

FCC CFR47 PART 15 SUBPART E CERTIFICATION

TEST REPORT

FOR

802.11 a/b/g ACCESS POINT

MODEL NUMBER: AIR-AP1131AG-A-K9

FCC ID: LDK102054

REPORT NUMBER: 04U2603-2

ISSUE DATE: AUGUST 12, 2004

Prepared for CISCO SYSTEMS, INC. 170 WEST TASMAN DRIVE SAN JOSE, CA 95134

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA

TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENTS

1.	TEST R	ESULT CERTIFICATION	4
2.	EUT DE	ESCRIPTION	5
3.	TEST M	IETHODOLOGY	6
4.	FACILI	TIES AND ACCREDITATION	6
5.	CALIBI	RATION AND UNCERTAINTY	7
	5.1. ME	ASURING INSTRUMENT CALIBRATION	7
	5.2. ME	ASUREMENT UNCERTAINTY	7
	5.3. TES	ST AND MEASUREMENT EQUIPMENT	8
6.	SETUP	OF EQUIPMENT UNDER TEST	10
7.	APPLIC	CABLE LIMITS AND TEST RESULTS	12
	7.1. CH	ANNEL TESTS FOR 5150 TO 5350 MHz BAND	12
	7.1.1.	EMISSION BANDWIDTH	
	7.1.2.	PEAK POWER	
	7.1.3. 7.1.4.	MAXIMUM PERMISSIBLE EXPOSUREAVERAGE POWER	
	7.1. 4 . 7.1.5.	PEAK POWER SPECTRAL DENSITY	
	7.1.5. 7.1.6.	PEAK EXCURSION	
	7.1.7.	CONDUCTED SPURIOUS EMISSIONS	
	7.2. CH	ANNEL TESTS FOR 5725 TO 5825 MHz BAND	41
	7.2.1.	EMISSION BANDWIDTH	
	7.2.2.	PEAK POWER	
	7.2.3.	MAXIMUM PERMISSIBLE EXPOSURE	
	7.2.4. 7.2.5.	AVERAGE POWERPEAK POWER SPECTRAL DENSITY	
	7.2.5.	PEAK EXCURSION	
	7.2.7.	CONDUCTED SPURIOUS EMISSIONS	
	7.3. RA	DIATED EMISSIONS	66
	7.3.1.	TRANSMITTER RADIATED SPURIOUS EMISSIONS	
	7.3.2.	TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ FOR 5150 TO 5350 MH: 69	Z
	BAND 7.3.3.	TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ FOR 5725 TO 5825 MHz	Z
	BAND	78 CO-LOCATED TRANSMITTER RADIATED EMISSIONS	07
	7.3.4. 7.3.5.	\WORST-CASE RADIATED EMISSIONS BELOW 1 GHz	
		WERLINE CONDUCTED EMISSIONS	

Page 2 of 105

REPORT NO: 04U2603-2	
EUT: 802 11 a/b/g ACCESS POINT	

DATE: AUGUST 26, 2004 FCC ID: LDK 102054

8. SETUP PHOTOS......101

COMPANY NAME: CISCO SYSTEMS, INC.

1. TEST RESULT CERTIFICATION

170 WEST TASMAN DRIVE

SAN JOSE, CA 95134

EUT DESCRIPTION: 802.11 a/b/g Access Point

MODEL: AIR-AP1131AG-A-K9

DATE TESTED: JUNE 30 – JULY 29, 2004

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 15 SUBPART E NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Approved & Released For CCS By: Tested By:

YAN ZHENG EMC SUPERVISOR

COMPLIANCE CERTIFICATION SERVICES

DAVE GARCIA EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

DATE: AUGUST 26, 2004

FCC ID: LDK 102054

DATE: AUGUST 26, 2004 FCC ID: LDK 102054

2. EUT DESCRIPTION

The EUT is an 802.11a/b/g access point. There are two radios, one for the 2.4 GHz band and the other for the 5 GHz bands. These two radio transmitters may operate simultaneously.

The 5 GHz transmitter has a maximum peak conducted output power as follows:

5150 to 5250 MHz Authorized Band

Frequency Range		Mode	Output Power	Output Power	
	(MHz)		(dBm)	(mW)	
	5180 - 5250	802.11a	15.00	31.62	

5250 to 5350 MHz Authorized Band

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
5250 - 5320	802.11a	17.31	53.83

5725 to 5825 MHz Authorized Band

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5745-5805	802.11a	16.22	41.88

The 5 GHz radio utilizes two identical internal inverted F antennas for diversity, each with a maximum gain of 4 dBi.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/2001, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Serial Number	Cal Due			
EMI Test Receiver	R & S	ESIB40	4/24/2174	11/21/2004			
Power Meter	Agilent	E4416A	GB41291160	11/7/04			
Peak / Average Power Sensor	Agilent	E9327A	US40440755	11/7/04			
30MHz 2Ghz	Sunol Sciences	JB1 Antenna	A121003	12/22/04			
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/21/04			
RF Filter Section	HP	85420E	3705A00256	11/21/04			
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	9001-3245	2/4/05			
Antenna, Horn, 18 ~ 26 GHz	ARA	MWH-1826/B	1013	2/4/05			
Antenna, Horn 26 ~ 40 GHz	ARA	MWH-2640/B	1029	12/3/04			
Amplifier 1-26GHz	MITEQ	NSP2600-SP	924342	4/25/05			
PreAmplifier 26-40 GHz	Miteq	NSP4000-SP2	924343	6/1/04			
Spectrum Analyzer	Agilent	E4446A	MY43360112	1/13/05			
Directional Coupler	Krytar	1817	2	CNR			
5.15-5.35 Rejection Filter	Micronics	BRC 13190	1	CNR			
5.75-5.875 Rejection Filter	Micronics	BRC 13192	1	CNR			

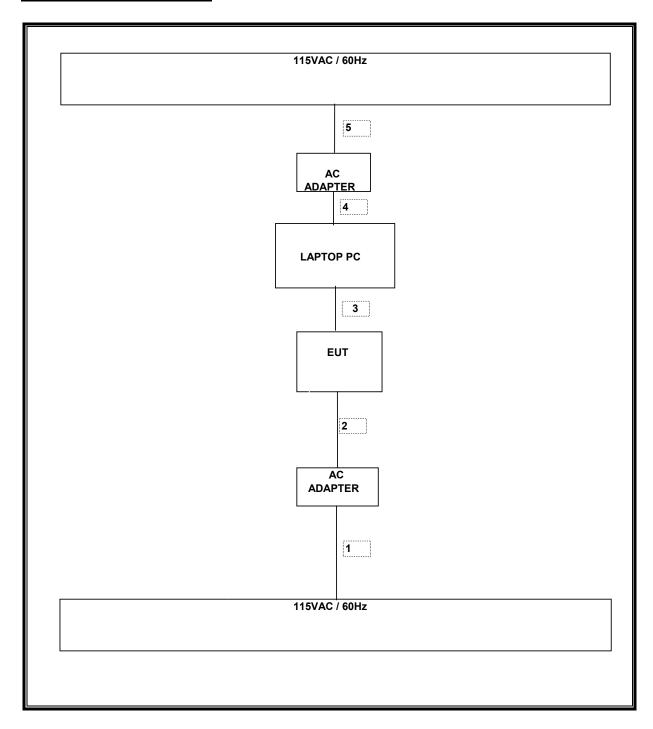
The below test and measurement equipment was utilized for the radiated emissions below 1GHz and AC line conducted tests documented in this report:

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due	Test Number(s)
005678	Hewlett Packard/ E7401A	Spectrum Analyzer	18-AUG- 2003	18-AUG- 2004	[11186], [11189], [11193], [11216]
005680	Hewlett Packard/ E7405A	Spectrum Analyzer	11-SEP-2003	11-SEP-2004	[11173], [11174], [11217]
005682	Hewlett Packard/ 85460A	RF Filter Section	11-JUL-2003	11-JUL-2004	[11173], [11174], [11217]
005684	Hewlett Packard/ 85462A	EMI Receiver RF Section	11-JUL-2003	11-JUL-2004	[11173], [11174], [11217]
007056	Schaffner-Chase/ CBL6112B	Bilog Antenna	23-OCT-2003	23-OCT- 2004	[11173], [11174], [11217]
007705	Fischer Custom Communications/ FCC-LISN-50/250- 50-2-01	LISN	26-AUG- 2003	26-AUG- 2004	[11186], [11189], [11216]
007893	EMC Test Systems/ 3144	Log Periodic Antenna	Cal Not Required	N/A	[11176]
008111	Unifield 5m Chamber/ Unifield 5m Chamber	Unifield 5m Chamber	12-MAR- 2004	12-MAR- 2005	[11176], [11207]
008136	Huber + Suhner/ SF106A	7m Sucoflex cable	16-JAN-2004	16-JAN-2005	[11176], [11207]
018313	Heweltt Packard/ 8447D	RF Preamplifier	30-DEC-2003	30-DEC- 2004	[11173]
018719	Rohde & Schwarz/ ESCS30	EMI Test Receiver, 9kHz- 2.75GHz	28-AUG- 2003	28-AUG- 2004	[11186], [11189], [11193], [11216]
020646	Microwave Associates/ 7524-PND	N Type Line Coax Switch	17-AUG- 2003	17-AUG- 2004	[11186], [11189], [11193], [11216]
021676	Amplifier Research/ DC7144	Directional Coupler, 0.8- 4.2GHz, 40dB Coupling	15-MAR- 2004	15-MAR- 2005	[11207]

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST								
Description Manufacturer Model Serial Num								
Laptop PC	IBM	T20	78-F2737					
AC Adapter	IBM	AA21131	N/A					
AC Adapter	Cisco	PSA18U-480C	N/A					


I/O CABLES

	I/O CABLE LIST											
Cable	Port	# of	Connector	Cable	Cable	Remarks						
No.		Identical	Type	Type	Length							
		Ports										
1	AC	1	AC	Unshielded	1.8	N/A						
2	DC	1	DC	Unshielded	1.5	N/A						
3	Serial	1	dB9 to RJ45	Unshielded	1.5	N/A						
4	DC	1	DC	Unshielded	1.5	N/A						
5	AC	1	AC	Unshielded	1.8	N/A						

TEST SETUP

The EUT is a stand-alone access point. It was connected to a laptop PC and test software was used to exercise the radio.

