# CERTIFICATE OF COMPLIANCE SAR EVALUATION

### **Test Lab:**

#### CELLTECH RESEARCH INC.

Testing and Engineering Lab

1955 Moss Court Kelowna, B.C. Canada V1Y 9L3

Phone: 250 - 860-3130 Fax: 250 - 860-3110 Toll Free: 1-877-545-6287

e-mail: info@celltechlabs.com web site: www.celltechlabs.com

## **Applicant Information:**

#### CISCO SYSTEMS INC.

3875 Embassy Parkway, Suite 350

Akron, OH 44333 Attn: Jim Nicholson

FCC ID: LDK102042 Model(s): AIR-MPI352

Equipment Type: 2.4GHz Wireless LAN Mini-PCI Card

Equipment Classification: Part 15 Spread Spectrum Transmitter (DSS)
Modulation: Direct Sequence Spread Spectrum (DSSS)

Tx Frequency Range: 2412 - 2462 MHz
Max. Output Power Tested: 20.4 dBm (Conducted)

Antenna Type(s): 1. Murata Chip Antenna; 2. Dell Inverted F Antenna;

3. Toshiba Inverted F Antenna; 4. Dell Dipole Diversity Antenna

FCC Rule Part(s): 15.247, 2.1093; ET Docket 96.326 IC Rule Part(s): RSS-210 Issue 4, RSS-102 Issue 1

This wireless mobile and/or portable device has been shown to be compliant for localized Specific Absorption Rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1992 and has been tested in accordance with the measurement procedures specified in ANSI/IEEE Std. C95.3-1999.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Celltech Research Inc. certifies that no party to this application has been denied FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Shawn McMillen General Manager Celltech Research Inc.











# **TABLE OF CONTENTS**

| 1.0            | INTRODUCTION                  | 1                    |
|----------------|-------------------------------|----------------------|
| 2.0            | DESCRIPTION OF EUT            | 1                    |
| 3.0            | SAR MEASUREMENT SYSTEM        | 2                    |
| 4.0            | MEASUREMENT SUMMARY           | 3                    |
| 5.0            | DETAILS OF SAR EVALUATION     | 4                    |
| 6.0            | EVALUATION PROCEDURES         | 4                    |
| 7.0            | SAR LIMITS                    | 5                    |
| 8.0            | SYSTEM VALIDATION.            | 5                    |
| 9.0            | SIMULATED EQUIVALENT TISSUES  | 6                    |
| 10.0           | TISSUE PARAMETERS.            | 6                    |
| 11.0           | SYSTEM SPECIFICATIONS         | 7                    |
| 12.0           | TEST EQUIPMENT LIST.          | 8                    |
| 13.0           | MEASUREMENT UNCERTAINTIES     | 9                    |
| 14.0           | REFERENCES                    | 10                   |
| APPEN<br>APPEN | NDIX A - SAR MEASUREMENT DATA | 11<br>12<br>13<br>14 |
| APPE           | NDIX E - EUT PHOTOGRAPHS      | 15                   |

1

#### 1.0 INTRODUCTION

This measurement report shows compliance of the CISCO SYSTEMS INC. AIR-MPI352 2.4GHz Direct Sequence Spread Spectrum Wireless LAN Mini-PCI Card FCC ID: LDK102042 (with 4 alternate antennas) with FCC Part 2.1093, ET Docket 96-326 Rules and RSS-102 Issue 1 of Industry Canada for mobile and portable devices. The test procedures, as described in American National Standards Institute C95.1-1992 (1), FCC OET Bulletin 65-1997 were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

## 2.0 DESCRIPTION of Equipment Under Test (EUT)

| EUT Type                  | Wireless LAN<br>Mini-PCI Card                                                                                       | FCC ID                         | LDK102042                          |
|---------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|
| FCC<br>Equipment<br>Class | Part 15 Spread<br>Spectrum Transmitter<br>(DSS)                                                                     | Model No.(s)                   | AIR-MPI352                         |
| FCC Rule Part             | 15.247, 2.1093;<br>ET Docket 96.326                                                                                 | Modulation                     | Direct Sequence<br>Spread Spectrum |
| IC Device<br>Class        | Low Power License-Exempt Radio Communication Device                                                                 | Tx Frequency<br>Range (MHz)    | 2412 - 2462                        |
| IC Rule Part              | RSS-210 Issue 4<br>RSS-102 Issue 1                                                                                  | Max. RF Output<br>Power Tested | 20.4 dBm<br>(Conducted)            |
| Antenna<br>Type(s)        | <ol> <li>Murata Chip</li> <li>Dell Inverted F</li> <li>Toshiba Inverted F</li> <li>Dell Dipole Diversity</li> </ol> | Power Supply                   | from host PC                       |

#### 3.0 SAR MEASUREMENT SYSTEM

Celltech Research SAR measurement facility utilizes the Dosimetric Assessment System (DASY<sup>TM</sup>) manufactured by Schmid & Partner Engineering AG (SPEAG<sup>TM</sup>) of Zurich, Switzerland. The DASY system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, and the generic twin phantom containing brain or muscle equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronics (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE3 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.



DASY3 SAR Measurement System

#### 4.0 MEASUREMENT SUMMARY

The measurement results were obtained with the EUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the EUT are reported in Appendix A.

## **Body SAR Measurement Results**

| Freq. (MHz) | Chan.                                                                                                                                                                                                    | Mode<br>Tested | Conducted<br>Power<br>(dBm) | Antenna<br>Type       | Phantom<br>Section | Separation<br>Distance<br>(cm) | SAR<br>(w/kg) |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|-----------------------|--------------------|--------------------------------|---------------|
| 2412        | Low                                                                                                                                                                                                      | CW             | 19.4                        | Murata Chip           | Flat               | 0.0                            | 0.245         |
| 2437        | Mid                                                                                                                                                                                                      | CW             | 20.4                        | Murata Chip           | Flat               | 0.0                            | 0.276         |
| 2462        | High                                                                                                                                                                                                     | CW             | 18.4                        | Murata Chip           | Flat               | 0.0                            | 0.281         |
| 2412        | Low                                                                                                                                                                                                      | CW             | 19.4                        | Dell Inverted F       | Flat               | 0.0                            | 0.183         |
| 2437        | Mid                                                                                                                                                                                                      | CW             | 20.4                        | Dell Inverted F       | Flat               | 0.0                            | 0.110         |
| 2462        | High                                                                                                                                                                                                     | CW             | 18.4                        | Dell Inverted F       | Flat               | 0.0                            | 0.0780        |
| 2412        | Low                                                                                                                                                                                                      | CW             | 19.4                        | Toshiba Inverted F    | Flat               | 0.0                            | 0.196         |
| 2437        | Mid                                                                                                                                                                                                      | CW             | 20.4                        | Toshiba Inverted F    | Flat               | 0.0                            | 0.155         |
| 2462        | High                                                                                                                                                                                                     | CW             | 18.4                        | Toshiba Inverted F    | Flat               | 0.0                            | 0.119         |
| 2412        | Low                                                                                                                                                                                                      | CW             | 19.4                        | Dell Dipole Diversity | Flat               | 0.0                            | 0.0686        |
| 2437        | Mid                                                                                                                                                                                                      | CW             | 20.4                        | Dell Dipole Diversity | Flat               | 0.0                            | 0.0886        |
| 2462        | High                                                                                                                                                                                                     | CW             | 18.4                        | Dell Dipole Diversity | Flat               | 0.0                            | 0.0914        |
| Dielectr    | Mixture Type: Muscle Dielectric Constant: 53.6 Conductivity: 1.77  ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Body SAR: 1.6 W/kg (averaged over 1 gram) |                |                             |                       | tion               |                                |               |

