 5.3 2.2 0.0 0.0 4.0 4.0 HT/VHT80, M0 to M7, M0.1 to M9.1 1 6 6 2.6 5.7 5.8 1.1 4.0 5.1 HT/VHT80, M0 to M7, M0.1 to M9.1 1 6 6 2.6 5.7 5.8 1.1 4.0 5.1 HT/VHT80, M16 to M23, M0.3 to M9.2 4 6 6 2.5 7.5 5.8 1.1 4.0 5.1 HT/VHT80, M16 to M23, M0.3 to M9.2 4 6 6 2.2 5.7 5.8 1.1 4.0 5.1 HT/VHT80, M16 to M23, M0.3 to M9.2 4 6 6 2.2 5.7 5.8 1.1 4.0 5.1 HT/VHT80, M16 to M23, M0.3 to M9.2 4 6 6 2.2 6.8 6.9 7.1 1.0 4.0 5.0 HT/VHT80, M16 to M23, M0.3 to M9.2 4 6 6 7.2 6.8 6.9 7.1 1.0 4.0 5.0 HT/VHT80 Beam Forming, M10 to M7, M0.1 to M9.1 2 9 7.2 6		HT/VHT40, M8 to M15, M0.2 to M9.2	2	6	<u>-0.6</u>	<u>-0.3</u>			2.6	4.0	1.4
HT/VHT40, M16 to M23, M0.3 to M9.3 HT/VHT40, M16 to M23, M0.3 to M9.3 HT/VHT40, M10 to M7, M0.1 to M9.1 HT/VHT40, M18 to M15, M0.2 to M9.2 HT/VHT40, M18 to M15, M0.2 to M9.3 HT/VHT40, M18 to M15, M0.2 to M9.3 HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1 HT/VHT40 Beam Forming, M18 to M15, M0.2 to M9.2 HT/VHT40 Beam Forming, M18 to M15, M0.2 to M9.2 HT/VHT40 Beam Forming, M18 to M15, M0.2 to M9.2 HT/VHT40 Beam Forming, M18 to M15, M0.2 to M9.2 HT/VHT40 Beam Forming, M18 to M15, M0.2 to M9.2 HT/VHT40 Beam Forming, M18 to M15, M0.2 to M9.2 HT/VHT40 Beam Forming, M18 to M15, M0.2 to M9.2 HT/VHT40 Beam Forming, M18 to M15, M0.2 to M9.3 HT/VHT40 Beam Forming, M18 to M15, M0.2 to M9.3 HT/VHT40 Beam Forming, M18 to M15, M0.2 to M9.3 HT/VHT40 Beam Forming, M18 to M15, M0.2 to M9.3 HT/VHT40 Beam Forming, M18 to M15, M0.2 to M9.3 HT/VHT40 Beam Forming, M18 to M15, M0.2 to M9.3 HT/VHT40 Beam Forming, M18 to M15, M0.2 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 BEAM FORMING, M16 to M23, M0.3 to M9.3 HT/VHT40 BEAM FORMING, M16 to M23, M0.3 to M9.3 HT/VHT40 STBC, M0 to M7, M0.1 to M9.1 HT/VHT40 STBC, M0 to M7, M0.1 to M9.1 HT/VHT40 STBC, M0 to M7, M0.1 to M9.1 HT/VHT40, STBC, M0 to M7, M0.1 to M9.1 HT/VHT80, 6 to 54 Mbps 1 6 0.2		HT/VHT40, M0 to M7, M0.1 to M9.1	3	6	<u>-5.3</u>	<u>-5.8</u>	<u>-5.5</u>		-0.8	4.0	4.8
HT/VHT40, M0 to M7, M0.1 to M9.1		HT/VHT40, M8 to M15, M0.2 to M9.2	3	6	<u>-2.4</u>	<u>-2.2</u>	<u>-2.3</u>		2.5	4.0	1.5
HT/VHT40, M8 to M15, M0.2 to M9.2 HT/VHT40, M8 to M15, M0.2 to M9.3 HT/VHT40, M8 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1 HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2 ENDORSE BEAM FORMING, M8 to M15, M0.2 to M9.2 HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2 ENDORSE BEAM FORMING, M8 to M15, M0.2 to M9.2 HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2 HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2 HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 HT/VHT40 STBC, M0 to M7, M0.1 to M9.1 HT/VHT80, 6 to 54 Mbps HT/VHT80, 6 to 54 Mbps HT/VHT80, 6 to 54 Mbps HT/VHT80, M16 to M23, M0.3 to M9.3 HT/VHT80, M16 to M23,		HT/VHT40, M16 to M23, M0.3 to M9.3	3	6	<u>-2.4</u>	<u>-2.2</u>	<u>-2.3</u>		2.5	4.0	1.5
HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2	00	HT/VHT40, M0 to M7, M0.1 to M9.1	4	6	<u>-7.5</u>	<u>-7.7</u>	<u>-7.1</u>	<u>-7.1</u>	-1.3	4.0	5.3
HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2	,25(HT/VHT40, M8 to M15, M0.2 to M9.2	4	6	<u>-4.5</u>	<u>-4.5</u>	<u>-4.4</u>	<u>-4.4</u>	1.6	4.0	2.4
HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2	80/	HT/VHT40, M16 to M23, M0.3 to M9.3	4	6	<u>-3.6</u>	-3.8	-3.3	<u>-3.5</u>	2.5	4.0	1.5
HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1	51	HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1	2	9	<u>-3.6</u>	<u>-3.8</u>			-0.7	1.0	1.7
HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2 3 8 -4.5 -4.5 -4.4 0.3 2.2 1.9 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 3 6 -2.4 -2.2 -2.3 2.5 4.0 1.5 HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1 4 12 -9.6 -9.8 -9.2 -9.2 -9.2 -3.4 -2.0 1.4 HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2 4 9 -6.4 -6.6 -6.1 -5.8 -0.2 1.0 1.2 HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3 4 7 -4.5 -4.5 -4.4 -4.4 1.6 2.8 1.2 HT/VHT40 STBC, M0 to M7, M0.1 to M9.1 2 6 -0.6 -0.3 -0.3 2.5 4.0 1.5 HT/VHT40 STBC, M0 to M7, M0.1 to M9.1 3 6 -2.4 -2.2 -2.3 2.5 4.0 1.5 HT/VHT80, G to 54 Mbps 1 6 0.2 -4.5 -4.5 -4.4 -4.4 1.6 4.0 2.4 HT/VHT80, G to 54 Mbps 2 6 -3.4 -2.6 -0.0 -0.3 -0.3 4.0 4.0 Non HT/VHT80, 6 to 54 Mbps 3 6 -5.3 -4.8 -5.0 -0.3 4.0 4.0 Non HT/VHT80, 6 to 54 Mbps 3 6 -5.3 -4.8 -5.0 -0.3 4.0 4.0 HT/VHT80, M0 to M7, M0.1 to M9.1 1 6 -1.6 -7.5 -6.9 -7.1 -7.1 -1.1 4.0 5.1 HT/VHT80, M0 to M7, M0.1 to M9.1 1 6 -1.6 -1.6 -1.6 4.0 5.6 HT/VHT80, M8 to M15, M0.2 to M9.2 2 6 -4.5 -3.2 -0.8 4.0 4.8 HT/VHT80, M8 to M15, M0.2 to M9.2 3 6 -6.2 -5.7 -5.8 -1.1 4.0 5.1 HT/VHT80, M8 to M15, M0.2 to M9.2 4 6 -7.2 -6.8 -6.9 -7.1 -7.1 -1.0 4.0 5.0 HT/VHT80, M8 to M15, M0.2 to M9.2 4 6 -7.2 -6.8 -6.9 -7.1 -7.0 -1.0 4.0 5.0 HT/VHT80, M8 to M15, M0.2 to M9.2 4 6 -7.2 -6.8 -6.9 -7.1 -7.0 -7.0 -7.0 -7.0 -7.0 HT/VHT80, M8 to M15, M0.2 to M9.2 4 6 -7.2 -6.8 -6.9 -7.1 -7.0		HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2	2	6	<u>-0.6</u>	<u>-0.3</u>			2.6	4.0	1.4
HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3		HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1	3	11	<u>-7.5</u>	<u>-7.7</u>	<u>-7.1</u>		-2.7	-0.8	1.9
HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1		HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2	3	8	<u>-4.5</u>	<u>-4.5</u>	-4.4		0.3	2.2	1.9
HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2		HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3	3	6	<u>-2.4</u>	-2.2	-2.3		2.5	4.0	1.5
HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3		HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1	4	12	-9.6	-9.8	-9.2	-9.2	-3.4	-2.0	1.4
HT/VHT40 STBC, M0 to M7, M0.1 to M9.1 HT/VHT80, 6 to 54 Mbps I 6 0.2 B 0.3 B 0.2 B 0.2 B 0.2 B 0.2 B 0.2 B 0.3 B 0.3 B 0.4 B 0.3 B 0.4 B 0.3 B 0.4 B		HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2	4	9	<u>-6.4</u>	<u>-6.6</u>	<u>-6.1</u>	<u>-5.8</u>	-0.2	1.0	1.2
HT/VHT40 STBC, M0 to M7, M0.1 to M9.1 BY THE STBC, M0 to M7, M0.1 to M9.1 HT/VHT40 STBC, M0 to M7, M0.1 to M9.1 HT/VHT80, 6 to 54 Mbps I		HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3	4	7	<u>-4.5</u>	-4.5	-4.4	-4.4	1.6	2.8	1.2
Non HT/VHT80, 6 to 54 Mbps		HT/VHT40 STBC, M0 to M7, M0.1 to M9.1	2	6	-0.6	-0.3			2.6	4.0	1.4
HT/VHT40 STBC, M0 to M7, M0.1 to M9.1		HT/VHT40 STBC, M0 to M7, M0.1 to M9.1	3	6	-2.4	-2.2	-2.3		2.5	4.0	1.5
Non HT/VHT80, 6 to 54 Mbps A 6 -5.3 -4.8 -5.0 -0.3 4.0 4.3 Non HT/VHT80, M0 to 54 Mbps HT/VHT80, M0 to M7, M0.1 to M9.1 1 6 -1.6 -1.6 -1.6 -1.6 -1.6 4.0 5.6 HT/VHT80, M0 to M7, M0.1 to M9.1 2 6 -4.5 -3.2 -0.8 4.0 4.8 HT/VHT80, M8 to M15, M0.2 to M9.2 2 6 -4.5 -3.2 -0.8 4.0 4.8 HT/VHT80, M8 to M15, M0.2 to M9.2 3 6 -6.2 -5.7 -5.8 -1.1 4.0 5.1 HT/VHT80, M16 to M23, M0.3 to M9.3 3 6 -6.2 -5.7 -5.8 -1.1 4.0 5.1 HT/VHT80, M8 to M15, M0.2 to M9.2 4 6 -8.1 -7.9 -7.4 -7.9 -1.8 4.0 5.8 HT/VHT80, M8 to M15, M0.2 to M9.2 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80, M16 to M23, M0.3 to M9.3 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1 2 9 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0		HT/VHT40 STBC, M0 to M7, M0.1 to M9.1	4	6	<u>-4.5</u>	-4.5	-4.4	-4.4	1.6	4.0	2.4
Non HT/VHT80, 6 to 54 Mbps Non HT/VHT80, 6 to 54 Mbps 3 6 -3.4 -2.6 -3.4 -5.0 -0.3 4.0 4.3											
Non HT/VHT80, 6 to 54 Mbps Non HT/VHT80, 6 to 54 Mbps 4 6 -7.5 -6.9 -7.1 -7.1 -1.1 4.0 5.1 HT/VHT80, M0 to M7, M0.1 to M9.1 1 6 -1.6		Non HT/VHT80, 6 to 54 Mbps	1	6	0.2				0.2	4.0	3.8
Non HT/VHT80, 6 to 54 Mbps HT/VHT80, M0 to M7, M0.1 to M9.1 HT/VHT80, M0 to M7, M0.1 to M9.1 HT/VHT80, M0 to M7, M0.1 to M9.1 HT/VHT80, M8 to M15, M0.2 to M9.2 HT/VHT80, M16 to M23, M0.3 to M9.3 HT/VHT80, M8 to M15, M0.2 to M9.2 HT/VHT80, M8 to M15, M0.2 to M9.3 HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1 HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2 HT/		Non HT/VHT80, 6 to 54 Mbps	2	6	-3.4	-2.6			0.0	4.0	4.0
Non HT/VHT80, 6 to 54 Mbps HT/VHT80, M0 to M7, M0.1 to M9.1 HT/VHT80, M0 to M7, M0.1 to M9.1 HT/VHT80, M0 to M7, M0.1 to M9.1 HT/VHT80, M8 to M15, M0.2 to M9.2 HT/VHT80, M16 to M23, M0.3 to M9.3 HT/VHT80, M8 to M15, M0.2 to M9.2 HT/VHT80, M8 to M23, M0.3 to M9.3 HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1 HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2 HT/VHT80 Beam Forming, M8		Non HT/VHT80, 6 to 54 Mbps	3	6	-5.3	-4.8	-5.0		-0.3	4.0	4.3
HT/VHT80, M0 to M7, M0.1 to M9.1 1 6 -1.6 HT/VHT80, M0 to M7, M0.1 to M9.1 2 6 -4.5 HT/VHT80, M8 to M15, M0.2 to M9.2 HT/VHT80, M16 to M23, M0.3 to M9.3 HT/VHT80, M0 to M7, M0.1 to M9.1 HT/VHT80, M8 to M15, M0.2 to M9.2 HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1 HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2 HT/VHT8			4	6	-7.5	-6.9		-7.1	-1.1	4.0	5.1
HT/VHT80, M8 to M15, M0.2 to M9.2 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80, M16 to M23, M0.3 to M9.3 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1 2 9 -7.2 -6.8 HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2 2 6 -4.5 -3.2 -0.8 4.0 4.8	0	HT/VHT80, M0 to M7, M0.1 to M9.1	1	6	-1.6				-1.6	4.0	5.6
HT/VHT80, M8 to M15, M0.2 to M9.2 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80, M16 to M23, M0.3 to M9.3 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1 2 9 -7.2 -6.8 HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2 2 6 -4.5 -3.2 -0.8 4.0 4.8	24	HT/VHT80, M0 to M7, M0.1 to M9.1	2	6	-4.5	-3.2			-0.8	4.0	4.8
HT/VHT80, M8 to M15, M0.2 to M9.2 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80, M16 to M23, M0.3 to M9.3 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1 2 9 -7.2 -6.8 HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2 2 6 -4.5 -3.2 -0.8 4.0 4.8	5/0:	HT/VHT80, M8 to M15, M0.2 to M9.2	2	6					-0.8	4.0	4.8
HT/VHT80, M8 to M15, M0.2 to M9.2 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80, M16 to M23, M0.3 to M9.3 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1 2 9 -7.2 -6.8 HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2 2 6 -4.5 -3.2 -0.8 4.0 4.8	522		3	6	-6.2		-5.8		-1.1	4.0	5.1
HT/VHT80, M8 to M15, M0.2 to M9.2 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80, M16 to M23, M0.3 to M9.3 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1 2 9 -7.2 -6.8 HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2 2 6 -4.5 -3.2 -0.8 4.0 4.8	00		3	6					-1.1	4.0	5.1
HT/VHT80, M8 to M15, M0.2 to M9.2 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80, M16 to M23, M0.3 to M9.3 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1 2 9 -7.2 -6.8 HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2 2 6 -4.5 -3.2 -0.8 4.0 4.8	/52		_	6							
HT/VHT80, M8 to M15, M0.2 to M9.2 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80, M16 to M23, M0.3 to M9.3 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1 2 9 -7.2 -6.8 HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2 2 6 -4.5 -3.2 -0.8 4.0 4.8	.80							<u>-7</u> .9			
HT/VHT80, M16 to M23, M0.3 to M9.3 4 6 -7.2 -6.8 -6.9 -7.1 -1.0 4.0 5.0 HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1 2 9 -7.2 -6.8 -4.0 1.0 5.0 HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2 2 6 -4.5 -3.2 -0.8 4.0 4.8	51										
HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1 2 9 -7.2 -6.8 -4.0 1.0 5.0 HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2 2 6 -4.5 -3.2 -0.8 4.0 4.8											
HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2 2 6 <u>-4.5</u> <u>-3.2</u> -0.8 4.0 4.8			_		_						
			_								
HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1 3 11 -10.9 -10.8 -11.0 -6.1 -0.8 5.3			-				-11.0				

