

FCC CFR47 PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

EA544D_3 ETHERNET ADAPTER CARD FOR 2.4 / 5 GHz AP APPLICATIONS_NON DFS

MODEL NUMBER: 65-VN663-P3

FCC ID: J9C-EA544D3 IC: 2723A-EA544D3

REPORT NUMBER: 09U12689-12

ISSUE DATE: MAY 10, 2010

Prepared for QUALCOMM, INC. 3165 KIFER ROAD SANTA CLARA, CA 95051, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

REPORT NO: 09U12689-12 FCC ID: J9C-EA544D3

Revision History

DATE: MAY 10, 2010

Rev.	Issue Date	Revisions	Revised By
	05/10/10	Initial Issue	F. Ibrahim

TABLE OF CONTENTS

1.	ATTI	ESTATION OF TEST RESULTS	5
2.	TES	T METHODOLOGY	θ
3.	FAC	ILITIES AND ACCREDITATION	6
4.	CAL	IBRATION AND UNCERTAINTY	6
4	1.1.	MEASURING INSTRUMENT CALIBRATION	<i>6</i>
4	1.2.	SAMPLE CALCULATION	<i>6</i>
4	1.3.	MEASUREMENT UNCERTAINTY	6
5.	EQU	IPMENT UNDER TEST	7
į	5.1.	DESCRIPTION OF EUT	7
Ę	5.2.	MAXIMUM OUTPUT POWER	7
Ę	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
į	5.4.	SOFTWARE AND FIRMWARE	8
į	5.5.	WORST-CASE CONFIGURATION AND MODE	8
į	5.6	DESCRIPTION OF CLASS 2 PERMISSIVE CHANGE	8
į	5.7	TEST RESULTS FOR C2PC SAMPLE	9
į	5.6.	DESCRIPTION OF TEST SETUP	9
6.	TES	T AND MEASUREMENT EQUIPMENT	11
7.	ANT	ENNA PORT TEST RESULTS	12
7	7.1.	5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE	
	7.1.1	. 26 dB and 99% BANDWIDTH	12
	7.1.2 7.1.3		
	7.1.4		
	7.1.5		23
	7.1.6		
7	7.2. 7.2.1	5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE	
	7.2.1		
	7.2.3	B. AVERAGE POWER	39
	7.2.4 7.2.5		
	7.2.6		46
7	7.3.	5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE	49
	7.3.1	99% & 26 dB BANDWIDTH	49
	7.3.2 7.3.3		
	7.3.3		
		H. PEAN POWER SPECTRAL DENSITY	
	7.3.5		59

	7.3.6.	CONDUCTED SPURIOUS EMISSIONS	61
8.	RECEIVE	ER CONDUCTED SPURIOUS EMISSIONS	63
9.	RADIATE	ED TEST RESULTS	65
g	9.1. LIM	ITS AND PROCEDURE	65
g	9.2. TRA 9.2.1. 9.2.2. 9.2.3. 9.2.4.	802.11n HT20 MODE IN 5.2 GHz BAND	66 70
S	9.3. WO	RST-CASE BELOW 1 GHz	87
10.	AC PC	OWER LINE CONDUCTED EMISSIONS	89
11.	MAXII	NUM PERMISSIBLE EXPOSURE	93
12.	SETU	P PHOTOS	97

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: QUALCOMM, INC.

3165 KIFER RD

SANTA CLARA, CA 95051

U.S.A.

EUT DESCRIPTION: EA544D 3 ETHERNET ADAPTER CARD FOR 2.4 / 5 GHz AP

APPLICATIONS NON DFS

MODEL: 65-VN663-P3

SERIAL NUMBER: 7813, 8286, 9021, 8263, and 9086 FOR ANTENNA PORT, 7908

and 9021 FOR RADIATED EMISSIONS

DATE TESTED: JUNE 24, 2009 – MARCH 23, 2010

APPLICABLE STANDARDS

STANDARD

CFR 47 Part 15 Subpart E

INDUSTRY CANADA RSS-210 Issue 7 Annex 9

INDUSTRY CANADA RSS-GEN Issue 2

Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By: Tested By:

FRANK IBRAHIM
EMC SUPERVISOR
COMPLIANCE CERTIFICATION SERVICES

VIEN TRAN EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

DATE: MAY 10, 2010

IC: 2723A-EA544D3

Page 5 of 99

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, RSS-GEN Issue 2, and RSS-210 Issue 7.

DATE: MAY 10, 2010

IC: 2723A-EA544D3

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. **DESCRIPTION OF EUT**

The EUT is an 802.11a/b/g/n WLAN transceiver module for 2.4 / 5 GHz AP Applications that do not include DFS bands. It is equipped with four identical transmitter / receiver chains and an Ethernet port.

The radio module is manufactured by Qualcomm, Inc.

5.2. **MAXIMUM OUTPUT POWER**

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5.2 GHz BAND			
5180 - 5240	802.11a	12.10	16.22
5180 - 5240	802.11n HT20	13.67	23.28
5190 - 5230	802.11n HT40	16.88	48.75

DESCRIPTION OF AVAILABLE ANTENNAS 5.3.

The radio utilizes a dual band omni monopole (4 identical) antenna, each with a maximum gain of 3 dBi in the 5 GHz bands.

For the 802.11a legacy mode only two chains are transmitting, therefore the effective legacy antenna gain is:

Antenna Gain	10 Log (# Tx Chains)	Effective Legacy Gain
(dBi)	(dB)	(dBi)
3	3.01	6.01

DATE: MAY 10, 2010

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Keyspan, rev. 3.7.0.2.

The test utility software used during testing was PTT GUI, rev. 5.1.

5.5. WORST-CASE CONFIGURATION AND MODE

The EUT was tested as an external module connected to a host Laptop PC via a test fixture.

DATE: MAY 10, 2010

IC: 2723A-EA544D3

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

802.11a Mode (20 MHz BW operation): 6 Mbps, OFDM.

802.11n MIMO HT20 Mode: MCS31, 260 Mbps, 4 Spatial Streams.

802.11n MIMO HT40 Mode: MCS31, 540 Mbps, 4 Spatial Streams.

Worst-case mode and channel used for 30-1000 MHz radiated and power line conducted emissions was the mode and channel with the highest output power, that was determined to be 11n HT40, high channel.

For 26 dB BW measurement preliminary testing showed that there is no significant difference among different chains, so the measurement was performed using Chain 0.

For conducted spurious measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore, final measurement was performed using combiner for all channels and modes.

For PPSD measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore, final measurement was performed using combiner for all channels and modes.

For Radiated Band Edge measurements preliminary testing showed that the worst case was vertical polarization, so final measurements were performed with vertical polarization.

5.6 DESCRIPTION OF CLASS 2 PERMISSIVE CHANGE

A shield was added to the bottom side of the PCB to meet ETSI receiver spurious limits. This shield was subsequently incorporated into all versions of this radio module.

5.7 TEST RESULTS FOR C2PC SAMPLE

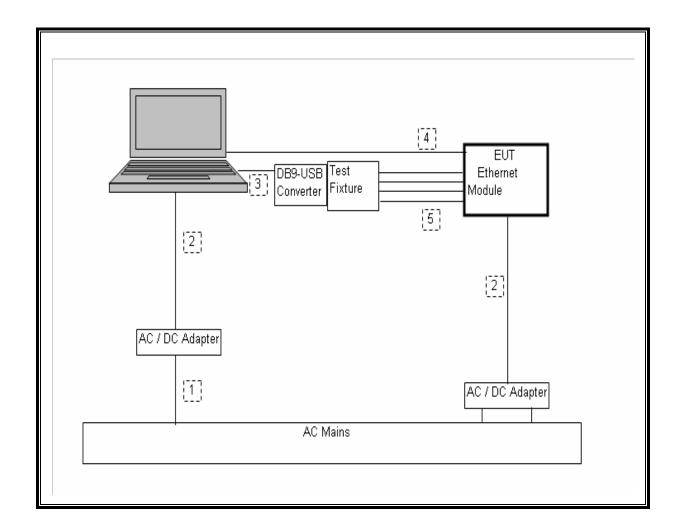
As a result of the C2PC, the original data was analyzed to find worst-case modes and margins, then preliminary tests were performed to determine where additional final testing was required. The original data is updated with all new final measurements that show degraded performance compared to the original configuration.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Manufacturer	Model	Serial Number	FCC ID		
Laptop	IBM	T43 ThinkPad	L3-F9978 05/06	DoC		
AC Adapter	IBM	08K8208	11S08K8208Z1Z6	DoC		
AC Adapter	Phihong	PSA15R-050P	N/A	N/A		
Serial (DB9)/USB	Keyspan	N/A	N/A	N/A		
Test Fixture	N/A	N/A	N/A	N/A		

I/O CABLES


	I/O CABLE LIST							
Cable No.	Port	# of Identical Ports	Connecto Type	Cable Type	Cable Length	Remarks		
1	AC	2	US 115V	Shielded	1m	For laptop & EUT		
2	DC	2	DC	Un-shielded	2m	For laptop & EUT		
3	USB	1	USB	Shielded	.8m	From laptop to USB Converter		
4	Ethernet	1	RJ45	Un-shielded	1 m	From laptop to EUT		
5	Cable	1	Riibon	Un-shielded	.4 m	Test Fixture to EUT		

TEST SETUP

The EUT is installed in a host laptop computer via test fixture during the tests. Test software exercised the radio card.

DATE: MAY 10, 2010

SETUP DIAGRAM FOR TESTS

DATE: MAY 10, 2010 IC: 2723A-EA544D3

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

DATE: MAY 10, 2010

IC: 2723A-EA544D3

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Date	Cal Due	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	01/05/09	01/05/10	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	01/14/09	01/14/10	
Antenna, Horn, 18 GHz	EMCO	3115	C00945	04/22/09	04/22/10	
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00589	09/29/08	11/28/09	
Antenna, Horn, 40 GHz	ARA	MWH-2640B	C00981	05/21/09	05/21/10	
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	10/11/08	10/11/09	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	03/31/09	03/31/10	
Preamplifier, 1-26GHz	Agilent / HP	8449B	C01052	08/05/08	08/05/09	
Peak Power Meter	Boonton	4541	C01186	01/19/09	01/19/10	
Peak Power Sensor	Boonton	4541	C01189	01/15/09	01/15/10	
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/29/08	10/29/09	
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	02/06/08	08/06/09	

The following test and measurement equipment was utilized for the additional tests with the modified shield:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Asset	Cal Date	Cal Due		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	01/05/10	03/05/11		
Antenna, Horn, 18 GHz	EMCO	3115	C00945	04/22/09	04/22/10		
Preamplifier, 1-26GHz	Agilent / HP	8449B	C01052	02/04/09	02/04/10		
Peak Power Meter	Boonton	4541	C01186	01/19/09	01/19/10		
Peak Power Sensor	Boonton	4541	C01189	01/15/09	01/15/10		

