

Page 1 of 62

Specific Absorption Rate (SAR) Test Report

for

ZyXEL Communications Corporationon the

802.11g Wireless CardBus Card Model Number: ZyAIR G-110

> Test Report: EME-040258 Date of Report: Apr. 6, 2004 Date of test: Mar. 31, 2004

Total No of Pages Contained in this Report: 62

Tested by:
Clay Chen
Clay Chen

Reviewed by:
Elton Chen

Review Date: April 7, 2004

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek Testing Services, Taiwan Ltd.

Page 2 of 62

Table of Contents

1.0 Job Description	4
1.1 Client Information	4
1.2 Equipment under test (EUT)	4
1.3 Test plan reference	5
1.4 System test configuration	5
1.4.1 System block diagram & Support equipment	5
1.4.2 Test Position	6
1.4.3 Test Condition	6
1.5 Modifications required for compliance	7
1.6 Additions, deviations and exclusions from standards	7
2.0 SAR Evaluation	8
2.1 SAR Limits	
2.2 Configuration Photographs	
2.3 SAR measurement system	
2.4 SAR measurement system validation	
2.4.1 System Validation result	
2.4.2 System Performance Check result	
2.5 Test Result	
3.0 Test Equipment	
3.2 Tissue Simulating Liquid	
3.2.1 Body Tissue Simulating Liquid for evaluation test	
3.2.2 Head Tissue Simulating Liquid for System performance Check test	
3.2.3 Body Liquid results	
3.2.4 Head Liquid results	
3.3 E-Field Probe and 2450 Balanced Dipole Antenna Calibration	
3.5 L Tield Trobe and 2 150 Balanced Dipole Tillennia Canoration	23
4.0 Measurement Uncertainty	24
5.0 Measurement Traceability	27
6.0 WARNING LABEL INFORMATION - USA	27
7.0 REFERENCES	
8.0 DOCUMENT HISTORY	
APPENDIX A - SAR Evaluation Data	
APPENDIX B - Photographs	37
APPENDIX C - E-Field Probe and 2450MHz Ralanced Dinole Antenna Calibr	eation Data 3

Page 3 of 62

STATEMENT OF COMPLIANCE

The ZyXEL sample device, model # ZyAIR G-110 was evaluated in accordance with the requirements for compliance testing defined in FCC OET Bulletin 65, Supplement C (Edition 01-01). Testing was performed at the Intertek Testing Services facility in Hsinchu, Taiwan.

For the evaluation, the dosimetric assessment system INDEXSAR SARA2 was used. The phantom employed was the box phantom of 2mm thick in one wall. The total uncertainty for the evaluation of the spatial peak SAR values averaged over a cube of 1g tissue mass had been assessed for this system to be $\pm 29.7\%$.

The device was tested at their maximum output power declared by the ZyXEL.

In summary, the maximum spatial peak SAR value for the sample device averaged over 1g was found to be:

Phantom	Position	SAR _{1g} , mW/g
2mm thick box phantom wall	EUT perpendicular to the phantom, 0 mm separation.	0.32 mW/g.

In conclusion, the tested Sample device was found to be in compliance with the requirements defined in OET Bulletin 65, Supplement C (Edition 01-01) for body configurations.

Page 4 of 62

1.0 Job Description

1.1 Client Information

The ZyAIR G-110 has been tested at the request of:

Company: ZyXEL Communications Corporation

No. 6, Innovation Rd II, Science-Based Industrial Park,

Hsin-Chu, Taiwan

1.2 Equipment under test (EUT)

Product Descriptions:

Equipment	802.11g Wireless CardBus Card		
Trade Name	ZyXEL	Model No:	ZyAIR G-110
FCC ID	I88G110	S/N No.	Not Labeled
Category	Portable	RF Exposure	Uncontrolled Environment
Frequency Band	2412 – 2462 MHz	System	DSSS, OFDM

EUT Antenna Description				
Type	PCB Printed	Configuration	Fixed	
Dimensions	15 x 9 mm	Gain	2 dBi	
Location	Embedded			

Use of Product: Wireless Data Communication

Manufacturer: ZyXEL

Production is planned: [X] Yes, [] No

EUT receive date: Mar. 23, 2004

EUT received condition: Good operating condition prototype

Test start date: Mar. 31, 2004

Test end date: Mar. 31, 2004

Page 5 of 62

1.3 Test plan reference

FCC Rule: Part 2.1093, FCC's OET Bulletin 65, Supplement C (Edition 01-01) and IEEE 1528/D1.2

1.4 System test configuration

1.4.1 System block diagram & Support equipment

	Support Equipment						
Item #	Equipment	Brand	Model No.	S/N			
1	Notebook	DELL	PP01L	CN-06P83-48643-33V- 0112			

Page 6 of 62

1.4.2 Test Position

See the photographs as section 2.2

1.4.3 Test Condition

During tests the worst-case data (max RF coupling) was determined with following conditions:

Usage	Operates with a portable antenna axis at the joint computer and the liquid surface: Distance between antenna axis at the joint bottom position, perpen phantom 0mm and 1			, perpendicular to
Simulating human Head/ Body/Hand	Body	EUT Battery	Device is powered from host computer through battery.	
802.11b	Channel	Frequency MHz	Before SAR Test (dBm)	After SAR Test (dBm)
output Power	Low Channel - 1	2412	19.05	-
	Mid Channel - 6	2437	19.87	19.87
	High Channel- 11	2462	19.86	-
802.11g	Channel	Frequency MHz	Before SAR Test (dBm)	After SAR Test (dBm)
Conducted output Power	Low Channel - 1	2412	18.18	-
	Mid Channel - 6	2437	18.67	-
	High Channel- 11	2462	19.14	-

The spatial peak SAR values were assessed for lowest, middle and highest operating channels, defined by the manufacturer.

The conducted output power was measured before and after the test using a diode detector, oscilloscope and signal generator.

The EUT contains 802.11b and 802.11g functions; due to the worst case output power was found in 802.11b function, we only performed the 802.11b for SAR testing.

The EUT was transmitted continuously during the test.

After verifying the maximum output power, we found the maximum output power was occurred at 11Mbps data rate.

All the test data were performed under the above transmission rate.

Page 7 of 62

1.5 Modifications required for compliance

Intertek Testing Services implemented no modifications.

1.6 Additions, deviations and exclusions from standards

The phantom employed was the box phantom of 2mm thick in vertical wall.

Page 8 of 62

2.0 SAR Evaluation

2.1 SAR Limits

The following FCC limits for SAR apply to devices operate in General Population/Uncontrolled Exposure environment:

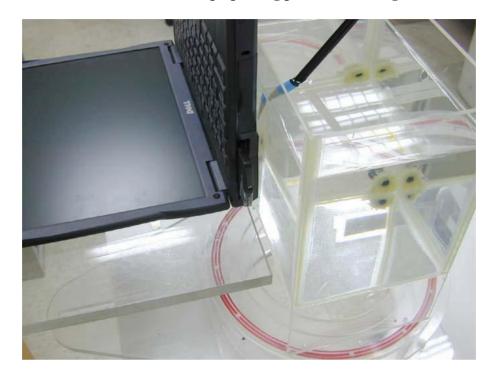
EXPOSURE (General Population/Uncontrolled Exposure environment)	SAR (W/kg)
Average over the whole body	0.08
Spatial Peak (1g)	1.60
Spatial Peak for hands, wrists, feet and ankles (10g)	4.00

Page 9 of 62

2.2 Configuration Photographs

SAR Measurement Test Setup

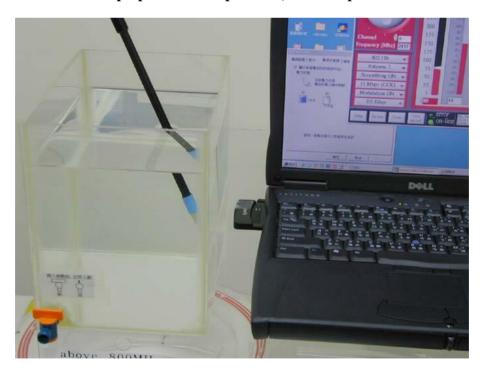
Test System



Page 10 of 62

SAR Measurement Test Setup

Bottom side of Laptop facing phantom touching



Page 11 of 62

SAR Measurement Test Setup EUT perpendicular to phantom, 0 mm separation

EUT perpendicular to phantom, 15 mm separation

Page 12 of 62

2.3 SAR measurement system

Robot system specification

The SAR measurement system being used is the IndexSAR SARA2 system, which consists of a Mitsubishi RV-E2 6-axis robot arm and controller, IndexSAR probe and amplifier and SAM phantom Head Shape. The robot is used to articulate the probe to programmed positions inside the phantom head to obtain the SAR readings from the DUT.

The system is controlled remotely from a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans.

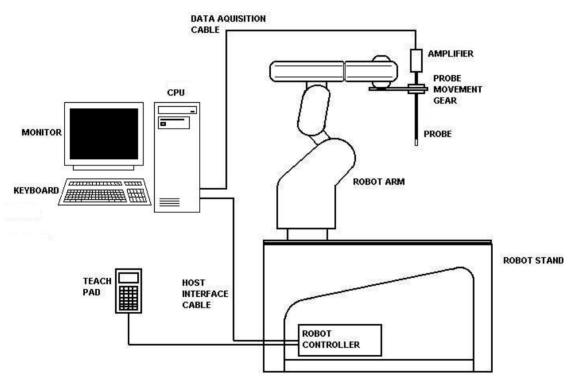


Figure 1: Schematic diagram of the SAR measurement system

The position and digitised shape of the phantom heads are made available to the software for accurate positioning of the probe and reduction of set-up time.

The SAM phantom heads are individually digitised using a Mitutoyo CMM machine to a precision of 0.02mm. The data is then converted into a shape format for the software, providing an accurate description of the phantom shell. In operation, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom. When the maximum SAR point has been found, the system will then carry out a 3D scan centred at that point to determine volume averaged SAR level.

The first 2 measurements points in a direction perpendicular to the surface of the phantom during the zoom scan and closest to the phantom surface, were only 3.5mm and the probe is kept at greater than half a diameter from the surface.

Page 13 of 62

2.4 SAR measurement system validation

Prior to the assessment, the system was verified to the $\pm 10\%$ of the specifications by using the system validation equipments. The validation was performed at 2450 MHz on the bottom side of box phantom.

