

FCC RF Test Report

APPLICANT : Honeywell International Inc.
Honeywell Safety and Productivity Solutions

EQUIPMENT : RT10A

BRAND NAME : Honeywell

MODEL NAME : RT10AL1N

FCC ID : HD5-RT10AL1N

STANDARD : FCC Part 15 Subpart E §15.407

CLASSIFICATION : (NII) Unlicensed National Information Infrastructure

TEST DATE(S) : Jun. 01, 2022

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

Jason Jia

Approved by: Jason Jia

Sportun International Inc. (Kunshan)

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300
People's Republic of China

TABLE OF CONTENTS

REVISION HISTORY.....	3
SUMMARY OF TEST RESULT	4
1 GENERAL DESCRIPTION	5
1.1 Applicant	5
1.2 Manufacturer.....	5
1.3 Product Feature of Equipment Under Test.....	5
1.4 Product Specification of Equipment Under Test.....	5
1.5 Modification of EUT	6
1.6 Testing Location	6
1.7 Test Software.....	6
1.8 Applicable Standards.....	6
2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST	7
2.1 Carrier Frequency and Channel	7
2.2 Test Mode.....	9
2.3 Connection Diagram of Test System.....	9
2.4 EUT Operation Test Setup	9
3 TEST RESULT.....	10
3.1 Unwanted Emissions Measurement.....	10
4 LIST OF MEASURING EQUIPMENT	15
5 UNCERTAINTY OF EVALUATION.....	16
APPENDIX A. RADIATED SPURIOUS EMISSION	
APPENDIX B. DUTY CYCLE PLOTS	
APPENDIX C. SETUP PHOTOGRAPHS	

REVISION HISTORY

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.407(b)	Unwanted Emissions	15.407(b) & 15.209(a)	Pass	Under limit 9.05 dB at 5149.900 MHz

Note: This is a variant report for RT10AL1N, the change note could be referred to the RT10AL1N_Operational Description of Product Equality Declaration which is exhibit separately. According to the change, only the worst cases RSE from original test report (Sportun Report Number FR052222E) were verified for the differences.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

Honeywell International Inc.
Honeywell Safety and Productivity Solutions
9680 Old Bailes Rd. Fort Mill, SC 29707 United States

1.2 Manufacturer

Honeywell International Inc.
Honeywell Safety and Productivity Solutions
9680 Old Bailes Rd. Fort Mill, SC 29707 United States

1.3 Product Feature of Equipment Under Test

Product Feature	
Equipment	RT10A
Brand Name	Honeywell
Model Name	RT10AL1N
FCC ID	HD5-RT10AL1N
HW Version	V1.0
SW Version	OS.05.001-HON.03.002.DO
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification	
Tx/Rx Frequency Range	5180 MHz ~ 5240 MHz 5260 MHz ~ 5320 MHz 5500 MHz ~ 5720 MHz
Antenna Type / Gain	<5180 MHz ~ 5240 MHz> <Ant. 1> : PIFA Antenna with gain 1.30 dBi <Ant. 2> : PIFA Antenna with gain 2.50 dBi <5260 MHz ~ 5320 MHz> <Ant. 1> : PIFA Antenna with gain 0.80 dBi <Ant. 2> : PIFA Antenna with gain 1.50 dBi <5500 MHz ~ 5720 MHz> <Ant. 1> : PIFA Antenna with gain 1.30 dBi <Ant. 2> : PIFA Antenna with gain 1.40 dBi
Type of Modulation	802.11a/n : OFDM (BPSK / QPSK / 16QAM / 64QAM) 802.11ac : OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sportun International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sportun International Inc. (Kunshan)		
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL : +86-512-57900158 FAX : +86-512-57900958		
Test Site No.	Sportun Site No.	FCC Designation No.	FCC Test Firm Registration No.
	03CH05-KS	CN1257	314309

1.7 Test Software

Item	Site	Manufacturer	Name	Version
1.	03CH05-KS	AUDIX	E3	6.2009-8-24al

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report.