### Notes:

- 1. The SAR levels found were below the maximum limit of 1.6 w/kg.
- 2. The highest SAR level found was 0.281 w/kg (with Murata chip antenna).
- 3. The EUT was tested for body SAR with the antenna touching the outer surface of the planar phantom.

#### 5.0 DETAILS OF SAR EVALUATION

The CISCO SYSTEMS INC. Model: AIR-MPI352 2.4GHz Direct Sequence Spread Spectrum Wireless LAN Mini-PCI Card FCC ID: LDK102042 (with 4 alternate antennas) was found to be compliant for localized Specific Absorption Rate (SAR) based on the following test provisions and conditions:

- 1. The EUT was installed in the PCI slot of the host mini-tower PC with the case cover off and placed below the phantom. The EUT was tested for body SAR with each antenna placed parallel to, and touching, the outer surface of the planar phantom.
- 2. SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimize drift. The conducted power levels for each channel were checked before and after each test.
- 3. The device was operated continuously in the transmit mode for the duration of the test.
- 4. The location of the maximum spatial SAR distribution (Hot Spot) was determined relative to the device and its antenna.
- 5. The EUT was tested in the host PC with AC power.

#### **6.0 EVALUATION PROCEDURES**

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a. (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated at the center frequency of the band at maximum power. The ear position that produced the highest SAR determined which side of the phantom would be used for the entire evaluation. FCC OET Bulletin 65 Supplement C dictated the positioning of the ear-held device relative to the phantom.
- (ii) For face-held and body-worn devices, or devices which can be operated within 20cm of the body, the planar section of the phantom was used. The type of device being evaluated dictated the distance of the EUT to the outer surface of the planar phantom.
- b. The SAR was determined by a pre-defined procedure within the DASY3 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm.
- c. For frequencies below 500MHz a 4x4x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. For frequencies above 500MHz a 5x5x7 matrix was performed. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d. If the EUT had any appreciable drift over the course of the evaluation, then the EUT was re-evaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

#### 7.0 SAR SAFETY LIMITS

|                                                           | SAR (W/Kg)                                                     |                                                        |  |  |
|-----------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|--|--|
| EXPOSURE LIMITS                                           | (General Population /<br>Uncontrolled Exposure<br>Environment) | (Occupational /<br>Controlled Exposure<br>Environment) |  |  |
| Spatial Average (averaged over the whole body)            | 0.08                                                           | 0.4                                                    |  |  |
| Spatial Peak (averaged over any 1g of tissue)             | 1.60                                                           | 8.0                                                    |  |  |
| Spatial Peak (hands/wrists/feet/ankles averaged over 10g) | 4.0                                                            | 20.0                                                   |  |  |

- Notes: 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
  - 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

#### 8.0 SYSTEM VALIDATION

Prior to the assessment, the system was verified in the planar region of the phantom. For devices operating below 1GHz, an 835MHz or 900MHz dipole was used, depending on the operating frequency of the EUT. For devices operating above 1GHz, an 1800MHz dipole was used. A forward power of 250mW was applied to the dipole and the system was verified to a tolerance of  $\pm 3\%$ . The applicable verification(s) is/are as follows (see Appendix B for validation test plot):

| Dipole Validation Kit | Target SAR 1g (w/kg) | Measured SAR 1g (w/k |                    |
|-----------------------|----------------------|----------------------|--------------------|
| D1800V2               | 9.32                 | 9.57<br>(05/10/01)   | 9.59<br>(05/11/01) |

#### 9.0 SIMULATED TISSUES

The 2400MHz muscle mixture consists of Glycol-monobutyl, water, and salt. The fluid was prepared in accordance with standardized procedures, and measured for dielectric parameters (permitivity and conductivity) of the tissue. Prior to the evaluation, a dipole validation was performed using 1800MHz brain mixture.

| INGREDIENT       | MIXTURE (%)    |
|------------------|----------------|
| INGREDIENT       | 2400MHz Muscle |
| Water            | 69.91          |
| Glycol Monobutyl | 29.96          |
| Salt             | 0.13           |

|             | MIXTURE (%)                   |
|-------------|-------------------------------|
| INGREDIENT  | 1800MHz Brain<br>(Validation) |
| Water       | 45.0                          |
| Sugar       | 53.9                          |
| Salt        | 0.0                           |
| HEC         | 0.1                           |
| Bactericide | 1.0                           |

2400MHz Muscle Mixture

1800MHz Brain (Validation) Mixture

#### 10.0 TISSUE PARAMETERS

The dielectric parameters of the fluids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an 8753E Network Analyzer. The dielectric parameters of the fluid are as follows:

| Frequency               | Equivalent<br>Tissue | Dielectric<br>Constant<br>ε <sub>r</sub> | Conductivity<br>σ (mho/m) | ρ (Kg/m <sup>3</sup> ) |
|-------------------------|----------------------|------------------------------------------|---------------------------|------------------------|
| 1800MHz<br>(Validation) | Brain                | 41.2 ± 5%                                | $1.68 \pm 10\%$           | 1000                   |
| 2400MHz                 | Muscle               | 53.6 ± 5%                                | $1.77 \pm 10\%$           | 1000                   |