Page No: 24 of 337

	HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2	3	8	<u>-8.1</u>	<u>-7.9</u>	<u>-7.4</u>		-3.0	2.2	5.2
	HT/VHT80 Beam Forming, M16 to M23, M0.3 to M9.3	3	6	<u>-6.2</u>	<u>-5.7</u>	<u>-5.8</u>		-1.1	4.0	5.1
	HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1	4	12	<u>-13.3</u>	<u>-12.9</u>	<u>-12.3</u>	<u>-12.4</u>	-6.7	-2.0	4.7
	HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2	4	9	<u>-10.2</u>	<u>-9.7</u>	<u>-9.7</u>	<u>-9.6</u>	-3.8	1.0	4.8
	HT/VHT80 Beam Forming, M16 to M23, M0.3 to M9.3	4	7	<u>-8.1</u>	<u>-7.9</u>	<u>-7.4</u>	<u>-7.9</u>	-1.8	2.8	4.6
	HT/VHT80 STBC, M0 to M7, M0.1 to M9.1	2	6	<u>-4.5</u>	<u>-3.2</u>			-0.8	4.0	4.8
	HT/VHT80 STBC, M0 to M7, M0.1 to M9.1	3	6	<u>-6.2</u>	<u>-5.7</u>	<u>-5.8</u>		-1.1	4.0	5.1
	HT/VHT80 STBC, M0 to M7, M0.1 to M9.1	4	6	<u>-7.2</u>	<u>-6.8</u>	<u>-6.9</u>	<u>-7.1</u>	-1.0	4.0	5.0
	Non HT/VHT40, 6 to 54 Mbps	1	6	<u>3.4</u>				3.4	4.0	0.6
	Non HT/VHT40, 6 to 54 Mbps	2	6	<u>-0.8</u>	<u>-0.2</u>			2.5	4.0	1.5
	Non HT/VHT40, 6 to 54 Mbps	3	6	<u>-4.9</u>	<u>-4.2</u>	<u>-4.5</u>		0.2	4.0	3.8
	Non HT/VHT40, 6 to 54 Mbps	4	6	<u>-6.8</u>	<u>-6.3</u>	<u>-6.6</u>	<u>-6.3</u>	-0.5	4.0	4.5
	HT/VHT40, M0 to M7, M0.1 to M9.1	1	6	<u>2.8</u>				2.8	4.0	1.2
	HT/VHT40, M0 to M7, M0.1 to M9.1	2	6	<u>-1.4</u>	<u>-0.5</u>			2.1	4.0	1.9
	HT/VHT40, M8 to M15, M0.2 to M9.2	2	6	<u>-0.4</u>	<u>0.6</u>			3.1	4.0	0.9
	HT/VHT40, M0 to M7, M0.1 to M9.1	3	6	<u>-5.3</u>	<u>-4.7</u>	<u>-4.8</u>		-0.2	4.0	4.2
	HT/VHT40, M8 to M15, M0.2 to M9.2	3	6	<u>-2.3</u>	<u>-2.0</u>	<u>-1.7</u>		2.8	4.0	1.2
	HT/VHT40, M16 to M23, M0.3 to M9.3	3	6	<u>-2.3</u>	<u>-2.0</u>	<u>-1.7</u>		2.8	4.0	1.2
40	HT/VHT40, M0 to M7, M0.1 to M9.1	4	6	<u>-7.4</u>	<u>-6.5</u>	<u>-6.7</u>	<u>-6.6</u>	-0.8	4.0	4.8
5220/5240	HT/VHT40, M8 to M15, M0.2 to M9.2	4	6	<u>-4.2</u>	<u>-3.3</u>	<u>-3.7</u>	<u>-3.8</u>	2.3	4.0	1.7
20/	HT/VHT40, M16 to M23, M0.3 to M9.3	4	6	<u>-2.8</u>	<u>-2.3</u>	<u>-2.7</u>	<u>-3.2</u>	3.3	4.0	0.7
52	HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1	2	9	<u>-2.8</u>	<u>-2.3</u>			0.5	1.0	0.5
	HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2	2	6	<u>-0.4</u>	<u>0.6</u>			3.1	4.0	0.9
	HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1	3	11	<u>-7.4</u>	<u>-6.5</u>	<u>-6.7</u>		-2.1	-0.8	1.3
	HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2	3	8	<u>-4.2</u>	<u>-3.3</u>	<u>-3.7</u>		1.1	2.2	1.1
	HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3	3	6	<u>-2.3</u>	<u>-2.0</u>	<u>-1.7</u>		2.8	4.0	1.2
	HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1	4	12	<u>-9.1</u>	<u>-8.5</u>	<u>-8.9</u>	<u>-8.7</u>	-2.8	-2.0	0.8
	HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2	4	9	<u>-5.6</u>	<u>-5.6</u>	<u>-5.5</u>	<u>-5.7</u>	0.4	1.0	0.6
	HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3	4	7	<u>-4.2</u>	<u>-3.3</u>	<u>-3.7</u>	<u>-3.8</u>	2.3	2.8	0.5
	HT/VHT40 STBC, M0 to M7, M0.1 to M9.1	2	6	<u>-0.4</u>	<u>0.6</u>			3.1	4.0	0.9
	HT/VHT40 STBC, M0 to M7, M0.1 to M9.1	3	6	<u>-2.3</u>	<u>-2.0</u>	<u>-1.7</u>		2.8	4.0	1.2
	HT/VHT40 STBC, M0 to M7, M0.1 to M9.1	4	6	<u>-4.2</u>	<u>-3.3</u>	<u>-3.7</u>	<u>-3.8</u>	2.3	4.0	1.7