2.1 Carrier Frequency and Channel

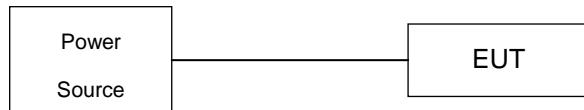
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
5180-5240 MHz U-NII-1	36	5180	44	5220
	38*	5190	46*	5230
	40	5200	48	5240
	42 [#]	5210		
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
5260-5320 MHz U-NII-2A	52	5260	60	5300
	54*	5270	62*	5310
	56	5280	64	5320
	58 [#]	5290		
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
5500- 5720 MHz MHz U-NII-2C	100	5500	112	5560
	102*	5510	116	5580
	104	5520	132	5660
	106 [#]	5530	134*	5670
	108	5540	136	5680
	110*	5550	140	5700

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
TDWR Channel	118*	5590	124	5620
	120	5600	126*	5630
	122 [#]	5610	128	5640
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
Straddle Channel	138 [#]	5690	144	5720
	142*	5710		

Note:

1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.
2. The above Frequency and Channel in "#" were 802.11ac VHT80.

2.2 Test Mode


Final test modes are considering the modulation and worse data rates as below table.

MIMO Mode

Modulation	Data Rate
802.11a	6 Mbps

Ch. #		U-NII-1 : 5180-5240 MHz
802.11a		
L	Low	36

2.3 Connection Diagram of Test System

This example is connection diagram of EUT test configurations.

. For detail, please refer to test mode configuration and setup photographs for each test item.

2.4 EUT Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuous transmit/receive.

3 Test Result

3.1 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

3.1.1 Limit of Unwanted Emissions

(1) For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of -27dBm/MHz.

For transmitters operating in the 5250-5350 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band must meet all applicable technical requirements for operation in the 5150-5250 MHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5150-5250 MHz band.

For transmitters operating in the 5470-5725 MHz band: all emissions outside of the 5470-5725 MHz band shall not exceed an EIRP of -27 dBm/MHz.

(2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table,

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

EIRP (dBm)	Field Strength at 3m (dB μ V/m)
- 27	68.2

Note: The following formula is used to convert the EIRP to field strength.

$$\text{EIRP} = E_{\text{Meas}} + 20\log(d_{\text{Meas}}) - 104.7$$

where

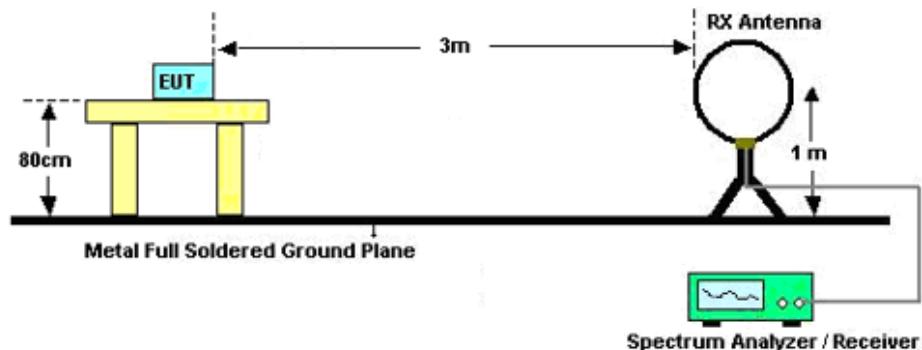
EIRP is the equivalent isotropically radiated power, in dBm

E_{Meas} is the field strength of the emission at the measurement distance, in dB μ V/m