SETUP DIAGRAM FOR TESTS

Page 11 of 105

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. CHANNEL TESTS FOR 5150 T0 5350 MHz BAND

7.1.1. EMISSION BANDWIDTH

LIMIT

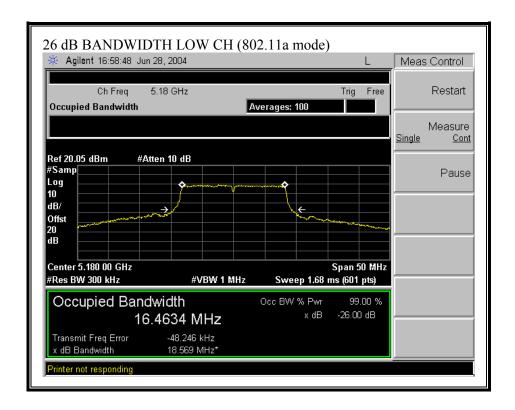
§15.403 (i) Emission bandwidth. For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolutions bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

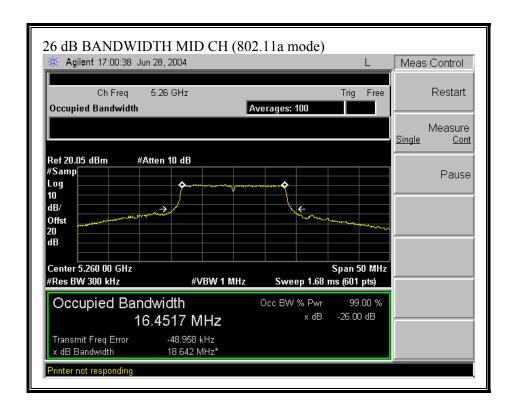
DATE: AUGUST 26, 2004

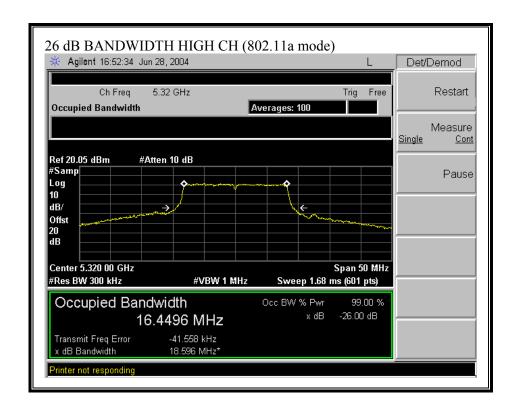
FCC ID: LDK 102054

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 26 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.


RESULTS


No non-compliance noted:


802.11a Mode

Channel	Frequency (MHz)	B (MHz)	10 Log B (dB)
Low	5180	18.57	12.69
Middle	5260	18.64	12.70
High	5320	18.60	12.69

26 dB EMISSION BANDWIDTH (802.11a MODE)

7.1.2. PEAK POWER

LIMIT

§15.407 (a) (1) For the band 5.15-5.25 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: AUGUST 26, 2004 FCC ID: LDK 102054

§15.407 (a) (1) For the band 5.25-5.35 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

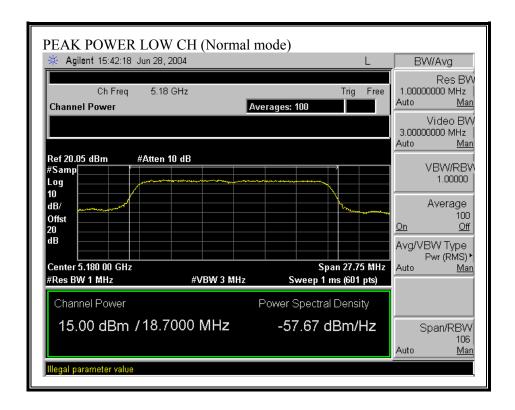
The transmitter output operates continuously therefore Method # 1 is used.

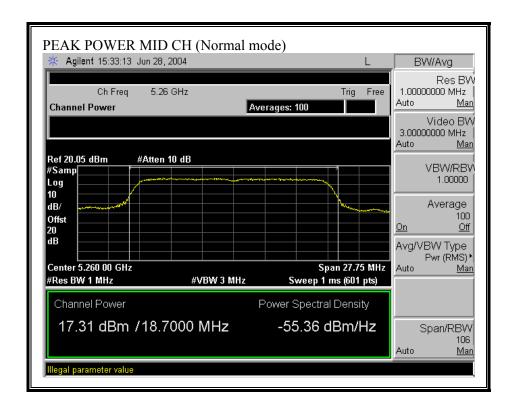
LIMITS AND RESULTS

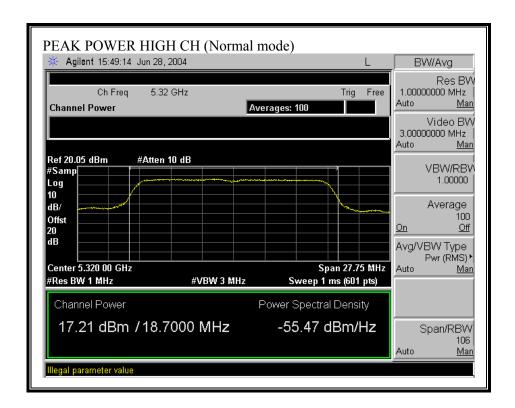
No non-compliance noted:

Limit in 5150 to 5250 MHz Band

Mode	Frequency	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
802.11a	5180	17	18.569	16.69	4.00	16.69


Limit in 5250 to 5350 MHz Band


Mode	Frequency	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
802.11a	5260	24	18.642	23.70	4.00	23.70
802.11a	5320	24	18.596	23.69	4.00	23.69


802.11a mode Results

Channel	Frequency Powe		Limit	Margin	
	(MHz)	(dBm)	(dBm)	(dB)	
Low	5180	15.00	16.69	-1.69	
Middle	5260	17.31	23.70	-6.39	
High	5320	17.21	23.69	-6.48	

PEAK POWER (NORMAL MODE)

7.1.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	nits for Occupational	/Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f²)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500–100,000			5	6
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure	
0.3–1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.

Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for

exposure or can not exercise control over their exposure.

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)/d}$

and

 $S = E ^2 / 3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (3770 * S))}$$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and

d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{(30 * (P / 1000) * G) / (3770 * S)}$

 $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using:

 $P (mW) = 10 ^ (P (dBm) / 10)$ and

 $G \text{ (numeric)} = 10 ^ (G \text{ (dBi)} / 10)$

yields

 $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ Equation (1)

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

LIMITS

From §1.1310 Table 1 (B), $S = 1.0 \text{ mW/cm}^2$

RESULTS

No non-compliance noted:

Mode	Power Density	Output	Antenna	MPE
	Limit	Power	Gain	Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11a	1.0	17.31	4.00	3.28

DATE: AUGUST 26, 2004

FCC ID: LDK 102054

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

7.1.4. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 12.9 dB (including 10 dB pad and 2.9 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: AUGUST 26, 2004

FCC ID: LDK102054

802.11a Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	5180	14.80
Middle	5260	17.10
High	5320	17.00

7.1.5. PEAK POWER SPECTRAL DENSITY

LIMIT

§15.407 (a) (1) For the band 5.15-5.25 GHz, the peak power spectral density shall not exceed 4 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: AUGUST 26, 2004

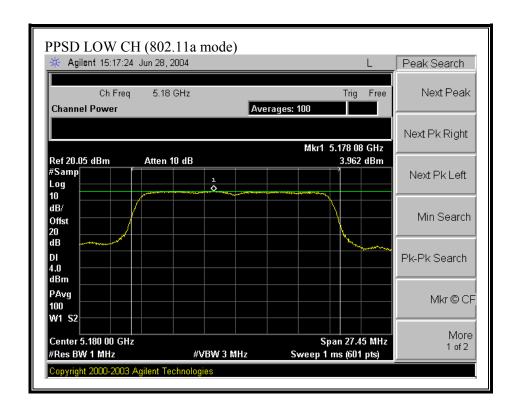
FCC ID: LDK102054

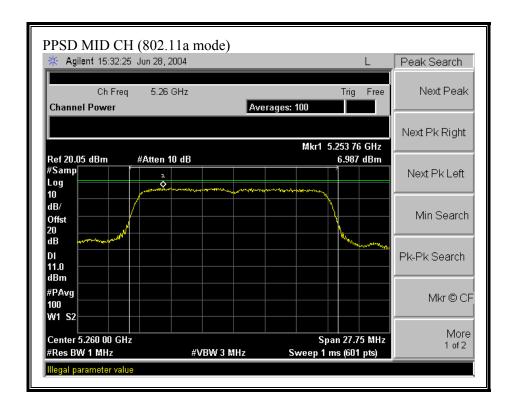
§15.407 (a) (1) For the band 5.25-5.35 GHz, the peak power spectral density shall not exceed 11 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