Procedures

The SAR evaluation was performed with the following procedures:

- a. The SAR distribution was measured at the exposed side of the bottom of the box phantom and was measured at a distance of 8 mm from the inner surface of the shell. The feed power was 1/4W.
- b. The dimension for this cube is 32 mm x 32 mm x 34 mm was assessed by measuring 5 x 5 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - i) The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measurement point is 5 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in Z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - ii) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum, the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3-D spline interpolation algorithm. The 3-D spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y and z directions). The volume was integrated with the trapezoidal algorithm. 1000 points (10 x 10 x 10) were interpolated to calculate the average.
 - iii) All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

The test scan procedure for system validation also apply to the general scan procedure except for the set-up position. For general scan, the EUT was placed at the side of phantom. For validation scan, the dipole antenna was placed at the bottom of phantom

Page 14 of 62

2.4.1 System Validation result

	System Validation (2450 MHz Head)						
Frequency MHz							
2450	CW	52.4	54.688	4.37%			

Please see the plot below:

Page 15 of 62

Date:2003/10/15Position:BottomFilename:2450val10-15.txtPhantom:Box1.csvDevice Tested:SARA2 systemHead Rotation:0

Antenna: 2450dipole Test Frequency: 2450MHz
Shape File: none.csv Power Level: 24dBm/CW

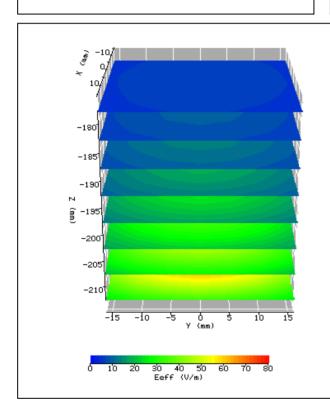
.453

Probe: 0136

Cal File: SN0136_2450_CW_HEAD

Lin

 Air
 490
 405
 405


 DCP
 20
 20
 20

.453

.453

Amp Gain: 2
Averaging: 1
Batteries
Replaced:

15.5cm Liquid: 2450MHz Head Type: 1.80379 **Conductivity: Relative Permittivity:** 38.1223 23.3 **Liquid Temp (deg C): Ambient Temp (deg C):** 24 50 Ambient RH (%): 1000 Density (kg/m3): **Software Version:** 0.421N

ZOOM SCAN RESULTS:

Spot SAR (W/kg): Start Scan End Scan 0.896 0.889

Change during Scan (%)

Max E-field 74.25

(V/m): 14.23 Max SAR (W/kg) 13.672

Location of Max	X	Y	Z
(mm):	-1.3	0.0	-220.7

10g

6.405

Normalized to an input power of 1W Averaged over 1 cm³ (1g) of tissue **54.688W/kg**

Page 16 of 62

2.4.2 System Performance Check result

System performance check (2450 MHz Head)						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
2450	CW	52.4	49.21	-6.09%		

Please see the plot below:

Position:

Page 17 of 62

Date: 2004/3/30

Filename: 2450 performance check **Phantom:**

Device Tested: 2450 performance check **Head Rotation:**

Antenna: 2450 dipole antenan Test Frequency: 2450MHz
Shape File: none.csv Power Level: 23 dBm

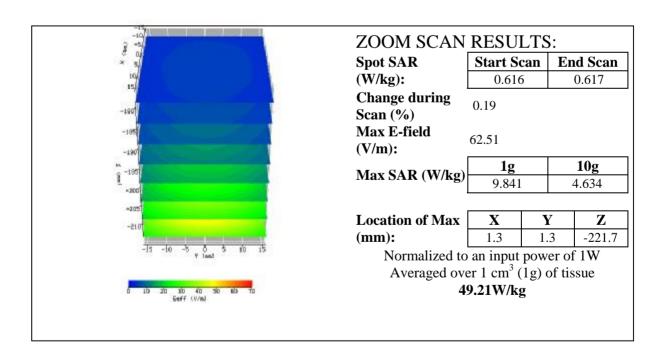
Probe: 0136

Cal File: SN0136_2450_CW_HEAD

X Y \mathbf{Z} Air 490 405 405 **Cal Factors: DCP** 20 20 20 Lin .378 .378 .378

Amp Gain: 2
Averaging: 1
Batteries

Replaced:


Liquid: 15.5cm

Type: 2450MHz Head

bottom of phantom

HeadBox1-val..csv

Conductivity: 1.843
Relative Permittivity: 38.257
Liquid Temp (deg C): 23.1
Ambient Temp (deg C): 23
Ambient RH (%): 50
Density (kg/m3): 1000
Software Version: 2.3 VPM

Page 18 of 62

2.5 Test Result

The results on the following page(s) were obtained when the device was tested in the condition described in this report. Detailed measurement data and plots, which reveal information about the location of the maximum SAR with respect to the device, are reported in Appendix A.

Measurement Results

Trade Name:	ZyXEL		Model No.:	ZyAIR G-11	0
Serial No.:	Not Labled		Test Engineer:	Clay Chen	
TEST CONDITIONS					
Ambient Temperature 23 °C		Relative Humidity		55 %	
Test Signal Sou	irce	Test Mode	Signal Modulation	on	DSSS
Output Power	Before	See page 6	Output Power Af	fter SAR	See page 6
SAR Test			Test		
Test Duration		23 min. each scan	Number of Batte	ry Change	1

	EUT Position							
Channel (MHz) Operating Crest Factor Description				Distance (mm)	Measured SAR _{1g} (mW/g)	Plot Number		
2437	DSSS	1	Perpendicular to phantom	0	0.320	1		
2437	DSSS	1	Perpendicular to phantom	15	0.049	2		
2437	DSSS	1	Bottom to phantom	0	0.109	3		

Note: 1. The distance from bottom of EUT to flat phantom is 17 mm.

2. Configuration at middle channel with more than –3dB of applicable limit.

Page 19 of 62

3.0 Test Equipment

3.1 Equipment List

The Specific Absorption Rate (SAR) tests were performed with the INDEXSAR SARA2 SYSTEM.

The following major equipment/components were used for the SAR evaluations:

	SAR Measurement System		
EQUIPMENT	SPECIFICATIONS	S/N #	LAST CAL. DATE
Balanced Validation dipole	2450MHz	0048	03/26/2003
Controller	Mitsubishi CR-E116	F1008007	N/A
Robot	Mitsubishi RV-E2	EA009002	N/A
	Repeatability: ± 0.04mm; Number of Axes: 6		
E-Field Probe	IXP-050	0136	09/10/2003
	Frequency Range: Probe outer diameter: 5.2 mm; probe tip and the dipole center: 2.7 mm	Length: 350 mm;	Distance between the
Data Acquisition	SARA2	N/A	N/A
	Processor: Pentium 4; Clock speed: 1.5GHz; OS: Win Software: SARA2 ver. VPM2p2	ndows XP; I/O: two	RS232;
Phantom	2mm wall thickness box phantom	N/A	N/A
	Shell Material: clear Perspex; Thickness: 2 ± 0.1 mm D) mm ³ ; Dielectric constant: less than 2.85 above 500		215.5 x 200 (W x L x
Device holder	Material: clear Perspex; Dielectric constant: less than 2.85 above 500MHz	N/A	N/A
Simulated Tissue	Mixture	N/A	3/30/2004
	Please see section 3.2 for details		
RF Power Meter	Boonton 4231A with 51011-EMC power sensor	79401-32482	03/21/2003
	Frequency Range: 0.03 to 8 GHz, <24dBm		
Directional Coupler	INDEXSAR VDC0830-20	0302	05/19/2003
	0.8 to 3 GHz, Max. Power<500W		
Vector Network Analyzer	HP 8753B HP 85046A	2807J04037 2729A01958	07/04/2003
	300k to 3GHz		
Signal Generator	R&S SMR27	100036	09/19/2003
	10M to 27GHz, <120dBuV		
Crystal Detector	Agilent 8472B	MY42240243	N/A
	10MHz to 18GHz		
Two Channel Digital Storage Oscilloscope	Tektronix TDS1012	C031679	08/16/2003

Page 20 of 62

3.2 Tissue Simulating Liquid

3.2.1 Body Tissue Simulating Liquid for evaluation test

Body Ingredients Frequency (2.45 GHz)							
DGBE (Dilethylene Glycol Butyl Ether)	26.7%						
Salt	0.04%						
Water	73.2%						

The dielectric parameters were verified prior to assessment using the HP 85046A dielectric probe kit and the HP 8753B network Analyzer. The dielectric parameters were:

Frequency (MHz)	Temp. (°C)	e r / Relati	ive Perm	ittivity	s / Condu	r *(kg/m ³)		
2450	22.6	measured	target	△(±5%)	measured	target	△(±5%)	1000
2430	22.0	50.77	52.7	-3.66%	1.95	1.95	0%	1000

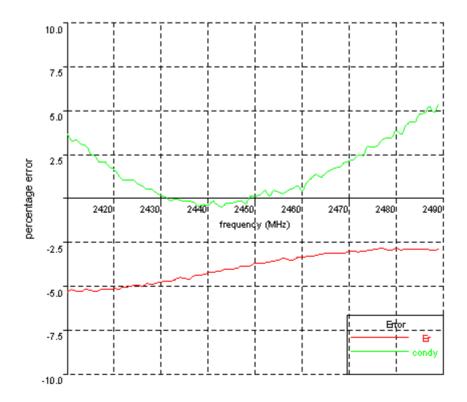
^{*} Worst-case assumption

3.2.2 Head Tissue Simulating Liquid for System performance Check test

Head Ingredients Frequency (2.45 GHz)							
DGBE (Dilethylene Glycol Butyl Ether) 53.3%							
Water	46.7%						

The dielectric parameters were verified prior to assessment using the HP 85046A dielectric probe kit and the HP 8753B network Analyzer. The dielectric parameters were:

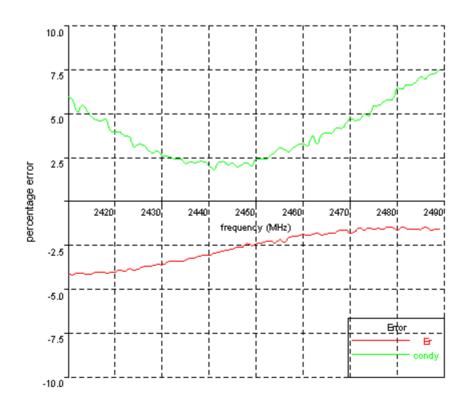
Frequency (MHz)	Temp. (°C)	e _r / Relati	ive Pern	nittivity	s / Condu	r *(kg/m³)		
2450	23.4	measured	target	△(±5%)	measured	target	△(±5%)	1000
2430	23.4	38.26	39.2	-2.40%	1.84	1.80	2.22%	1000


