

Conducted Bandedge Average, 5745 MHz, Non HT/VHT20 Beam Forming, 6 to 54 Mbps

Page No: 101 of 132

Conducted Bandedge Average, 5745 MHz, HT/VHT20, M0 to M7, M0.1 to M9.1

Conducted Bandedge Average, 5745 MHz, HT/VHT20, M8 to M15, M0.2 to M9.2

Page No: 102 of 132

Conducted Bandedge Average, 5745 MHz, HT/VHT20, M16 to M23, M0.3 to M9.3

Conducted Bandedge Average, 5745 MHz, HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1


Page No: 103 of 132

Conducted Bandedge Average, 5745 MHz, HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2


Conducted Bandedge Average, 5745 MHz, HT/VHT20 Beam Forming, M16 to M23, M0.3 to M9.3

Page No: 104 of 132

Conducted Bandedge Average, 5745 MHz, HT/VHT20 STBC, M0 to M7, M0.1 to M9.1

Conducted Bandedge Average, 5745 MHz, Non HT/VHT40, 6 to 54 Mbps

Page No: 105 of 132

Conducted Bandedge Average, 5745 MHz, HT/VHT40, M0 to M7, M0.1 to M9.1


Conducted Bandedge Average, 5745 MHz, HT/VHT40, M8 to M15, M0.2 to M9.2

Page No: 106 of 132

Conducted Bandedge Average, 5745 MHz, HT/VHT40, M16 to M23, M0.3 to M9.3

Conducted Bandedge Average, 5745 MHz, HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1

Page No: 107 of 132

Conducted Bandedge Average, 5745 MHz, HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2

Conducted Bandedge Average, 5745 MHz, HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3

Page No: 108 of 132

Conducted Bandedge Average, 5745 MHz, HT/VHT40 STBC, M0 to M7, M0.1 to M9.1

Conducted Bandedge Average, 5745 MHz, Non HT/VHT80, 6 to 54 Mbps

Page No: 109 of 132

Conducted Bandedge Average, 5745 MHz, HT/VHT80, M8 to M15, M0.2 to M9.2

Page No: 110 of 132

Conducted Bandedge Average, 5745 MHz, HT/VHT80, M16 to M23, M0.3 to M9.3

Conducted Bandedge Average, 5745 MHz, HT/VHT80 Beam Forming, M0 to M7, M0.1 to M9.1

Page No: 111 of 132

Conducted Bandedge Average, 5745 MHz, HT/VHT80 Beam Forming, M8 to M15, M0.2 to M9.2

Conducted Bandedge Average, 5745 MHz, HT/VHT80 Beam Forming, M16 to M23, M0.3 to M9.3

Page No: 112 of 132

Conducted Bandedge Average, 5745 MHz, HT/VHT80 STBC, M0 to M7, M0.1 to M9.1

Conducted Bandedge Average, 5785 MHz, Non HT/VHT40, 6 to 54 Mbps

Page No: 113 of 132

Conducted Bandedge Average, 5785 MHz, HT/VHT40, M0 to M7, M0.1 to M9.1

Conducted Bandedge Average, 5785 MHz, HT/VHT40, M8 to M15, M0.2 to M9.2

Page No: 114 of 132

Conducted Bandedge Average, 5785 MHz, HT/VHT40, M16 to M23, M0.3 to M9.3

Conducted Bandedge Average, 5785 MHz, HT/VHT40 Beam Forming, M0 to M7, M0.1 to M9.1

Page No: 115 of 132

Conducted Bandedge Average, 5785 MHz, HT/VHT40 Beam Forming, M8 to M15, M0.2 to M9.2

Conducted Bandedge Average, 5785 MHz, HT/VHT40 Beam Forming, M16 to M23, M0.3 to M9.3