7/VHT20, 6 to 54 Mbps	1	6	<u>3.6</u>				3.6	4.0	0.4
/VHT20, 6 to 54 Mbps	2	6	<u>-0.7</u>	0.0			2.7	4.0	1.3
/VHT20, 6 to 54 Mbps	3	6	<u>-4.8</u>	<u>-4.1</u>	<u>-4.2</u>		0.4	4.0	3.6
/VHT20, 6 to 54 Mbps	4	6	<u>-6.6</u>	<u>-6.2</u>	<u>-6.3</u>	<u>-6.4</u>	-0.4	4.0	4.4
/VHT20 Beam Forming, 6 to 54 Mbps	2	9	<u>-0.7</u>	0.0			2.7	1.0	-1.7
/VHT20 Beam Forming, 6 to 54 Mbps	3	11	<u>-6.6</u>	<u>-6.2</u>	<u>-6.3</u>		-1.6	-0.8	0.8
/VHT20 Beam Forming, 6 to 54 Mbps	4	12	<u>-8.9</u>	<u>-8.1</u>	<u>-8.4</u>	<u>-8.2</u>	-2.4	-2.0	0.4
Γ20, M0 to M7, M0.1 to M9.1	1	6	<u>3.7</u>				3.7	4.0	0.3
Γ20, M0 to M7, M0.1 to M9.1	2	6	<u>-1.2</u>	<u>-0.6</u>			2.1	4.0	1.9
Γ20, M8 to M15, M0.2 to M9.2	2	6	<u>-0.1</u>	<u>0.6</u>			3.3	4.0	0.7
Γ20, M0 to M7, M0.1 to M9.1	3	6	<u>-4.8</u>	<u>-4.5</u>	<u>-4.6</u>		0.1	4.0	3.9
Γ20, M8 to M15, M0.2 to M9.2	3	6	<u>-2.0</u>	<u>-1.6</u>	<u>-1.7</u>		3.0	4.0	1.0
Γ20, M16 to M23, M0.3 to M9.3	3	6	<u>-1.2</u>	<u>-0.6</u>	<u>-0.6</u>		4.0	4.0	0.0
Γ20, M0 to M7, M0.1 to M9.1	4	6	<u>-7.1</u>	<u>-6.8</u>	<u>-6.3</u>	<u>-6.7</u>	-0.7	4.0	4.7
Γ20, M8 to M15, M0.2 to M9.2	4	6	<u>-4.1</u>	<u>-3.6</u>	<u>-3.5</u>	<u>-3.2</u>	2.4	4.0	1.6
Γ20, M16 to M23, M0.3 to M9.3	4	6	<u>-2.3</u>	<u>-2.4</u>	<u>-2.3</u>	<u>-2.8</u>	3.6	4.0	0.4
Γ20 Beam Forming, M0 to M7, M0.1 to M9.1	2	9	<u>-2.3</u>	<u>-2.4</u>			0.7	1.0	0.3
Γ20 Beam Forming, M8 to M15, M0.2 to M9.2	2	6	<u>-0.1</u>	<u>0.6</u>			3.3	4.0	0.7
Γ20 Beam Forming, M0 to M7, M0.1 to M9.1	3	11	<u>-6.1</u>	<u>-5.6</u>	<u>-5.6</u>		-1.0	-0.8	0.2
Γ20 Beam Forming, M8 to M15, M0.2 to M9.2	3	8	<u>-4.1</u>	<u>-3.6</u>	<u>-3.5</u>		1.0	2.2	1.2
T20 Beam Forming, M16 to M23, M0.3 to M9.3	3	6	<u>-1.2</u>	<u>-0.6</u>	<u>-0.6</u>		4.0	4.0	0.0
Γ20 Beam Forming, M0 to M7, M0.1 to M9.1	4	12	<u>-9.0</u>	<u>-8.3</u>	<u>-8.5</u>	<u>-8.4</u>	-2.5	-2.0	0.5
Γ20 Beam Forming, M8 to M15, M0.2 to M9.2	4	9	<u>-6.1</u>	<u>-5.6</u>	<u>-5.6</u>	<u>-5.6</u>	0.3	1.0	0.7
T20 Beam Forming, M16 to M23, M0.3 to M9.3	4	7	<u>-4.1</u>	<u>-3.6</u>	<u>-3.5</u>	<u>-3.2</u>	2.4	2.8	0.4
Г20 STBC, M0 to M7, M0.1 to M9.1	2	6	<u>-0.1</u>	<u>0.6</u>			3.3	4.0	0.7
Г20 STBC, M0 to M7, M0.1 to M9.1	3	6	<u>-2.0</u>	<u>-1.6</u>	<u>-1.7</u>		3.0	4.0	1.0
Г20 STBC, M0 to M7, M0.1 to M9.1	4	6	<u>-4.1</u>	<u>-3.6</u>	<u>-3.5</u>	<u>-3.2</u>	2.4	4.0	1.6
	7/VHT20, 6 to 54 Mbps 7/VHT20, 6 to 54 Mbps 7/VHT20, 6 to 54 Mbps 7/VHT20 Beam Forming, M0.1 to M9.1 7/20, M0 to M7, M0.1 to M9.1 7/20, M8 to M15, M0.2 to M9.2 7/20, M16 to M23, M0.3 to M9.3 7/20, M16 to M23, M0.3 to M9.3 7/20, M16 to M23, M0.3 to M9.3 7/20 Beam Forming, M0 to M7, M0.1 to M9.1 7/20 Beam Forming, M8 to M15, M0.2 to M9.2 7/20 Beam Forming, M8 to M15, M0.2 to M9.2 7/20 Beam Forming, M16 to M23, M0.3 to M9.3 7/20 Beam Forming, M0 to M7, M0.1 to M9.1 7/20 Beam Forming, M16 to M23, M0.3 to M9.3 7/20 Beam Forming, M8 to M15, M0.2 to M9.2 7/20 Beam Forming, M16 to M23, M0.3 to M9.3 7/20 Beam Forming, M16 to M23, M0.3 to M9.3 7/20 Beam Forming, M16 to M23, M0.3 to M9.3 7/20 Beam Forming, M16 to M23, M0.3 to M9.3 7/20 STBC, M0 to M7, M0.1 to M9.1	7/VHT20, 6 to 54 Mbps 7/VHT20, 6 to 54 Mbps 7/VHT20, 6 to 54 Mbps 7/VHT20 Beam Forming, M0.2 to M9.1 7/YHT20 Beam Forming, M0.2 to M9.2 7/YHT20 Beam Forming, M0 to M9.3 7/YHT20 Beam Forming, M0 to M9.3 7/YHT20 Beam Forming, M0 to M7, M0.1 to M9.1 7/YHT20 Beam Forming, M0 to M7, M0.1 to M9.1 7/YHT20 Beam Forming, M16 to M23, M0.3 to M9.3 7/YHT20 Beam Forming, M16 to M24, M16.1 7/YHT20 Beam Forming, M16 to M24, M16.1 7/YHT20 Beam Forming, M16 to M24	7/VHT20, 6 to 54 Mbps 2 6 7/VHT20, 6 to 54 Mbps 3 6 7/VHT20, 6 to 54 Mbps 4 6 7/VHT20 Beam Forming, 6 to 54 Mbps 3 11 7/VHT20 Beam Forming, 6 to 54 Mbps 4 12 7/VHT20 Beam Forming, 6 to 54 Mbps 4 12 7/VHT20 Beam Forming, 6 to 54 Mbps 4 12 7/VHT20 Beam Forming, 6 to 54 Mbps 4 12 7/VHT20 Beam Forming, 6 to 54 Mbps 4 12 7/VHT20 Beam Forming, 6 to 54 Mbps 4 12 7/VHT20 Beam Forming, 6 to 54 Mbps 4 12 7/VHT20 Beam Forming, 6 to 54 Mbps 4 12 7/VHT20 Beam Forming, 6 to 54 Mbps 4 12 7/VHT20 Beam Forming, 6 to 54 Mbps 4 12 7/VHT20 Beam Forming, M0.1 to M9.1 3 6 7/VHT20 Beam Forming, M0.2 to M9.2 2 6 7/VHT20 Beam Forming, M0 to M9.3 3 6 7/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1 4 6 7/YHT20 Beam Forming, M16 to M23, M0.3 to M9.3 4 6 7/YHT20 Beam Forming, M16 to M23, M0.3 to M9.3 4 <td>7/VHT20, 6 to 54 Mbps 2 6 -0.7 7/VHT20, 6 to 54 Mbps 3 6 -4.8 7/VHT20, 6 to 54 Mbps 4 6 -6.6 7/VHT20 Beam Forming, 6 to 54 Mbps 2 9 -0.7 7/VHT20 Beam Forming, 6 to 54 Mbps 3 11 -6.6 7/VHT20 Beam Forming, 6 to 54 Mbps 4 12 -8.9 720, M0 to M7, M0.1 to M9.1 1 6 3.7 720, M0 to M7, M0.1 to M9.1 2 6 -1.2 720, M8 to M15, M0.2 to M9.2 2 6 -0.1 720, M8 to M15, M0.2 to M9.2 3 6 -2.0 720, M16 to M23, M0.3 to M9.3 3 6 -2.0 720, M16 to M23, M0.3 to M9.3 3 6 -1.2 720, M8 to M15, M0.2 to M9.2 4 6 -7.1 720, M8 to M15, M0.2 to M9.2 4 6 -4.1 720, M8 to M15, M0.2 to M9.2 4 6 -4.1 720, Beam Forming, M0 to M7, M0.1 