#### 11.0 ROBOT SYSTEM SPECIFICATIONS

**Specifications** 

**POSITIONER:** Stäubli Unimation Corp. Robot Model: RX60L

**Repeatability:** 0.02 mm

No. of axis: 6

Data Acquisition Electronic (DAE) System

**Cell Controller** 

Processor: Pentium III
Clock Speed: 450 MHz
Operating System: Windows NT

**Data Card:** DASY3 PC-Board

**Data Converter** 

**Features:** Signal Amplifier, multiplexer, A/D converter, and control logic

**Software:** DASY3 software

**Connecting Lines:** Optical downlink for data and status info.

Optical uplink for commands and clock

**PC Interface Card** 

**Function:** 24 bit (64 MHz) DSP for real time processing

Link to DAE3

16 bit A/D converter for surface detection system

serial link to robot

direct emergency stop output for robot

E-Field Probe

Model: ET3DV6 Serial No.: 1387

**Construction:** Triangular core fiber optic detection system

**Frequency:** 10 MHz to 6 GHz

**Linearity:**  $\pm 0.2 \text{ dB } (30 \text{ MHz to } 3 \text{ GHz})$ 

**Phantom** 

Phantom:Generic TwinShell Material:FiberglassThickness: $2.0 \pm 0.1 \text{ mm}$ 

\_\_\_\_\_

## 12.0 TEST EQUIPMENT LIST

| SAR MEASUREMENT SYSTEM                                                                                                        |                                               |                                                       |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|--|--|--|--|
| <u>EQUIPMENT</u>                                                                                                              | SERIAL NO.                                    | CALIBRATION DATE                                      |  |  |  |  |
| DASY3 System -Robot -ET3DV6 E-Field Probe -DAE -835MHz Validation Dipole -900MHz Validation Dipole -1800MHz Validation Dipole | 599396-01<br>1387<br>383<br>411<br>054<br>247 | N/A<br>Sept 1999<br>Sept 1999<br>Aug 1999<br>Aug 1999 |  |  |  |  |
| -Generic Twin Phantom V3.0                                                                                                    | N/A                                           | N/A                                                   |  |  |  |  |
| Gigatronics 8652A Power Meter -Power Sensor 80701A -Power Sensor 80701A                                                       | N/A<br>1835272<br>1833535<br>1833542          | N/A Oct 1999 Oct 1999 Oct 1999                        |  |  |  |  |
| E4408B Spectrum Analyzer                                                                                                      | US39240170                                    | Nov 1999                                              |  |  |  |  |
| 8594E Spectrum Analyzer                                                                                                       | 3543A02721                                    | Mar 2000                                              |  |  |  |  |
| 8753E Network Analyzer                                                                                                        | US38433013                                    | Nov 1999                                              |  |  |  |  |
| 8648D Signal Generator                                                                                                        | 3847A00611                                    | N/A                                                   |  |  |  |  |
| 5S1G4 Amplifier Research Power Amplifier                                                                                      | 26235                                         | N/A                                                   |  |  |  |  |

\_\_\_\_\_

#### 13.0 MEASUREMENT UNCERTAINTIES

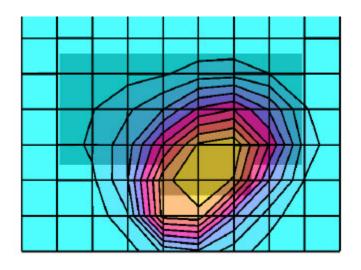
| <b>Uncertainty Description</b>             | Error   | Distribution | Weight | Standard<br>Deviation | Offset |
|--------------------------------------------|---------|--------------|--------|-----------------------|--------|
| <b>Probe Uncertainty</b>                   |         |              |        |                       |        |
| Axial isotropy                             | ±0.2 dB | U-Shaped     | 0.5    | ±2.4 %                |        |
| Spherical isotropy                         | ±0.4 dB | U-Shaped     | 0.5    | ±4.8 %                |        |
| Isotropy from gradient                     | ±0.5 dB | U-Shaped     | 0      | ±                     |        |
| Spatial resolution                         | ±0.5 %  | Normal       | 1      | ±0.5 %                |        |
| Linearity error                            | ±0.2 dB | Rectangle    | 1      | ±2.7 %                |        |
| Calibration error                          | ±3.3 %  | Normal       | 1      | ±3.3 %                |        |
| SAR Evaluation Uncertainty                 |         |              |        |                       |        |
| Data acquisition error                     | ±1 %    | Rectangle    | 1      | ±0.6 %                |        |
| ELF and RF disturbances                    | ±0.25 % | Normal       | 1      | ±0.25 %               |        |
| Conductivity assessment                    | ±10 %   | Rectangle    | 1      | ±5.8 %                |        |
| Spatial Peak SAR Evaluation<br>Uncertainty |         |              |        |                       |        |
| Extrapolated boundary effect               | ±3 %    | Normal       | 1      | ±3 %                  | ±5 %   |
| Probe positioning error                    | ±0.1 mm | Normal       | 1      | ±1 %                  |        |
| Integrated and cube orientation            | ±3 %    | Normal       | 1      | ±3 %                  |        |
| Cube Shape inaccuracies                    | ±2 %    | Rectangle    | 1      | ±1.2 %                |        |
| Device positioning                         | ±6 %    | Normal       | 1      | ±6 %                  |        |
| <b>Combined Uncertainties</b>              |         |              |        | ±11.7 %               | ±5 %   |

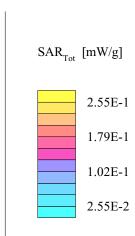
Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental. However, the estimated measurement uncertainties in SAR are less than 15-25 %.

According to ANSI/IEEE C95.3, the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of  $\pm$  1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least  $\pm$  2dB can be expected.

According to CENELEC, typical worst-case uncertainty of field measurements is  $\pm$  5 dB. For well-defined modulation characteristics the uncertainty can be reduced to  $\pm$  3 dB.

#### 14.0 REFERENCES

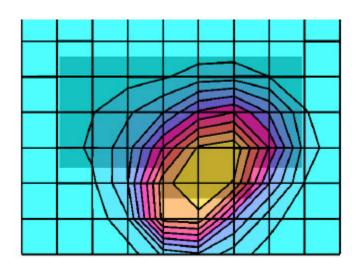

- (1) ANSI, ANSI/IEEE C95.1: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 Ghz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992;
- (2) Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C. 20554, 1997;
- (3) Thomas Schmid, Oliver Egger, and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE *Transaction on Microwave Theory and Techniques*, Vol. 44, pp. 105 113, January, 1996.
- (4) Niels Kuster, Ralph Kastle, and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with know precision", IEICE Transactions of Communications, vol. E80-B, no. 5, pp. 645 652, May 1997.