7. ANTENNA PORT TEST RESULTS

7.1. 5.2 GHz BAND CHANNEL TESTS FOR 802.11a MODE

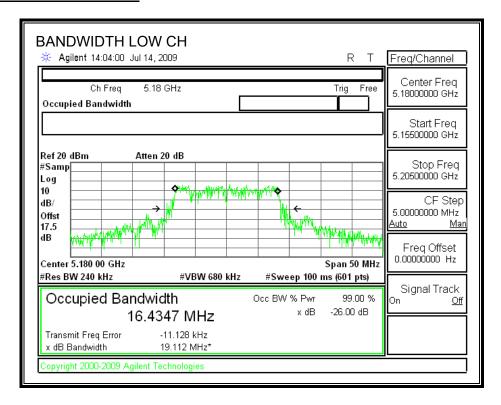
DATE: MAY 10, 2010

IC: 2723A-EA544D3

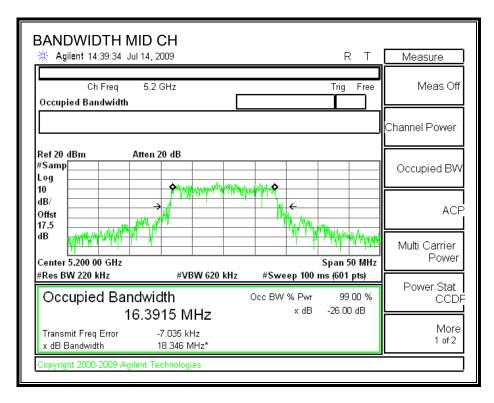
7.1.1. 26 dB and 99% BANDWIDTH

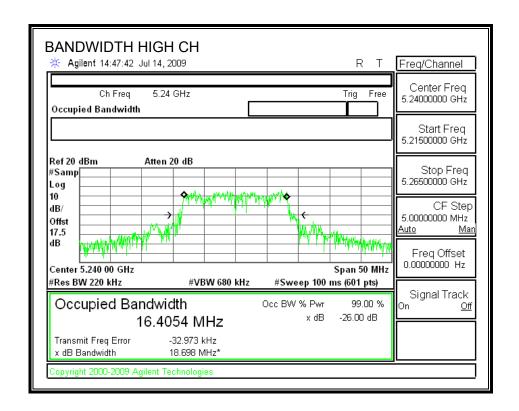
LIMITS

None; for reporting purposes only.


TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.


RESULTS


Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	19.1120	16.4340
Middle	5200	18.3460	16.3915
High	5240	18.6980	16.4054

26 dB and 99% BANDWIDTH

DATE: MAY 10, 2010

7.1.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1) IC RSS-210 A9.2 (1)

Antenna gain of Chain 1 = antenna gain of Chain 2.

	,	Effective Legacy Gain
(dBi)	(dB)	(dBi)
3	3.01	6.01

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

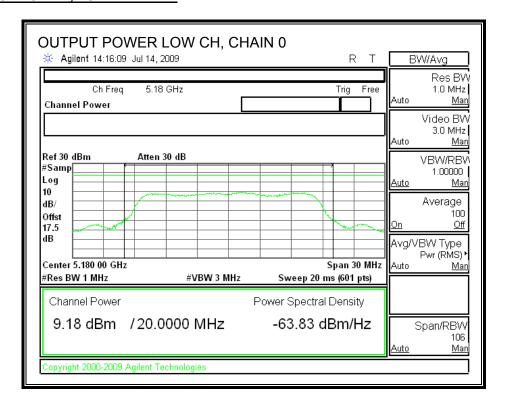
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

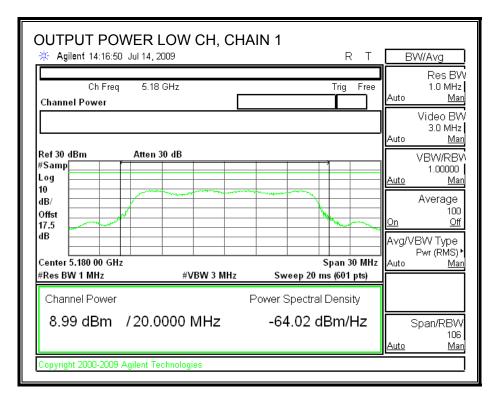
The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

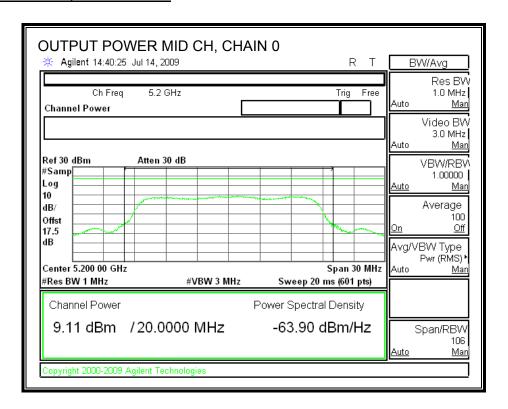
Limit

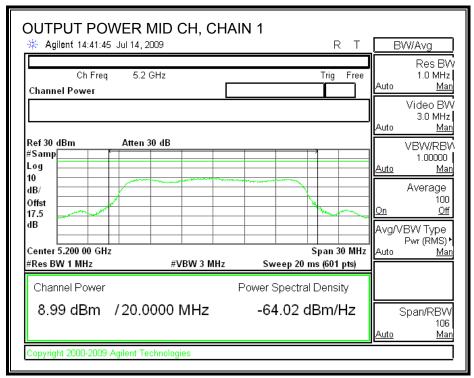

Channel	Frequency	Fixed	В	4 + 10 Log B	Effective	Limit
		Limit		Limit	Antenna Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	17	19.1120	16.81	6.01	16.80
Mid	5200	17	18.3460	16.64	6.01	16.63
High	5240	17	18.6980	16.72	6.01	16.71

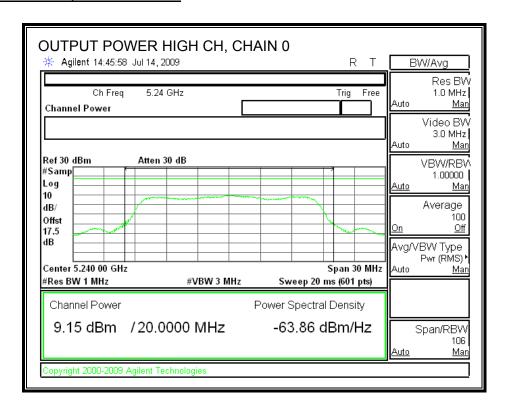
Individual Chain Results

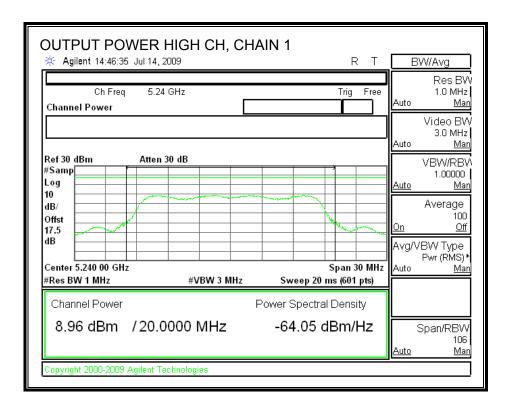

Channel	Frequency	Chain 0	Chain 1	Total	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	9.18	8.99	12.10	16.80	-4.71
Mid	5200	9.11	8.99	12.06	16.63	-4.56
High	5240	9.15	8.96	12.07	16.71	-4.64

DATE: MAY 10, 2010


OUTPUT POWER, LOW CHANNEL


DATE: MAY 10, 2010


OUTPUT POWER, MID CHANNEL


DATE: MAY 10, 2010

OUTPUT POWER, HIGH CHANNEL

DATE: MAY 10, 2010

7.1.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: MAY 10, 2010

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5180	9.15	8.89	12.03
Middle	5200	9.10	8.98	12.05
High	5240	9.09	8.93	12.02

7.1.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

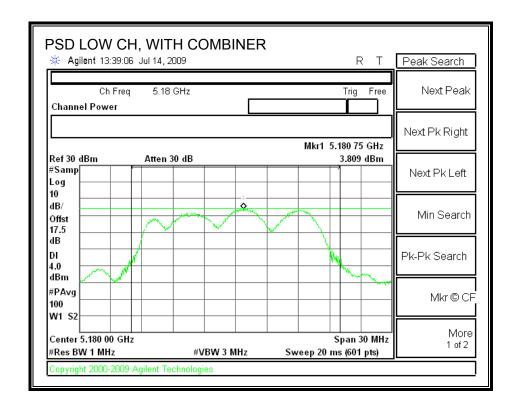
Use this table if antenna gain for Chain 1 = antenna gain for Chain 2

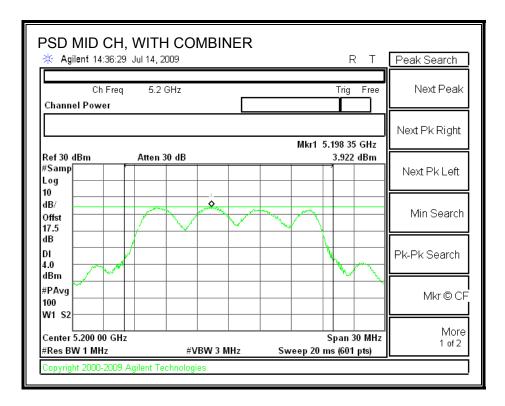
	• ,	Effective Legacy Gain (dBi)
3	3.01	6.01

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum effective antenna gain is less than or equal to 6.01 dBi, therefore the limit is 3.99 dBm.

TEST PROCEDURE

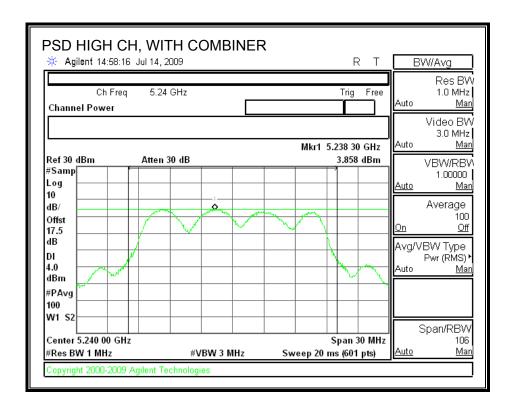

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, August 2002. PPSD method #2 was used.


RESULTS

Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	3.81	3.99	-0.18
Middle	5200	3.92	3.99	-0.07
High	5240	3.86	3.99	-0.13

DATE: MAY 10, 2010

POWER SPECTRAL DENSITY WITH COMBINER



DATE: MAY 10, 2010

IC: 2723A-EA544D3

B BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888. This report shall not be reproduced except in full, without the written approval of CCS.

7.1.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

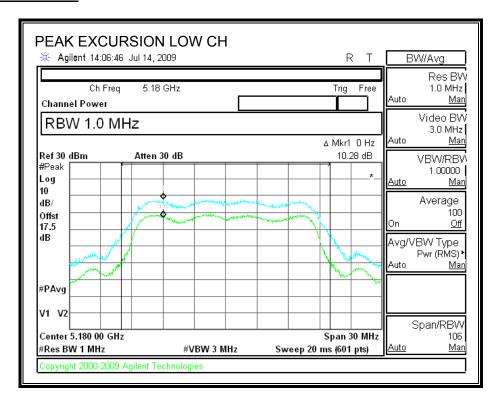
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

DATE: MAY 10, 2010

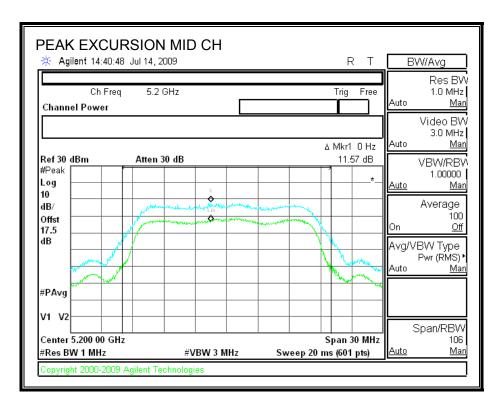
IC: 2723A-EA544D3

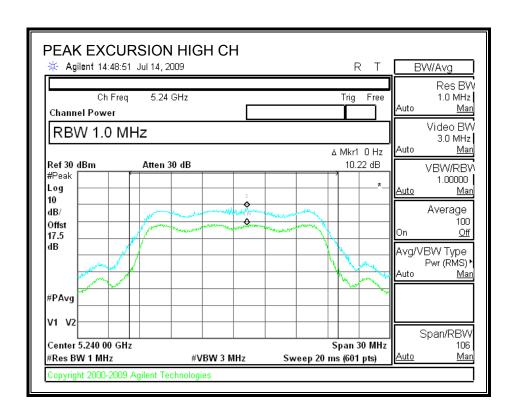
TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.