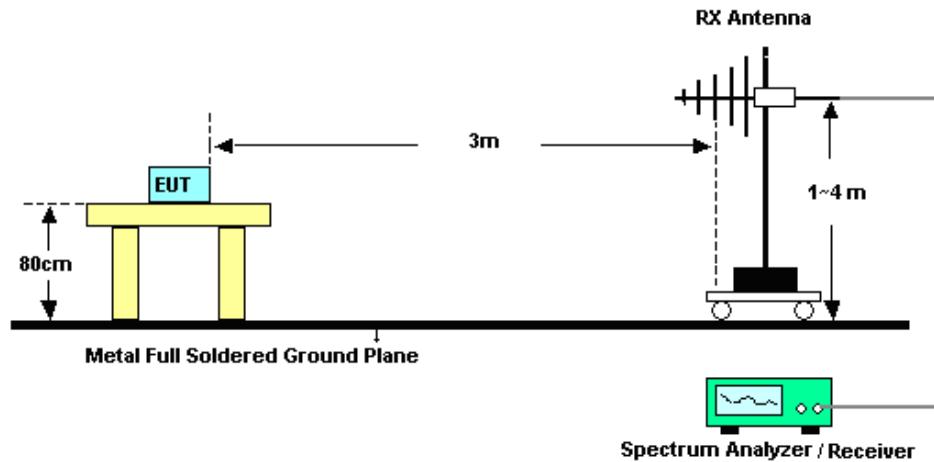
d_{Meas} is the measurement distance, in m

3.1.2 Measuring Instruments

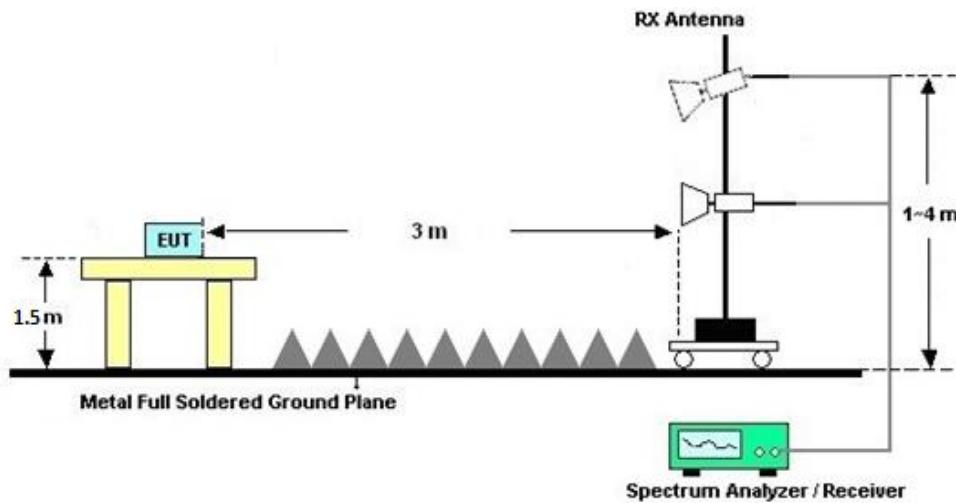
The measuring equipment is listed in the section 4 of this test report.



3.1.3 Test Procedures


1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW \geq 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.1.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.1.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.1.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A.

3.1.7 Duty Cycle

Please refer to Appendix B.