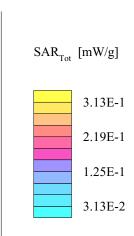

## APPENDIX A - SAR MEASUREMENT DATA

Generic Twin Phantom; Flat Section; Position:  $(90^\circ, 90^\circ)$  Probe: ET3DV6 - SN1387; ConvF(4.94,4.94,4.94); Crest factor: 1.0 2400MHz Muscle:  $\sigma$  = 1.77 mho/m  $\epsilon_r$  = 53.6  $\rho$  = 1.00 g/cm³ Coarse: Dx = 7.0, Dy = 7.0, Dz = 10.0; Cube 5x5x7

 $SAR\ (1g){:}\ 0.245\ mW/g,\ SAR\ (10g){:}\ 0.105\ mW/g$ 

Body SAR at 0.0cm Separation Cisco Model: AIR-MPI352 Wireless LAN Mini-PCI Card with Murata Chip Antenna Unmodulated Carrier Low Channel [2412 MHz] Conducted Power: 19.4 dBm Date Tested: May 10, 2001

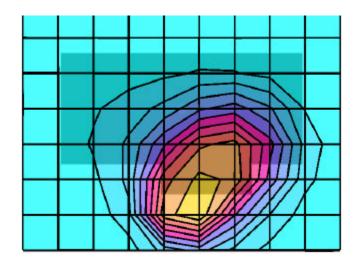


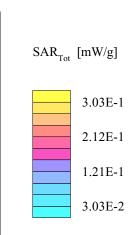




Generic Twin Phantom; Flat Section; Position:  $(90^\circ, 90^\circ)$  Probe: ET3DV6 - SN1387; ConvF(4.94,4.94,4.94); Crest factor: 1.0 2400MHz Muscle:  $\sigma$  = 1.77 mho/m  $\epsilon_r$  = 53.6  $\rho$  = 1.00 g/cm³ Coarse: Dx = 7.0, Dy = 7.0, Dz = 10.0; Cube 5x5x7

 $SAR\ (1g){:}\ 0.276\ mW/g,\ SAR\ (10g){:}\ 0.0992\ mW/g$ 

Body SAR at 0.0cm Separation Cisco Model: AIR-MPI352 Wireless LAN Mini-PCI Card with Murata Chip Antenna Unmodulated Carrier Mid Channel [2437 MHz] Conducted Power: 20.4 dBm Date Tested: May 10, 2001



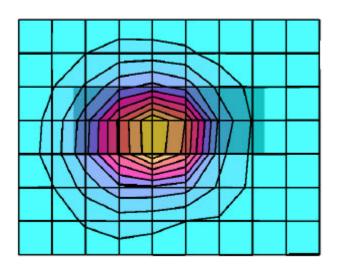



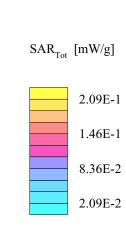

Generic Twin Phantom; Flat Section; Position:  $(90^\circ, 90^\circ)$  Probe: ET3DV6 - SN1387; ConvF(4.94,4.94,4.94); Crest factor: 1.0 2400MHz Muscle:  $\sigma$  = 1.77 mho/m  $\epsilon_r$  = 53.6  $\rho$  = 1.00 g/cm³ Coarse: Dx = 7.0, Dy = 7.0, Dz = 10.0; Cube 5x5x7

 $SAR\ (1g){:}\ 0.281\ mW/g,\ SAR\ (10g){:}\ 0.111\ mW/g$ 

Body SAR at 0.0cm Separation Cisco Model: AIR-MPI352 Wireless LAN Mini-PCI Card with Murata Chip Antenna Unmodulated Carrier High Channel [2462 MHz] Conducted Power: 18.4 dBm Date Tested: May 10, 2001





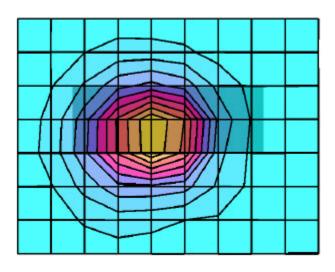


Generic Twin Phantom; Flat Section; Position:  $(90^\circ, 90^\circ)$  Probe: ET3DV6 - SN1387; ConvF(4.94,4.94,4.94); Crest factor: 1.0 2400MHz Muscle:  $\sigma$  = 1.77 mho/m  $\epsilon_r$  = 53.6  $\rho$  = 1.00 g/cm³ Coarse: Dx = 7.0, Dy = 7.0, Dz = 10.0; Cube 5x5x7

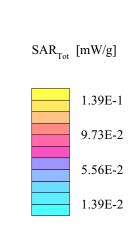
SAR (1g): 0.183 mW/g, SAR (10g): 0.0721 mW/g

Body SAR at 0.0cm Separation Cisco Model: AIR-MPI352 Wireless LAN Mini-PCI Card with Dell Inverted F Antenna CW Mode Low Channel [2412 MHz] Conducted Power: 19.4 dBm

Date Tested: May 10, 2001



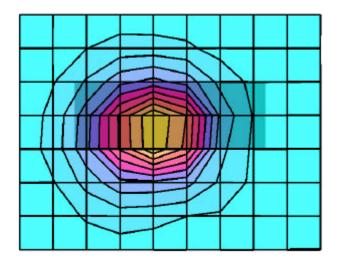


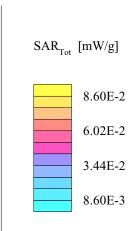


Generic Twin Phantom; Flat Section; Position:  $(90^\circ, 90^\circ)$  Probe: ET3DV6 - SN1387; ConvF(4.94,4.94,4.94); Crest factor: 1.0 2400MHz Muscle:  $\sigma$  = 1.77 mho/m  $\epsilon_r$  = 53.6  $\rho$  = 1.00 g/cm<sup>3</sup> Coarse: Dx = 7.0, Dy = 7.0, Dz = 10.0; Cube 5x5x7

SAR (1g): 0.110 mW/g, SAR (10g): 0.0434 mW/g

Body SAR at 0.0cm Separation Cisco Model: AIR-MPI352 Wireless LAN Mini-PCI Card with Dell Inverted F Antenna CW Mode Mid Channel [2437 MHz] Conducted Power: 20.4 dBm