RESULTS


Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	10.28	13	-2.72
Middle	5200	11.57	13	-1.43
High	5240	10.22	13	-2.78

PEAK EXCURSION

DATE: MAY 10, 2010

7.1.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

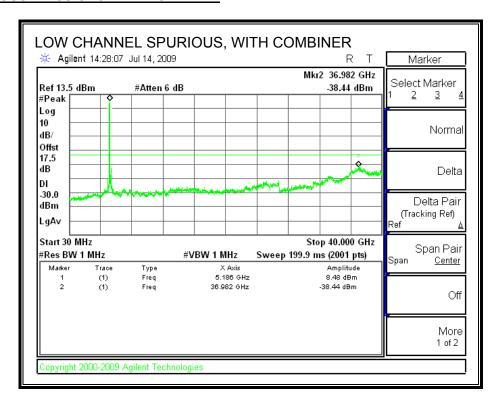
FCC §15.407 (b) (1)

IC RSS-210 A9.3 (1)

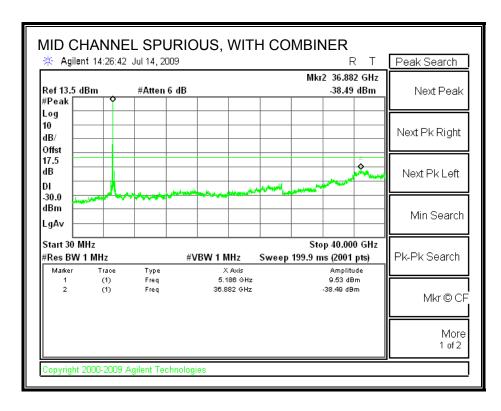
For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

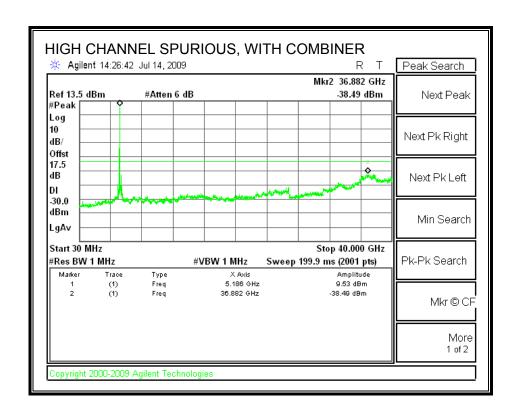
DATE: MAY 10, 2010

IC: 2723A-EA544D3


TEST PROCEDURE

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.


The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.


Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

SPURIOUS EMISSIONS WITH COMBINER

DATE: MAY 10, 2010

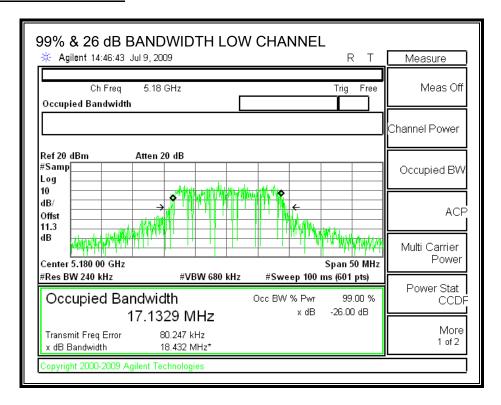
7.2. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT20 MODE

DATE: MAY 10, 2010

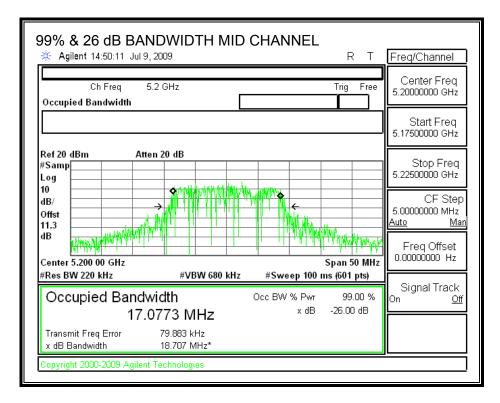
IC: 2723A-EA544D3

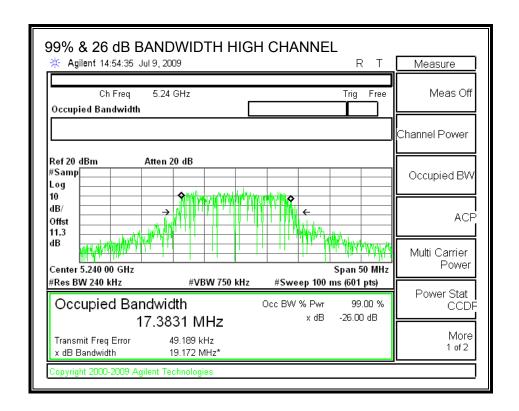
7.2.1. 99% & 26 dB BANDWIDTH

LIMITS


None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.


RESULTS

Channel	Frequency	99% OBW	26 dB BW	
	(MHz)	(MHz)	(MHz)	
Low	5180	17.1329	18.432	
Middle	5200	17.0773	18.707	
High	5240	17.3831	19.172	

DATE: MAY 10, 2010

7.2.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2) IC RSS-210 A9.2 (2)

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, August 2002.

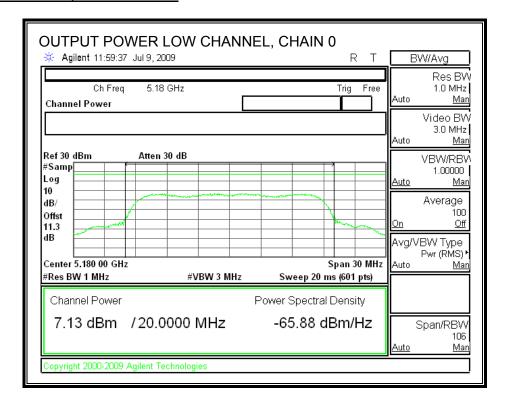
The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

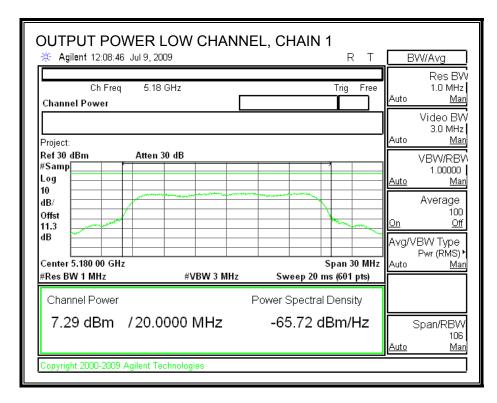
Limit

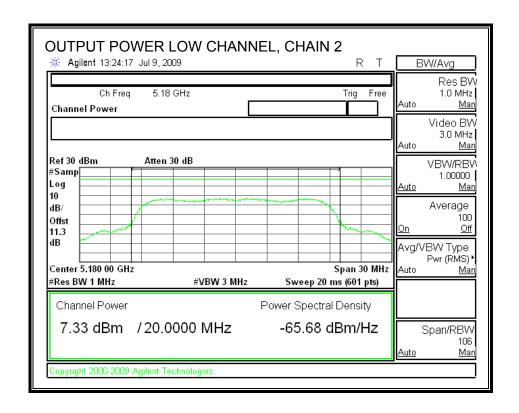
Channel	Freq	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	17	18.432	16.66	3	16.66
Mid	5200	17	18.707	16.72	3	16.72
High	5240	17	19.172	16.83	3	16.83

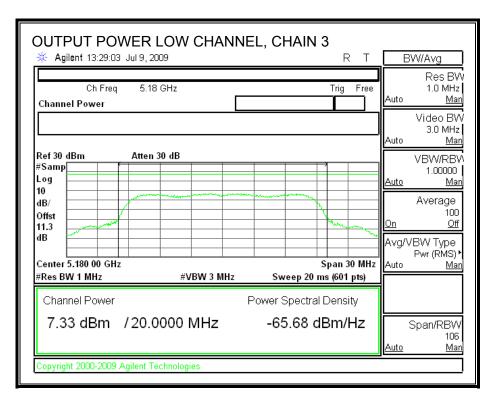
Individual Chain Results

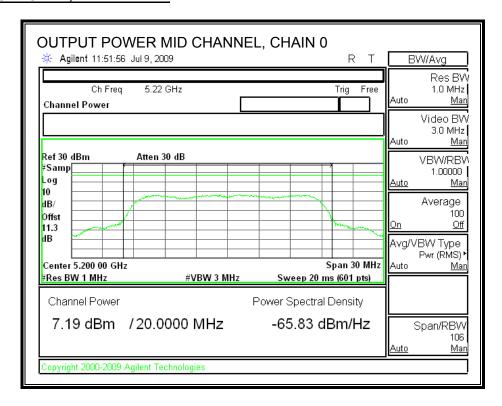

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	7.13	7.29	7.33	7.33	13.29	16.66	-3.36
Mid	5200	7.19	7.58	7.47	7.65	13.50	16.72	-3.22
High	5240	7.22	7.86	7.85	7.65	13.67	16.83	-3.15