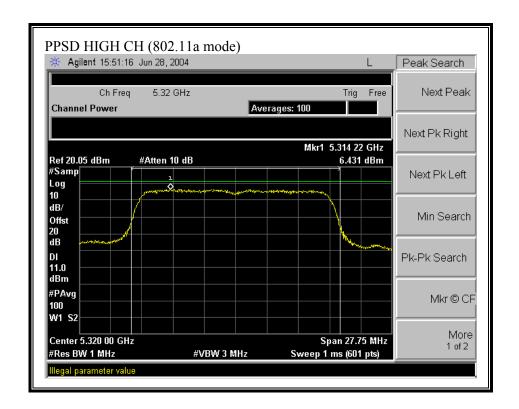
The maximum antenna gain = 4.0 dBi, therefore there is no reduction due to antenna gain.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


RESULTS


No non-compliance noted:


802.11a Mode

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	3.96	4.00	-0.04
Middle	5260	6.99	11.00	-4.01
High	5320	6.43	11.00	-4.57

PEAK POWER SPECTRAL DENSITY (802.11a MODE)

7.1.6. PEAK EXCURSION

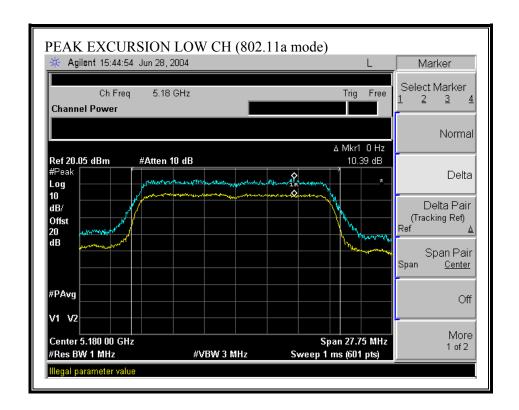
<u>LIMIT</u>

§15.407 (a) (6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

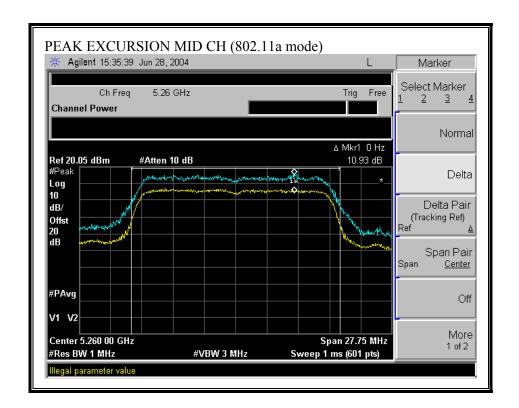
TEST PROCEDURE

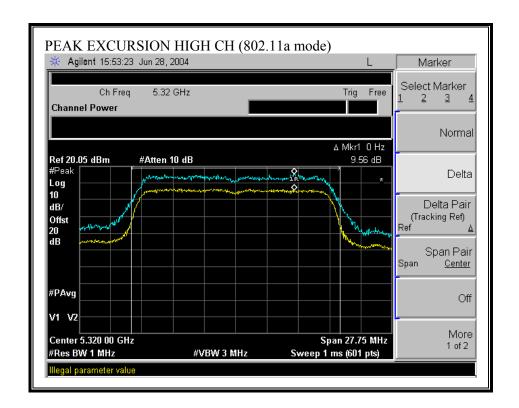
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS

No non-compliance noted:


802.11a Mode


Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	10.39	13	-2.61
Middle	5260	10.93	13	-2.07
High	5320	9.56	13	-3.44

PEAK EXCURSION (802.11a MODE)

Page 31 of 105

7.1.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

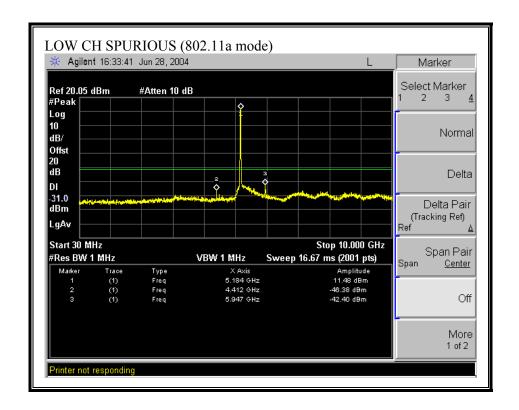
§15.407 (b) (1 & 2) For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm / MHz.

DATE: AUGUST 26, 2004

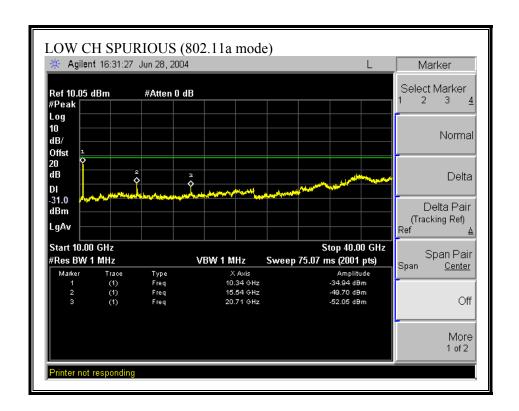
FCC ID: LDK 102054

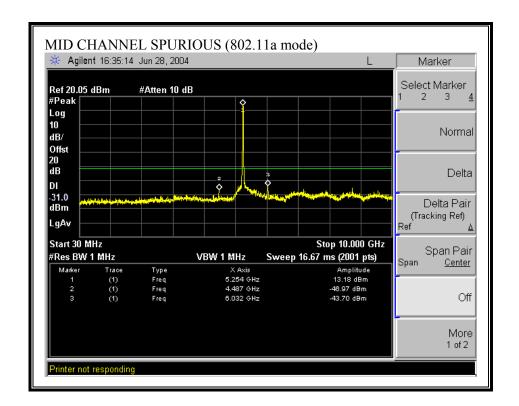
TEST PROCEDURE

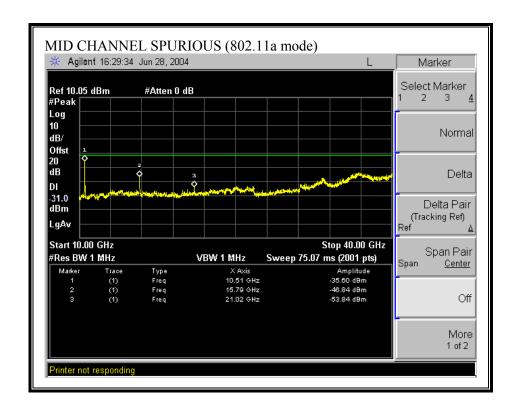
Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

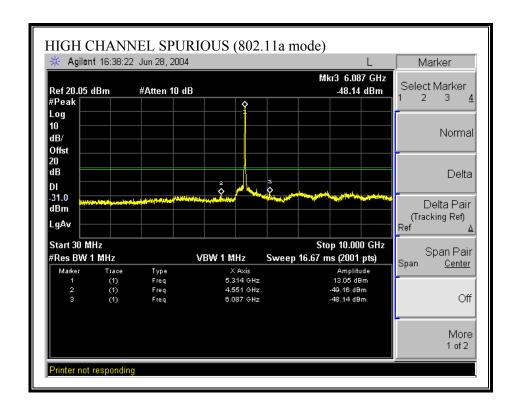

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.