^{*} Worst-case assumption

Page 21 of 62

3.2.3 Body Liquid results

Date: 30 Mar. 2004	Temperature: 22.6 °C	Type:2450 MHz/ body	Tested by: Clay
Date: 30 Mar. 2004 2410, 49.9425565951, -1.9822 2411, 50.0147790794, -1.9757 2412, 49.9515069209, -1.9777 2413, 49.9515069209, -1.9773 2414, 50.022648341, -1.9730 2415, 49.9880402116, -1.9654 2416, 49.9481163605, -1.9654 2416, 50.0000886443, -1.9581 2418, 50.0234381506, -1.9595 2419, 50.0191834357, -1.9548 2420, 50.0328142981, -1.9525 2421, 50.0188463111, -1.9474 2422, 50.0752724847, -1.9432 2423, 50.0831820958, -1.9440 2424, 50.1139439588, -1.9440 2424, 50.1139439588, -1.9453 2425, 50.1257734936, -1.9422 2426, 50.1054725553, -1.9403 2427, 50.1712861332, -1.9384 2428, 50.1493581084, -1.9338 2429, 50.1976000781, -1.9358 2430, 50.2230796099, -1.9341 2431, 50.2402452619, -1.9334 2433, 50.2355875735, -1.9304 2433, 50.3053087604, -1.9338 2434, 50.360815771, -1.9328 2436, 50.3053087604, -1.9338 2437, 50.3923362683, -1.9339 2436, 50.3053087604, -1.9338 2437, 50.3923362683, -1.9339 2438, 50.4175838555, -1.9303 2441, 50.4954686669, -1.9388 2442, 50.5189263764, -1.9338 2444, 50.4954686669, -1.9388 2444, 50.5837044925, -1.9339 2444, 50.5837044925, -1.9339 2444, 50.58571610596, -1.9403 2444, 50.68666377488, -1.9424 2447, 50.6571354158, -1.9424 2447, 50.6571354158, -1.9424 2447, 50.6571354158, -1.9424 2444, 50.6666377488, -1.9424 2447, 50.6666377488, -1.9424	6650093 19636 1714135 6611988 156244 14147389 605007 266833 1849444 1856455 1211606 1211013 1196561 1715773 1542833 1355335 1066573 1066573 1066573 1066573 1066573 10757	1ype:2450 MHz/ body 2450, 50.7699720374, -1.9524619641 2451, 50.7598735866, -1.9554616461 2452, 50.7665960379, -1.961686526 2453, 50.7959561817, -1.9569550243 2454, 50.8178251074, -1.9647032153 2455, 50.8558694847, -1.9638338257 2456, 50.9026016426, -1.963959769 2457, 50.8539147594, -1.9691410448 2458, 50.8477360088, -1.9729134896 2459, 50.9182363544, -1.9771090222 2460, 50.9150811653, -1.972852602 2461, 50.9413334114, -1.9840141177 2462, 50.9606643366, -1.989466594 2463, 50.9700141779, -1.9940133008 2465, 51.0344742481, -2.0002326508 2466, 51.0354475267, -2.0045921026 2467, 51.0442284114, -2.008566117 2468, 51.0391054968, -2.0112203102 2469, 51.0246333989, -2.0172248189 2470, 51.0915994142, -2.0240203964 2472, 51.0621175863, -2.0310535503 2474, 51.1054373641, -2.0429012456 2475, 51.11468403898, -2.046128159 2477, 51.1783976913, -2.0549627653 2478, 51.12489384, -2.0581115187 2479, 51.1146184153, -2.0601463488 2480, 51.1843267531, -2.0697100317 2481, 51.1104154153, -2.0697100317 2481, 51.1104154153, -2.0697100317 2481, 51.1104154153, -2.0697100317 2481, 51.1144512365, -2.0770271548 2483, 51.1275264956, -2.0837068701 2484, 51.11407137245, -2.0981825579 2487, 51.1161228847, -2.1072059404 2488, 51.0935584268, -2.1022511216 2489, 51.1423731398, -2.1124599074	Tested by: Clay
2449, 50.0054007000, -1.9513	204144	2489, 51.1423751398, -2.1124399074 2490, 51.0612685775, -2.1232860267	



Page 22 of 62

3.2.4 Head Liquid results

2410, 37.6479078758, -1.8693193773 2411, 37.628499568, -1.8672754257 2412, 37.6630769138, -1.8560246295 2450, 38.2565197484, -1.8433422765 2451, 38.2634449109, -1.844998415 2452, 38.3060514067, -1.8459552414	Date: 30 Mar. 2004	Temperature: 23.4 °C	Type:2450 MHz/ head	Tested by: Clay
2413, 37.6608804332, -1.8641474049 2414, 37.698417804, -1.85978703 2454, 38.2698306239, -1.8550436003 2415, 37.6418799854, -1.8540018167 2455, 38.431806239, -1.8550436003 2416, 37.6728531734, -1.8519284548 2418, 37.664202816, -1.8511281803 2418, 37.664202816, -1.8511281803 2419, 37.6637909579, -1.8436130508 2420, 37.6804181944, -1.8430118255 2420, 37.6804181944, -1.8430118255 2421, 37.7192131671, -1.8445873617 2422, 37.6942015047, -1.841470107 2462, 38.4553150999, -1.880861558 24243, 37.7488491196, -1.8415075521 24243, 37.7488491196, -1.8415075521 24245, 37.7885501992, -1.8318411791 2426, 37.7885501992, -1.8318411791 2427, 37.789275919, -1.8318411791 2428, 37.8024303751, -1.8296897174 2429, 37.823039974, -1.8324213882 2433, 37.98183929091, -1.8292204841 2431, 37.7825540523, -1.8292204841 2471, 37.788698007, -1.8292204841 2473, 37.88698007, -1.829121889 2473, 37.88698007, -1.8291838881 2473, 37.88698007, -1.829183888 2474, 37.88698007, -1.829183888 2474, 37.88698007, -1.829183888 2474, 37.88698007, -1.829183881 2475, 37.886985007, -1.829123845 2475, 37.886985007, -1.829123885 2475, 37.886985007, -1.82912788 2475, 37.886985007, -1.82912788 2475, 37.886985007, -1.82912788 2475, 37.886985007, -1.829183888 2474, 37.875540523, -1.8292659, -1.82756629 2475, 37.886985007, -1.829183888 2474, 37.875540523, -1.8292659, -1.82756629 2475, 37.886985007, -1.829183888 2474, 38.8715231704, -1.9152433992 2475, 37.89685007, -1.829183888 2474, 38.8715231704, -1.9152433992 2475, 37.89685007, -1.829183888 2474, 38.8715231704, -1.9152433992 2475, 37.89685007, -1.829183888 2474, 38.89685007, -1.829183885 2475, 38.8481850149485, -1.9506930596 2475, 38.8481836069367, -1.996830596 2475, 38.8681836, -1.996830596 2476, 38.86868007, -1.829183888 2477, 38.89685007, -1.829183888 2474, 38.89685007, -1.829183886 2475, 38.89685007, -1.829183886 2476, 38.86685037, -1.9968679798669 2478, 38.89685007, -1.8291838455 2475, 38.89685007, -1.8291838455 2475, 38.89685007, -1.92979787669 2483, 38.99686987, -1.9969978698 2484, 38.89686007, -1.9969978698 24	2410, 37, 6479078758, -1, 8693 2411, 37, 628499568, -1, 8693 2412, 37, 6630769138, -1, 8560 2413, 37, 6608804332, -1, 8641 2414, 37, 6298417804, -1, 8597 2415, 37, 6418799854, -1, 8519 2416, 37, 6728531734, -1, 8519 2417, 37, 6780896321, -1, 8519 2418, 37, 664202816, -1, 85512 2419, 37, 6637909579, -1, 8436 2420, 37, 6804181944, -1, 8430 2421, 37, 7192131671, -1, 8445 2422, 37, 6942015047, -1, 8414 2423, 37, 7488491196, -1, 8314 2424, 37, 7135682113, -1, 8317 2424, 37, 7135682113, -1, 8317 2425, 37, 7381546856, -1, 8359 2427, 37, 789275919, -1, 8318 2428, 37, 8024303751, -1, 8296 2429, 37, 828039974, -1, 8292 2430, 37, 8186923043, -1, 8291 2431, 37, 8725540523, -1, 8292 2431, 37, 8725540523, -1, 8292 2433, 37, 9027499194, -1, 8282 2434, 37, 886985007, -1, 8291 2435, 37, 9167777599, -1, 8252 2436, 37, 9651512107, -1, 8278 2437, 37, 9661198764, -1, 8278 2439, 38, 0228643511, -1, 8307 2440, 38, 0210626529, -1, 8270 2441, 38, 0529026199, -1, 8244 2442, 38, 0802562371, -1, 8302 2443, 38, 101696122, -1, 83465 2444, 38, 1828509487, -1, 8324 2444, 38, 1828509487, -1, 8342 2444, 38, 1828509487, -1, 8342 2445, 38, 1525514122, -1, 8346 2446, 38, 184910485, -1, 8314 2447, 38, 1845014964, -1, 8348 24448, 38, 266045376, -1, 83815	3193773 754257 7246295 1474049 78703 7018167 3225206 92284548 221803 5130508 9118255 5873617 470107 8075521 754891 9607112 9170454 3411791 5897174 213882 2122184 2204841 2204841 2213882 8238455 8935064 872329 9046585 7128776 9455924 94058132 9300575 526298 5502665 5174519 9428694 943695	2450, 38.2565197484, -1.8433422765 2451, 38.2634449109, -1.844998415 2452, 38.3060514067, -1.8459552414 2453, 38.3150936558, -1.8459552414 2453, 38.3150936558, -1.8459552414 2453, 38.3150936558, -1.8550436003 2455, 38.343070602, -1.8601641353 2456, 38.2832863722, -1.8603738333 2457, 38.3856670755, -1.8588649358 2458, 38.4118597819, -1.86464445218 2459, 38.4255957173, -1.8685394195 2460, 38.4614663153, -1.8703040268 2461, 38.4241187691, -1.8694336671 2462, 38.4553150999, -1.8808961558 2463, 38.47785347, -1.873260934 2464, 38.4309973541, -1.887024545 2466, 38.4712783778, -1.8877722339 2467, 38.4864383917, -1.894495891 2468, 38.5479136995, -1.8952638261 2469, 38.5465086281, -1.9062908607 2470, 38.458222778, -1.9082364623 2471, 38.5031690847, -1.9069305396 2472, 38.580705361, -1.9086371906 2473, 38.552812746, -1.9152433992 2475, 38.5489211245, -1.9267124918 2476, 38.5757876429, -1.9152433992 2477, 38.581052361, -1.9086371906 2473, 38.5917624911, -1.9362973453 2479, 38.5818042017, -1.9152433992 2478, 38.5917624911, -1.9362973453 2479, 38.581842017, -1.991243391 2482, 38.5571212102, -1.995712395148 2481, 38.5981938231, -1.95110697731 2482, 38.5513131527, -1.9571737474 2484, 38.531005693, -1.961831685 2488, 38.524786486, -1.967001975 2487, 38.5233078912, -1.95779717474 2484, 38.533078912, -1.9577717474 2488, 38.534186374, -1.9577717474 2488, 38.5233078912, -1.9571036409282 2488, 38.5247120658, -1.9677001975 2487, 38.5330758804, -1.9812138125	Tested by. Clay

Page 23 of 62

3.3 E-Field Probe and 2450 Balanced Dipole Antenna Calibration

Probe calibration factors and dipole antenna calibration are included in Appendix C.