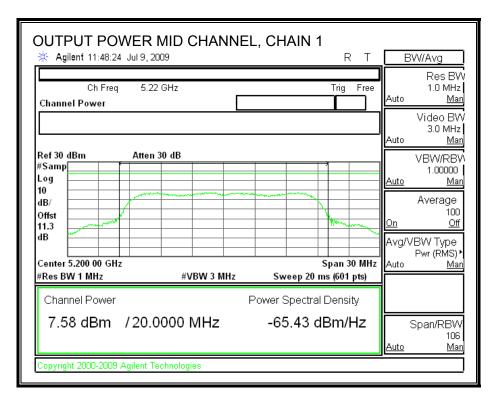
DATE: MAY 10, 2010

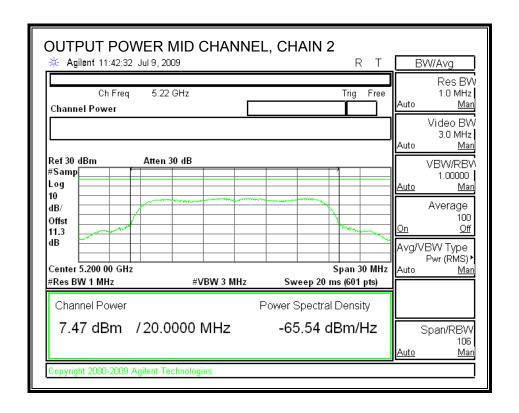

IC: 2723A-EA544D3

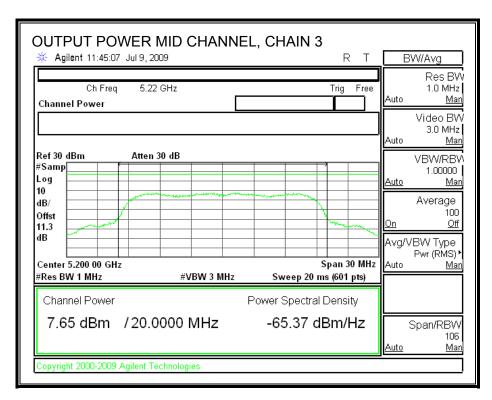

47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000

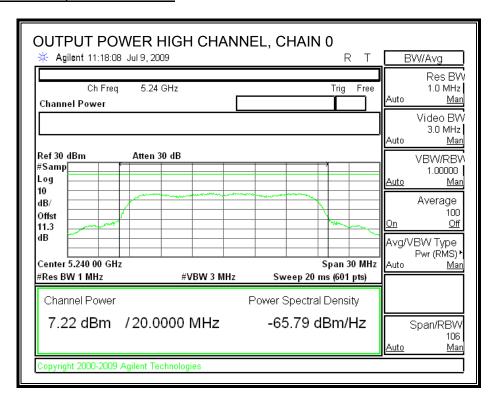

OUTPUT POWER, LOW CHANNEL

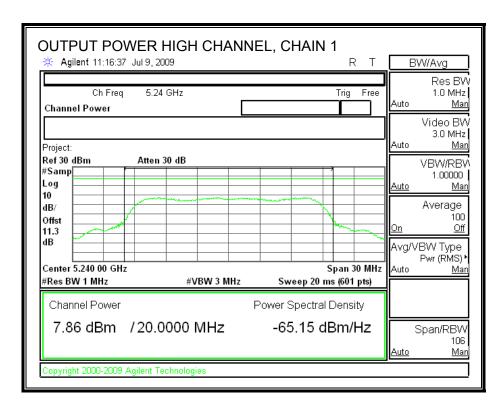

DATE: MAY 10, 2010

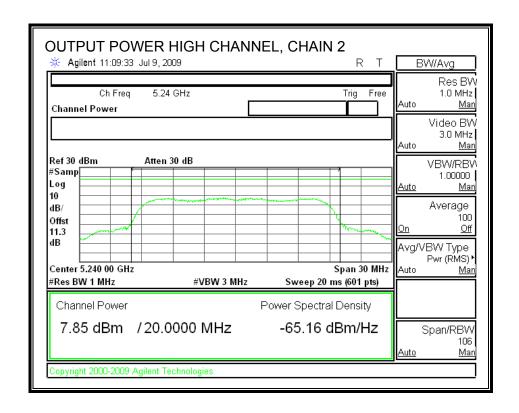


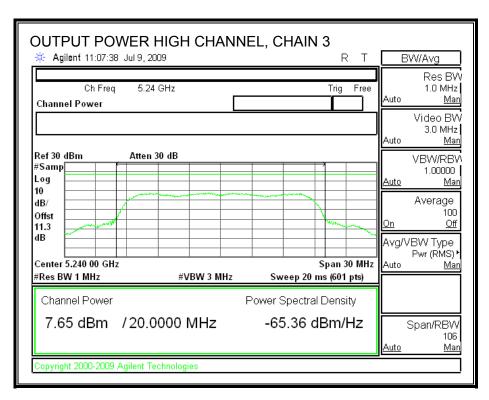



OUTPUT POWER, MID CHANNEL


DATE: MAY 10, 2010






OUTPUT POWER, HIGH CHANNEL

DATE: MAY 10, 2010

7.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: MAY 10, 2010

IC: 2723A-EA544D3

Channel	Frequency (MHz)	Chain 0 Power (dBm)	Chain 1 Power (dBm)	Chain 2 Power (dBm)	Chain 3 Power (dBm)
Low	5180	7.41	7.51	7.69	7.89
Middle	5200	7.11	8.23	8.01	8.05
High	5240	7.82	7.85	8.04	8.11

7.2.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

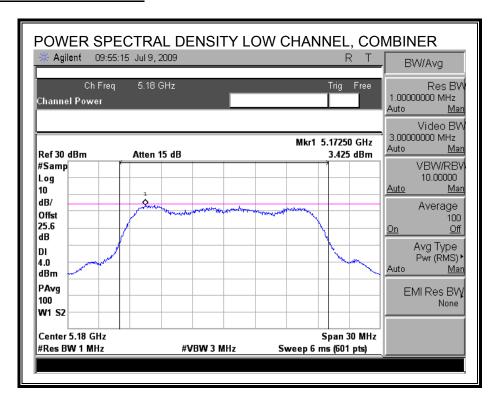
IC RSS-210 A9.2 (2)

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

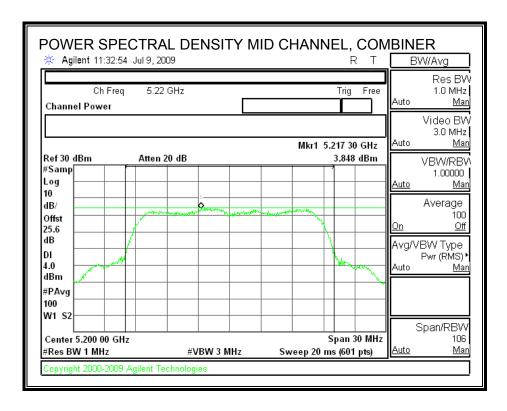
The maximum antenna gain is less than 6 dBi, therefore the limit is 4 dBm.

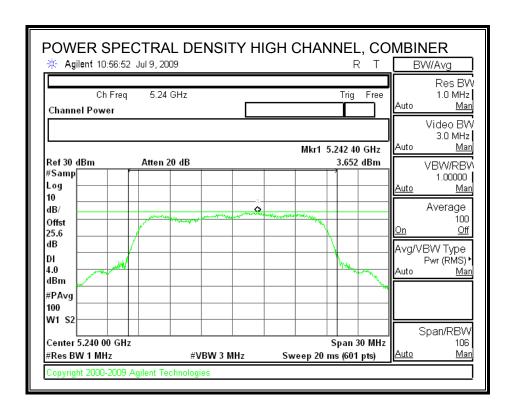
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

RESULTS


Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	3.43	4	-0.58
Middle	5200	3.85	4	-0.15
High	5240	3.65	4	-0.35


DATE: MAY 10, 2010

POWER SPECTRAL DENSITY

DATE: MAY 10, 2010

7.2.5. PEAK EXCURSION

LIMITS

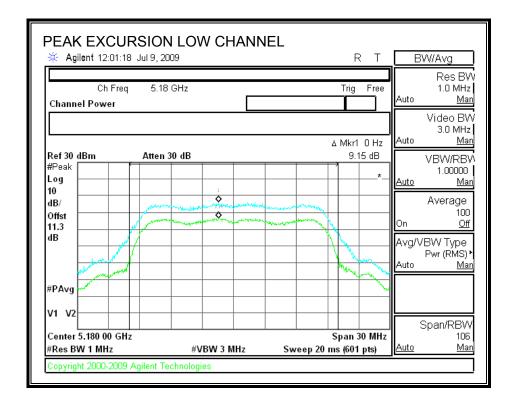
FCC §15.407 (a) (6)

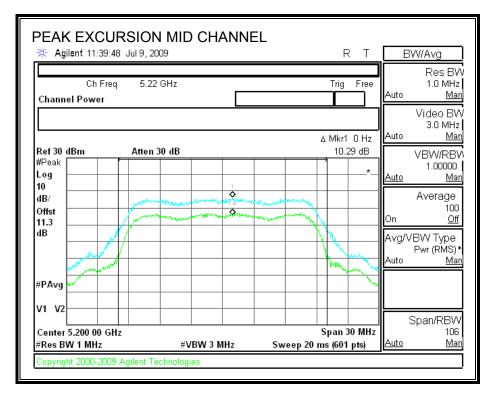
The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

DATE: MAY 10, 2010

IC: 2723A-EA544D3

TEST PROCEDURE

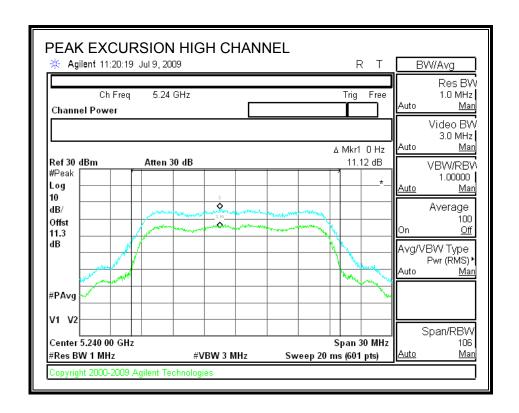

The transmitter outputs are connected to the spectrum analyzer via a combiner.


The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	9.15	13	-3.85
Middle	5200	10.29	13	-2.71
High	5240	11.12	13	-1.88

PEAK EXCURSION



DATE: MAY 10, 2010

IC: 2723A-EA544D3

TEL: (510) 771-1000

7.2.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.407 (b) (3)

IC RSS-210 A9.3 (3)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

DATE: MAY 10, 2010

IC: 2723A-EA544D3

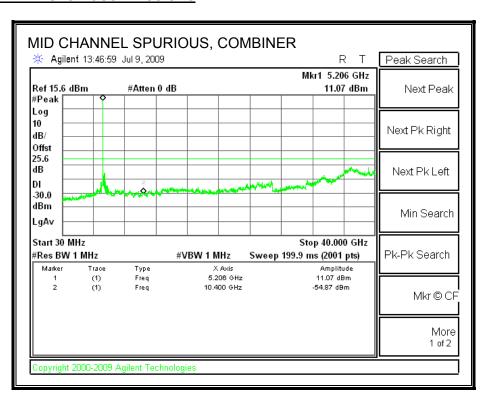
TEST PROCEDURE

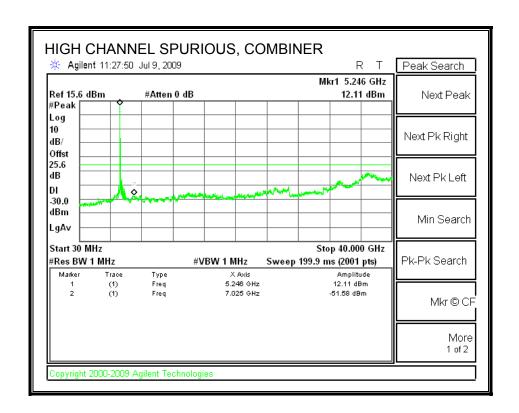

Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


LOW CHANNEL SPURIOUS EMISSIONS


DATE: MAY 10, 2010

IC: 2723A-EA544D3

MID CHANNEL SPURIOUS EMISSIONS

HIGH CHANNEL SPURIOUS EMISSIONS

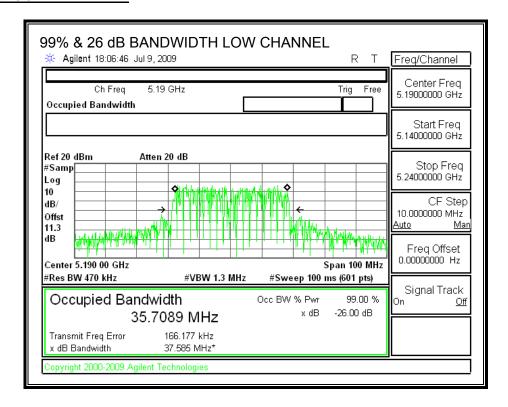
7.3. 5.2 GHz BAND CHANNEL TESTS FOR 802.11n HT40 MODE

DATE: MAY 10, 2010

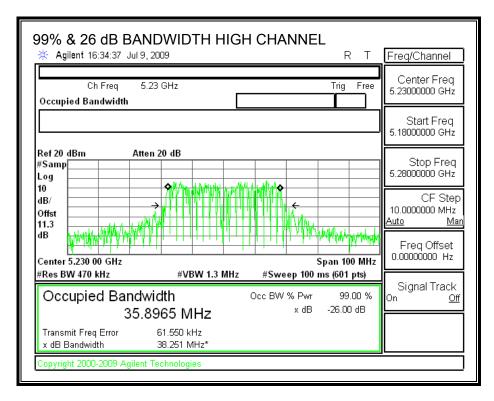
IC: 2723A-EA544D3

7.3.1. 99% & 26 dB BANDWIDTH

LIMITS


None; for reporting purposes only.

TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.

Channel	Frequency	99% OBW	26 dB BW	
	(MHz)	(MHz)	(MHz)	
Low	5190	35.7089	37.585	
High	5230	35.8965	38.251	

99% & 26 dB BANDWIDTH

DATE: MAY 10, 2010

7.3.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

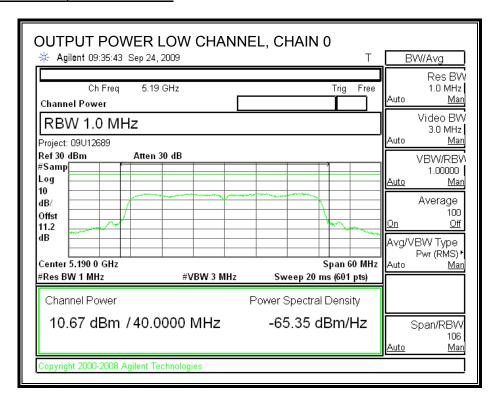
The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

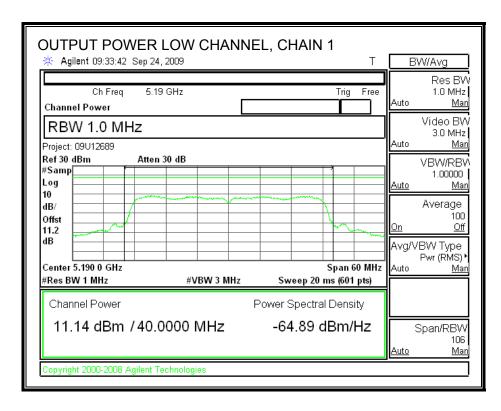
Limit

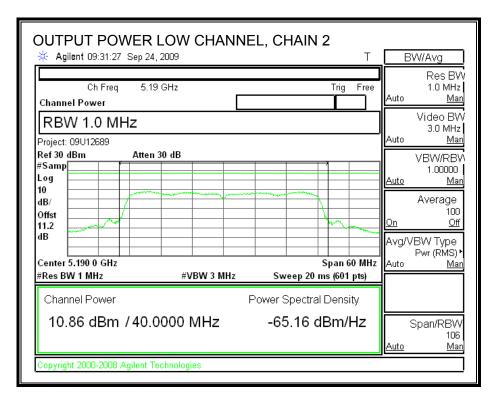
Channel	Freq	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5190	17	37.585	19.75	3	17.00
High	5230	17	38.251	19.83	3	17.00

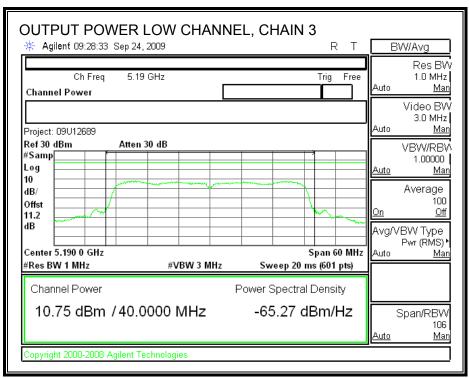
Individual Chain Results

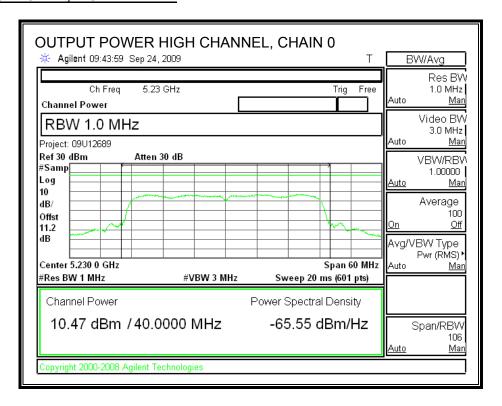

Channel	Freq	Chain 0	Chain 1	Chain 2	Chain 3	Total	Limit	Margin
		Power	Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	10.67	11.14	10.86	10.75	16.88	17.00	-0.12
High	5230	10.47	10.82	10.71	10.84	16.73	17.00	-0.27

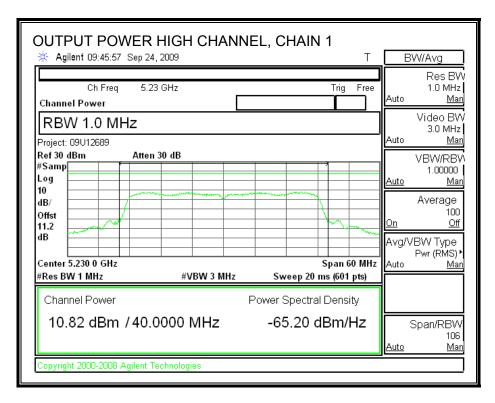
TEL: (510) 771-1000

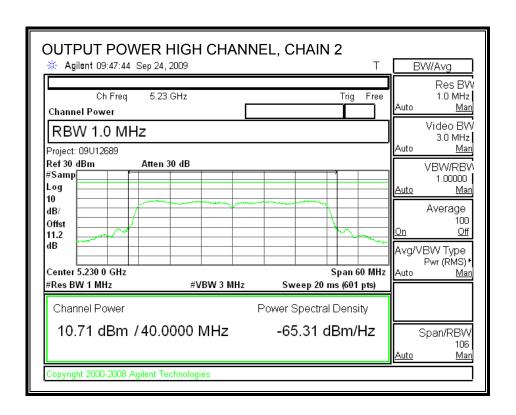

FAX: (510) 661-0888

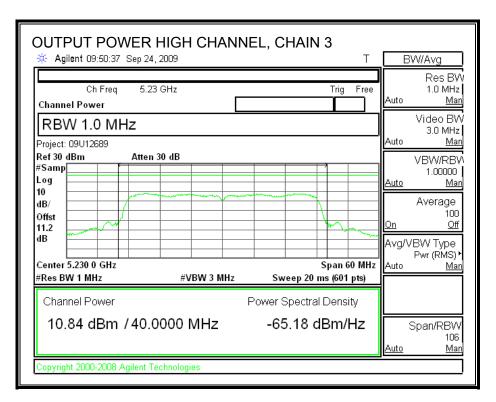

DATE: MAY 10, 2010


OUTPUT POWER, LOW CHANNEL


DATE: MAY 10, 2010






OUTPUT POWER, HIGH CHANNEL

DATE: MAY 10, 2010

7.3.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: MAY 10, 2010

IC: 2723A-EA544D3

Channel	Frequency	Chain 0	Chain 1	Chain 2	Chain 3
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5190	10.48	11.32	11.08	11.40
High	5230	10.98	11.25	11.31	11.40

7.3.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

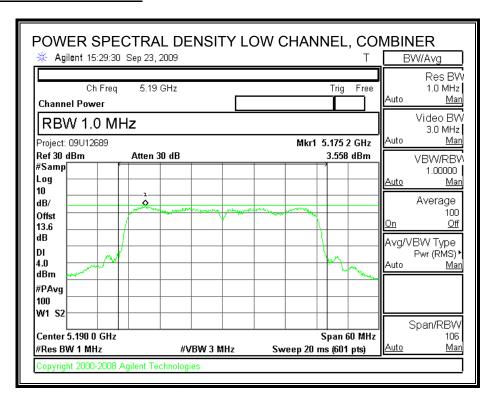
IC RSS-210 A9.2 (2)

For the 5.15-5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

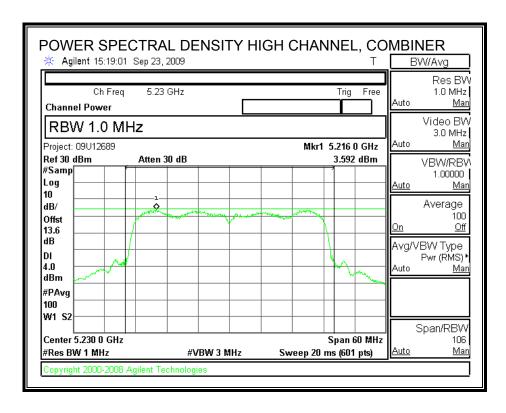
DATE: MAY 10, 2010

IC: 2723A-EA544D3

The maximum antenna gain is less than 6 dBi, therefore the limit is 4 dBm.


TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.


Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

Channel	Frequency	PSD with Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5190	3.56	4	-0.44
High	5230	3.59	4	-0.41

POWER SPECTRAL DENSITY

DATE: MAY 10, 2010

7.3.5. PEAK EXCURSION

LIMITS

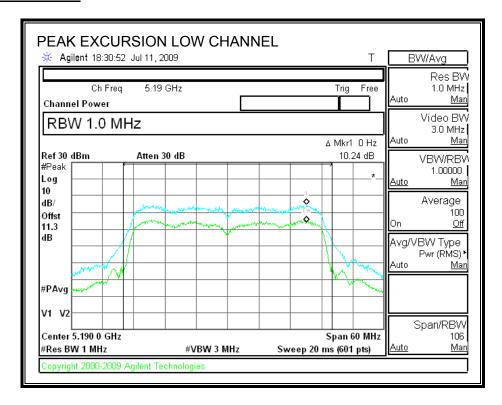
FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

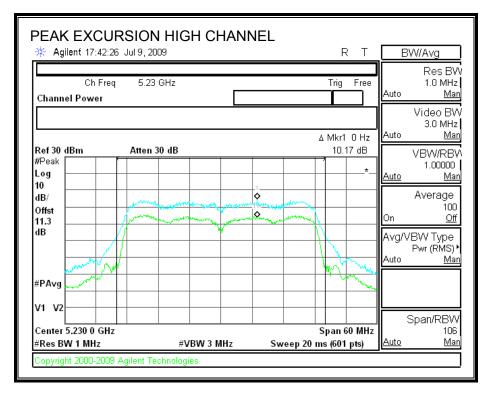
DATE: MAY 10, 2010

IC: 2723A-EA544D3

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.


Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	10.24	13	-2.76
High	5230	10.17	13	-2.83

PEAK EXCURSION

DATE: MAY 10, 2010

7.3.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.407 (b) (3)

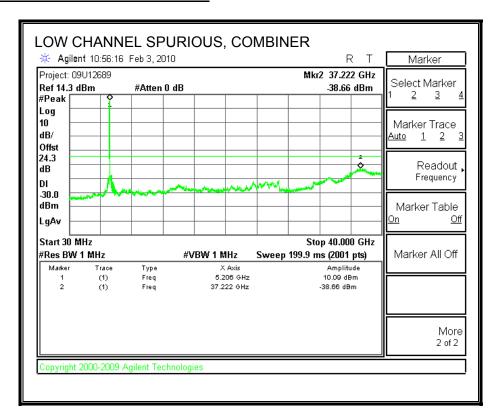
IC RSS-210 A9.3 (3)

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

DATE: MAY 10, 2010

IC: 2723A-EA544D3

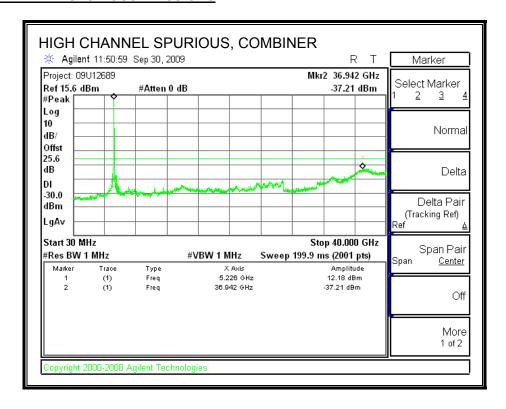
TEST PROCEDURE


Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to EIRP limit, adjusted for the maximum antenna gain.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.


LOW CHANNEL SPURIOUS EMISSIONS

DATE: MAY 10, 2010

IC: 2723A-EA544D3

HIGH CHANNEL SPURIOUS EMISSIONS

Page 62 of 99

8. RECEIVER CONDUCTED SPURIOUS EMISSIONS

LIMITS

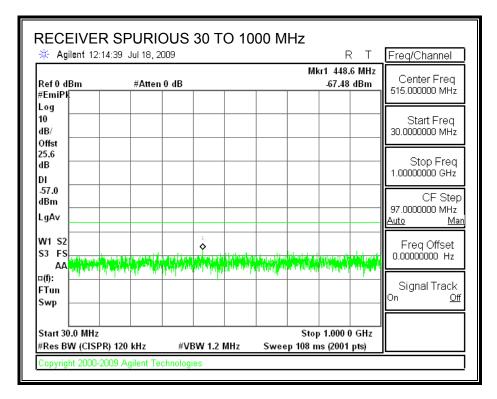
IC RSS-GEN 7.2.3.1

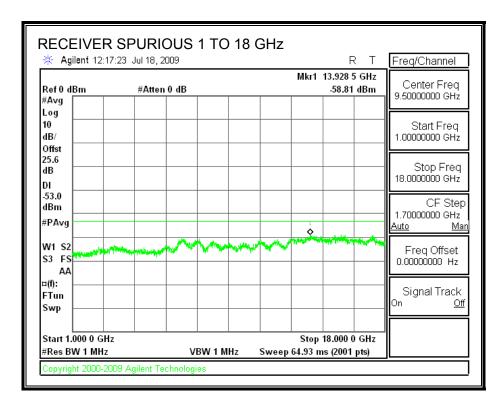
Antenna Conducted Measurement: Receiver spurious emissions at any discrete frequency shall not exceed 2 nanowatts (-57 dBm) in the band 30-1000 MHz, or 5 nanowatts (-53 dBm) above 1 GHz.

DATE: MAY 10, 2010

IC: 2723A-EA544D3

TEST PROCEDURE


IC RSS-GEN 4.10, Conducted Method


The receiver antenna port is connected to a spectrum analyzer.

The spectrum from 30 MHz to 18 GHz is investigated with the receiver set to the middle channel of each 5 GHz band.

Preliminary tests on individual chains, and on all chains with a combiner, were performed. The worst-case configuration was with a combiner, therefore final test were performed with all chains feeding a combiner.

RECEIVER SPURIOUS EMISSIONS IN THE 5.2 GHz BAND

DATE: MAY 10, 2010

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

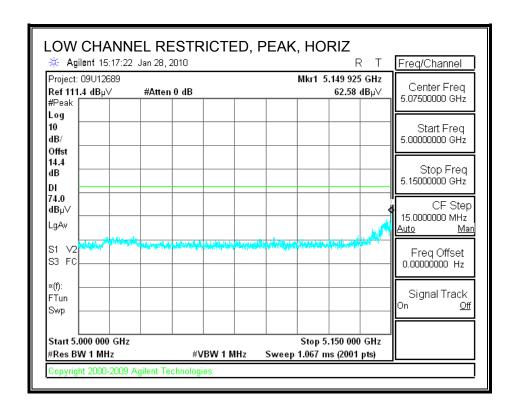
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

DATE: MAY 10, 2010

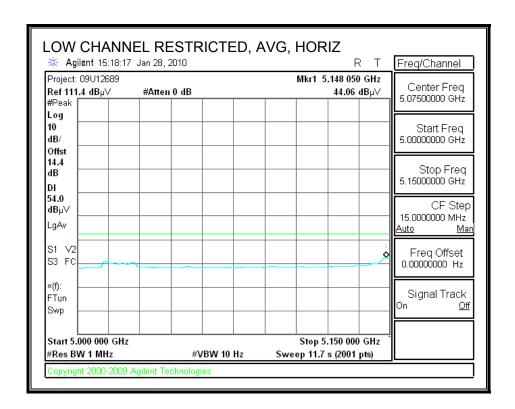
IC: 2723A-EA544D3

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

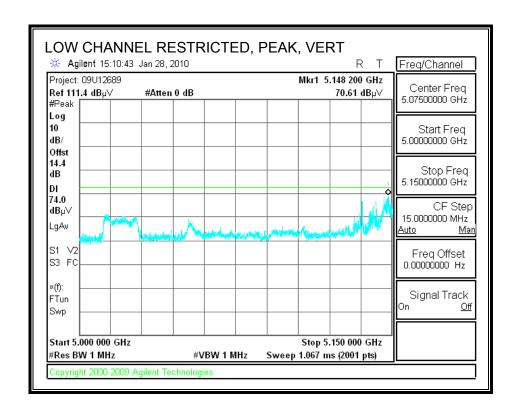
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

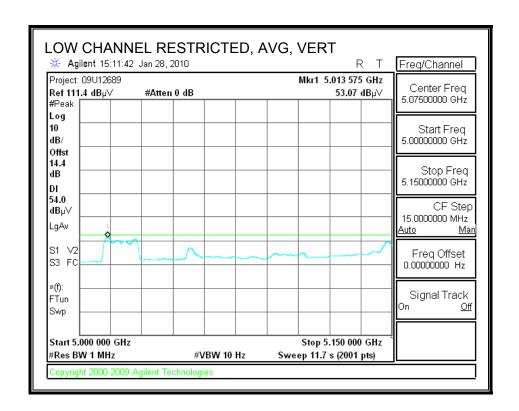

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

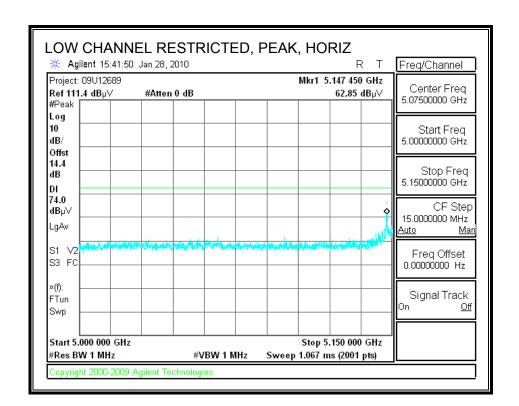

9.2. TRANSMITTER ABOVE 1 GHz

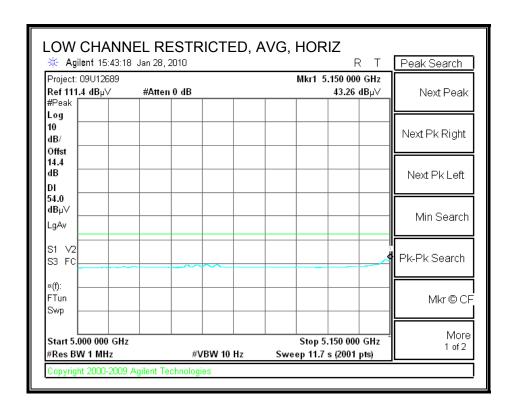
9.2.1. 802.11a MODE IN 5.2 GHz BAND

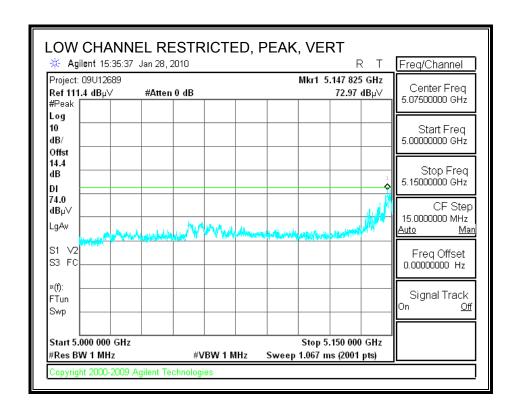

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

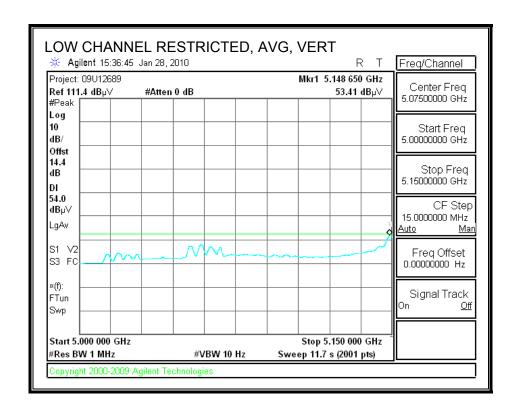


DATE: MAY 10, 2010


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)


DATE: MAY 10, 2010

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

REPORT NO: 09U12689-12 FCC ID: J9C-EA544D3

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

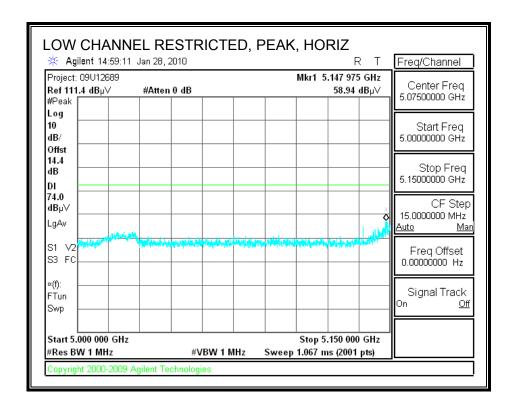
Test Engr: Thanh Nguyen Date: 07/15/09 Project #: 09U12652 Company: QualComm EUT Description: Ethernet card EUT M/N: 65-VN663-P2 Test Target: FCC 15.247/15.407 Mode Oper: Transmit

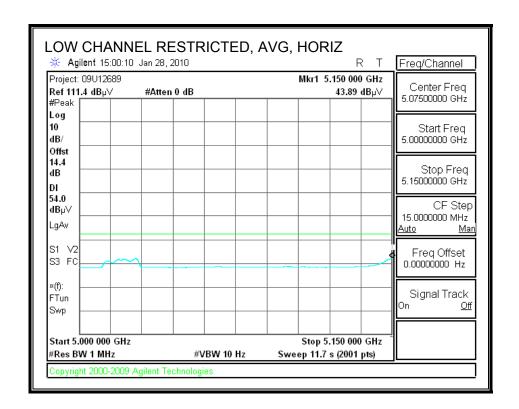
Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lir AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter Margin vs. Average Limit