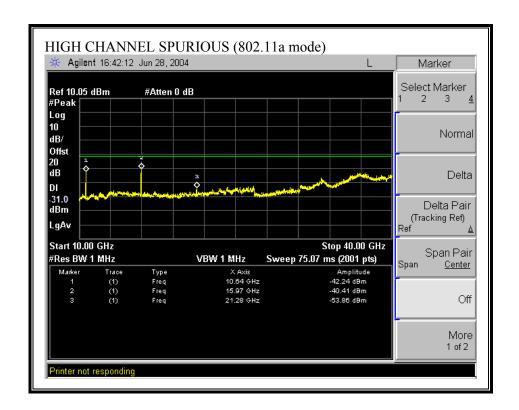
Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


RESULTS


No non-compliance noted:


SPURIOUS EMISSIONS (802.11a MODE)




Page 35 of 105

7.2. CHANNEL TESTS FOR 5725 TO 5825 MHz BAND

7.2.1. EMISSION BANDWIDTH

<u>LIMIT</u>

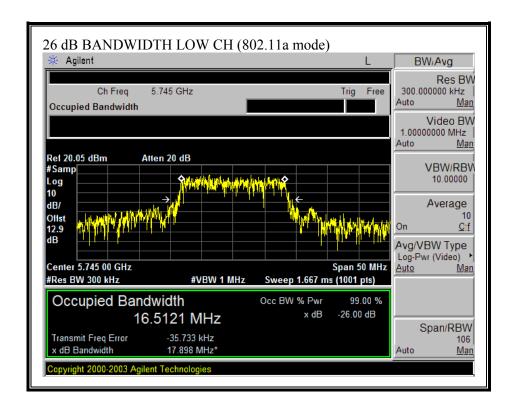
§15.403 (i) Emission bandwidth. For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolutions bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

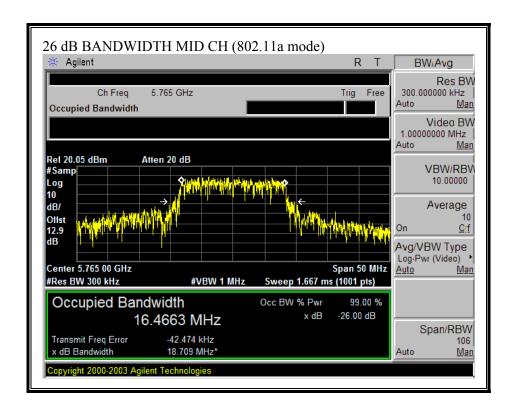
DATE: AUGUST 26, 2004

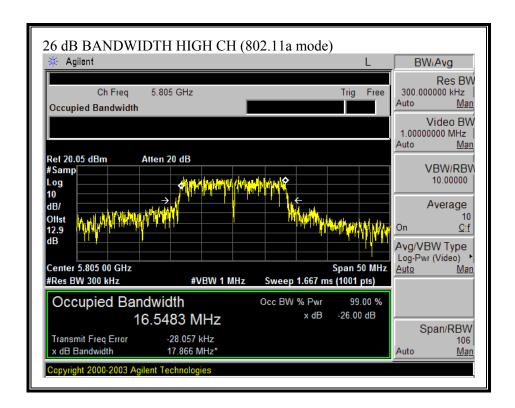
FCC ID: LDK 102054

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 26 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.


RESULTS


No non-compliance noted:


802.11a Mode

Channel	Frequency	В	10 Log B
	(MHz)	(MHz)	(dB)
Low	5745	17.90	12.53
Middle	5765	18.71	12.72
High	5805	17.87	12.52

26 dB EMISSION BANDWIDTH (802.11a MODE)

7.2.2. PEAK POWER

LIMIT

§15.407 (a) (3) For the 5.725–5.825 GHz band, the peak transmit power over the frequency band of operation shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U–NII devices operating in this band may employ transmitting antennas with directional gain up to 23 dBi without any corresponding reduction in the transmitter peak output power or peak power spectral density. For fixed, point-to-point U–NII transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in peak transmitter power and peak power spectral density for each 1 dB of antenna gain in excess of 23 dBi would be required. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omni directional applications, and multiple collocated transmitters transmitting the same information. The operator of the U–NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

DATE: AUGUST 26, 2004

FCC ID: LDK 102054

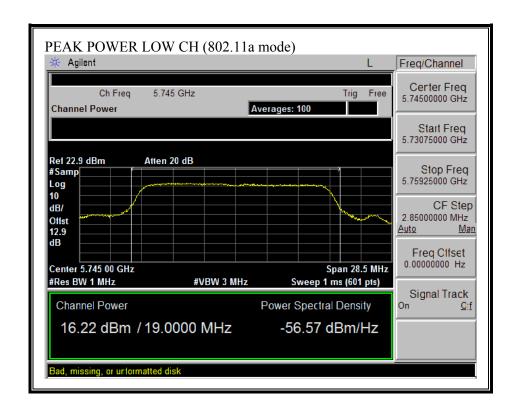
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

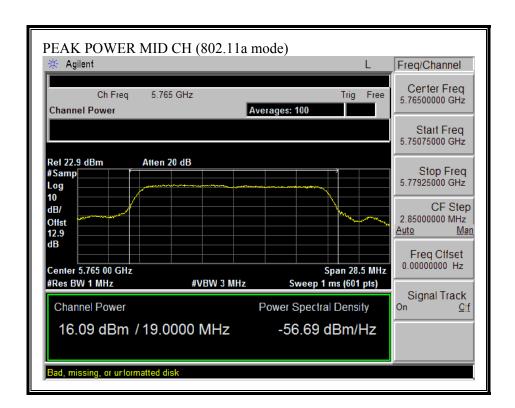
The transmitter output operates continuously therefore Method # 1 is used.

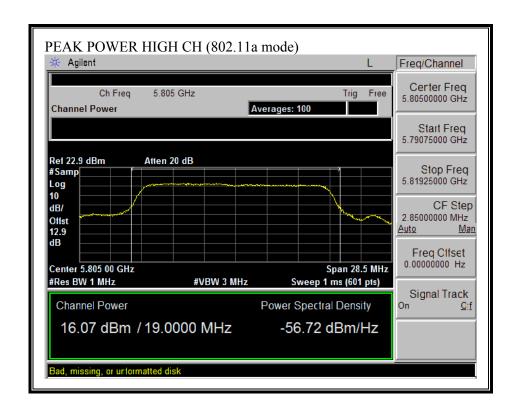
LIMITS AND RESULTS

No non-compliance noted:


Limit

Channel	Frequency	Fixed	В	17 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5745	30	17.90	29.53	4.00	29.53
Mid	5785	30	18.71	29.72	4.00	29.72
High	5805	30	17.87	29.52	4.00	29.52


Results


Channel	Frequency	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5745	16.22	29.53	-13.31
Middle	5785	16.09	29.72	-13.63
High	5805	16.07	29.52	-13.45

PEAK POWER (802.11a MODE)

Page 47 of 105

7.2.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	nits for Occupational	/Controlled Exposu	res	
0.3–3.0	614 1842/f	1.63 4.89/f	*(100) *(900/f²)	6
30–300 300–1500	61.4	0.163	1.0 f/300	6
1500–100,000	for General Populati	on/Uncontrolled Exp	oosure 5	6
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f²)	30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500	27.5	0.073	0.2 f/1500	30 30
1500–100,000			1.0	30 30

f = frequency in MHz

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.

Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for

exposure or can not exercise control over their exposure.

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G) / d}$$

and

$$S = E ^2 / 3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (3770 * S))}$$

Changing to units of Power to mW and Distance to cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = 100 * d(m)$$

yields

$$d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$$

$$d = 0.282 * \sqrt{(P * G / S)}$$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using:

$$P (mW) = 10 ^ (P (dBm) / 10)$$
 and

$$G (numeric) = 10 ^ (G (dBi) / 10)$$

yields

$$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$$

Equation (1)

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

LIMITS

From §1.1310 Table 1 (B), $S = 1.0 \text{ mW/cm}^2$

RESULTS

No non-compliance noted:

Mode	Power Density	Output	Antenna	MPE
	Limit	Power	Gain	Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11a	1.0	16.22	4.00	2.89

DATE: AUGUST 26, 2004

FCC ID: LDK 102054

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

7.2.4. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 12.9 dB (including 10 dB pad and 2.9 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: AUGUST 26, 2004

FCC ID: LDK102054

802.11a Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	5500	16.95
Middle	5600	17.00
High	5700	17.05

7.2.5. PEAK POWER SPECTRAL DENSITY

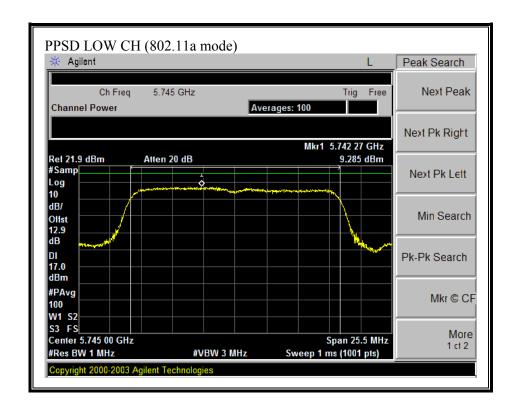
LIMIT

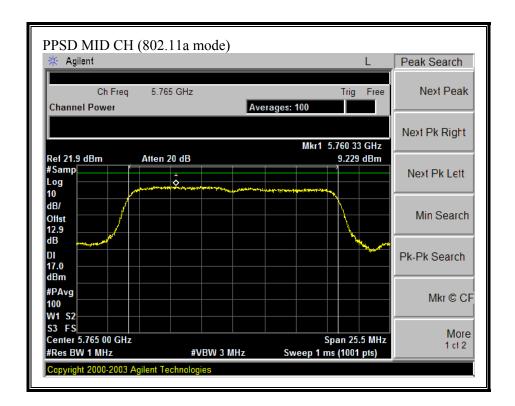
§15.407 (a) (3) For the 5.725–5.825 GHz band, the peak power spectral density shall not exceed 17 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U–NII devices operating in this band may employ transmitting antennas with directional gain up to 23 dBi without any corresponding reduction in the transmitter peak output power or peak power spectral density. For fixed, point-to-point U–NII transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in peak transmitter power and peak power spectral density for each 1 dB of antenna gain in excess of 23 dBi would be required. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omni directional applications, and multiple collocated transmitters transmitting the same information. The operator of the U–NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