Date Tested: May 10, 2001



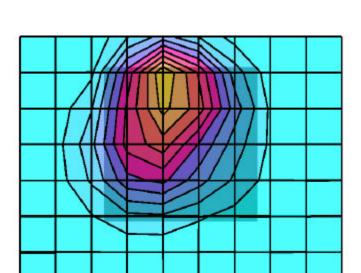



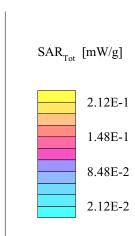

Generic Twin Phantom; Flat Section; Position:  $(90^{\circ}, 90^{\circ})$  Probe: ET3DV6 - SN1387; ConvF(4.94,4.94,4.94); Crest factor: 1.0 2400MHz Muscle:  $\sigma$  = 1.77 mho/m  $\epsilon_r$  = 53.6  $\rho$  = 1.00 g/cm³ Coarse: Dx = 7.0, Dy = 7.0, Dz = 10.0; Cube 5x5x7 SAR (1g): 0.0780 mW/g, SAR (10g): 0.0301 mW/g

Body SAR at 0.0cm Separation Cisco Model: AIR-MPI352 Wireless LAN Mini-PCI Card with Dell Inverted F Antenna CW Mode

High Channel [2462 MHz] Conducted Power: 18.4 dBm Date Tested: May 10, 2001





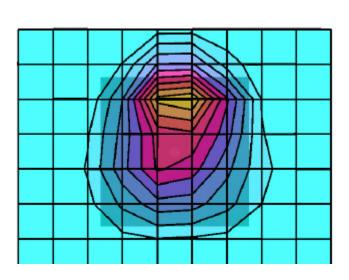


Generic Twin Phantom; Flat Section; Position:  $(90^\circ, 90^\circ)$  Probe: ET3DV6 - SN1387; ConvF(4.94,4.94,4.94); Crest factor: 1.0 2400MHz Muscle:  $\sigma$  = 1.77 mho/m  $\epsilon_r$  = 53.6  $\rho$  = 1.00 g/cm³ Coarse: Dx = 7.0, Dy = 7.0, Dz = 10.0; Cube 5x5x7

SAR (1g): 0.196 mW/g, SAR (10g): 0.0723 mW/g

Body SAR at 0.0cm Separation Cisco Model: AIR-MPI352 Wireless LAN Mini-PCI Card with Toshiba Inverted F Antenna CW Mode Low Channel [2412 MHz] Conducted Power: 19.4 dBm

Date Tested: May 11, 2001





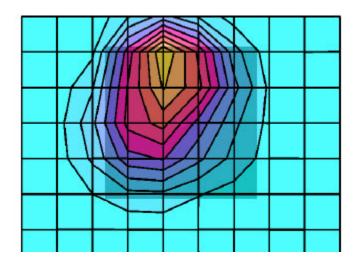

Generic Twin Phantom; Flat Section; Position:  $(90^\circ, 90^\circ)$  Probe: ET3DV6 - SN1387; ConvF(4.94,4.94,4.94); Crest factor: 1.0 2400MHz Muscle:  $\sigma$  = 1.77 mho/m  $\epsilon_r$  = 53.6  $\rho$  = 1.00 g/cm³ Coarse: Dx = 7.0, Dy = 7.0, Dz = 10.0; Cube 5x5x7

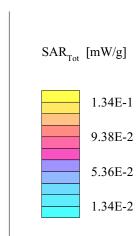
SAR (1g): 0.155 mW/g, SAR (10g): 0.0560 mW/g

Body SAR at 0.0cm Separation Cisco Model: AIR-MPI352 Wireless LAN Mini-PCI Card with Toshiba Inverted F Antenna CW Mode Mid Channel [2437 MHz] Conducted Power: 20.4 dBm

Date Tested: May 11, 2001



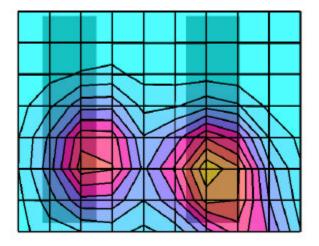


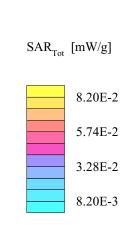


Generic Twin Phantom; Flat Section; Position:  $(90^\circ, 90^\circ)$  Probe: ET3DV6 - SN1387; ConvF(4.94,4.94,4.94); Crest factor: 1.0 2400MHz Muscle:  $\sigma$  = 1.77 mho/m  $\epsilon_r$  = 53.6  $\rho$  = 1.00 g/cm³ Coarse: Dx = 7.0, Dy = 7.0, Dz = 10.0; Cube 5x5x7

SAR (1g): 0.119 mW/g, SAR (10g): 0.0436 mW/g

Body SAR at 0.0cm Separation Cisco Model: AIR-MPI352 Wireless LAN Mini-PCI Card with Toshiba Inverted F Antenna CW Mode High Channel [2462 MHz]

Conducted Power: 18.4 dBm Date Tested: May 11, 2001



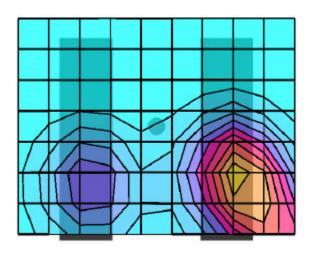



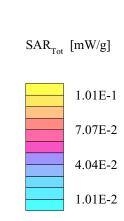

Generic Twin Phantom; Flat Section; Position:  $(90^{\circ},180^{\circ})$  Probe: ET3DV6 - SN1387; ConvF(4.94,4.94,4.94); Crest factor: 1.0 2400MHz Muscle:  $\sigma$  = 1.77 mho/m  $\epsilon_r$  = 53.6  $\rho$  = 1.00 g/cm³ Coarse: Dx = 7.0, Dy = 7.0, Dz = 10.0; Cube 5x5x7 SAR (1g): 0.0686 mW/g, SAR (10g): 0.0289 mW/g

Body SAR at 0.0cm Separation Cisco Model: AIR-MPI352 Wireless LAN Mini-PCI Card Dell Dipole Diversity Antenna CW Mode Low Channel [2412 MHz]

Low Channel [2412 MHz] Conducted Power: 19.4 dBm Date Tested: May 11, 2001





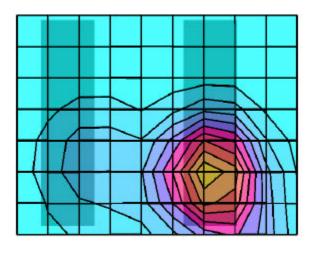


Generic Twin Phantom; Flat Section; Position: (90°,180°) Probe: ET3DV6 - SN1387; ConvF(4.94,4.94,4.94); Crest factor: 1.0 2400MHz Muscle:  $\sigma$  = 1.77 mho/m  $\epsilon_r$  = 53.6  $\rho$  = 1.00 g/cm³ Coarse: Dx = 7.0, Dy = 7.0, Dz = 10.0; Cube 5x5x7