to M9.1 2 9 -2.3 720 Beam Forming, M8 to M15, M0.2 to M9.2 3 8 -4.1 72</td> <td>T/VHT20, 6 to 54 Mbps 2 6 -0.7 0.0 T/VHT20, 6 to 54 Mbps 3 6 -4.8 -4.1 T/VHT20, 6 to 54 Mbps 4 6 -6.6 -6.2 T/VHT20 Beam Forming, 6 to 54 Mbps 3 11 -6.6 -6.2 T/VHT20 Beam Forming, 6 to 54 Mbps 4 12 -8.9 -8.1 T20, M0 to M7, M0.1 to M9.1 1 6 3.7 T20, M0 to M7, M0.1 to M9.1 2 6 -1.2 -0.6 T20, M8 to M15, M0.2 to M9.2 2 6 -1.2 -0.6 T20, M8 to M15, M0.2 to M9.2 3 6 -4.8 -4.5 T20, M8 to M15, M0.2 to M9.2 3 6 -2.0 -1.6 T20, M16 to M23, M0.3 to M9.3 3 6 -1.2 -0.6 T20, M8 to M15, M0.2 to M9.2 4 6 -7.1 -6.8 T20, M8 to M15, M0.2 to M9.3 3 6 -1.2 -0.6 T20, M8 to M15, M0.2 to M9.2 4 6 -7.1 -6.8 T20, M8 to M15, M0.2 to M9.2 4 6 -2.3 -2.4</td> <td>T/VHT20, 6 to 54 Mbps 2 6 -0.7 0.0 T/VHT20, 6 to 54 Mbps 3 6 -4.8 -4.1 -4.2 T/VHT20, 6 to 54 Mbps 4 6 -6.6 -6.2 -6.3 T/VHT20 Beam Forming, 6 to 54 Mbps 2 9 -0.7 0.0 T/VHT20 Beam Forming, 6 to 54 Mbps 3 11 -6.6 -6.2 -6.3 T/VHT20 Beam Forming, 6 to 54 Mbps 4 12 -8.9 -8.1 -8.4 T20, M0 to M7, M0.1 to M9.1 1 6 3.7 -8.4 -8.9 -8.1 -8.4 T20, M0 to M7, M0.1 to M9.1 1 6 3.7 -6.6 -6.2 -6.3 T20, M8 to M15, M0.2 to M9.2 2 6 -1.2 -0.6 -6.6 T20, M8 to M23, M0.3 to M9.3 3 6 -4.8 -4.5 -4.6 T20, M16 to M23, M0.3 to M9.3 3 6 -1.2 -0.6 -0.6 T20, M8 to M15, M0.2 to M9.2 4 6 -7.1 -6.8 -6.3</td> <td>/VHT20, 6 to 54 Mbps 2 6 -0.7 0.0 -4.2 /VHT20, 6 to 54 Mbps 3 6 -4.8 -4.1 -4.2 /VHT20, 6 to 54 Mbps 4 6 -6.6 -6.2 -6.3 -6.4 /VHT20 Beam Forming, 6 to 54 Mbps 3 11 -6.6 -6.2 -6.3 /VHT20 Beam Forming, 6 to 54 Mbps 4 12 -8.9 -8.1 -8.4 -8.2 720, M0 to M7, M0.1 to M9.1 1 6 3.7 </td> <td>/VHT20, 6 to 54 Mbps 2 6 -0.7 0.0 2.7 /VHT20, 6 to 54 Mbps 3 6 -4.8 -4.1 -4.2 0.4 /VHT20, 6 to 54 Mbps 4 6 -6.6 -6.2 -6.3 -6.4 -0.4 /VHT20 Beam Forming, 6 to 54 Mbps 2 9 -0.7 0.0 2.7 /VHT20 Beam Forming, 6 to 54 Mbps 3 11 -6.6 -6.2 -6.3 -1.6 /VHT20 Beam Forming, 6 to 54 Mbps 4 12 -8.9 -8.1 -8.4 -8.2 -2.4 /20, M0 to M7, M0.1 to M9.1 1 6 3.7 3.7 3.7 3.7 /20, M0 to M7, M0.1 to M9.1 2 6 -1.2 -0.6 2.1 2.1 /20, M8 to M15, M0.2 to M9.2 2 6 -0.1 0.6 3.3 3.3 /20, M8 to M15, M0.2 to M9.2 3 6 -2.0 -1.6 -1.7 3.0 /20, M8 to M15, M0.2 to M9.2 3 6 -2.0 -1.6 -1.7</td> <td> TVHT20, 6 to 54 Mbps</td>	7/VHT20, 6 to 54 Mbps 2 6 -0.7 7/VHT20, 6 to 54 Mbps 3 6 -4.8 7/VHT20, 6 to 54 Mbps 4 6 -6.6 7/VHT20 Beam Forming, 6 to 54 Mbps 2 9 -0.7 7/VHT20 Beam Forming, 6 to 54 Mbps 3 11 -6.6 7/VHT20 Beam Forming, 6 to 54 Mbps 4 12 -8.9 720, M0 to M7, M0.1 to M9.1 1 6 3.7 720, M0 to M7, M0.1 to M9.1 2 6 -1.2 720, M8 to M15, M0.2 to M9.2 2 6 -0.1 720, M8 to M15, M0.2 to M9.2 3 6 -2.0 720, M16 to M23, M0.3 to M9.3 3 6 -2.0 720, M16 to M23, M0.3 to M9.3 3 6 -1.2 720, M8 to M15, M0.2 to M9.2 4 6 -7.1 720, M8 to M15, M0.2 to M9.2 4 6 -4.1 720, M8 to M15, M0.2 to M9.2 4 6 -4.1 720, Beam Forming, M0 to M7, M0.1 to M9.1 2 9 -2.3 720 Beam Forming, M8 to M15, M0.2 to M9.2 3 8 -4.1 72	T/VHT20, 6 to 54 Mbps 2 6 -0.7 0.0 T/VHT20, 6 to 54 Mbps 3 6 -4.8 -4.1 T/VHT20, 6 to 54 Mbps 4 6 -6.6 -6.2 T/VHT20 Beam Forming, 6 to 54 Mbps 3 11 -6.6 -6.2 T/VHT20 Beam Forming, 6 to 54 Mbps 4 12 -8.9 -8.1 T20, M0 to M7, M0.1 to M9.1 1 6 3.7 T20, M0 to M7, M0.1 to M9.1 2 6 -1.2 -0.6 T20, M8 to M15, M0.2 to M9.2 2 6 -1.2 -0.6 T20, M8 to M15, M0.2 to M9.2 3 6 -4.8 -4.5 T20, M8 to M15, M0.2 to M9.2 3 6 -2.0 -1.6 T20, M16 to M23, M0.3 to M9.3 3 6 -1.2 -0.6 T20, M8 to M15, M0.2 to M9.2 4 6 -7.1 -6.8 T20, M8 to M15, M0.2 to M9.3 3 6 -1.2 -0.6 T20, M8 to M15, M0.2 to M9.2 4 6 -7.1 -6.8 T20, M8 to M15, M0.2 to M9.2 4 6 -2.3 -2.4	T/VHT20, 6 to 54 Mbps 2 6 -0.7 0.0 T/VHT20, 6 to 54 Mbps 3 6 -4.8 -4.1 -4.2 T/VHT20, 6 to 54 Mbps 4 6 -6.6 -6.2 -6.3 T/VHT20 Beam Forming, 6 to 54 Mbps 2 9 -0.7 0.0 T/VHT20 Beam Forming, 6 to 54 Mbps 3 11 -6.6 -6.2 -6.3 T/VHT20 Beam Forming, 6 to 54 Mbps 4 12 -8.9 -8.1 -8.4 T20, M0 to M7, M0.1 to M9.1 1 6 3.7 -8.4 -8.9 -8.1 -8.4 T20, M0 to M7, M0.1 to M9.1 1 6 3.7 -6.6 -6.2 -6.3 T20, M8 to M15, M0.2 to M9.2 2 6 -1.2 -0.6 -6.6 T20, M8 to M23, M0.3 to M9.3 3 6 -4.8 -4.5 -4.6 T20, M16 to M23, M0.3 to M9.3 3 6 -1.2 -0.6 -0.6 T20, M8 to M15, M0.2 to M9.2 4 6 -7.1 -6.8 -6.3	/VHT20, 6 to 54 Mbps 2 6 -0.7 0.0 -4.2 /VHT20, 6 to 54 Mbps 3 6 -4.8 -4.1 -4.2 /VHT20, 6 to 54 Mbps 4 6 -6.6 -6.2 -6.3 -6.4 /VHT20 Beam Forming, 6 to 54 Mbps 3 11 -6.6 -6.2 -6.3 /VHT20 Beam Forming, 6 to 54 Mbps 4 12 -8.9 -8.1 -8.4 -8.2 720, M0 to M7, M0.1 to M9.1 1 6 3.7	/VHT20, 6 to 54 Mbps 2 6 -0.7 0.0 2.7 /VHT20, 6 to 54 Mbps 3 6 -4.8 -4.1 -4.2 0.4 /VHT20, 6 to 54 Mbps 4 6 -6.6 -6.2 -6.3 -6.4 -0.4 /VHT20 Beam Forming, 6 to 54 Mbps 2 9 -0.7 0.0 2.7 /VHT20 Beam Forming, 6 to 54 Mbps 3 11 -6.6 -6.2 -6.3 -1.6 /VHT20 Beam Forming, 6 to 54 Mbps 4 12 -8.9 -8.1 -8.4 -8.2 -2.4 /20, M0 to M7, M0.1 to M9.1 1 6 3.7 3.7 3.7 3.7 /20, M0 to M7, M0.1 to M9.1 2 6 -1.2 -0.6 2.1 2.1 /20, M8 to M15, M0.2 to M9.2 2 6 -0.1 0.6 3.3 3.3 /20, M8 to M15, M0.2 to M9.2 3 6 -2.0 -1.6 -1.7 3.0 /20, M8 to M15, M0.2 to M9.2 3 6 -2.0 -1.6 -1.7	TVHT20, 6 to 54 Mbps