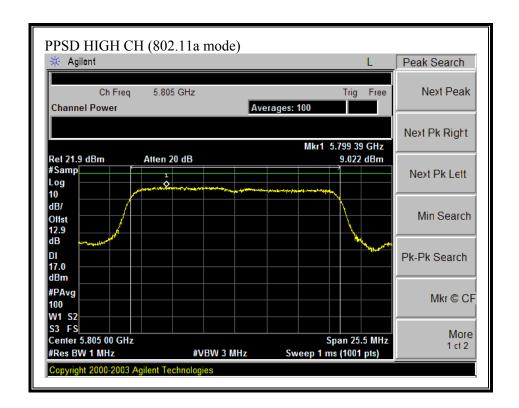
The maximum antenna gain = 4 dBi, therefore there is no reduction due to antenna gain.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


RESULTS


No non-compliance noted:


802.11a Mode

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)
Low	5745	9.29	17.00	-7.72
Middle	5785	9.23	17.00	-7.77
High	5805	9.02	17.00	-7.98

PEAK POWER SPECTRAL DENSITY (802.11a MODE)

7.2.6. PEAK EXCURSION

<u>LIMIT</u>

§15.407 (a) (6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

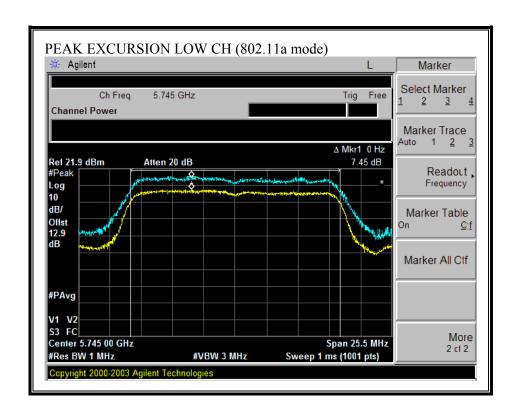
DATE: AUGUST 26, 2004

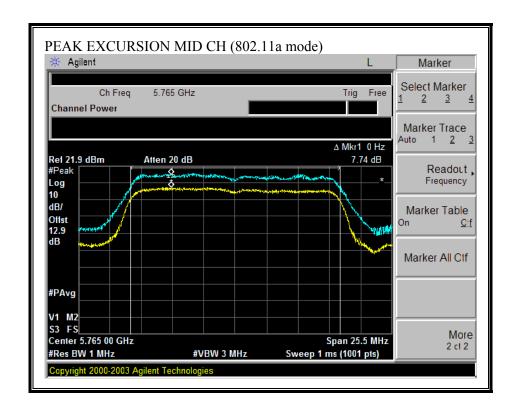
FCC ID: LDK102054

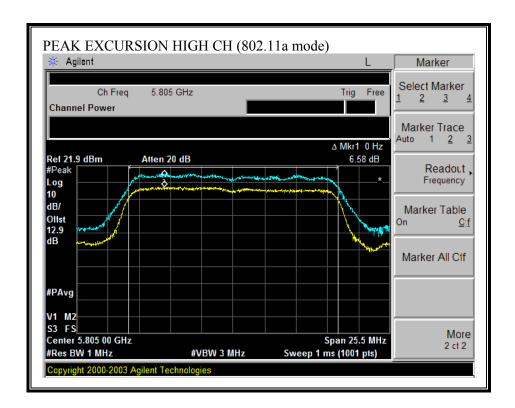
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS


No non-compliance noted:


802.11a Mode

Channel	Frequency (MHz)	Peak Excursion (dB)	Limit (dB)	Margin (dB)
Low	5745	7.45	13	-5.55
Middle	5765	7.74	13	-5.26
High	5805	6.58	13	-6.42

PEAK EXCURSION (802.11a MODE)

Page 61 of 105

7.2.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

§15.407 (b) (4) For transmitters operating in the 5.725–5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of –17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of –27 dBm/MHz.

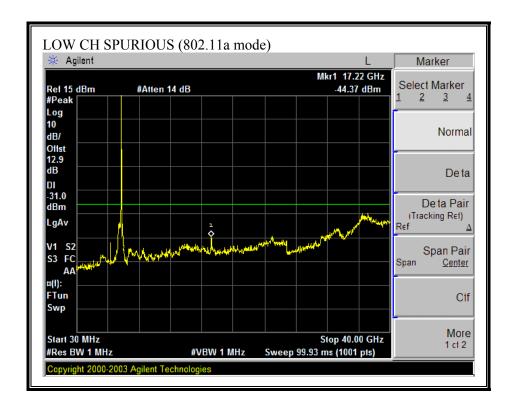
DATE: AUGUST 26, 2004

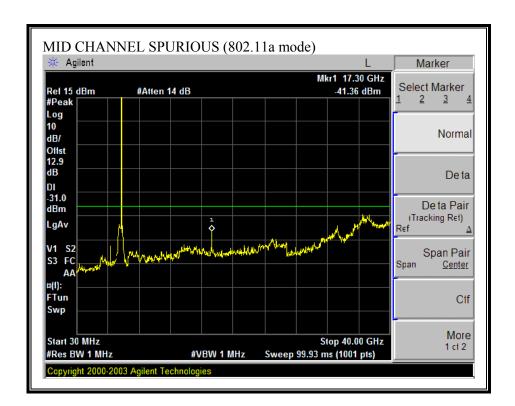
FCC ID: LDK 102054

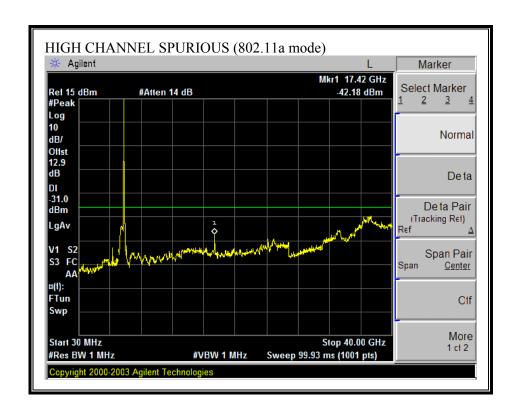
TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.


RESULTS


No non-compliance noted:

Page 62 of 105

SPURIOUS EMISSIONS (802.11a MODE)

7.3. RADIATED EMISSIONS

7.3.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

DATE: AUGUST 26, 2004

FCC ID: LDK102054

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$\binom{2}{}$
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

² Above 38.6

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

^{§15.209 (}b) In the emission table above, the tighter limit applies at the band edges.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

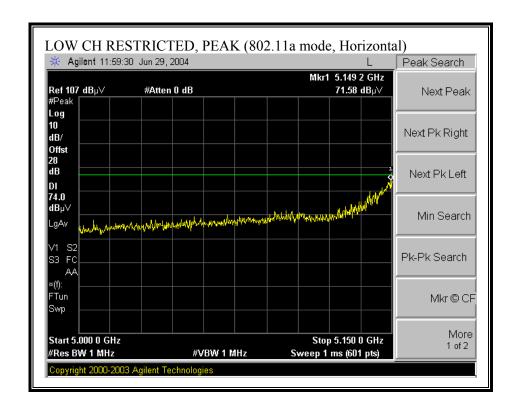
DATE: AUGUST 26, 2004

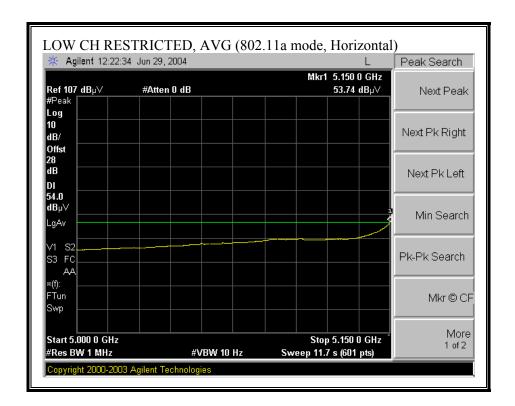
FCC ID: LDK 102054

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

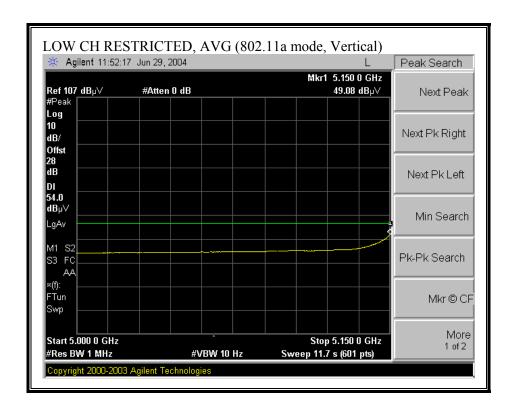
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels of each band.