Page No: 116 of 132

Conducted Bandedge Average, 5785 MHz, HT/VHT40 STBC, M0 to M7, M0.1 to M9.1

Conducted Bandedge Average, 5825 MHz, Non HT/VHT20, 6 to 54 Mbps

Page No: 117 of 132

Conducted Bandedge Average, 5825 MHz, Non HT/VHT20 Beam Forming, 6 to 54 Mbps

Conducted Bandedge Average, 5825 MHz, HT/VHT20, M0 to M7, M0.1 to M9.1

Page No: 118 of 132

Conducted Bandedge Average, 5825 MHz, HT/VHT20, M8 to M15, M0.2 to M9.2

Conducted Bandedge Average, 5825 MHz, HT/VHT20, M16 to M23, M0.3 to M9.3

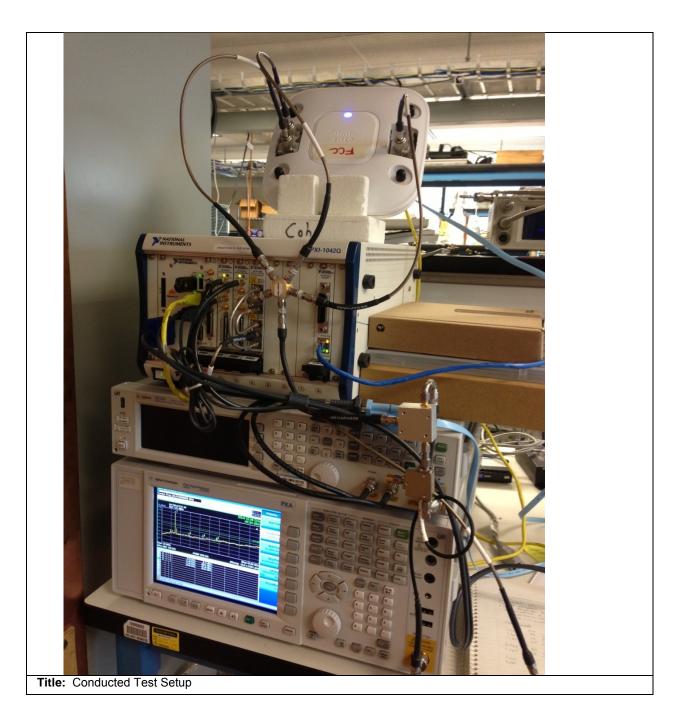
Page No: 119 of 132

Conducted Bandedge Average, 5825 MHz, HT/VHT20 Beam Forming, M0 to M7, M0.1 to M9.1

Conducted Bandedge Average, 5825 MHz, HT/VHT20 Beam Forming, M8 to M15, M0.2 to M9.2

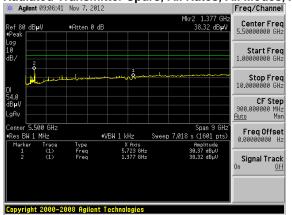
Page No: 120 of 132

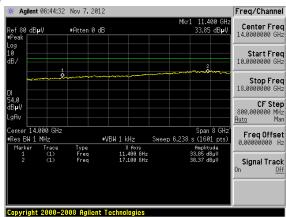
Conducted Bandedge Average, 5825 MHz, HT/VHT20 Beam Forming, M16 to M23, M0.3 to M9.3

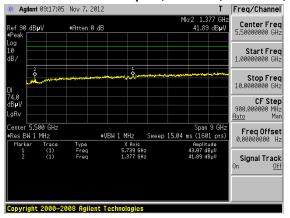


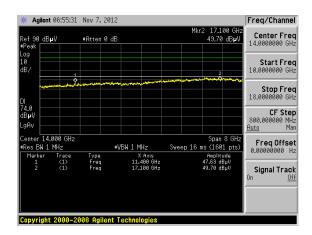
Conducted Bandedge Average, 5825 MHz, HT/VHT20 STBC, M0 to M7, M0.1 to M9.1