Page No: 26 of 337

Antenna A

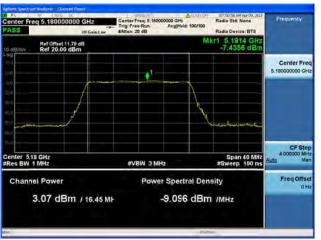
Antenna A Antenna B

Center Freq 5.1800)0000 GHz Center Freq 5.1800)0000 GHz Trig Free Run AvgReek: 100100 Radio Svice: BTS #### AvgReek:

Antenna A

Antenna C

Page No: 29 of 337


Antenna B

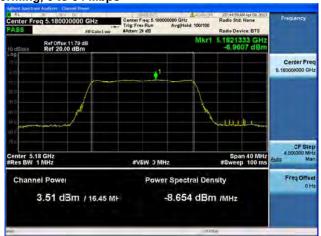
Antenna A


Antenna B

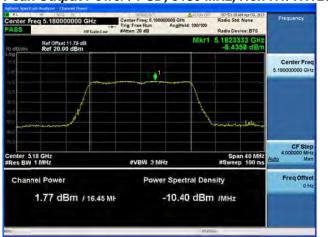
Antenna C

Antenna D

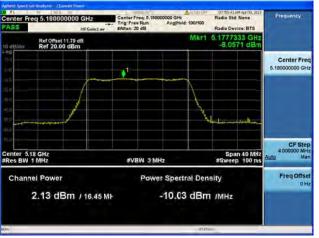




Antenna A Antenna B


Antenna A

Antenna B


Antenna C

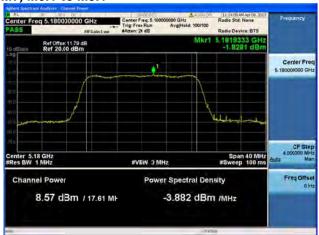
Antenna A

Antenna B

Antenna C

Antenna D

Peak Output Power / PSD, 5180 MHz, HT/VHT20, M0 to M7, M0.1 to M9.1


Antenna A

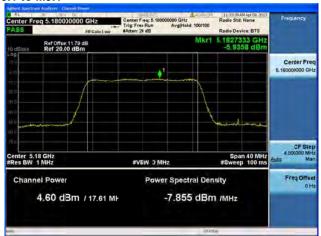
Page No: 34 of 337

Peak Output Power / PSD, 5180 MHz, HT/VHT20, M0 to M7, M0.1 to M9.1

Antenna A Antenna B

Peak Output Power / PSD, 5180 MHz, HT/VHT20, M8 to M15, M0.2 to M9.2





Antenna A Antenna B

Peak Output Power / PSD, 5180 MHz, HT/VHT20, M0 to M7, M0.1 to M9.1

Antenna B

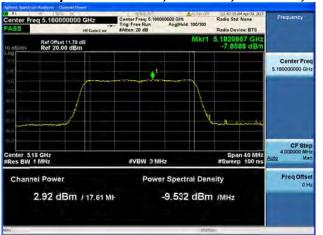
Antenna C

Peak Output Power / PSD, 5180 MHz, HT/VHT20, M8 to M15, M0.2 to M9.2

Antenna B

Antenna C

Peak Output Power / PSD, 5180 MHz, HT/VHT20, M16 to M23, M0.3 to M9.3

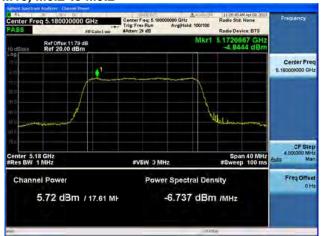

Antenna B



Antenna C

Peak Output Power / PSD, 5180 MHz, HT/VHT20, M0 to M7, M0.1 to M9.1

Antenna B


Antenna C

Antenna D

Peak Output Power / PSD, 5180 MHz, HT/VHT20, M8 to M15, M0.2 to M9.2

Antenna B

Antenna C

Antenna D

Peak Output Power / PSD, 5180 MHz, HT/VHT20, M16 to M23, M0.3 to M9.3

| According | April 1997 | April 1998 | Apri

Antenna B

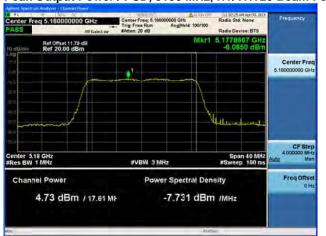
Antenna C

Antenna D

Peak Output Power / PSD, 5180 MHz, HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1

Antenna B

Peak Output Power / PSD, 5180 MHz, HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2



Antenna A Antenna B

Peak Output Power / PSD, 5180 MHz, HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1

Antenna B

Antenna C

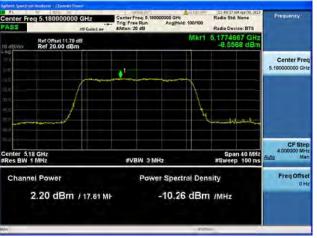
Peak Output Power / PSD, 5180 MHz, HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2

Antenna B

Antenna C

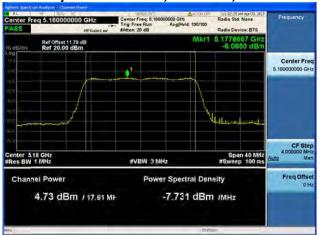
Peak Output Power / PSD, 5180 MHz, HT/VHT20 Beam Forming, M16 to M23, M0.3 to M9.3

Antenna B


Antenna C

Peak Output Power / PSD, 5180 MHz, HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1

Antenna B



Antenna C

Antenna D

Peak Output Power / PSD, 5180 MHz, HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2

Antenna B

Antenna C

Antenna D

Peak Output Power / PSD, 5180 MHz, HT/VHT20 Beam Forming, M16 to M23, M0.3 to M9.3

Antenna B


Antenna C

Antenna D

Peak Output Power / PSD, 5180 MHz, HT/VHT20 STBC, M0 to M7, M0.1 to M9.1

Antenna A Antenna B

Peak Output Power / PSD, 5180 MHz, HT/VHT20 STBC, M0 to M7, M0.1 to M9.1

Antenna A


Antenna C

Page No: 52 of 337

Antenna B

Peak Output Power / PSD, 5180 MHz, HT/VHT20 STBC, M0 to M7, M0.1 to M9.1

Antenna A

Antenna B

Antenna C

Antenna D

Antenna A

Page No: 54 of 337

Antenna A Antenna B

| Append Septemen Marketon: Observed Reserved | Append Septemen Marketon: Observed | Append Septemen Marketon: Observed Reserved | Append Septemen | Append Septemen | Append Septemen | Append Septement | Append Septemen | Append Septemen | Append Septemen | Append Septemen | Append Septement | Append Septemen | Append Septem