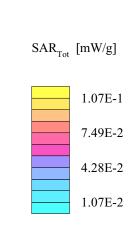
SAR (1g): 0.0886 mW/g, SAR (10g): 0.0376 mW/g

Body SAR at 0.0cm Separation Cisco Model: AIR-MPI352 Wireless LAN Mini-PCI Card Dell Dipole Diversity Antenna CW Mode Mid Channel [2437 MHz] Conducted Power: 20.4 dBm

Date Tested: May 11, 2001







Generic Twin Phantom; Flat Section; Position: (90°,180°) Probe: ET3DV6 - SN1387; ConvF(4.94,4.94,4.94); Crest factor: 1.0 2400MHz Muscle:  $\sigma$  = 1.77 mho/m  $\epsilon_r$  = 53.6  $\rho$  = 1.00 g/cm³ Coarse: Dx = 7.0, Dy = 7.0, Dz = 10.0; Cube 5x5x7

SAR (1g): 0.0914 mW/g, SAR (10g): 0.0374 mW/g

Body SAR at 0.0cm Separation Cisco Model: AIR-MPI352 Wireless LAN Mini-PCI Card Dell Dipole Diversity Antenna CW Mode High Channel [2462 MHz] Conducted Power: 18.4 dBm

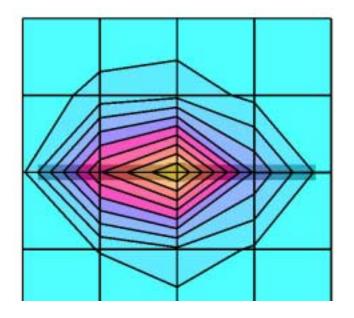
Date Tested: May 11, 2001

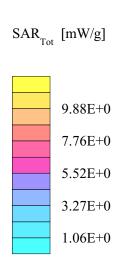




## APPENDIX B - DIPOLE VALIDATION

# Dipole 1800 MHz


Generic Twin Phantom; Flat Section; Position: (90°,90°); Probe: ET3DV6 - SN1387; ConvF(5.50,5.50,5.50); Crest factor: 1.0; 1800MHz Brain:  $\sigma$  = 1.68 mho/m  $\epsilon_r$  = 41.2  $\rho$  = 1.00 g/cm³


Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0

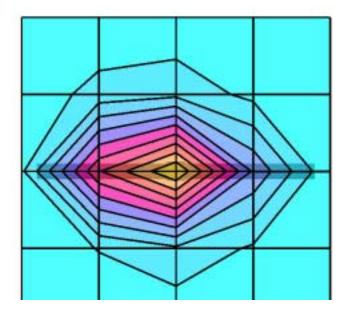
Cube 5x5x7

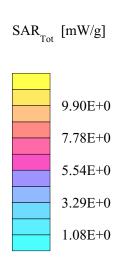
SAR (1g): 9.57 mW/g, SAR (10g): 4.80 mW/g

Date Tested: May 10, 2001






# Dipole 1800 MHz


Generic Twin Phantom; Flat Section; Position: (90°,90°); Probe: ET3DV6 - SN1387; ConvF(5.50,5.50,5.50); Crest factor: 1.0; 1800MHz Brain:  $\sigma$  = 1.68 mho/m  $\epsilon_r$  = 41.2  $\rho$  = 1.00 g/cm³

Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0Cube 5x5x7

SAR (1g): 9.59 mW/g, SAR (10g): 4.81 mW/g

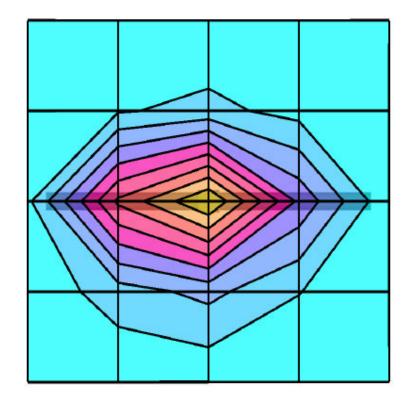
Date Tested: May 11, 2001

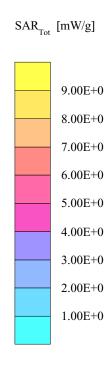




# Validation Dipole D1800V2 SN:247, d = 10mm

Frequency: 1800 MHz; Antenna Input Power: 250 [mW]


Generic Twin Phantom; Flat Section; Grid Spacing: Dx = 20.0, Dy = 20.0, Dz = 10.0


Probe: ET3DV5 - SN1342/DAE3; ConvF(4.84,4.84,4.84); Brain 1800 MHz:  $\sigma = 1.68$  mho/m  $\epsilon_r = 41.2$   $\rho = 1.00$  g/cm<sup>3</sup>

Cubes (2): Peak: 17.6 mW/g  $\pm$  0.02 dB, SAR (1g): 9.32 mW/g  $\pm$  0.04 dB, SAR (10g): 4.76 mW/g  $\pm$  0.06 dB, (Worst-case extrapolation)

Penetration depth: 7.5 (7.4, 8.0) [mm]

Powerdrift: -0.00 dB





\_\_\_\_\_

## APPENDIX C - PROBE CALIBRATION

# Schmid & Partner Engineering AG

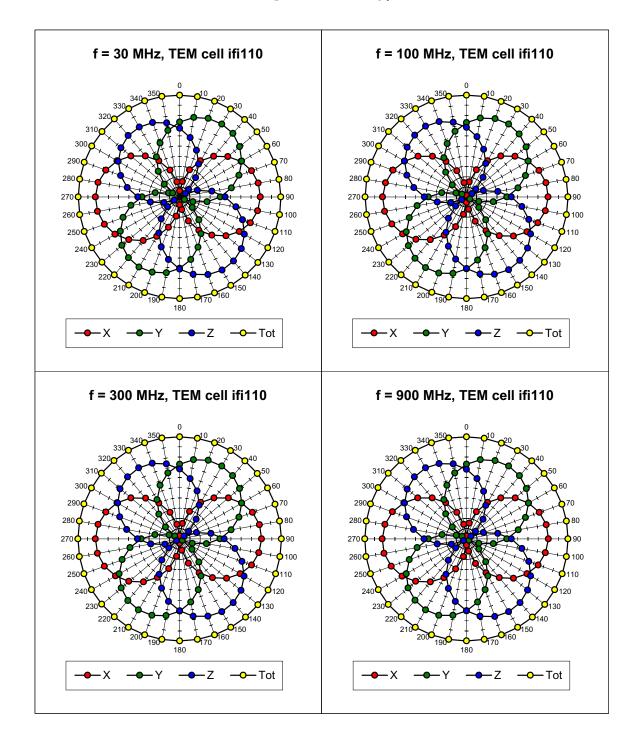
Staffelstrasse 8, 8045 Zurich, Switzerland, Telefon +41 1 280 08 60, Fax +41 1 280 08 64