Page 24 of 62

4.0 Measurement Uncertainty

The uncertainty budget has been determined for the INDEXSAR SARA2 measurement system according to IEEE P1528 documents [3] and is given in the following table. The extended uncertainty (95% confidence level) was assessed to be 29.7%

Table 1 Exposure Assessment Uncertainty

Example of measurement uncertainty assessment SAR measurement

(blue entries are site-specific)

(blue entries are site-specific)	_								,	,	
a	b			С	d	е		f	g	h	I
Uncertainty Component	Sec.	Т	ol. (+/-	-)	Prob. Dist.	Divisor (descrip)	Divisor	c1 (1a)	c1 (10a)		Standard Uncertainty (%) 10g
, , , , , , , , , , , , , , , , , , , ,		(dB)		(%)				- (3/	- (- 0/	(11)	(11)
Measurement System											
Probe Calibration	E2.1			2.5	N	1 or k	1	1	1	2.50	2.50
Axial Isotropy	E2.2	0.25	5.93	5.93	R	√3	1.73	0	0	0.00	0.00
Hemispherical Isotropy	E2.2	0.45	10.92	10.92	R	√3	1.73	1	1	6.30	6.30
Boundary effect	E2.3		4	4.00	R	√3	1.73	1	1	2.31	2.31
Linearity	E2.4	0.04	0.93	0.93	R	√3	1.73	1	1	0.53	0.53
System Detection Limits	E2.5		1	1.00	R	√3	1.73	1	1	0.58	0.58
Readout Electronics	E2.6		1	1.00	N	1 or k	1.00	1	1	1.00	1.00
Response time	E2.7		0	0.00	R	√3	1.73	1	1	0.00	0.00
Integration time	E2.8		1.4	1.40	R	√3	1.73	1	1	0.81	0.81
RF Ambient Conditions	E6.1		3	3.00	R	√3	1.73	1	1	1.73	1.73
Probe Positioner Mechanical Tolerance	E6.2		0.6	0.60	R	√3	1.73	1	1	0.35	0.35
Probe Position wrt. Phantom Shell	E6.3		3	3.00	R	√3	1.73	1	1	1.73	1.73
SAR Evaluation Algorithms	E5		8	8.00	R	√3	1.73	1	1	4.62	4.62
Test Sample Related											
Test Sample Positioning	E4.2		2	2.00	N	1	1.00	1	1	2.00	2.00
Device Holder Uncertainty	E4.1		2	2.00	N	1	1.00	1	1	2.00	2.00
Output Power Variation	6.6.2		5	5.00	R	√3	1.73	1	1	2.89	2.89
Phantom and Tissue Parameters											
Phantom Uncertainty (shape and thickness)	E3.1		4	4.00	R	√3	1.73	1	1	2.31	2.31
Liquid conductivity (Deviation from target)	E3.2		5	5.00	R	√3	1.73	0.64	0.43	1.85	1.24
Liquid conductivity (measurement uncert.)	E3.3		1.1	1.10	N	1	1.00	0.64	0.43	0.70	0.47
Liquid permittivity (Deviation from target)	E3.2		5	5.00	R	√3	1.73	0.6	0.49	1.73	1.41
Liquid permittivity (measurement uncert.)	E3.3		1.1	1.10	N	1	1.00	0.6	0.49	0.66	0.54
Combined standard uncertainty					RSS					10.5	10.3
Expanded uncertainty	(95% Confidence Level)				k=2					20.6	20.3

Page 25 of 62

Table 2 System Check (Verification)

Example of measurement uncertainty assessment for system performance check

(blue entries are site-specific)

a	b			С	d	е		f	g	h	1
Uncertainty Component	Sec.	•	Tol. (+/		Prob. Dist.	Divisor (descrip)				Standard Uncertainty	Standard Uncertainty (%) 10g
		(dB)		(%)							
Measurement System											
Probe Calibration	E2.1			2.5	N	1 or k	1	1	1	2.50	2.50
Axial Isotropy	E2.2	0.25	5.93	5.93	R	√3	1.73	0	0	0.00	0.00
Hemispherical Isotropy	E2.2	0.45	10.92	10.92	R	√3	1.73	1	1	6.30	6.30
Boundary effect	E2.3		4	4.00	R	√3	1.73	1	1	2.31	2.31
Linearity	E2.4	0.04	0.93	0.93	R	√3	1.73	1	1	0.53	0.53
System Detection Limits	E2.5		1	1.00	R	√3	1.73	1	1	0.58	0.58
Readout Electronics	E2.6		1	1.00	N	1 or k	1.00	1	1	1.00	1.00
Response time	E2.7		0	0.00	R	√3	1.73	1	1	0.00	0.00
Integration time	E2.8		1.4	1.40	R	√3	1.73	1	1	0.81	0.81
RF Ambient Conditions	E6.1		3	3.00	R	√3	1.73	1	1	1.73	1.73
Probe Positioner Mechanical Tolerance	E6.2		0.6	0.60	R	√3	1.73	1	1	0.35	0.35
Probe Position wrt. Phantom Shell	E6.3		3	3.00	R	√3	1.73	1	1	1.73	1.73
SAR Evaluation Algorithms	E5		8	8.00	R	√3	1.73	1	1	4.62	4.62
Dipole											
Dipole axis to liquid distance	8, E4.2		2	2.00	N	1	1.00	1	1	2.00	2.00
Input power and SAR drift measurement	8, 6.6.2		5	5.00	R	√3	1.73	1	1	2.89	2.89
Phantom and Tissue Parameters											
Phantom Uncertainty (thickness)	E3.1		4	4.00	R	√3	1.73	1	1	2.31	2.31
Liquid conductivity (Deviation from target)	E3.2		5	5.00	R	√3	1.73	0.64	0.43	1.85	1.24
Liquid conductivity (measurement uncert.)	E3.3		1.1	1.10	N	1	1.00	0.64	0.43	0.70	0.47
Liquid permittivity (Deviation from target)	E3.2		5	5.00	R	√3	1.73	0.6	0.49	1.73	1.41
Liquid permittivity (measurement uncert.)	E3.3		1.1	1.10	N	1	1.00	0.6	0.49	0.66	0.54
Combined standard uncertainty					RSS					10.3	10.1
Expanded uncertainty	(95% Confidence Level)				k=2					20.2	19.9

Page 26 of 62

Table 3 Uncertainty assessment for waveguide probe calibration

	а		b		С	
Uncertainty Component	Tol. (+/-%)	Prob. Dist.	Divisor (descrip)	Divisor (value)	c1	Standard Uncertainty (+/- %)
Waveguide calibrations						
Incident or forward power	1	R	$\sqrt{3}$	1.73	1	0.58
Refected power	1.00	R	$\sqrt{3}$	1.73	1	0.58
Liquid conductivity	2.00	R	$\sqrt{3}$	1.73	1	1.15
Liquid permittivity	2.00	R	$\sqrt{3}$	1.73	1	1.15
Probe positioning	1.00	Ν	1	1.00	1	1.00
Field homogeneity	1.00	R	$\sqrt{3}$	1.73	1	0.58
Field probe positioning	2.00	R	$\sqrt{3}$	1.73	1	1.15
Field probe linearity	1.00	R	$\sqrt{3}$	1.73	1	0.58
Combined standard uncertainty		RSS				2.5
Expanded uncertainty		k=2				4.9

Table 4 Uncertainty assessment for DiLine dielectric property measurement

	а		b		С	
		Prob.	Divisor	Divisor		Standard
Uncertainty Component	Tol. (+/- %)	Dist.	(descrip)	(value)	c1	Uncertainty (+/- %)
Permittivity measurement						
Repeatability (n repeats)	1	N	1 or k	1	1	1.00
Temperature measurement	0.30	R	$\sqrt{3}$	1.73	1	0.17
VNA drift, linearity	0.50	R	$\sqrt{3}$	1.73	1	0.29
Test port cable variations	0.50	R	$\sqrt{3}$	1.73	1	0.29
Combined standard uncertainty		RSS				1.1
Expanded uncertainty		k=2				2.1

	а		b		С	
		Prob.	Divisor	Divisor		Standard
Uncertainty Component	Tol. (+/- %)	Dist.	(descrip)	(value)	c1	Uncertainty (+/- %)
Conductivity measurement						
Repeatability (n repeats)	1	Ν	1 or k	1	1	1.00
Temperature measurement	0.30	R	$\sqrt{3}$	1.73	1	0.17
VNA drift, linearity	0.50	R	$\sqrt{3}$	1.73	1	0.29
Test port cable variations	0.50	R	$\sqrt{3}$	1.73	1	0.29
Combined standard uncertainty		RSS				1.1
Expanded uncertainty		k=2				2.1

Page 27 of 62

5.0 Measurement Traceability

All measurements described in this report are traceable to Chinese National Laboratory Accreditation (CNLA) standards or appropriate national standards.

6.0 WARNING LABEL INFORMATION - USA

See user manual.

Page 28 of 62

7.0 REFERENCES

- [1] ANSI, ANSI/IEEE C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 GHz, The Institute of electrical and Electronics Engineers, Inc., New York, NY 10017, 1999
- [2] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Supplement C to OET Bulletin 65, Washington, D.C. 20554, 1997
- [3] IEEE Standards Coordinating Committee 34, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", IEEE Std 1528/D1.2, April 21, 2003

Page 29 of 62

8.0 DOCUMENT HISTORY

Revision/ Job Number	Writer Initials	Date	Change
N/A	J.C.	April 6, 2004	Original document

Page 30 of 62

APPENDIX A - SAR Evaluation Data

Power drift is the measurement of power drift of the device over one complete SAR scan.

To assess the drift of the power of the device under test, a SAR measurement was made in the middle of the zoom scan volume at the start of the scan and a measurement at this point was then also made after the measurement scan. The difference between the two measurements should be less than 5%.