Antenna A

Antenna C

Page No: 56 of 337

Antenna B

Antenna B

Antenna C

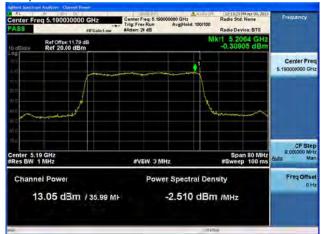
Antenna D

Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40, M0 to M7, M0.1 to M9.1

Antenna A

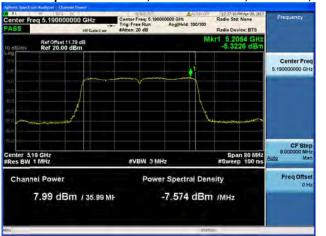
Page No: 58 of 337

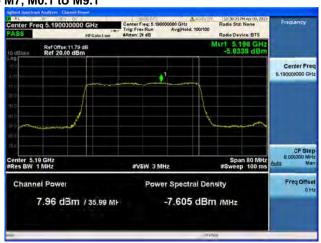
Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40, M0 to M7, M0.1 to M9.1



Antenna A Antenna B

Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40, M8 to M15, M0.2 to M9.2

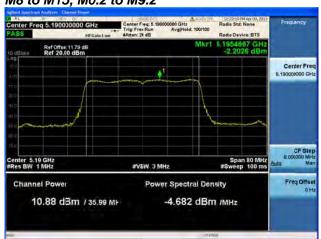




Antenna A Antenna B

Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40, M0 to M7, M0.1 to M9.1

Antenna B



Antenna C

Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40, M8 to M15, M0.2 to M9.2

Antenna B

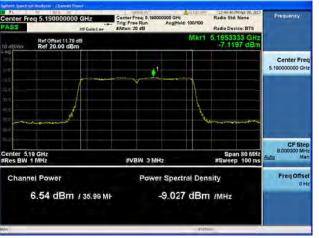
Antenna C

Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40, M16 to M23, M0.3 to M9.3

Antenna A

Antenna C

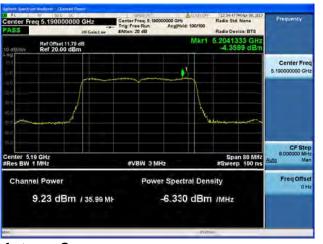

Page No: 63 of 337


Antenna B

Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40, M0 to M7, M0.1 to M9.1

Antenna B


Antenna C


Antenna D

Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40, M8 to M15, M0.2 to M9.2

Antenna B

Antenna C


Antenna D

Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40, M16 to M23, M0.3 to M9.3

Antenna B



Antenna C

Antenna D

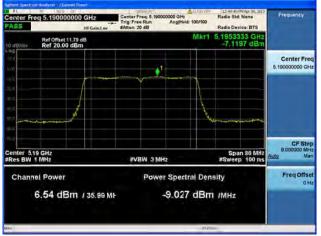
Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1

Antenna A Antenna B

Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2



Antenna A Antenna B



Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1

Antenna B



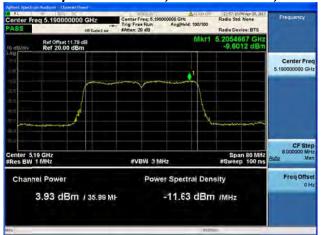
Antenna C

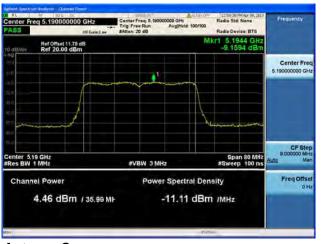
Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2

Antenna B

Antenna C

Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3

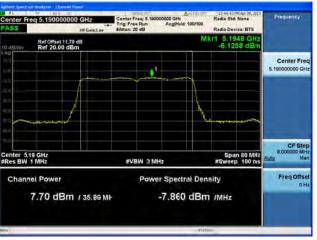

Antenna B


Antenna C

Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1

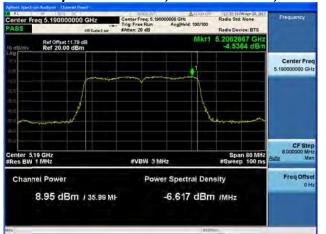
Antenna B

Antenna C


Antenna D

Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2

Antenna B

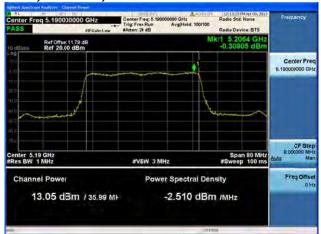


Antenna C

Antenna D

Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3

Antenna B


Antenna C

Antenna D

Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40 STBC, M0 to M7, M0.1 to M9.1



Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40 STBC, M0 to M7, M0.1 to M9.1

Antenna B

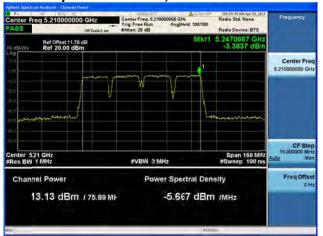
Antenna C

Peak Output Power / PSD, 5180 / 5200 MHz, HT/VHT40 STBC, M0 to M7, M0.1 to M9.1

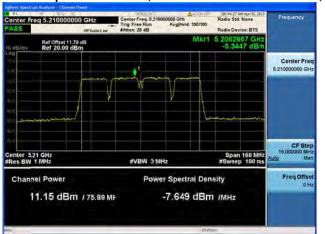
Antenna B

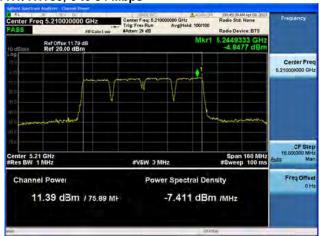
Antenna C

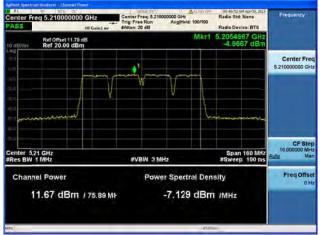
Antenna D



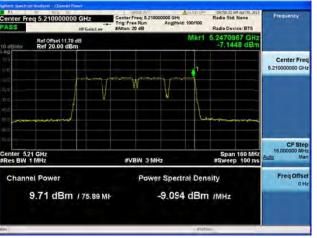
Antenna A


Page No: 78 of 337





Antenna B



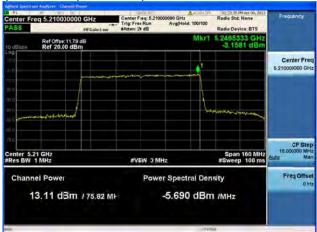
Antenna C

Antenna B

Antenna C

Antenna D

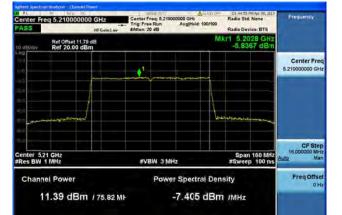
Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80, M0 to M7, M0.1 to M9.1


Antenna A

Page No: 82 of 337

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80, M0 to M7, M0.1 to M9.1

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80, M8 to M15, M0.2 to M9.2



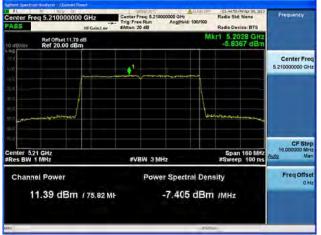
Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80, M0 to M7, M0.1 to M9.1

Antenna A

Antenna C

Page No: 85 of 337

Antenna B



Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80, M8 to M15, M0.2 to M9.2

Antenna B



Antenna C

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80, M16 to M23, M0.3 to M9.3

Antenna A

Center Freq 5.210000000 GHz
PASS

Ref Omet 1176 dilet uv

Ref Omet 1176 dilet

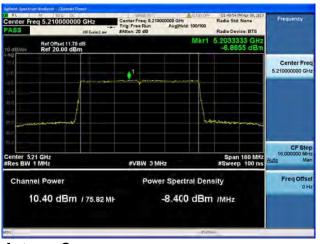
Antenna C

Antenna B

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80, M0 to M7, M0.1 to M9.1

Antenna B

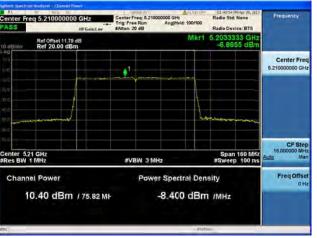
Antenna C


Antenna D

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80, M8 to M15, M0.2 to M9.2

Antenna B

Antenna C


Antenna D

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80, M16 to M23, M0.3 to M9.3

Antenna B

Antenna C

Antenna D

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2

Antenna A

Antenna B

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1

Antenna A

Antenna C

Page No: 93 of 337

Antenna B

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2

Antenna B

Antenna C

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80 Beam Forming, M16 to M23, M0.3 to M9.3

Antenna A

Antenna C

Antenna B

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1

Antenna B



Antenna C

Antenna D

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2

Antenna B

Antenna C

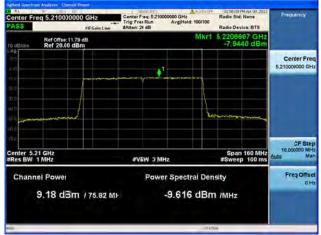
Antenna D

Center Fre 5.21000/000 GH

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80 Beam Forming, M16 to M23, M0.3 to M9.3