# Probe ET3DV6

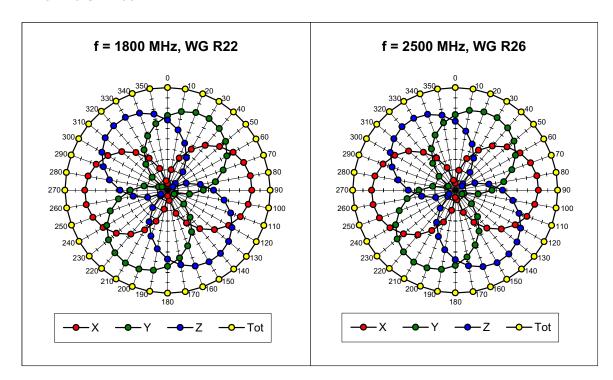
SN:1387

Manufactured: September 21, 1999 Last calibration: September 22, 1999

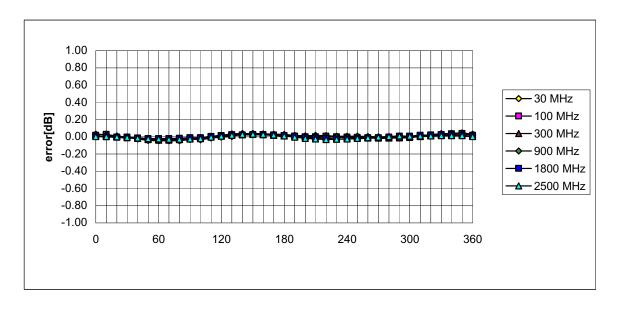
Calibrated for System DASY3


# DASY3 - Parameters of Probe: ET3DV6 SN:1387

| Sensitivity in Free Space |               |      |                                   | Diode (             | Compression     | 1            |
|---------------------------|---------------|------|-----------------------------------|---------------------|-----------------|--------------|
|                           | NormX         | 1.55 | $\mu V/(V/m)^2$                   |                     | DCP X           | <b>98</b> mV |
|                           | NormY         |      | $\mu V/(V/m)^2$                   |                     | DCP Y           | <b>98</b> mV |
|                           | NormZ         |      | $\mu V/(V/m)^2$                   |                     | DCP Z           | <b>98</b> mV |
|                           |               |      | μ. τ. ( τ. τ. τ. )                |                     | 20. 2           | 00 1111      |
| Sensitiv                  | ity in Tissue | Sim  | ulating Liquid                    |                     |                 |              |
| Brain                     | 450 MHz       | 2    | $\varepsilon_{\rm r}$ = 48 ± 5%   | σ=                  | 0.50 ± 10% mh   | o/m          |
|                           | ConvF X       | 6.76 | extrapolated                      |                     | Boundary effect | t:           |
|                           | ConvF Y       | 6.76 | extrapolated                      |                     | Alpha           | 0.30         |
|                           | ConvF Z       | 6.76 | extrapolated                      |                     | Depth           | 2.52         |
| Brain                     | 900 MHz       |      | $\varepsilon_{\rm r}$ = 42.5 ± 5% | 5% σ = 0.86 ± 10% i |                 | o/m          |
|                           | ConvF X       | 6.34 | ± 7% (k=2)                        |                     | Boundary effec  | t:           |
|                           | ConvF Y       | 6.34 | ± 7% (k=2)                        |                     | Alpha           | 0.47         |
|                           | ConvF Z       | 6.34 | ± 7% (k=2)                        |                     | Depth           | 2.25         |
| Brain                     | 1500 MHz      | ž    | $\varepsilon_{\rm r}$ = 41 ± 5%   | σ=                  | : 1.32 ± 10% mh | o/m          |
|                           | ConvF X       | 5.78 | interpolated                      |                     | Boundary effec  | t:           |
|                           | ConvF Y       | 5.78 | interpolated                      |                     | Alpha           | 0.69         |
|                           | ConvF Z       | 5.78 | interpolated                      |                     | Depth           | 1.88         |
| Brain                     | 1800 MHz      |      | $\varepsilon_{\rm r}$ = 41 ± 5%   | σ=                  | : 1.69 ± 10% mh | o/m          |
|                           | ConvF X       | 5.50 | ± 7% (k=2)                        |                     | Boundary effect | t:           |
|                           | ConvF Y       | 5.50 | ± 7% (k=2)                        |                     | Alpha           | 0.81         |
|                           | ConvF Z       | 5.50 | ± 7% (k=2)                        |                     | Depth           | 1.70         |
|                           |               |      |                                   |                     |                 |              |

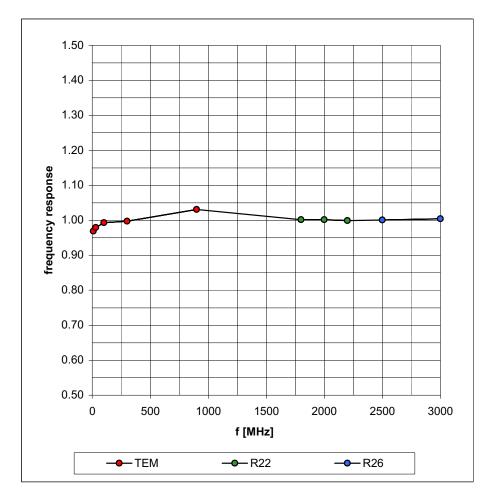

# Sensor Offset

| Probe Tip to Sensor Center | 2.7       | mm |
|----------------------------|-----------|----|
| Optical Surface Detection  | 1.6 ± 0.2 | mm |