Page 31 of 62

Plot #1 (1/2)

Date / Time:2004/3/31Position:perpendicular 0mmFilename:11b-2437per0.txtPhantom:HeadBox2-test.csv

Device Tested: ZyAIR G-110 **Head Rotation:**

Antenna: printed Test Frequency: 2437MHz
Shape File: ZyAIR G-110-per.csv Power Level: 19.87dBm

.405

Probe: 0136

Cal File: SN0136_2450_CW_BODY

Lin

 X
 Y
 Z

 Air
 490
 405
 405

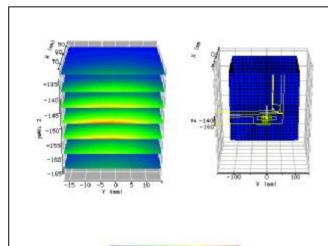
 DCP
 20
 20
 20

.405

.405

Amp Gain: 2
Averaging: 1
Batteries
Replaced:

Cal Factors:


Relative Permittivity: 50.7699
Liquid Temp (deg C): 22.4
Ambient Temp (deg C): 23
Ambient RH (%): 55
Density (kg/m3): 1000
Software Version: 2.3 VPM

Crest Factor=1

Liquid:

Conductivity:

Type:

GLZ GLB SAR (M/kg)

ZOOM SCAN RESULTS:

Spot SAR (W/kg):	Start Scan	End Scan
spot SAK (W/Kg).	0.072	0.071

Change during Scan (%)
Max E-field (V/m): 14.56

Max SAR (W/kg)

1g	10g
0.32	0.16

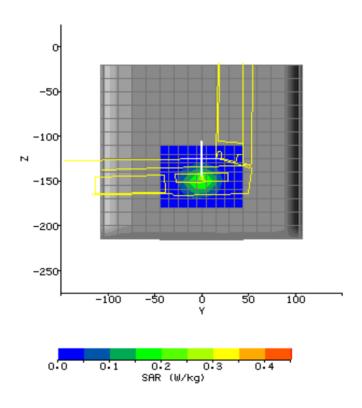
15.5cm

1.95246

2450MHz Body

Location of Max (mm):

X	Y	Z
78.1	-17.0	-150.0


Page 32 of 62

Plot #1 (2/2)

AREA SCAN:

Scan	Extent:

	Min	Max	Steps
Y	-45.0	45.0	9.0
Z	-180.0	-110.0	7.0

Page 33 of 62

Plot #2 (1/2)

Date / Time: 2004/3/31 **Position:** perpendicular 15mm 11b-2437per15.txt **Phantom:** HeadBox2-test.csv Filename:

ZyAIR G-110 **Device Tested: Head Rotation:**

printed 2437MHz Antenna: **Test Frequency:** ZyAIR G-110-per.csv 19.87dBm **Shape File: Power Level:**

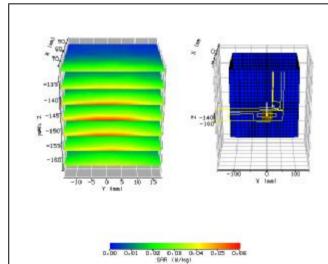
Probe: 0136

Cal File: SN0136_2450_CW_BODY

Lin

X Y \mathbf{Z} 490 405 405 Air **DCP** 20 20 20 .405 .405 .405

Amp Gain: 2 1 Averaging: **Batteries** Replaced:


Cal Factors:

Conductivity: 1.95246 50.7699 **Relative Permittivity: Liquid Temp (deg C):** 22.4 **Ambient Temp (deg C):** 23 55 Ambient RH (%): Density (kg/m3): 1000 **Software Version:** 2.3 VPM

Crest Factor=1

Liquid:

Type:

ZOOM SCAN RESULTS:

End Scan Start Scan Spot SAR (W/kg): 0.014 0.014

Change during -0.2 Scan (%) Max E-field (V/m): 5.53

Max SAR (W/kg)

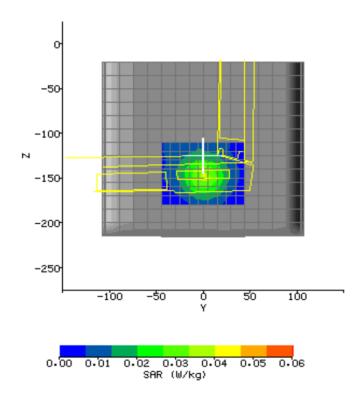
1 g	10g
0.049	0.029

15.5cm

2450MHz Body

Location of Max (mm):

X	Y	Z
78.0	-14.0	-149.0


Page 34 of 62

Plot #2 (2/2)

AREA SCAN:

Scan Extent:

	Min	Max	Steps
Y	-45.0	45.0	9.0
\mathbf{Z}	-180.0	-110.0	7.0

Page 35 of 62

Plot #3 (1/2)

Date / Time: 2004/3/31 **Position:**

Filename: 11b-2437bot.txt **Phantom:** HeadBox2-test.csv

Device Tested: ZyAIR G-110 **Head Rotation:**

Antenna: printed Test Frequency: 2437MHz
Shape File: ZyAIR G-110-bot.csv Power Level: 19.87dBm

Shape rue: ZyAik G-110-bol.csv Power Level: 15.87dbh

Probe: 0136

Cal File: SN0136_2450_CW_BODY

 X
 Y
 Z

 Air
 490
 405
 405

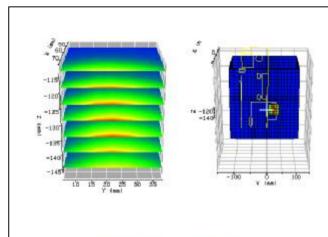
 DCP
 20
 20
 20

 Lin
 .405
 .405
 .405

Amp Gain: 2
Averaging: 1
Batteries

Cal Factors:

Batteries Replaced:


Liquid: 15.5cm

Type: 2450MHz Body

bottom

Conductivity: 1.95246
Relative Permittivity: 50.7699
Liquid Temp (deg C): 22.4
Ambient Temp (deg C): 23
Ambient RH (%): 55
Density (kg/m3): 1000
Software Version: 2.3 VPM

Crest Factor=1

ZOOM SCAN RESULTS:

Change during 3.77 Scan (%)
Max E-field (V/m): 8.35

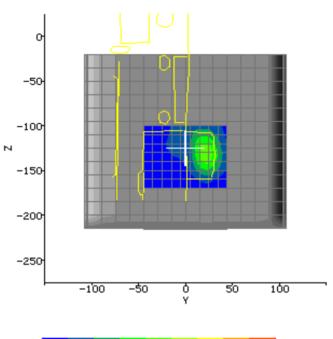
Max SAR (W/kg)

1g	10g
0.109	0.060

Location of Max (mm):

X	Y	Z
78.0	6.0	-129.1

62 0.04 0.06 0.08 0.10 0.12 0.14 SAR (M/kg)


Page 36 of 62

Plot #3 (2/2)

AREA SCAN:

Scan	Extent:

	Min	Max	Steps
Y	-45.0	45.0	9.0
Z	-170.0	-100.0	7.0

Page 37 of 62

APPENDIX B - Photographs

Page 38 of 62

APPENDIX C - E-Field Probe and 2450MHz Balanced Dipole Antenna Calibration Data

Page 39 of 62

IMMERSIBLE SAR PROBE

CALIBRATION REPORT

Part Number: IXP – 050

S/N 0136

10th September 2003

Indexsar Limited Oakfield House Cudworth Lane Newdigate Surrey RH5 5DR

Tel: +44 (0) 1306 631 233 Fax: +44 (0) 1306 631 834 e-mail: <u>enquiries@indexsar.com</u>

Page 40 of 62

INTRODUCTION

This Report presents measured calibration data for a particular Indexsar SAR probe (S/N 0136) and describes the procedures used for characterisation and calibration.

Indexsar probes are characterised using procedures that, where applicable, follow the recommendations of CENELEC [1] and IEEE [2] standards. The procedures incorporate techniques for probe linearisation, isotropy assessment and determination of liquid factors (conversion factors). Calibrations are determined by comparing probe readings with analytical computations in canonical test geometries (waveguides) using normalised power inputs.

Each step of the calibration procedure and the equipment used is described in the sections below.

CALIBRATION PROCEDURE

1. Equipment Used

For the first part of the characterisation procedure, the probe is placed in an isotropy measurement jig as pictured in Figure 1. In this position the probe can be rotated about its axis by a non-metallic belt driven by a stepper motor.

The probe is attached via its amplifier and an optical cable to a PC. A schematic representation of the test geometry is illustrated in Figure 2.

A balanced dipole (900 MHz) is inserted horizontally into the bracket attached to a second belt (Figure 1). The dipole can also be rotated about its axis. A cable connects the dipole to a signal generator, via a directional coupler and power meter. The signal generator feeds an RF amplifier at constant power, the output of which is monitored using the power meter. The probe is positioned so that its sensors line up with the rotation center of the source dipole. By recording output voltage measurements of each channel as both the probe and the dipole are rotated, data are obtained from which the spherical isotropy of the probe can be optimised and its magnitude determined.

The calibration process requires E-field measurements to be taken in air, in 900 MHz simulated brain liquid and at other frequencies/liquids as appropriate.

2. Linearising probe output

The probe channel output signals are linearised in the manner set out in Refs [1] and [2]. The following equation is utilized for each channel:

$$U_{lin} = U_{o/p} + U_{o/p}^{2} / DCP$$
 (1)

where U_{lin} is the linearised signal, $U_{o/p}$ is the raw output signal in voltage units and DCP is the diode compression potential in similar voltage units.

DCP is determined from fitting equation (1) to measurements of U_{lin} versus source feed power over the full dynamic range of the probe. The DCP is a characteristic of the schottky diodes used as the sensors. For the IXP-050 probes with CW signals the DCP values are typically 0.10V (or 20 in the voltage units used by Indexsar software, which are V*200).

3. Selecting channel sensitivity factors to optimise isotropic response

Page 41 of 62

The basic measurements obtained using the calibration jig (Fig 1) represent the output from each diode sensor as a function of the presentation angle of the source (probe and dipole rotation angles). The directionality of the orthogonally-arranged sensors can be checked by analysing the data using dedicated Indexsar software, which displays the data in 3D format as in Figure 3. The left-hand side of this diagram shows the individual channel outputs after linearisation (see above). The program uses these data to balance the channel outputs and then applies an optimisation process, which makes fine adjustments to the channel factors for optimum isotropic response.

The next stage of the process is to calibrate the Indexsar probe to a W&G EMR300 E-field meter in air. The principal reasons for this are to obtain conversion factors applicable should the probe be used in air and to provide an overall measure of the probe sensitivity.

A multiplier is applied to factors to bring the magnitudes of the average E-field measurements as close as possible to those of the W&G probe.