8.95 dBm / 75.82 MF

Channel Power


Center 5.21 GHz Res BW 1 MHz

Ref Offse: 11.79 dB Ref 20.00 dBm

Antenna A

Antenna B

Power Spectral Density

-9.845 dBm /MHz

Antenna C

Antenna D

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80 STBC, M0 to M7, M0.1 to M9.1

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80 STBC, M0 to M7, M0.1 to M9.1

Antenna B

Antenna C

Peak Output Power / PSD, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80 STBC, M0 to M7, M0.1 to M9.1

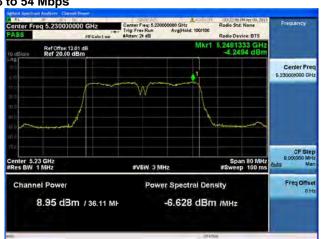
Antenna B

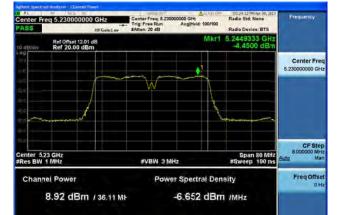
Antenna C

Antenna D

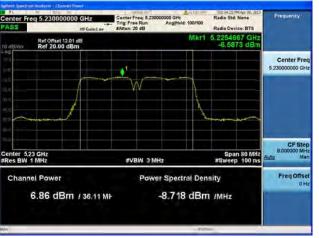
Antenna A

Page No: 102 of 337





Antenna A


Antenna C

Antenna B

Antenna B

Antenna C

Antenna D

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40, M0 to M7, M0.1 to M9.1

Antenna A

Page No: 106 of 337

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40, M0 to M7, M0.1 to M9.1

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40, M8 to M15, M0.2 to M9.2

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40, M0 to M7, M0.1 to M9.1

Antenna B

Antenna C

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40, M8 to M15, M0.2 to M9.2

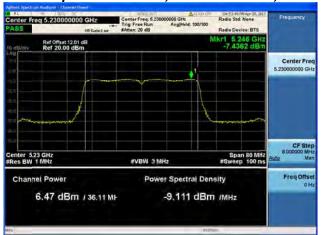
Antenna B

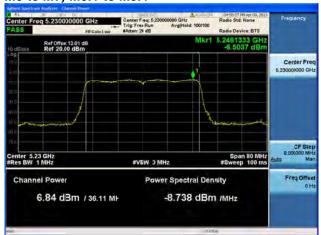
Antenna C

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40, M16 to M23, M0.3 to M9.3

Antenna A

or Freq 5:230000000 GHz Center Freq 5:230000000 GHz Rade Std None




Antenna C


Antenna B

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40, M0 to M7, M0.1 to M9.1

Antenna B

Antenna C

Antenna D

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40, M8 to M15, M0.2 to M9.2

Antenna B

Antenna C

Antenna D

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40, M16 to M23, M0.3 to M9.3

Antenna B

Antenna C

Antenna D

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1



Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2



Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1

Antenna A

Antenna C

Page No: 117 of 337

Antenna B

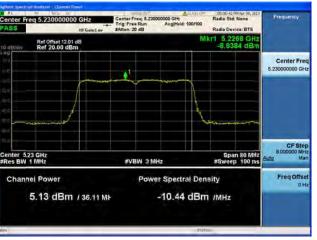
Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2

Antenna B

Antenna C

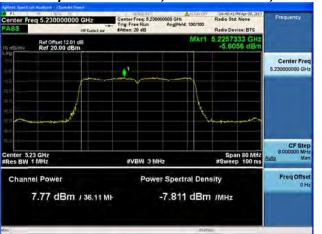
Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3

Antenna B

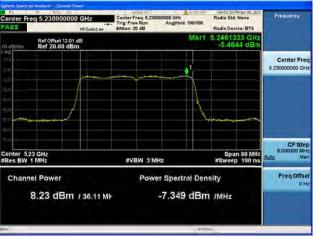

Antenna C

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1

Antenna B



Antenna C


Antenna D

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2

Antenna B

Antenna C

Antenna D

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3

Antenna B

Antenna C

Antenna D

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40 STBC, M0 to M7, M0.1 to M9.1

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40 STBC, M0 to M7, M0.1 to M9.1


Antenna B

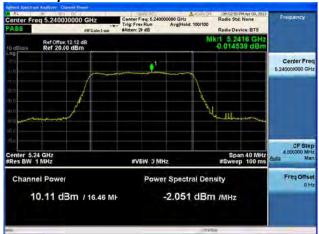
Antenna C

Peak Output Power / PSD, 5220 / 5240 MHz, HT/VHT40 STBC, M0 to M7, M0.1 to M9.1

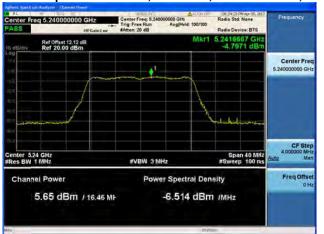
Antenna B

Antenna C

Antenna D

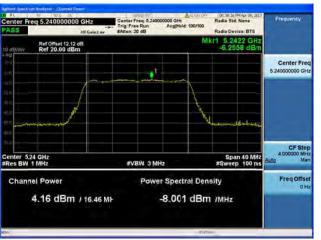


Antenna A

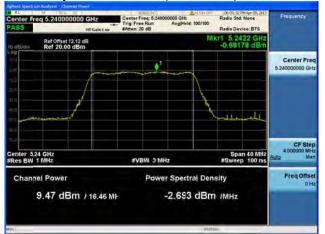

Page No: 126 of 337



Antenna A


Antenna C

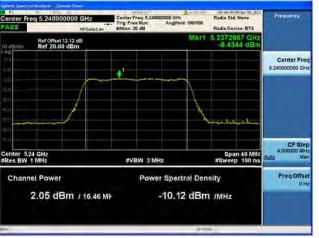
Antenna B


Antenna B

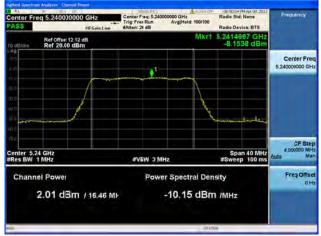
Antenna C

Antenna D

Antenna B



Antenna C



Antenna B

Antenna C

Antenna D

Peak Output Power / PSD, 5240 MHz, HT/VHT20, M0 to M7, M0.1 to M9.1

Antenna A

Page No: 133 of 337

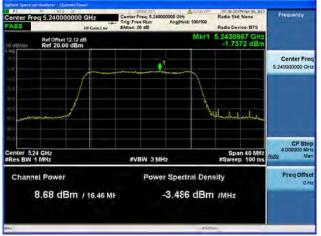
Peak Output Power / PSD, 5240 MHz, HT/VHT20, M0 to M7, M0.1 to M9.1

Peak Output Power / PSD, 5240 MHz, HT/VHT20, M8 to M15, M0.2 to M9.2

Peak Output Power / PSD, 5240 MHz, HT/VHT20, M0 to M7, M0.1 to M9.1

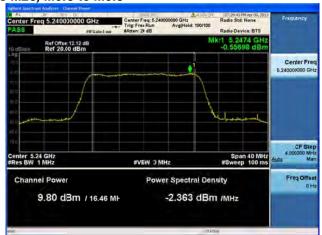
Antenna B

Antenna C



Peak Output Power / PSD, 5240 MHz, HT/VHT20, M8 to M15, M0.2 to M9.2

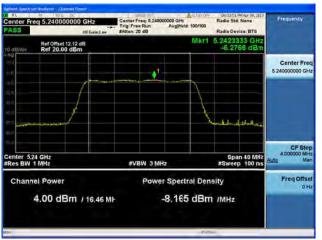
Antenna B



Antenna C

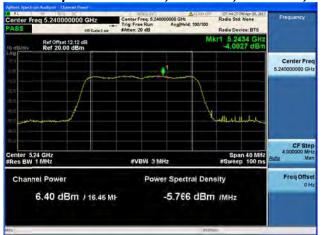
Peak Output Power / PSD, 5240 MHz, HT/VHT20, M16 to M23, M0.3 to M9.3

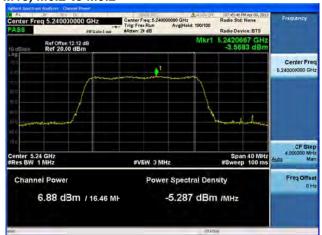
Antenna B


Antenna C

Peak Output Power / PSD, 5240 MHz, HT/VHT20, M0 to M7, M0.1 to M9.1

Antenna B



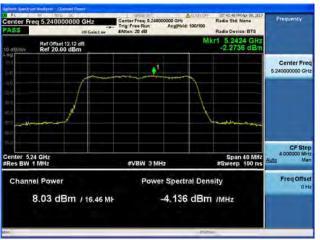

Antenna C

Antenna D

Peak Output Power / PSD, 5240 MHz, HT/VHT20, M8 to M15, M0.2 to M9.2

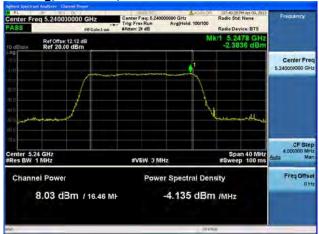
Antenna B

Antenna C


Antenna D

Peak Output Power / PSD, 5240 MHz, HT/VHT20, M16 to M23, M0.3 to M9.3

Antenna B

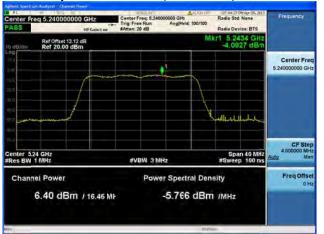

Antenna C

Antenna D

Peak Output Power / PSD, 5240 MHz, HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1