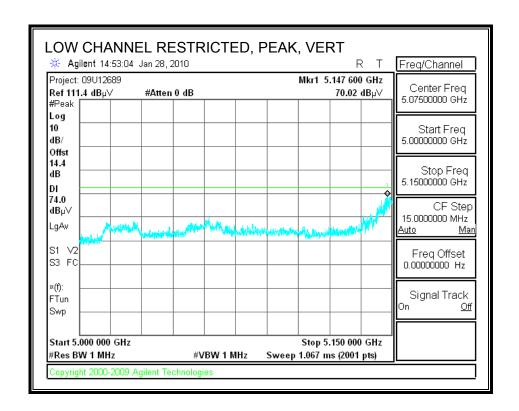
f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det.	AntHigh	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
Low ch 51	180														
15.540	3.0	35.8	38.7	11.3	-34.8	0.0	0.7	51.7	74.0	-22.3	V	P	147.8	304.8	
15.540	3.0	23.7	38.7	11.3	-34.8	0.0	0.7	39.6	54.0	-14.4	V	A	147.8	304.8	
15.540	3.0	34.6	38.7	11.3	-34.8	0.0	0.7	50.7	74.0	-24.7	H	P	156.5	346.0	
15.540	3.0	21.3	38.7	11.3	-34.8	0.0	0.7	37.2	54.0	-16.3	H	A	156.5	346.0	
Mid ch 52	:00														
15.600	3.0	37.1	38.5	11.4	-34.8	0.0	0.7	52.9	74.0	-21.1	V	P	147.8	296.5	
15.600	3.0	24.4	38.5	11.4	-34.8	0.0	0.7	40.2	54.0	-13.8	V	A	147.8	296.5	
15.600	3.0	37.1	38.5	11.4	-34.8	0.0	0.7	52.9	74.0	-21.1	H	P	150.5	300.0	
15.600	3.0	23.4	38.5	11.4	-34.8	0.0	0.7	39.4	54.0	-14.6	H	A	150.5	300.0	
High ch 5	240														
15.720	3.0	36.6	38.2	11.4	-34.7	0.0	0.7	52.2	74.0	-21.8	V	P	166.9	200.0	
15.720	3.0	25.5	38.2	11.4	-34.7	0.0	0.7	41.2	54.0	-12.8	V	A	166.9	200.0	
15.720	3.0	36.4	38.2	11.4	-34.7	0.0	0.7	52.1	74.0	-21.9	H	P	140.6	310.0	
15.720	3.0	24.2	38.2	11.4	-34.7	0.0	0.7	39.8	54.0	-14.2	H	A	140.6	310.0	
													-		

Rev. 4.1.2.7

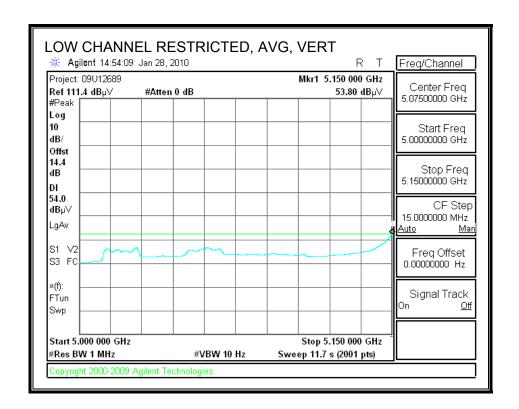
Note: No other emissions were detected above the system noise floor.

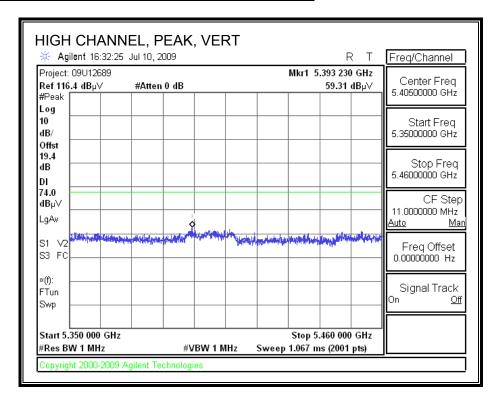

DATE: MAY 10, 2010

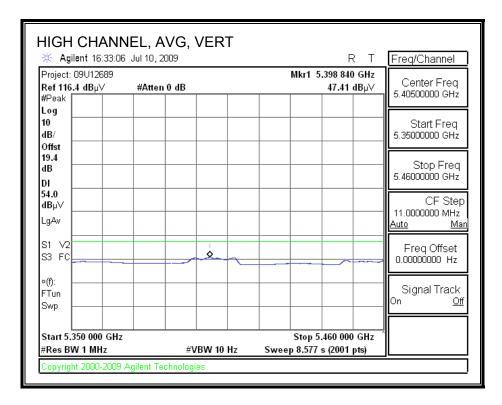

IC: 2723A-EA544D3


This report shall not be reproduced except in full, without the written approval of CCS.

9.2.3. 802.11n HT20 MODE IN 5.2 GHz BAND

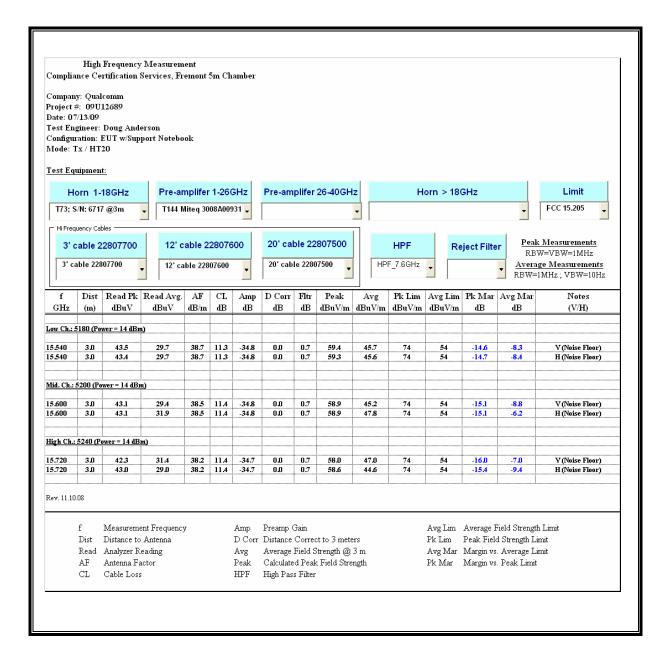

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)





DATE: MAY 10, 2010

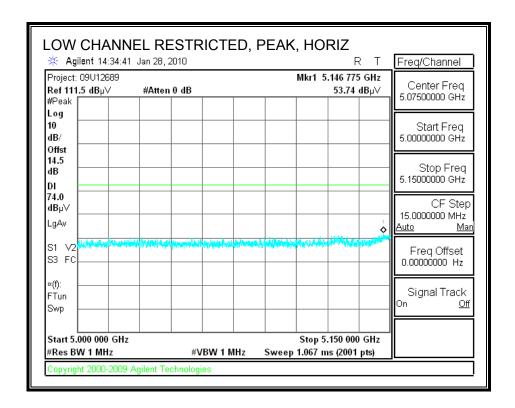
AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

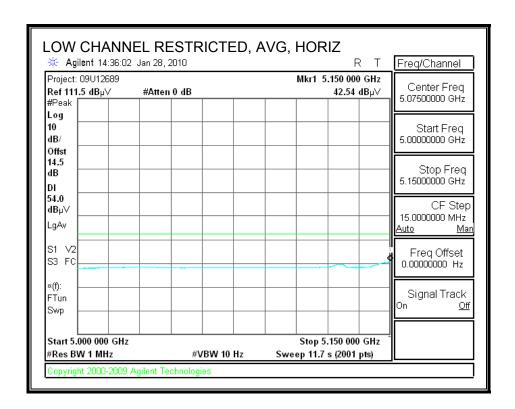


DATE: MAY 10, 2010

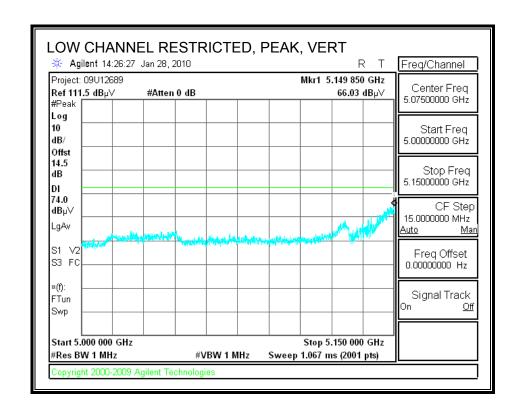
IC: 2723A-EA544D3

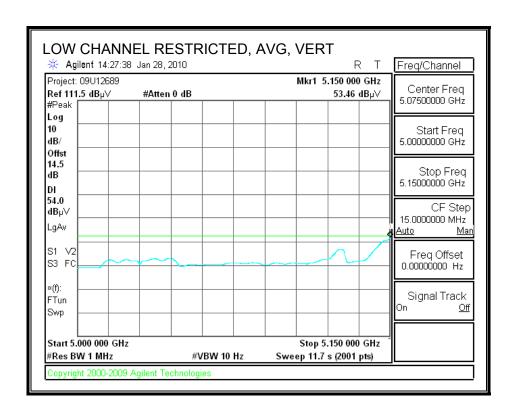
TEL: (510) 771-1000

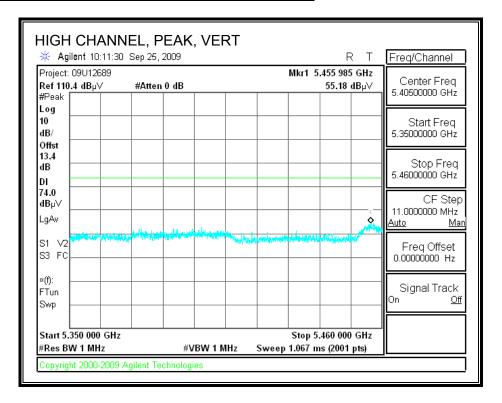

HARMONICS AND SPURIOUS EMISSIONS



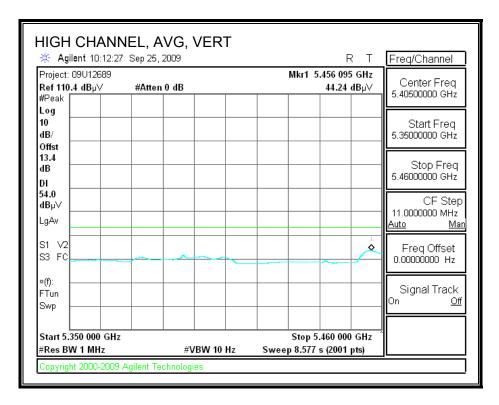
DATE: MAY 10, 2010


9.2.4. 802.11n HT40 MODE IN 5.2 GHz BAND


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)