Page No: 121 of 132



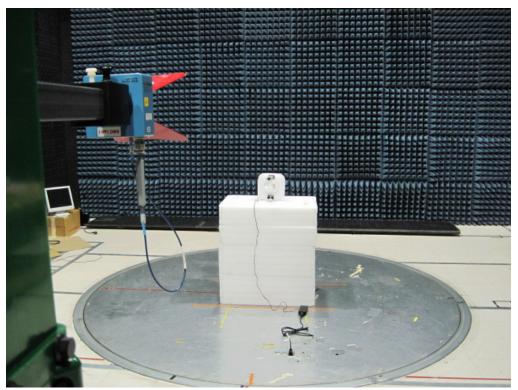

Page No: 122 of 132


Transmitter Radiated Spurious Emissions

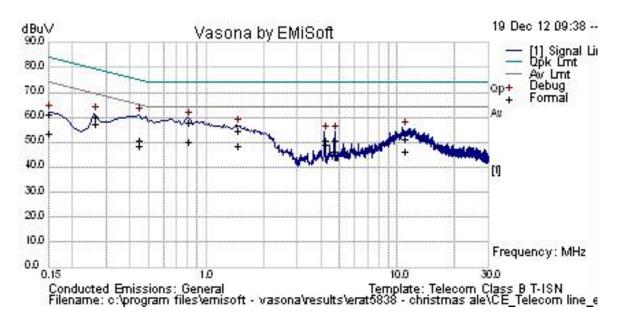

Radiated Transmitter Spurs, All Rates, All Modes, Average

Radiated Transmitter Spurs, All Rates, All Modes, Peak



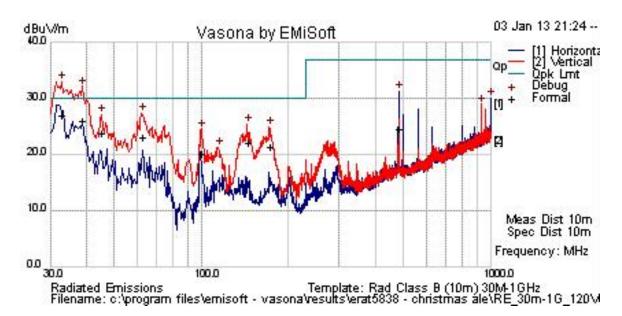

Receiver Radiated Spurious Emissions

Radiated Receiver Spurs, All Rates, All Modes, Peak

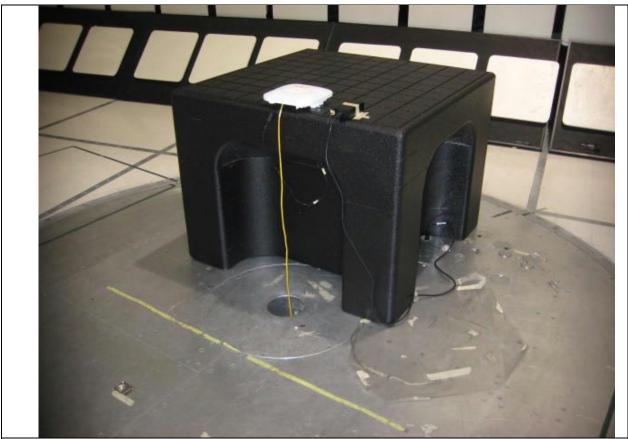


Radiated Test Setup

Conducted Emissions



, ,					Measureme nt Type			Margin dB	Pass /Fail	Comments
0.444									Pass	
0.808	48.2	0.2	9.7	58	Qp	SL	74	-16	Pass	
1.46	44.8	0.2	9.7	54.7	Qp	SL	74	-19.3	Pass	
0.261	50.4	0.1	9.8	60.2	Qp	SL	79.4	-19.2	Pass	
10.86	40.7	0.4	10	51.1	Qp	SL	74	-22.9	Pass	
4.703	40.5	0.3	9.8	50.5	Qp	SL	74	-23.5	Pass	
4.181	40.8	0.3	9.8	50.8	Qp	SL	74	-23.2	Pass	
0.15	51.6	0.1	9.8	61.5	Qp	SL	84	-22.5	Pass	
0.444	41	0.2	9.7	50.9	Av	SL	65	-14.1	Pass	
0.808	40.3	0.2	9.7	50.1	Av	SL	64	-13.9	Pass	
1.46	38.6	0.2	9.7	48.4	Av	SL	64	-15.6	Pass	
0.261	47.4	0.1	9.8	57.3	Av	SL	69.4	-12.1	Pass	
10.86	36.1	0.4	10	46.5	Av	SL	64	-17.5	Pass	
4.703	36.5	0.3	9.8	46.5	Av	SL	64	-17.5	Pass	
4.181	39.2	0.3	9.8	49.2	Av	SL	64	-14.8	Pass	
0.15	43.6	0.1	9.8	53.5	Av	SL	74	-20.5	Pass	



Radiated Emissions

1 1	Raw		AF dB		Measureme	Pol	5	_		3	Pass /Fail	Comments
MHz	dBuV	Loss		dBuV/m	nt Type		cm	Deg	dBuV/m	dB		
32.608	35	0.6	-8.8	26.9	Qp	V	215	292	30	-3.1	Pass	
38.719	38.6	0.7	-13.4	26	Qp	V	339	235	30	-4	Pass	
45.136	40.9	0.7	-17.9	23.7	Qp	V	361	22	30	-6.3	Pass	
62.01	42.3	0.9	-20.2	23	Qp	٧	122	225	30	-7	Pass	
144.005	35.3	1.4	-14.6	22.1	Qp	>	182	20	30	-7.9	Pass	
171.795	35.7	1.5	-15.8	21.4	Qp	V	164	336	30	-8.6	Pass	
99.955	36.5	1.1	-17.5	20.2	Qp	V	129	116	30	-9.8	Pass	
480.013	32.5	2.6	-10.4	24.6	Qp	Н	309	60	37	-12.4	Pass	

Title: Radiated Emissions Configuration Photograph

Maximum Permissible Exposure (MPE) Calculations

15.247: U-NII devices are subject to the radio frequency radiation exposure requirements specified in Sec. 1.1307(b), Sec. 2.1091 and Sec. 2.1093 of this chapter, as appropriate. All equipment shall be considered to operate in a ``general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