The following equation is used (where linearised output voltages are in units of V*200):

$$\begin{array}{ll} E_{air}^{\ \ 2}\left(V/m\right) \ = & U_{linx} * Air \, Factor_x \\ & + U_{liny} * Air \, Factor_y \\ & + U_{linz} * Air \, Factor_z \end{array} \tag{2}$$

It should be noted that the air factors are not separately used for normal SAR testing. The IXP-050 probes are optimised for use in tissue-simulating liquids and do not behave isotropically in air.

4. 900 MHz Liquid Calibration

Conversion factors for use when the probes are immersed in tissue-simulant liquids at 900 MHz are determined either using a waveguide or by comparison to a reference probe that has been calibrated by NPL. Waveguide procedures are described later. The summary sheet indicates the method used for the probe S/N 0136.

The conversion factor, referred to as the 'liquid factor' is also applied to the measurements of each channel. The following equation is used (where output voltages are in units of V*200):

$$E_{liq}^{2} (V/m) = U_{linx} * Air Factor_{x} * Liq Factor_{x} + U_{liny} * Air Factor_{y} * Liq Factor_{y} + U_{linz} * Air Factor_{z} * Liq Factor_{z}$$
(3)

A 3D representation of the spherical isotropy for probe S/N 0136 using these factors is shown in Figure 3.

The rotational isotropy can also determined from the calibration jig measurements and is reported as the 900MHz isotropy in the summary table. Note that waveguide measurements can also be used to determine rotational isotropy (Fig. 5).

The design of the cells used for determining probe conversion factors are waveguide cells is shown in Figure 4. The cells consist of a coax to waveguide transition and an open-ended section of waveguide containing a dielectric separator. Each waveguide cell stands in the upright positition and is filled with liquid within 10 mm of the open end. The seperator provides a liquid seal and is designed for a good electrical transition from air filled guide to liquid filled guide. The choice of cell depends on the portion of the frequency band to be examined and the choice of liquid used. The depth of liquid ensures there is negligible radiation from the waveguide open top and that the probe calibration is not influenced by reflections from nearby objects. The return loss at the coaxial connector of the filled waveguide cell is measured initially using a network analyser and this information is used subsequently in the calibration

Page 42 of 62

procedure. The probe is positioned in the centre of the waveguide and is adjusted vertically or rotated using stepper motor arrangements. The signal generator is connected to the waveguide cell and the power is monitored with a coupler and a power meter. A fuller description of the waveguide method is given below.

The liquid dielectric parameters used for the probe calibrations are listed in the Tables below. The final calibration factors for the probe are listed in the summary chart.

WAVEGUIDE MEASUREMENT PROCEDURE

The calibration method is based on setting up a calculable specific absorption rate (SAR) in a vertically-mounted WG8 (R22) waveguide section [1]. The waveguide has an air-filled, launcher section and a liquid-filled section separated by a matching window that is designed to minimise reflections at the liquid interface. A TE_{01} mode is launched into the waveguide by means of a N-type-to-waveguide adapter. The power delivered to the liquid section is calculated from the forward power and reflection coefficient measured at the input to the waveguide. At the centre of the cross-section of the waveguide, the local spot SAR in the liquid as a function of distance from the window is given by functions set out in IEEE1528 as below:

Because of the low cutoff frequency, the field inside the liquid nearly propagates as a TEM wave. The depth of the medium (greater than three penetration depths) ensures that reflections at the upper surface of the liquid are negligible. The power absorbed in the liquid is determined by measuring the waveguide forward and reflected power. Equation (4) shows the relationship between the SAR at the cross-sectional center of the lossy waveguide and the longitudinal distance (*z*) from the dielectric separator

$$SAR(z) = \frac{4(P_f - P_b)}{rabd} e^{-2z/d}$$
(4)

where the density r is conventionally assumed to be 1000 kg/m³, ab is the cross-sectional area of the waveguide, P_f and P_b are the forward and reflected power inside the lossless section of the waveguide, respectively. The penetration depth d, which is the reciprocal of the waveguide-mode attenuation coefficient, is determined from a scan along the z-axis and compared with the theoretical value determined from Equation (5) using the measured dielectric properties of the lossy liquid.

$$d = \left[\text{Re} \left\{ \sqrt{\left(p / a \right)^2 + j w m_o \left(s + j w e_o e_r \right)} \right\} \right]^{-1}.$$
 (5)

Table A.1 of [1] can be used for designing calibration waveguides with a return loss greater than 30 dB at the most important frequencies used for personal wireless communications. Values for the penetration depth for these specific fixtures and tissue-simulating mixtures are also listed in Table A.1.

According to [1], this calibration technique provides excellent accuracy, with standard uncertainty of less than 3.6% depending on the frequency and medium. The calibration itself is reduced to power measurements traceable to a standard calibration procedure. The practical limitation to the frequency band of 800 to 2500 MHz because of the waveguide size is not severe in the context of compliance testing.

CALIBRATION FACTORS MEASURED FOR PROBE S/N 0136

The probe was calibrated at 900, 1800, 1900 and 2450MHz MHz in liquid samples representing both brain liquid and body fluid at these frequencies. The calibration was for CW signals only, and the axis of the probe was parallel to the direction of propagation of the incident field i.e. end-on to the incident radiation. The axial isotropy of the probe was measured by rotating the probe about its axis in 10 degree steps through 360 degrees in this orientation.

Page 43 of 62

The reference point for the calibration is in the centre of the probe's cross-section at a distance of 2.7 m from the probe tip in the direction of the probe amplifier. A value of 2.7 mm should be used for the tip to sensor offset distance in the software.

It is important that the diode compression point and air factors used in the software are the same as those quoted in the results tables, as these are used to convert the diode output voltages to a SAR value.

DIELECTRIC PROPERTIES OF LIQUIDS

The dielectric properties of the brain and body tissue-simulant liquids employed for calibration are listed in the tables below. The measurements were performed prior to each waveguide test using an Indexsar DiLine measurement kit, which uses the TEM method as recommended in [2].

AMBIENT CONDITIONS

Measurements were made in the open laboratory at $22 \pm 2.0^{\circ}$ C. The temperature of the liquids in the waveguide used was measured using a mercury thermometer.

RESPONSE TO MODULATED SIGNALS

To measure the response of the probe and amplifier to modulated signals, the probe is held vertically in a liquid-filled waveguide.

An RF amplifier is allowed to warm up and stabilise before use. A spectrum analyser is used to demonstrate that the peak power of the RF amplifier for the CW signals and the pulsed signals are within 0.1dB of each other when the signal generator is switched from CW to modulated output. Subsequently, the power levels recorded are read from a power meter when a CW signal is being transmitted.

The test sequence involves manually stepping the power up in regular (e.g. 2 dB) steps from the lowest power that gives a measurable reading on the SAR probe up to the maximum that the amplifiers can deliver.

At each power level, the individual channel outputs from the SAR probe are recorded at CW and then recorded again with the modulation setting. The results are entered into a spreadsheet. Using the spreadsheets, the modulated power is calculated by applying a factor to the measured CW power (e.g. for GSM, this factor is 9.03dB). This process is repeated 3 times with the response maximised for each channel sensor in turn.

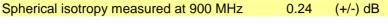
Page 44 of 62

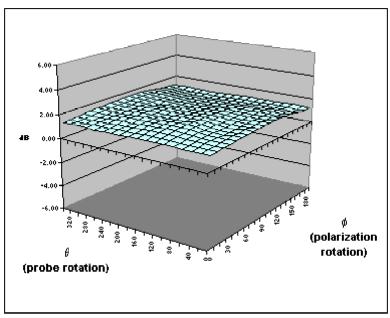
The probe channel output signals are linearised in the manner set out in Section 1 above using equation (1) with the DCPs determined from the linearisation procedure. Calibration factors for the probe are used to determine the E-field values corresponding to the probe readings using equation (3). SAR is determined from the equation

SAR (W/kg) =
$$E_{liq}^2$$
 (V/m) * σ (S/m) / 1000 (6)

Where σ is the conductivity of the simulant liquid employed.

Using the spreadsheet data, the DCP value for linearising each of the individual channels (X, Y and Z) is assessed separately. The corresponding DCP values are listed in the summary page of the calibration factors for each probe.


Figure 7 shows the linearised probe response to GSM signals, Figure 8 the response to GPRS signals (GSM with 2 timeslots) and Figure 9 the response to CDMA IS-95A and W-CDMA signals.


Additional tests have shown that the modulation response is similar at 1800MHz and is not affected by the orientation between the source and the probe.

Page 45 of 62

SUMMARY OF CALIBRATION FACTORS FOR PROBE IXP-050 S/N 0136

	Χ	Υ	Z	
Air factors	490	405	405	(V*200)
DCPs	20	20	20	(V*200)
DSSS	20	20	20	(V*200)
GSM	8	9.5	11.2	(V*200)
CDMA	20	20	20	(V*200)

f (MHz)		xial isotr +/- dB)	ору	SAR conve (liq/air)	ersion factors	Notes
	В	RAIN	BODY	BRAIN	BODY	
45	0					
83	5	0.05	0.04	0.257	0.272	1,2,3
90	0	0.05	0.04	0.261	0.282	1,2,3
180	0	0.06	0.06	0.315	0.339	1,2,3
190	0	0.06	0.06	0.327	0.351	1,2,3
245	0	0.05	0.10	0.378	0.405	1,2,3

Notes

- 1) Calibrations done at 22C +/- 2C
- Waveguide calibration
- 2) 3) Checked using box-phantom validation test

(the graph shows a simple, spreadsheet representation of surface shown in 3D in Figure 3 below)

Page 46 of 62

ROBE SPECIFICATIONS

Indexsar probe 0136, along with its calibration, is compared with CENELEC and IEEE standards recommendations (Refs [1] and [2]) in the Tables below. A listing of relevant specifications is contained in the tables below:

Dimensions	S/N 0136	CENELEC	IEEE [2]	
0 111 1 (250	[1]		
Overall length (mm)	350			
Tip length (mm)	10			
Body diameter (mm)	12			
Tip diameter (mm)	5.2	8	8	
Distance from probe tip to dipole centers	2.7			
(mm)				
Dynamic range	S/N 0136	CENELEC [1]	IEEE [2]	
Minimum (W/kg)	0.01	<0.02	0.01	
Maximum (W/kg)	>35	>100	100	
N.B. only measured to 35 W/kg				
Linearity of response	S/N 0136	CENELEC	IEEE [2]	
		[1]		
	0.125	0.50	0.25	
Over range $0.01 - 100 \text{ W/kg (+/- dB)}$				
<u> </u>				
Isotropy (measured at 900MHz)	S/N 0136	CENELEC	IEEE [2]	
		[1]		
Axial rotation with probe normal to source	Max. 0.10 (see	[1] 0.5	0.25	
(+/- dB) at 835, 900, 1800, 1900 and 2450	summary			
MHz	table)			
Spherical isotropy covering all orientations	0.24	1.0	0.50	
to source (+/- dB)				
. ,				
Construction	Each probe co	ontains three orth	ogonal dipole	
		ged on a triangul		
		inst static charge		
		covered at the t		
	cylindrical enclosure material. No adhesives			
		are used in the immersed section. Outer case		
	materials are PEEK and heat-shrink sleeving.			
			3	
Chemical resistance	Tested to be r	esistant to glycol	and alcohol	
		nulant liquids bu		
	_	1 1 1 1 1 1 1 1	•	

use.

be removed, cleaned and dried when not in

Page 47 of 62

REFERENCES

- [1] CENELEC, EN 50361, July 2001. Basic Standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones.
- [2] IEEE 1528, Recommended practice for determining the spatial-peak specific absorption rate (SAR) in the human body due to wireless communications devices: Experimental techniques.
- [3] Calibration report on SAR probe IXP-050 S/N 0071 from National Physical Laboratory. Test Report EF07/2002/03/IndexSAR. Dated 20 February 2002.