DATE: MAY 10, 2010

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

William Zhuang Test Engr: 09/25/09 Date: 09U12689 Project #: Company: Qualcomm

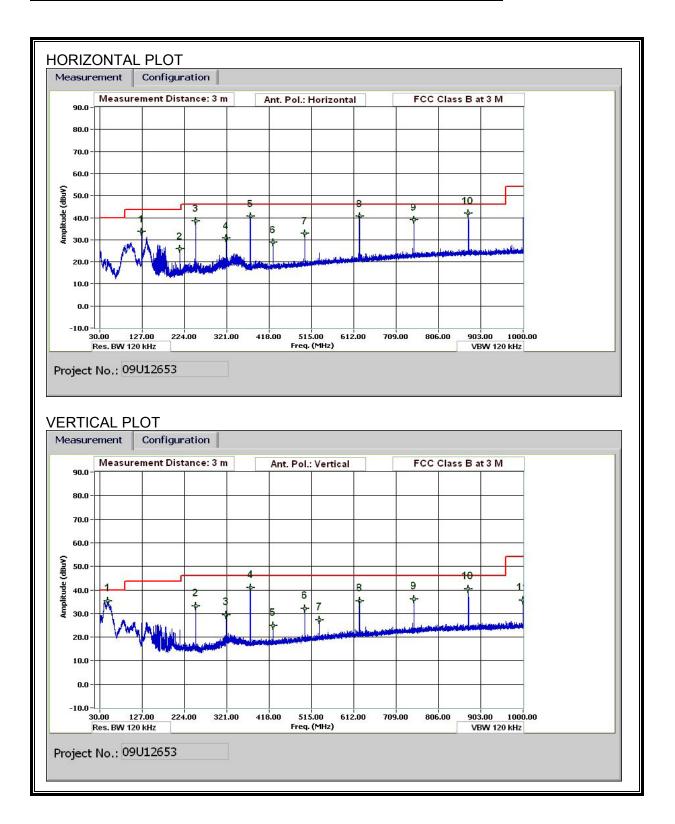
Configuration: EUT w/Support Notebook

Mode Oper: Tx HT40

> Average Field Strength Limit Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters
> Read Analyzer Reading Avg Average Field Strength @ 3 m
> AF Antenna Factor Peak Calculated Peak Field Strength
> CL Cable Loss HPF High Pass Filter Peak Field Strength Limit Margin vs. Average Limit Margin vs. Peak Limit

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det	AntHigh	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dВ	đВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
5190MHz	, Power	Setting=	l2 dBm												
15.570	3.0	35.5	38.6	11.4	-34.8	0.0	0.7	51.3	74.0	-22.7	V	P	170.4	360.0	
15.570	3.0	23.1	38.6	11.4	-34.8	0.0	0.7	39.0	54.0	-15.0	V	A	170.4	360.0	
15.570	3.0	35.0	38.6	11.4	-34.8	0.0	0.7	50.9	74.0	-23.1	H	P	122.4	156.9	
15.570	3.0	23.0	38.6	11.4	-34.8	0.0	0.7	38.9	54.0	-15.1	H	A	122.4	156.9	
5230MHz	, Power	Setting=	l2 dBm												
15.690	3.0	35.2	38.3	11.4	-34.7	0.0	0.7	50.9	74.0	-23.1	V	P	121.6	357.2	
15.690	3.0	22.8	38.3	11.4	-34.7	0.0	0.7	38.5	54.0	-15.5	V	A	121.6	357.2	
15.690	3.0	36.2	38.3	11.4	-34.7	0.0	0.7	51.9	74.0	-22.1	H	P	100.0	87.3	
15.690	3.0	22.8	38.3	11.4	-34.7	0.0	0.7	38.5	54.0	-15.5	H	A	100.0	87.3	

DATE: MAY 10, 2010


IC: 2723A-EA544D3

Note: No other emissions were detected above the system noise floor.

9.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

DATE: MAY 10, 2010

EMISSIONS DATA

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Vien Tran Date: 06/26/09 Project #: 09U12653 Company: Qualcomm

EUT Description: 802.11n 4x4 WLAN Ethernet Adapter

EUT M/N: Non-DFS:65-VN663-P1

Test Target: FCC Class B

Mode Oper: Tx HT20 MCS31, 5805MHz

> Measurement Frequency Amp Preamp Gain Margin Margin vs. Limit

Dist Distance to Antenna D Corr Distance Correct to 3 meters

Read Analyzer Reading Filter Filter Insert Loss
AF Antenna Factor Corr. Calculated Field Strength
CL Cable Loss Limit Field Strength Limit

f	Dist	Read	AF	\mathbf{CL}	Amp	D Corr	Filter	Corr.	Limit	Margin	Ant Pol	Det.	Notes
MHz	(m)	dBuV	dB/m	dВ	đВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
805MHz	Horizont	al .											
125.044	3.0	47.3	13.7	1.1	28.3	0.0	0.0	33.7	43.5	-9.8	H	EP	
213.368	3.0	40.9	11.9	1.3	28.2	0.0	0.0	25.9	43.5	-17.6	H	EP	
249.969	3.0	53.5	11.8	1.4	28.2	0.0	0.0	38.5	46.0	-7.5	H	EP	
319.932	3.0	43.6	13.7	1.6	28.1	0.0	0.0	30.8	46.0	-15.2	Н	EP	
375.014	3.0	52.5	14.5	1.7	28.1	0.0	0.0	40.7	46.0	-5.3	H	EP	
426.616	3.0	39.5	15.4	1.9	28.0	0.0	0.0	28.8	46.0	-17.2	Н	EP	
499.939	3.0	41.9	16.7	2.0	27.8	0.0	0.0	32.9	46.0	-13.1	Н	EP	
624.985	3.0	47.2	18.7	2.3	27.4	0.0	0.0	40.7	46.0	-5.3	H	EP	
749.910	3.0	43.5	20.3	2.5	27.3	0.0	0.0	39.0	46.0	-7.0	Н	EP	
874.955	3.0	45.4	21.6	2.8	27.7	0.0	0.0	42.1	46.0	-3.9	Н	EP	
805MHz	Vertical												
48.001	3.0	53.6	9.3	0.6	28.4	0.0	0.0	35.2	40.0	-4.8	V	EP	
249.969	3.0	48.3	11.8	1.4	28.2	0.0	0.0	33.2	46.0	-12.8	V	EP	
320.052	3.0	42.2	13.7	1.6	28.1	0.0	0.0	29.4	46.0	-16.6	v	EP	
375.014	3.0	52.8	14.5	1.7	28.1	0.0	0.0	41.0	46.0	-5.0	V	EP	
426.736	3.0	35.5	15.4	1.9	28.0	0.0	0.0	24.8	46.0	-21.2	V	EP	
499.939	3.0	41.2	16.7	2.0	27.8	0.0	0.0	32.1	46.0	-13.9	V	EP	
533.301	3.0	35.7	17.3	2.1	27.7	0.0	0.0	27.3	46.0	-18.7	V	EP	
624.985	3.0	41.8	18.7	2.3	27.4	0.0	0.0	35.4	46.0	-10.6	v	EP	
749.910	3.0	40.6	20.3	2.5	27.3	0.0	0.0	36.1	46.0	-9.9	V	EP	
874.955	3.0	43.7	21.6	2.8	27.7	0.0	0.0	40.4	46.0	-5.6	v	EP	
99.880	3.0	37.9	22.5	3.0	27.9	0.0	0.0	35.4	54.0	-18.6	V	EP	

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

DATE: MAY 10, 2010

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

DATE: MAY 10, 2010

IC: 2723A-EA544D3

TEST PROCEDURE

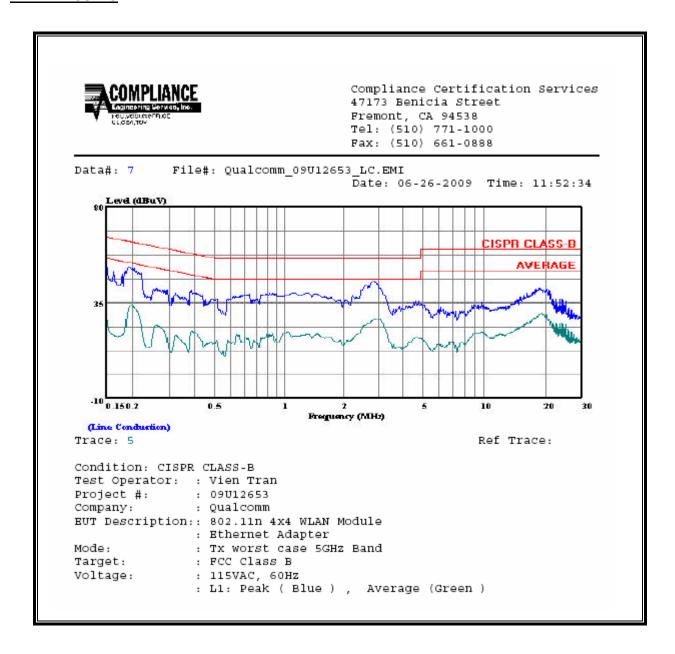
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

Decreases with the logarithm of the frequency.


REPORT NO: 09U12689-12 FCC ID: J9C-EA544D3

6 WORST EMISSIONS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)										
Freq.	Reading			Closs	Limit	FCC_B	Marg	Remark			
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2		
0.19	51.41		33.87	0.00	63.86	53.86	-12.45	-19.99	L1		
2.95	44.80		27.60	0.00	56.00	46.00	-11.20	-18.40	L1		
19.12	41.71		30.40	0.00	60.00	50.00	-18.29	-19.60	L1		
0.19	51.34		33.94	0.00	63.86	53.86	-12.52	-19.92	L2		
2.95	44.13		27.56	0.00	56.00	46.00	-11.87	-18.44	L2		
19.12	40.89		29.56	0.00	60.00	50.00	-19.11	-20.44	L2		
6 Worst l	Data 										

DATE: MAY 10, 2010

LINE 1 RESULTS

DATE: MAY 10, 2010

LINE 2 RESULTS

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538 Tel: (510) 771-1000 Fax: (510) 661-0888 File#: Qualcomm_09U12653_LC.EMI Data#: 14 Date: 06-26-2009 Time: 12:02:29 Level (dBuV) CISPR CLASS-B AVERAGE -10 0.150.2 Frequency (MHz) (Line Conduction) Ref Trace: Trace: 12 Condition: CISPR CLASS-B Test Operator: : Vien Tran Project #: : 09U12653 Company: : Qualcomm BUT Description:: 802.11n 4x4 WLAN Module : Ethernet Adapter : Tx worst case 5GHz Band Mode: Target: : FCC Class B Voltage: : 115VAC, 60Hz : L2: Peak (Blue) , Average (Green)

DATE: MAY 10, 2010

11. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

DATE: MAY 10, 2010

IC: 2723A-EA544D3

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)					
(A) Limits for Occupational/Controlled Exposures									
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6					
(B) Limits for General Population/Uncontrolled Exposure									
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30					

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30	

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-

pational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

DATE: MAY 10, 2010

IC: 2723A-EA544D3

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

DATE: MAY 10, 2010

IC: 2723A-EA544D3

Distance is given by:

$$D = SQRT (EIRP / (4 * Pi * S))$$

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm² From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

(MPE distance equals 20 cm)

Band	Mode	Separation Distance (m)	Output Power (dBm)	Antenna Gain (dBi)	IC Power Density (W/m^2)	FCC Power Density (mW/cm^2)
5.2 GHz	11a (2 Chains)	0.20	12.10	6.01	0.13	0.013
5.2 GHz	11n HT20 (4 Chains)	0.20	13.67	3.0	0.09	0.009
5.2 GHz	11n HT40 (4 Chains)	0.20	16.88	3.0	0.19	0.019

DATE: MAY 10, 2010