Peak Output Power / PSD, 5240 MHz, HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2

Peak Output Power / PSD, 5240 MHz, HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1


Antenna B

Antenna C

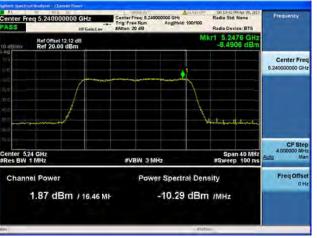
Peak Output Power / PSD, 5240 MHz, HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2

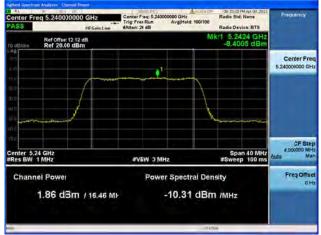
Antenna B

Antenna C

Peak Output Power / PSD, 5240 MHz, HT/VHT20 Beam Forming, M16 to M23, M0.3 to M9.3

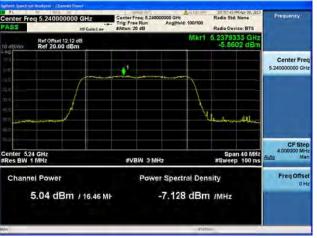
Antenna B


Antenna C


Peak Output Power / PSD, 5240 MHz, HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1

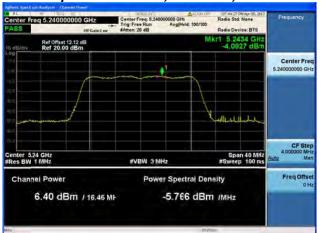
Antenna B

Antenna C


Antenna D

Peak Output Power / PSD, 5240 MHz, HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2

Antenna B



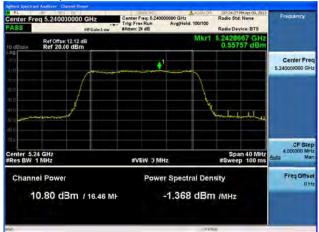
Antenna C


Antenna D

Peak Output Power / PSD, 5240 MHz, HT/VHT20 Beam Forming, M16 to M23, M0.3 to M9.3

Antenna B




Antenna C

Antenna D

Peak Output Power / PSD, 5240 MHz, HT/VHT20 STBC, M0 to M7, M0.1 to M9.1

Antenna A Antenna B

Peak Output Power / PSD, 5240 MHz, HT/VHT20 STBC, M0 to M7, M0.1 to M9.1

Antenna B

Antenna C

Peak Output Power / PSD, 5240 MHz, HT/VHT20 STBC, M0 to M7, M0.1 to M9.1

Antenna A

Center Freq 5.240000000 GHz Center Freq 5.240000000 GHz If Great an Augustic toorno Radio Std. None Radio Std. None Radio Davice BTS Ref Onest 12.12 dB Ref 20.00 dBm Ref 20.00 dBm Center Freq 5.240000000 GHz Center Sold GHz Span 40 MHz Center Freq 5.240000000 GHz Center Sold GHz Span 40 MHz Freq Offset OHz Channel Power Power Spectral Density Freq Offset OHz

Antenna B

Antenna C

Antenna D

Peak Excursion

15.407: The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

Set the spectrum analyzer span to view the entire emission bandwidth. The largest difference between the following two traces must be <= 13 dB for all frequencies across the emission bandwidth.

Set the spectrum analyzer span to view the entire emission bandwidth. The largest difference between the following two traces must be <= 13 dB for all frequencies across the emission bandwidth.

1st Trace: (Peak)

Set Span to encompass the entire emission bandwidth of the signal.

RBW = 1 MHz, VBW = 3 MHz

Detector = Peak

Sweep = 10 s

Trace 1 = Max-hold

Ref Level Offset = correct for attenuator and cable loss

Ref Level = 20dBm

Atten = 10dBm

2nd Trace: (Average)

Trace 2 = clear right

Detector = Sample

Avg/VBW type = Pwr(RMS)

Average = 100

Sweep = single

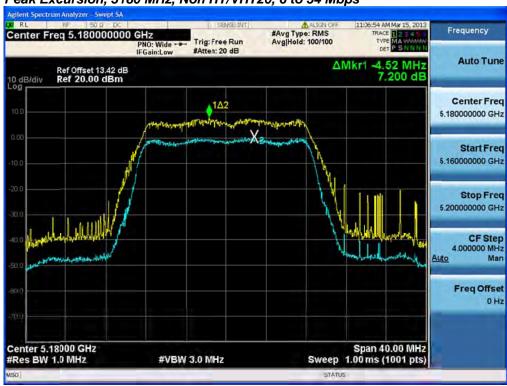
Set marker Deltas

Trace 1 & Peak search

Marker Delta

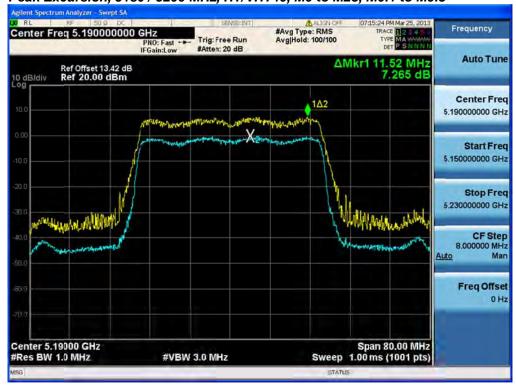
Trace 2 & Peak search

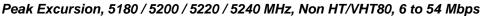
Record the difference between the Peak and Average Markers


Page No: 153 of 337

Frequency (MHz)	Mode	Data Rate (Mbps)	Peak Excursion (dB)	Limit (dBm/MHz)	Margin (dB)
5180	Non HT/VHT20, 6 to 54 Mbps	6	<u>7.2</u>	13	5.8
	HT/VHT20, M0 to M23, M0.1 to M9.3	m0	<u>7.4</u>	13	5.6
5180/5200	Non HT/VHT40, 6 to 54 Mbps	6	<u>7.3</u>	13	5.7
	HT/VHT40, M0 to M23, M0.1 to M9.3	m0	<u>7.3</u>	13	5.7
5180/5200	Non HT/VHT80, 6 to 54 Mbps	6	<u>6.8</u>	13	6.2
5220/5240	HT/VHT80, M0 to M23, M0.1 to M9.3	m0x1	<u>7.8</u>	13	5.2
5220/5240	Non HT/VHT40, 6 to 54 Mbps	6	<u>7.4</u>	13	5.6
	HT/VHT40, M0 to M23, M0.1 to M9.3	m0	<u>7.6</u>	13	5.4
5240	Non HT/VHT20, 6 to 54 Mbps	6	<u>7.1</u>	13	5.9
	HT/VHT20, M0 to M23, M0.1 to M9.3	m0	<u>7.3</u>	13	5.7

Peak Excursion, 5180 MHz, HT/VHT20, M0 to M23, M0.1 to M9.3

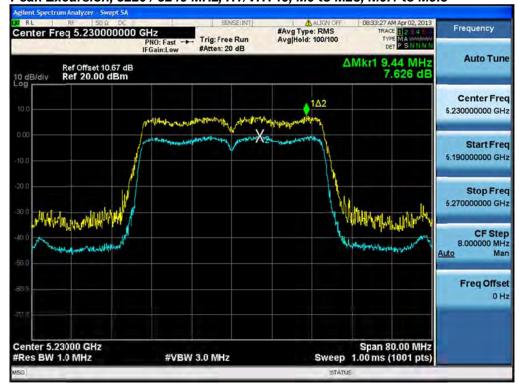

Page No: 155 of 337



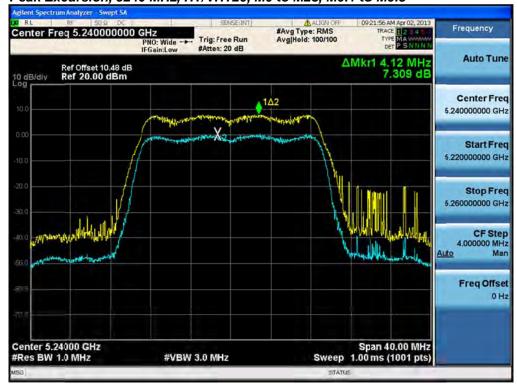
Peak Excursion, 5180 / 5200 MHz, HT/VHT40, M0 to M23, M0.1 to M9.3

Page No: 156 of 337

Peak Excursion, 5180 / 5200 / 5220 / 5240 MHz, HT/VHT80, M0 to M23, M0.1 to M9.3


Page No: 157 of 337


Peak Excursion, 5220 / 5240 MHz, HT/VHT40, M0 to M23, M0.1 to M9.3


Page No: 158 of 337

Peak Excursion, 5240 MHz, HT/VHT20, M0 to M23, M0.1 to M9.3

Page No: 159 of 337

Conducted Spurious Emissions

15.407: For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

Connect the antenna port(s) to the spectrum analyzer input. Place the radio in continuous transmit mode. Configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer).

30 MHz-40 GHz Span: Reference Level: 20 dBm Attenuation: 10 dB Sweep Time: 10 s Resolution Bandwidth: 1 MHz Video Bandwidth: 3 MHz Detector: Peak Trace: Single Marker: Peak

Record the marker waveform peak to spur difference

The "Measure and add 10 log(N) dB technique", where N is the number of outputs, is used for measuring Conducted Spurious Emissions. With this technique, spectrum measurements are performed at each output of the device, and the quantity 10 log(n) is added to the worst case spectrum value before comparing to the emission limit.

Page No: 160 of 337