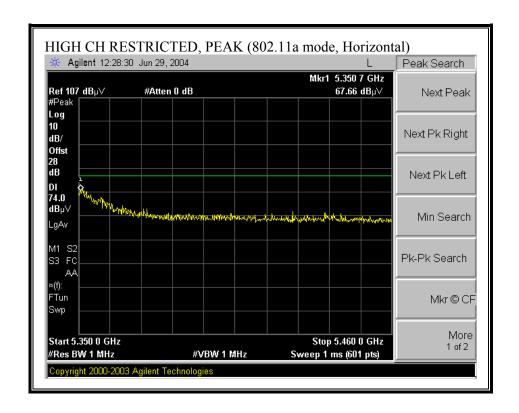

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

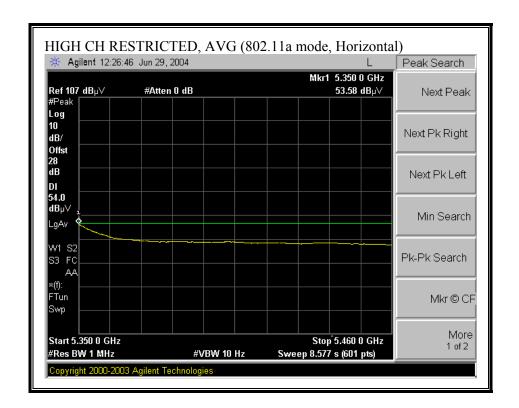

RESULTS

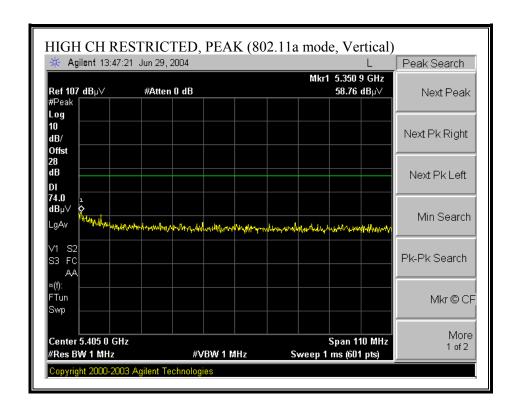
No non-compliance noted:

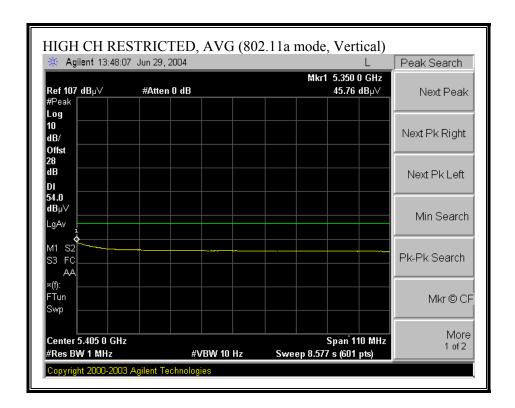

7.3.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ FOR 5150 TO 5350 MHz BAND

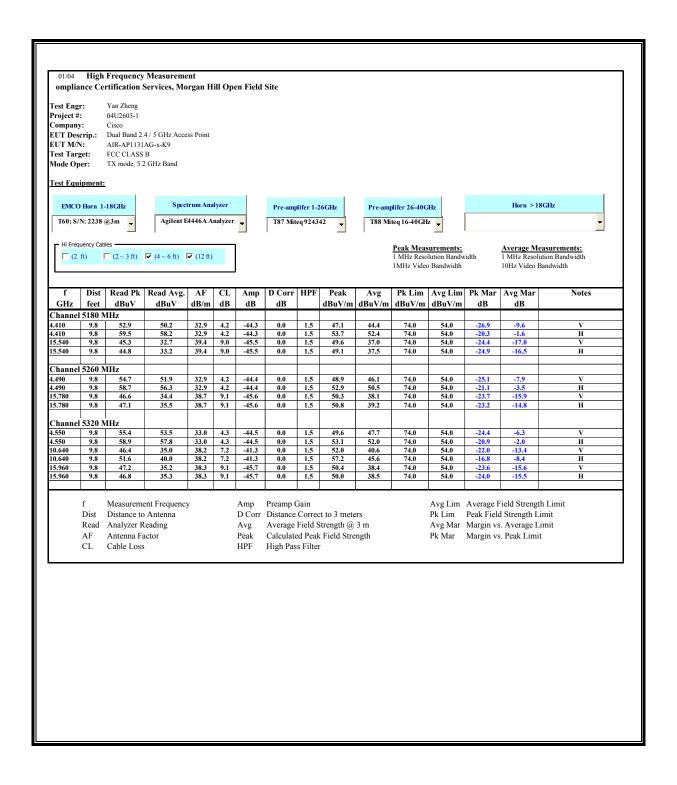

RESTRICTED BANDEDGE (802.11a MODE, LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (802.11a MODE, LOW CHANNEL, VERTICAL)



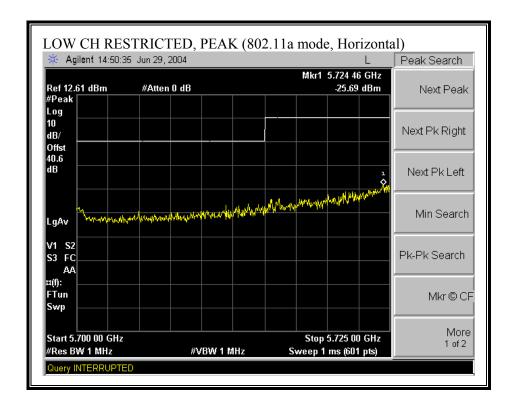

RESTRICTED BANDEDGE (802.11a MODE, HIGH CHANNEL, HORIZONTAL)

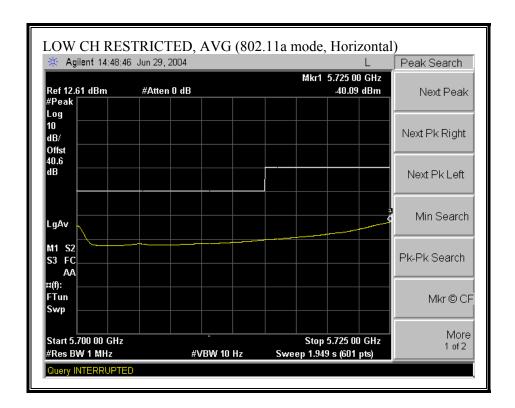


RESTRICTED BANDEDGE (802.11a MODE, HIGH CHANNEL, VERTICAL)

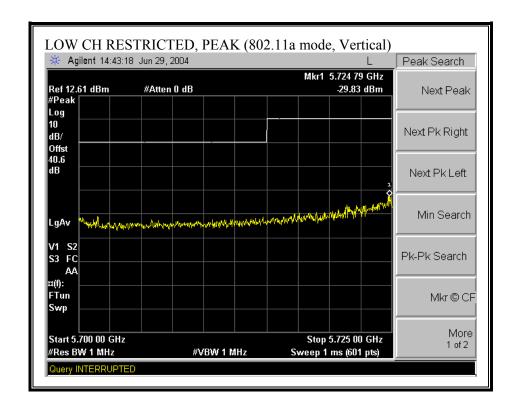
HARMONICS AND SPURIOUS EMISSIONS (802.11a MODE)

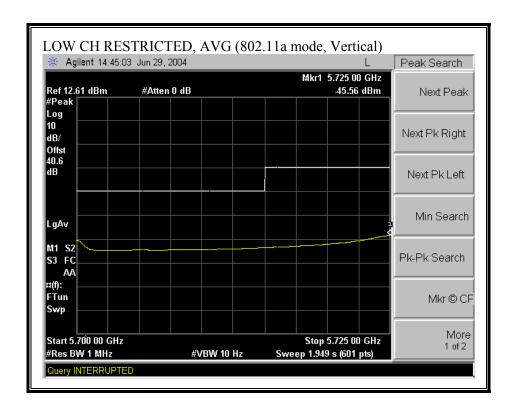
Page 77 of 105

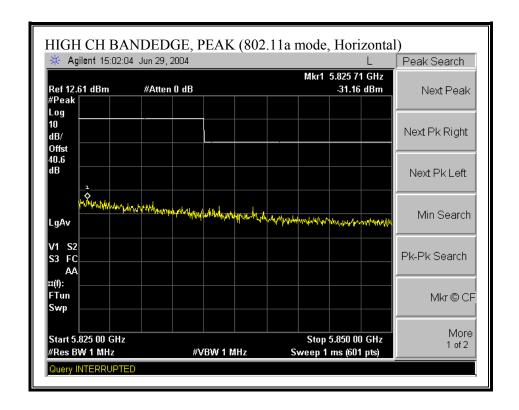

7.3.3. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ FOR 5725 TO 5825 MHz BAND


REPORTING NOTES

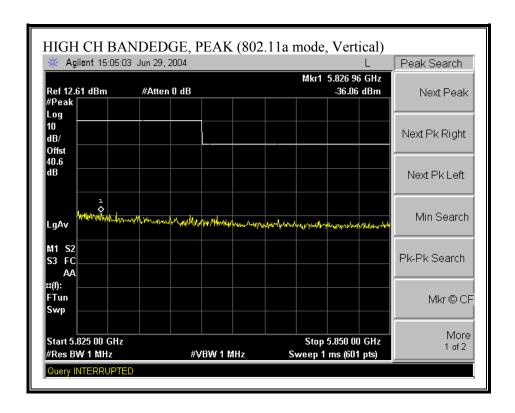
The nearby restricted band stops 10 MHz below the authorized band. A single plot is taken to show both restricted band emission levels and out-of-band radiated spurious emission levels at and near the lower authorized bandedge. The out-of-band spurious limits of -7 dBm Peak EIRP and -27 dBm Average EIRP are converted to the equivalent 3 meter field strengths of 88.2 dBuV/m Peak and 68.2 dBuV/m Average, respectively, for reporting purposes.