Given

 $E=\sqrt{(30^{\circ}P^{\circ}G)}/d$ and $S=E^{2}/3770$

where

E=Field Strength in Volts/meter

P=Power in Watts

G=Numeric Antenna Gain

d=Distance in meters

S=Power Density in mW/cm^2

Combine equations and rearrange the terms to express the distance as a function of the remaining variables:

 $d=\sqrt{((30*P*G)/(3770*S))}$

Changing to units of power in mW and distance in cm, using:

yields

 $d=100*\sqrt{((30*(P/1000)*G)/(3770*S))}$

d=0.282*√(P*G/S)

where

d=Distance in cm

P=Power in mW

G=Numeric Antenna Gain

S=Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

 $P(mW)=10^{(P(dBm)/10)}$ $G(numeric)=10^{(G(dBi)/10)}$

vields

 $d=0.282*10^{(P+G)/20}/\sqrt{S}$ Equation (1)

and

 $s=((0.282*10^{((P+G)/20))/d})^2$ Equation (2)

where

d=MPE distance in cm

P=Power in dBm

G=Antenna Gain in dBi

S=Power Density in mW/cm^2

Page No: 130 of 132

Equation (1) and the measured peak power are used to calculate the MPE distance. Note that for mobile or fixed location transmitters such as an access point, the minimum separation distance is 20 cm even if the calculations indicate that the MPE distance may be less.

S=1mW/cm² maximum. The highest supported antenna gain is 6 dBi (12dBi with beam forming). Using the peak power levels recorded in the test report along with Equation 1 above, the MPE distances are calculated as follows.

Frequency (MHz)	Bit Rate (Mbps)	Power Density (mW/cm^2)	Power	Antenna Gain (dBi)	MPE Distance (cm)	Limit (cm)	Margin (cm)
5745	m0	1	23.0	10	12.60	20	7.40
5785	m0	1	23.0	10	12.60	20	7.40
5825	m0	1	23.0	10	12.60	20	7.40

MPE Calculations

To maintain compliance, installations will assure a separation distance of at least 20cm.

Using Equation 2, the MPE levels (s) at 20 cm are calculated as follows:

			Peak				
		MPE	Transmit	Antenna	Power		
Frequency	Bit Rate	Distance	Power	Gain	Density	Limit	Margin
(MHz)	(Mbps)	(cm)	(dBm)	(dBi)	(mW/cm^2)	(mW/cm^2)	(mW/cm^2)
5745	11	20	23.0	10	0.40	1	0.60
5785	11	20	23.0	10	0.40	1	0.60
5825	11	20	23.0	10	0.40	1	0.60

Page No: 131 of 132

Appendix C: Test Equipment/Software Used to perform the test

Equip #	Manufacturer	Model	Description	Last Cal	Next Due
CIS004882	EMC Test Systems	3115	Double Ridged Guide Horn Antenna	26-May-12	26-May-13
CIS005691	Miteq	NSP1800-25-S1	Broadband Preamplifier	31-Jan-12	31-Jan-13
COM000210	TTE	H785-150K-50-21378	Hi Pass Filter - 150KHz cutoff	17-Aug-12	17-Aug-13
COM000213	Fischer	FCC-LISN-50-50-2M	Turntable LISN (150KHz-30MHz)	5-Mar-12	5-Mar-13
CIS021117	Micro-Coax	UFB311A-0-2484-520520	RF Coaxial Cable, to 18GHz, 248.4 in	24-Aug-12	24-Aug-13
CIS030564	Micro-Coax	UFB311A-1-0950-504504	RF Coaxial Cable, to 18GHz, 95 in	24-Aug-12	24-Aug-13
COM000233	Sunol Sciences	JB1	Combination Antenna, 30MHz-2GHz	13-Jul-12	13-Jul-13
COM000239	Rohde & Schwarz	ESI40	EMI Test Receiver	21-Jun-12	21-Jun-13
COM000443	Sonoma Instrument	310N	Amplifier 9kHz-1GHz	8-Apr-12	8-Apr-13
CIS034972	Midwest Microwave	ATT-0640-20-29M-02	Attenuator, 20dB	17-May-12	16-May-13
CIS043116	Huber + Suhner	Sucoflex 104PE	N & SMA RF cable	14-Dec-12	14-Dec-13
CIS040603	Agilent	E4440A	Spectrum Analyzer	5-Aug-12	5-Aug-13
CIS040053	Agilent	E4448A	Spectrum Analyzer	29-Apr-12	28-Apr-13

Page No: 132 of 132