Page 48 of 62

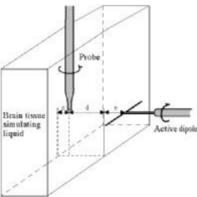


Figure 1. Spherical isotropy jig showing probe, dipole and box filled with simulated brain liquid (see Ref [2], Section A.5.2.1)

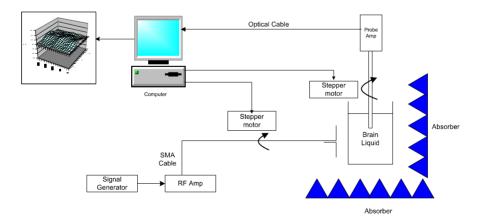


Figure 2. Schematic diagram of the test geometry used for isotropy determination

Page 49 of 62

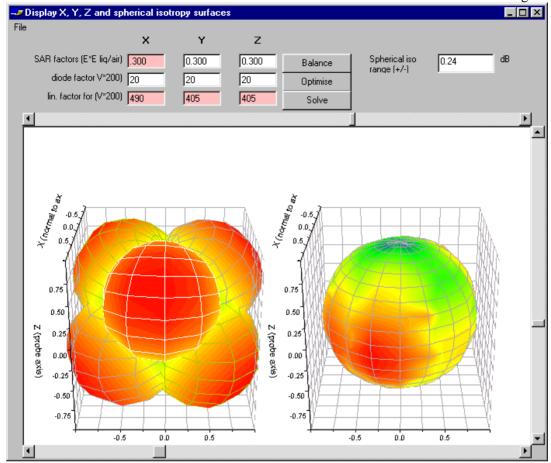
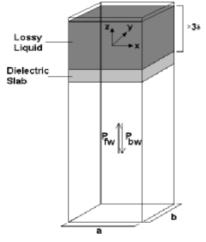
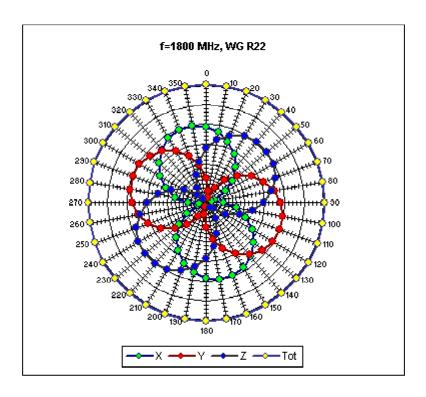


Figure 3. Graphical representation of the probe response to fields applied from each direction. The diagram on the left shows the individual response characteristics of each of the three channels and the diagram on the right shows the resulting probe sensitivity in each direction. The colour range in the figure images the lowest values as blue and the maximum values as red. For the probe S/N 0136, this range is (+/-) 0.24 dB. The probe is more sensitive to fields parallel to the axis and less sensitive to fields normal to the probe axis.




Figure 4. Geometry used for waveguide calibration (after Ref [2]. Section A.3.2.2)

Page 50 of 62

IXP-050 S/N 0136

18-Aug-03

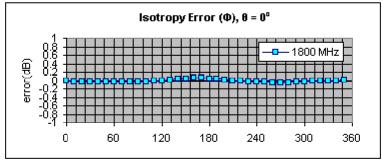


Figure 5. Example of the rotational isotropy of probe S/N 0136 obtained by rotating the probe in a liquid-filled waveguide at 2450 MHz. Similar distributions are obtained at the other test frequencies (1800 and 1900 MHz) both in brain liquids and body fluids (see summary table)

Page 51 of 62

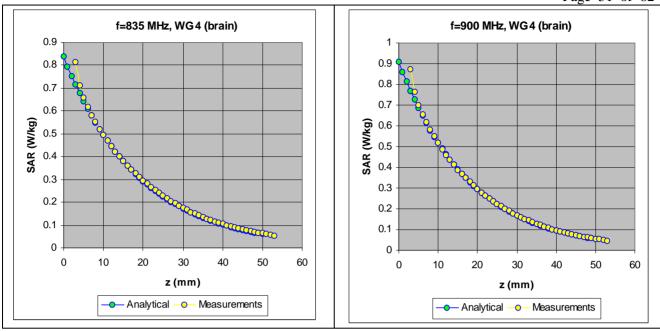


Figure 6. The measured SAR decay function along the centreline of the WG4 waveguide with conversion factors adjusted to fit to the theoretical function for the particular dimension, frequency, power and liquid properties employed.

Page 52 of 62

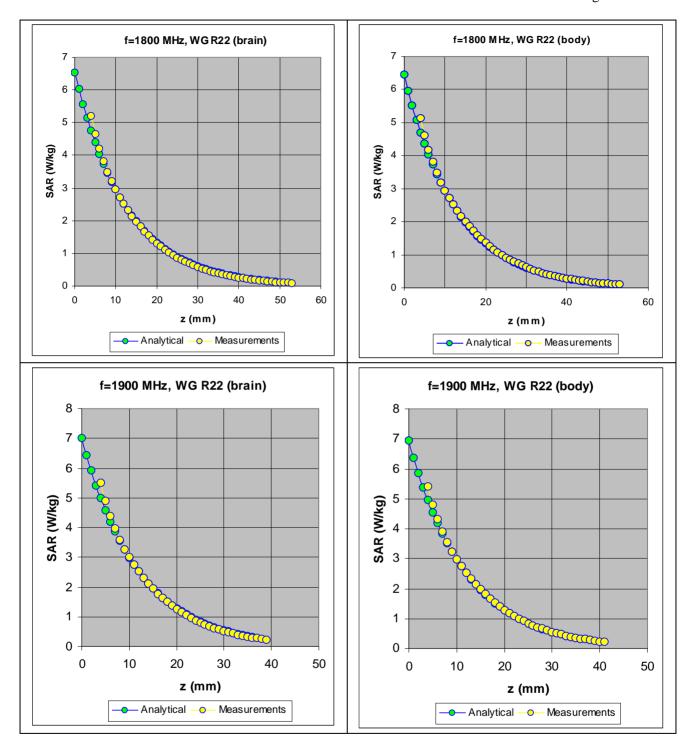


Figure 7. The measured SAR decay function along the centreline of the R22 waveguide with conversion factors adjusted to fit to the theoretical function for the particular dimension, frequency, power and liquid properties employed.

Page 53 of 62

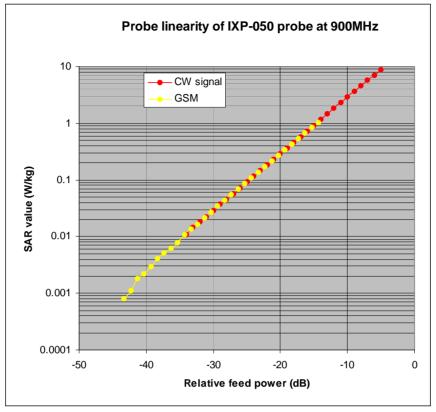


Figure 8. The GSM response of an IXP-050 probe at 900MHz.

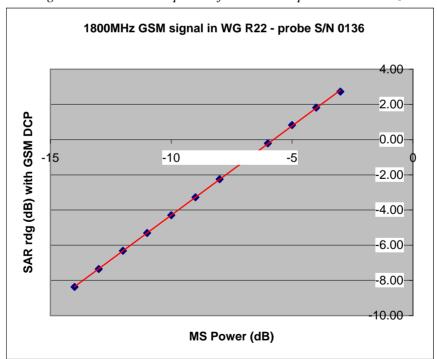


Figure 8a. The actual GSM response of IXP-050 probe S/N 0136 at 1800MHz

Page 54 of 62

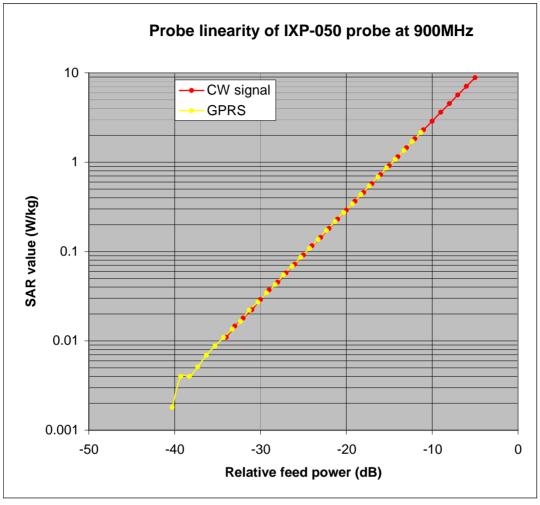
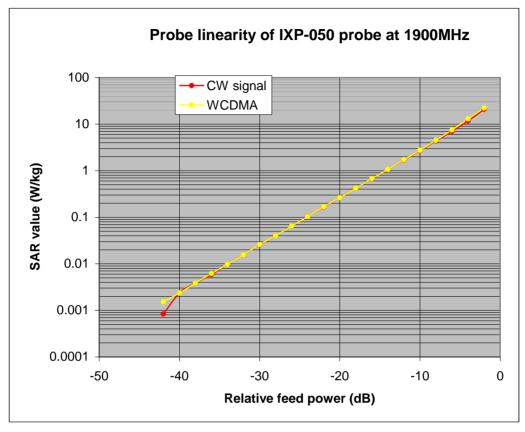



Figure 9. The GPRS response of an IXP-050 probe at 900MHz.