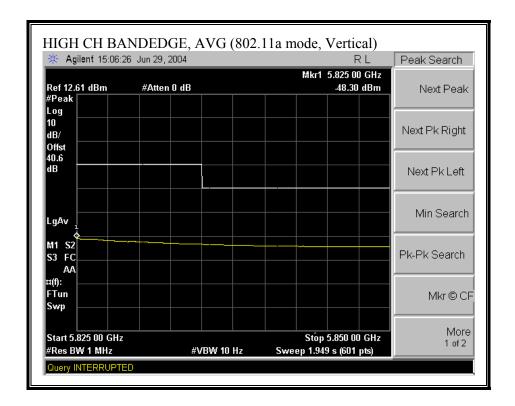

The out-of- band radiated spurious emission levels at and near the upper authorized bandedge are reported as EIRP values.

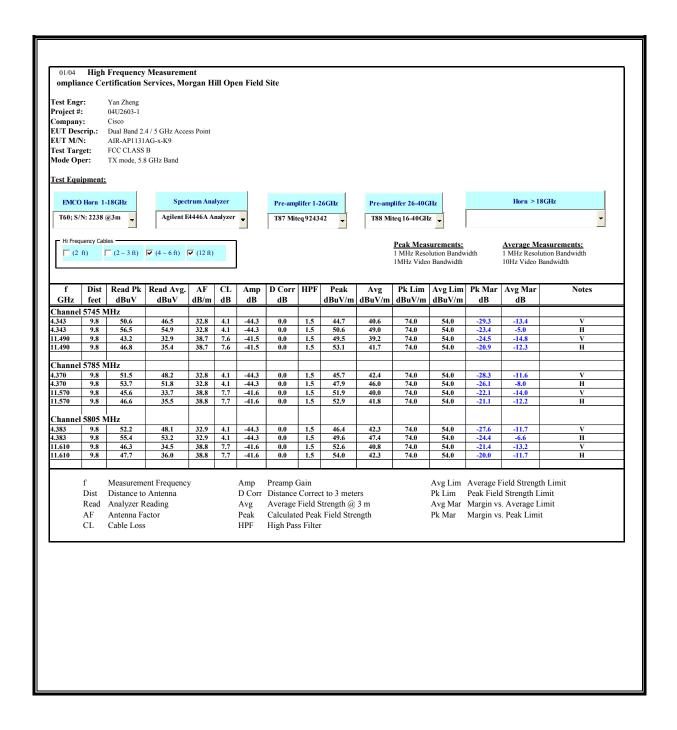

RESTRICTED BAND & BANDEDGE (802.11a MODE, LOW CHANNEL, HORIZONTAL)




RESTRICTED BAND & BANDEDGE (802.11a MODE, LOW CHANNEL, VERTICAL)




BANDEDGE (802.11a MODE, HIGH CHANNEL, HORIZONTAL)



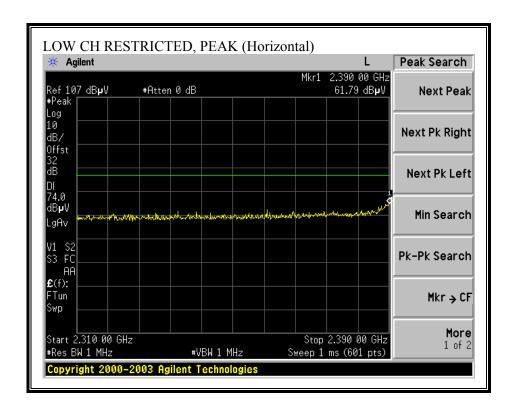
BANDEDGE (802.11a MODE, HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS (802.11a MODE)

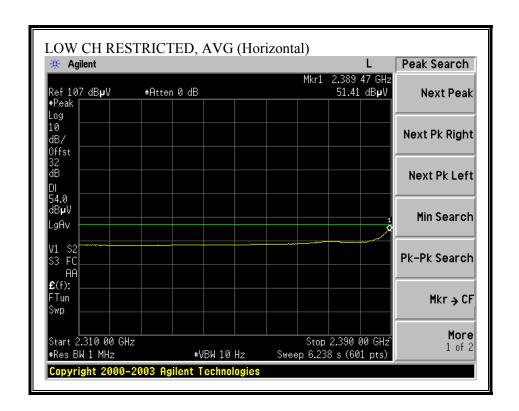
Page 86 of 105

7.3.4. CO-LOCATED TRANSMITTER RADIATED EMISSIONS

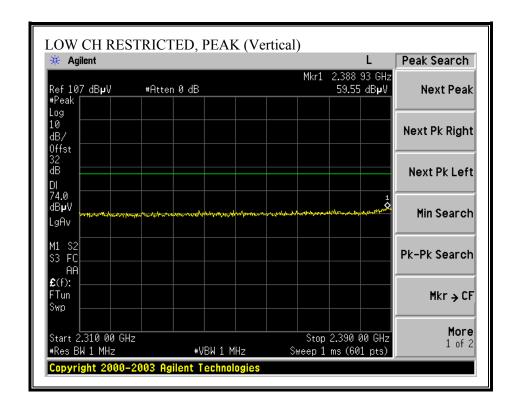
SUPPLEMENTAL TEST PROCEDURE

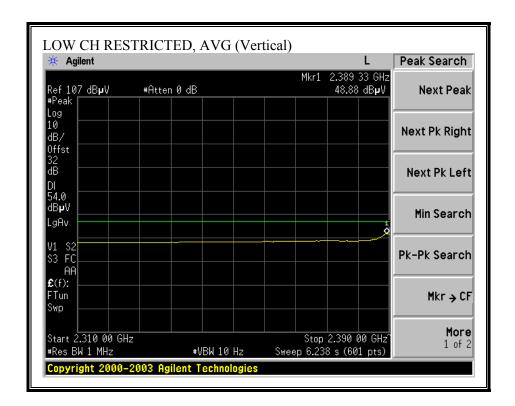

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna The dominant transmitter is set to the worst case channel. The spurious emissions performance of the dominant transmitter is investigated as the settings of the non-dominant transmitter are varied. The spectrum is searched for intermodulation products. Worst-case results are reported.

RESULTS

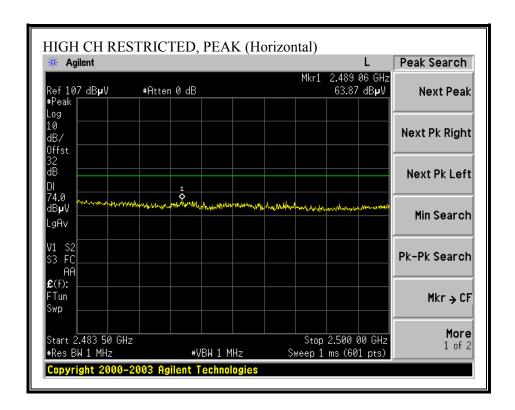

No non-compliance noted:

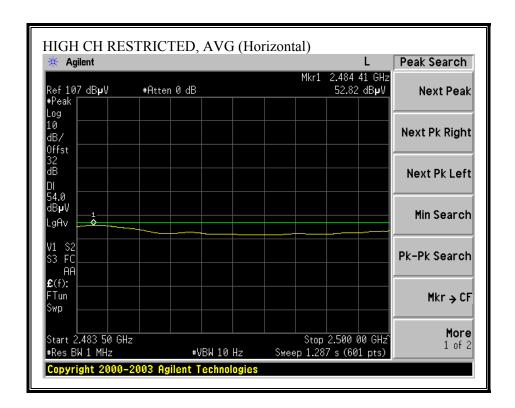
The 802.11 b/g radio is the dominant transmitter, and the 802.11 b mode is the dominant mode.