# Receiving Pattern ( $\phi$ ), $\theta$ = 0°

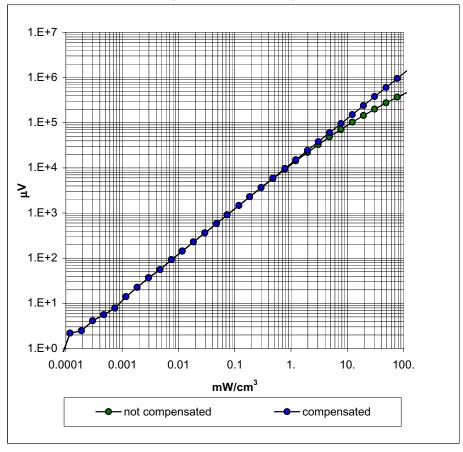


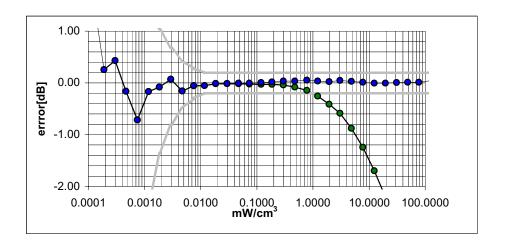
## ET3DV6 SN:1387



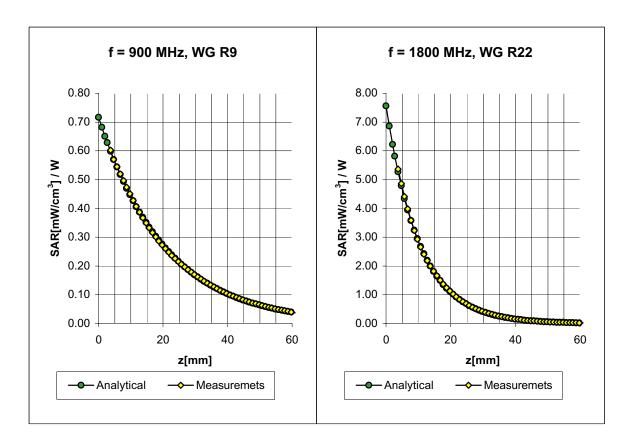

# Isotropy Error ( $\phi$ ), $\theta = 0^{\circ}$




# Frequency Response of E-Field

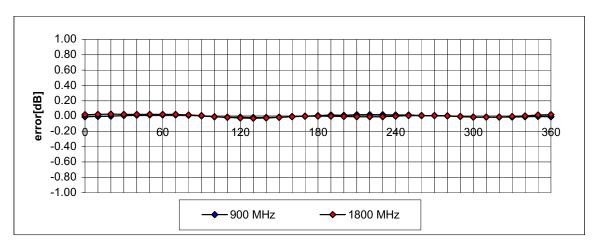

(TEM-Cell:ifi110, Waveguide R22, R26)




# **Dynamic Range f(SAR**<sub>brain</sub>)

(TEM-Cell:ifi110)





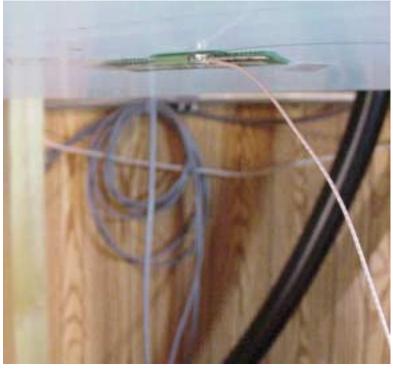

## **Conversion Factor Assessment**



## Receiving Pattern (\$\phi\$)

(in brain tissue, z = 5 mm)




Test Report S/N: 050901-107LDK Dates of Tests: May 10-11, 2001

\_\_\_\_\_

### APPENDIX D - SAR TEST SETUP PHOTOGRAPHS

## SAR TEST SETUP PHOTOGRAPHS Antenna #1 - Murata Chip 0.0cm Separation Distance





## SAR TEST SETUP PHOTOGRAPHS Antenna #2 - Dell Inverted F 0.0 cm Separation Distance

Test Report S/N: 050901-107LDK

Dates of Tests: May 10-11, 2001





## SAR TEST SETUP PHOTOGRAPHS Antenna #3 - Toshiba Inverted F 0.0 cm Separation Distance





## SAR TEST SETUP PHOTOGRAPHS Antenna #4 - Dell Dipole Diversity 0.0 cm Separation Distance





Test Report S/N: 050901-107LDK Dates of Tests: May 10-11, 2001

\_\_\_\_\_

### APPENDIX E - EUT PHOTOGRAPHS

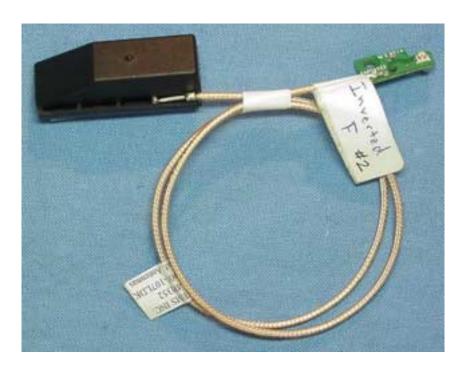
Test Report S/N: 050901-107LDK Dates of Tests: May 10-11, 2001

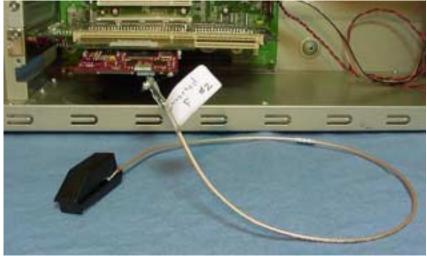
### EUT PHOTOGRAPHS Wireless LAN Mini-PCI Card





## Test Report S/N: 050901-107LDK Dates of Tests: May 10-11, 2001

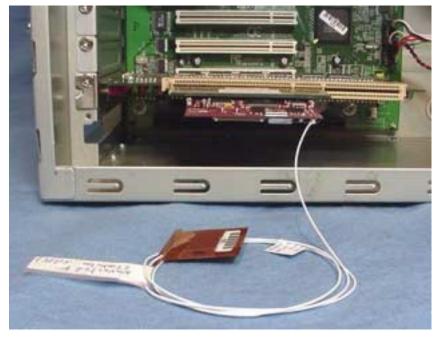

## **EUT PHOTOGRAPHS Murata Chip Antenna**



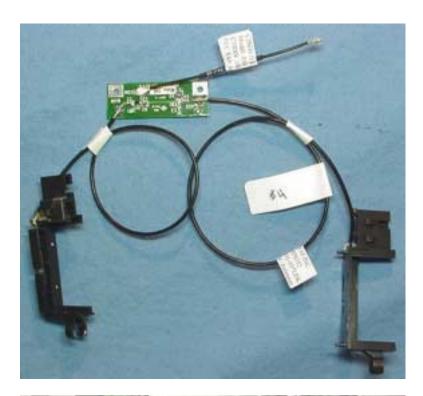




## Test Report S/N: 050901-107LDK Dates of Tests: May 10-11, 2001


## **EUT PHOTOGRAPHS Dell Inverted F Antenna**






# EUT PHOTOGRAPHS Toshiba Inverted F Antenna





## EUT PHOTOGRAPHS Dell Dipole Diversity Antenna