Page 55 of 62

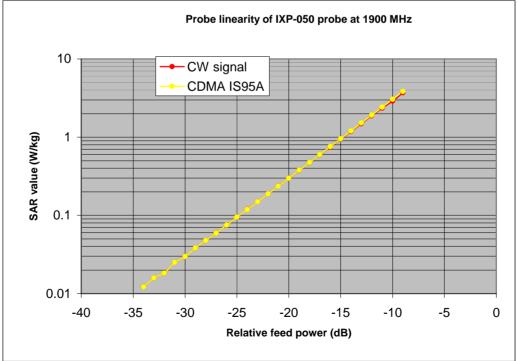


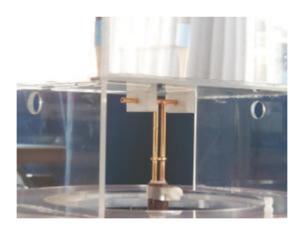
Figure 10. The CDMA response of an IXP-050 probe at 1900MHz.

Page 56 of 62

Table indicating the dielectric parameters of the liquids used for calibrations at each frequency

Liquid used	Relative permittivity	Conductivity (S/m)
	(measured)	(measured)
835 MHz BRAIN	43.18	0.935
835 MHz BODY	59.19	0.992
900 MHz BRAIN	42.47	0.998
900 MHz BODY	58.7	1.056
1800 MHz BRAIN	38.72	1.34
1800 MHz BODY	52.5	1.53
1900 MHz BRAIN	38.31	1.43
1900 MHz BODY	52.06	1.64
2450 MHz BRAIN	38.9	1.87
2450 MHz BODY	52.59	2.08

Page 57 of 62



Report No. SN0048_2450 26th March 2003

INDEXSAR 2450MHz validation Dipole Type IXD-245 S/N 0048

Performance measurements

MI Manning

Indexsar, Oakfield House, Cudworth Lane, Newdigate, Surrey RH5 5DR. UK.

Tel: +44 (0) 1306 631233 Fax: +44 (0) 1306 631834

e-mail: enquiries@indexsar.com

FCC ID.: I88G110

Report No.: EME-040258
Page 58 of 62
Indexsar Limited
Oakfield House
Cudworth Lane
Newdigate
Surrey RH5 5DR

Tel: +44 (0) 1306 631 233 Fax: +44 (0) 1306 631 834 e-mail: <u>enquiries@indexsar.com</u>

Calibration / Conformance statement Balanced Validation dipole

Type: IXD	-245 2450MHz	
Manufacturer:	IndexSAR, UK	
Serial Number:	0048	
Place of Calibration:	IndexSAR, UK	
	nat the IXD series dipole named above has been checked for conformity IEEE 1528 and CENELEC En 50361 standards on the date shown	
Date of Calibration/Check:	26 th March 2003	
	eriodically re-checked using the procedures set out in the dipole that the cautions regarding handling of the dipoles (given in the	
Next Calibration Date:	March 2005	
The calibration measurements were carried out using the methods described in the calibration document. Where applicable, the standards used in the calibration process are traceable to the UK's National Physical Laboratory.		
Calibrated By:		
Approved By:	M 1. Mains	
FF		

1. Tests on Validation Dipole

Tests have been performed on a balanced dipole made for 2450MHz application according to the

Page 59 of 62

construction guidelines, dimensions and tolerances given in the draft IEEE1528 standard [1]. Measurements have been made of the impedance and return loss when positioned against the liquid-filled phantom and a validation test has been performed according to the procedures set out in IEEE 1528 [1].

2. Measurement Conditions

Measurements were performed using a box-shaped phantom made of PMMA with dimensions designed to meet the accuracy criteria for reasonably-sized phantoms that do not have liquid capacities substantially in excess of the volume of liquid required to fill the Indexsar upright SAM phantoms used for SAR testing of handsets against the ear.

An HP 8753B vector network analyser was used for the return loss measurements. The dipole was placed in a special holder made of low-permittivity, low-loss materials. This holder enables the dipole to be positioned accurately in the centre of the base of the Indexsar box-phantom used for flat-surface testing and validation checks.

The validation dipoles are supplied with special spacers made from a low-permittivity, low-loss foam material. These spacers are fitted to the dipole arms to ensure that, when the dipole is offered up to the phantom surface, the spacing between the dipole and the liquid surface is accurately aligned according to the guidance in the relevant standards documentation. The spacers are rectangular with a central hole equal to the dipole arm diameter and dimensioned so that the longer side can be used to ensure a spacing of 15mm from the liquid in the phantom (for tests at 900MHz and below) and the shorter side can be used for tests at 1800MHz and above to ensure a spacing of 10mm from the liquid in the phantom. The spacers are made on a CNC milling machine with an accuracy of $1/40^{th}$ mm but they may suffer wear and tear and need to be replaced periodically. The material used is Rohacell, which has a relative permittivity of approx. 1.05 and a negligible loss tangent.

The apparatus supplied by Indexsar for dipole validation tests thus includes:

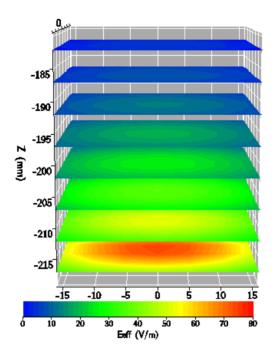
Balanced dipoles for each frequency required are dimensioned according to the guidelines given in IEEE 1528 [1]. The dipoles are made from semi-rigid 50 Ohm co-ax, which is joined by soldering and is gold-plated subsequently. The constructed dipoles are easily deformed, if mis-handled, and periodic checks need to be made of their symmetry.

Rohacell foam spacers designed for presenting the dipoles to 2mm thick PMMA box phantoms. These components also suffer wear and tear and should be replaced when the central hole is a loose-fit on the dipole arms or if the edges are too worn to ensure accurate alignment. The standard spacers are dimensioned for use with 2mm wall thickness (additional spacers are available for 4mm wall thickness).

3. SAR Validation Measurement

A SAR validation check was performed with the box-phantom located on the SARA2 phantom support base on the SARA2 robot system. Tests were then conducted at a feed power level of approx. 0.25W. The actual power level was recorded and used to normalise the results obtained to the standard input power conditions of 1W (forward power). The ambient temperature was 24°C.

The phantom was filled with a 2450MHz brain liquid using a recipe from [1], which was measured using an Indexsar DiLine kit at 2450MHz. Measurements were taken at 23°C and 30°C and interpolation was used to find the properties at 24°C which were as below:


Relative Permittivity 39.221 Conductivity 1.8714 S/m

Page 60 of 62

The SARA2 software version 0.420N was used with an Indexsar probe previously calibrated using waveguide techniques.

The 3D measurement made using the dipole at the bottom of the phantom box is shown below:

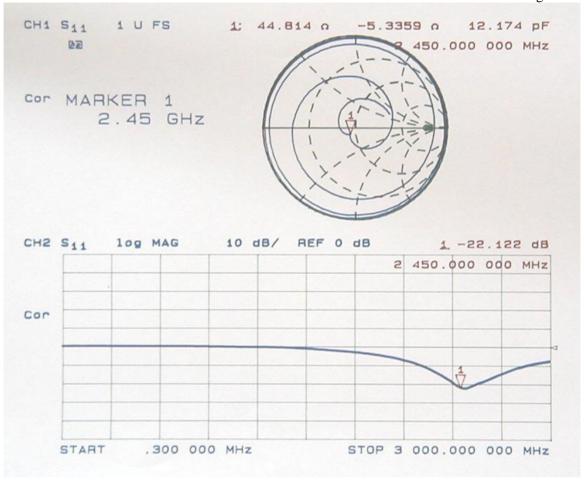
The volume-averaged SAR results, normalised to an input power of 1W (forward power) are:

Averaged over 1 cm³ (1g) of tissue 51.376 W/kg Averaged over 10cm³ (10g) of tissue 23.888 W/kg

These results can be compared with Table 8.1 in [1]. The agreement is within 10%.

4. Dipole impedance and return loss

The dipoles are designed to have low return loss ONLY when presented against a lossy-phantom at the specified distance. A Vector Network Analyser (VNA) was used to perform a return loss measurement on the specific dipole when in the measurement-location against the box phantom. The distance was as specified in the standard i.e. 10mm from the liquid (for 2450MHz). The Indexsar foam spacers (described above) were used to ensure this condition during measurement.


The impedance was measured at the SMA-connector with the network analyser. The following parameters were measured:

Dipole impedance at 2450 MHz Re{Z} = **44.814** Ω Im{Z} = **-5.3359** Ω

Return loss at 2450MHz -22.122 dB

Page 61 of 62

5. Dipole handling

The dipoles are made from standard, copper-sheathed coaxial cable. In assembly, the sections are joined using ordinary soft-soldering. This is necessary to avoid excessive heat input in manufacture, which would destroy the polythene dielectric used for the cable. The consequence of the construction material and the assembly technique is that the dipoles are fragile and can be deformed by rough handling. Conversely, they can be straightened quite easily as described in this report.

If a dipole is suspected of being deformed, a normal workshop lathe can be used as an alignment jig to restore the symmetry. To do this, the dipole is first placed in the headstock of the lathe (centred on the plastic or brass spacers) and the headstock is rotated by hand (do NOT use the motor). A marker (lathe tool or similar) is brought up close to the end of one dipole arm and then the headstock is rotated by 0.5 rev. to check the opposing arm. If they are not balanced, judicious deformation of the arms can be used to restore the symmetry.

If a dipole has a failed solder joint, the dipole can be fixed down in such a way that the arms are co-linear and the joint re-soldered with a reasonably-powerful electrical soldering iron. Do not use gas soldering irons. After such a repair, electrical tests must be performed as described below.

Please note that, because of their construction, the dipoles are short-circuited for DC signals.

Page 62 of 62

6. Tuning the dipole

The dipole dimensions are based on calculations that assumed specific liquid dielectric properties. If the liquid dielectric properties are somewhat different, the dipole tuning will also vary. A pragmatic way of accounting for variations in liquid properties is to 'tune' the dipole (by applying minor variations to its effective length). For this purpose, Indexsar can supply short brass tube lengths to extend the length of the dipole and thus 'tune' the dipole. It cannot be made shorter without removing a bit from the arm. An alternative way to tune the dipole is to use copper shielding tape to extend the effective length of the dipole. Do both arms equally.

It should be possible to tune a dipole as described, whilst in place in the measurement position as long as the user has access to a VNA for determining the return loss.

7. Reference

[1] Draft recommended practice for determining the peak spatial-average specific absorption rate (SAR) in the human body due to wireless communications devices: Measurement Techniques. Draft CD1.1 – December 29, 2002.