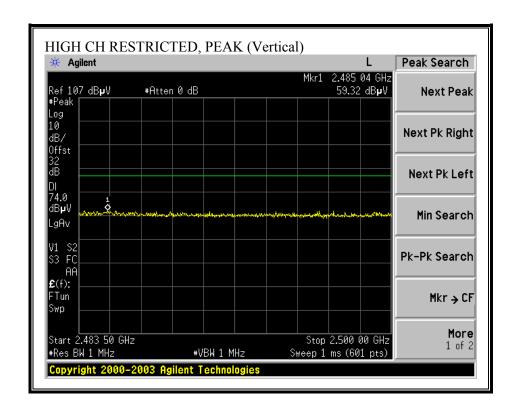

WORST-CASE RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

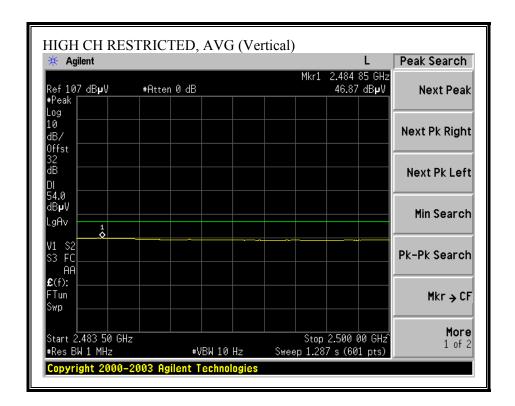


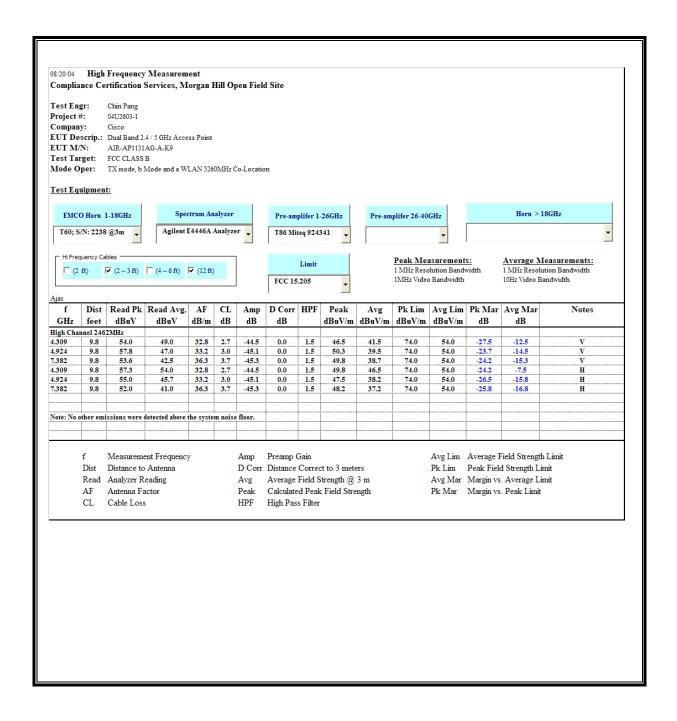
Page 87 of 105



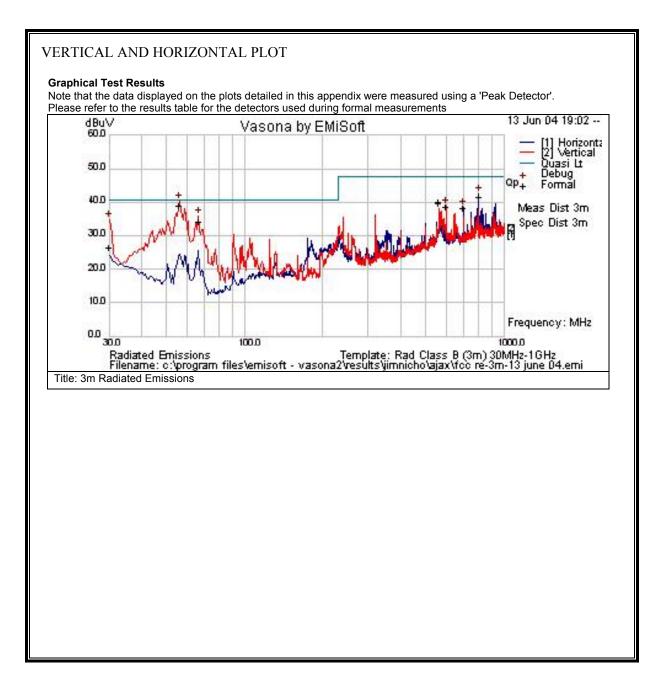

WORST-CASE RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




WORST-CASE RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



WORST-CASE RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)


WORST-CASE HARMONICS AND SPURIOUS EMISSIONS

Page 95 of 105

7.3.5. \WORST-CASE RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL AND HORIZONTAL)

VERTICAL AND HORIZONTAL DATA

Test Results Table

- 1 7	-	Cable Loss dB	-	Level dBuV	Туре	Pol	5	Azt Deg		Margin dB	Pass /Fail	Comments
30	5.3	0.6	18.6	24.6	Qp	٧		_	40.5	-15.9	Pass	
56	29.5	0.8	7	37.4	Qp	٧	123	204	40.5	-3.2	Pass	
66.272	24.8	0.9	6.6	32.4	Qp	V	163	86	40.5	-8.1	Pass	
560	16.5	2.5	19.2	38.2	Qp	V	98	66	47.5	-9.2	Pass	
600	15.2	2.6	19	36.8	Qp	V	104	96	47.5	-10.7	Pass	
700	14.4	2.8	19.3	36.4	Qp	Н	307	62	47.5	-11	Pass	
800	16.5	3	20.1	39.6	Qp	Н	198	220	47.5	-7.9	Pass	

7.4. POWERLINE CONDUCTED EMISSIONS

LIMIT

 $\S15.207$ (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

DATE: AUGUST 26, 2004

FCC ID: LDK 102054

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted	Conducted Limit (dBuV)			
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

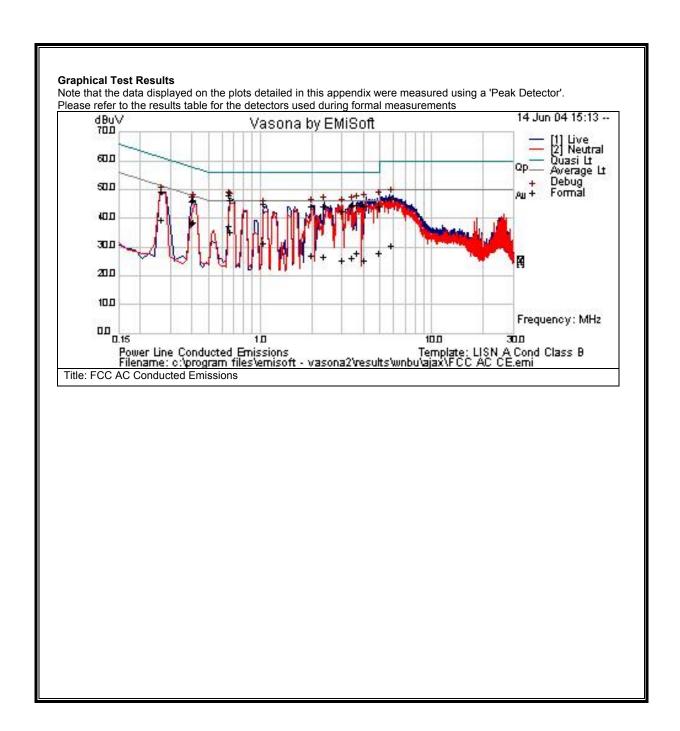
TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS


No non-compliance noted:

WORST EMISSIONS

Test Results Table

Frequency	Raw	Cable		Level	Туре	Line			Pass /Fail	Comments
MHz 0.266	dBuV 17.2			dBuV 37.5	Av	1	dBuV 51.2	dB -13.8	Pass	
0.266						L				
0.268				37.5		N				
0.268					Qp	N				
0.406						N				
0.406						N				
0.41					Qp	L	57.6			
0.41					Av	L	47.6			
0.662	15.3	20	0	35.4	Av	L	46	-10.6	Pass	
0.662		20		45.8	Qp	L	56			
0.677	13.1	20	0	33.2	Av	N	46	-12.8	Pass	
0.677	24.3	20	0	44.4	Qp	N	56	-11.6	Pass	
1.06	22.8	20	0	42.9	Qp	L	56	-13.1	Pass	
1.06	9.1	20	0	29.1	Av	L	46	-16.9	Pass	
2.002	22	20	0	42.1	Qp	L	56	-13.9	Pass	
2.002	4.7	20	0	24.8	Av	L	46	-21.2	Pass	
2.362	22.1	20	0	42.2	Qp	L	56	-13.8	Pass	
2.362	4.4	20	0	24.5	Av	L	46	-21.5	Pass	
3.021	2.9	20.1	0	23	Av	N	46	-23	Pass	
3.021	20.1	20.1	0	40.2	Qp	N	56	-15.8	Pass	
3.436	3.8	20.1	0	24	Av	L	46	-22	Pass	
3.436	21.8	20.1	0	41.9	Qp	L	56	-14.1	Pass	
3.689			0	42.4	Qp	L	56			
3.689						L	46			
4.059				42	Qp	N				
4.059					Av	N				
4.97				42.2	Qp	N	-			
4.97				25.8		N				
5.89				44.5	Qp	L	60			
5.89				28.5			50			
5.89	6.3	20.2	0.1	20.5	AV	L	50	-21.5	Pass	

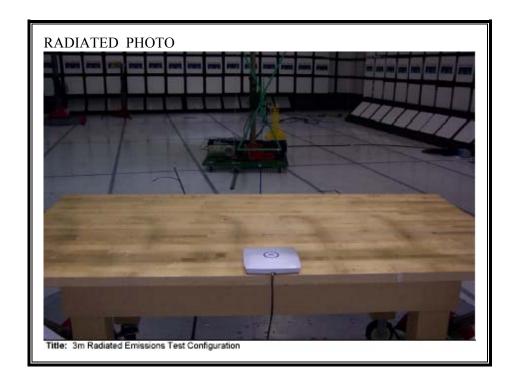
LINE 1 AND LINE 2 RESULTS

Page 100 of 105

8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

RADIATED RF MEASUREMENT SETUP, FRONT


Page 102 of 105

RADIATED RF MEASUREMENT SETUP, BACK

Page 103 of 105

RADIATED RF MEASUREMENT SETUP, BELOW 1GHz

Page 104 of 105

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

END OF REPORT

Page 105 of 105