3.1.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix A.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	Keysight	N9038A	MY564000 04	3Hz~8.5GHz; Max 30dBm	Oct. 16, 2021	Jun. 01, 2022	Oct. 15, 2022	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010B	MY574710 84	10Hz-44G, MAX 30dB	Jul. 12, 2021	Jun. 01, 2022	Jul. 11, 2022	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 30, 2021	Jun. 01, 2022	Oct. 29, 2022	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	Jun. 04 ,2021	Jun. 01, 2022	Jun. 03, 2022	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75957	1GHz~18GHz	Nov. 08, 2021	Jun. 01, 2022	Nov. 07, 2022	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2022	Jun. 01, 2022	Jan. 04, 2023	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	380826	9KHz-1GHz	Jul. 30, 2021	Jun. 01, 2022	Jul. 09, 2022	Radiation (03CH05-KS)
Amplifier	MITEQ	EM18G40GG A	060728	18~40GHz	Jan. 05, 2022	Jun. 01, 2022	Jan. 04, 2023	Radiation (03CH05-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2012228	1Ghz-18Ghz	Oct. 16, 2021	Jun. 01, 2022	Oct. 15, 2022	Radiation (03CH05-KS)
Amplifier	Keysight	83017A	MY532703 16	500MHz~26.5GHz	Oct. 16, 2021	Jun. 01, 2022	Oct. 15, 2022	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Jun. 01, 2022	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Jun. 01, 2022	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Jun. 01, 2022	NCR	Radiation (03CH05-KS)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2U_c(y))	5.0dB
---	--------------

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2U_c(y))	5.0dB
---	--------------

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2U_c(y))	5.0dB
---	--------------

----- THE END -----

Appendix A. Radiated Spurious Emission

UNII-1 - 5150~5250MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI Ant.	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	Pol.
1+2		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11a CH 36 5180MHz		5148.32	58.29	-15.71	74	50	34.42	10.6	36.73	133	359	P	H
		5148.8	43.58	-10.42	54	35.29	34.42	10.6	36.73	133	359	A	H
		5176	106.47	-	-	98.07	34.45	10.64	36.69	133	359	P	H
		5176	98.92	-	-	90.52	34.45	10.64	36.69	133	359	A	H
		5149.12	62.65	-11.35	74	54.36	34.42	10.6	36.73	131	13	P	V
		5149.9	44.95	-9.05	54	36.66	34.42	10.6	36.73	131	13	A	V
		5176	107.47	-	-	99.07	34.45	10.64	36.69	131	13	P	V
		5176	101.03	-	-	92.63	34.45	10.64	36.69	131	13	A	V
Remark	1. No other spurious found. 2. All results are PASS against Peak and Average limit line.												

UNII-1 5150~5250MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11a CH 36 5180MHz		10355	45.75	-22.55	68.3	59.96	37.38	15.44	67.03	300	0	P	H
		10355	44.75	-23.55	68.3	58.96	37.38	15.44	67.03	100	0	P	V
Remark	1. No other spurious found. 2. All results are PASS against Peak and Average limit line.												

Emission below 1GHz

WIFI 802.11a (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.	
												Ant.	Avg.	
1+2		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)	
802.11a	LF	84.32	23.5	-16.5	40	40.85	14.08	1.39	32.82	-	-	P	H	
		131.85	23.15	-20.35	43.5	36.67	17.58	1.74	32.84	-	-	P	H	
		190.05	22.51	-20.99	43.5	38.65	14.8	2.1	33.04	-	-	P	H	
		264.74	22.26	-23.74	46	32.75	20.07	2.48	33.04	-	-	P	H	
		494.63	24.06	-21.94	46	29.55	23.9	3.4	32.79	-	-	P	H	
		584.84	27.58	-18.42	46	30.74	25.68	3.69	32.53	-	-	P	H	
		39.7	24.25	-15.75	40	36.31	19.8	0.94	32.8	-	-	P	V	
		91.11	25.55	-17.95	43.5	41.79	14.93	1.45	32.62	-	-	P	V	
		144.46	19.82	-23.68	43.5	33.49	17.32	1.82	32.81	-	-	P	V	
		287.05	21.58	-24.42	46	32.81	19.14	2.58	32.95	-	-	P	V	
Remark	1. No other spurious found. 2. All results are PASS against limit line.													

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dB μ V/m)	(dB)	(dB μ V/m)	(dB μ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	P	H
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	A	H

1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
2. Level(dB μ V/m) = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)
3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

1. Level(dB μ V/m)
= Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)
= 32.22(dB/m) + 4.58(dB) + 54.51(dB μ V) – 35.86 (dB)
= 55.45 (dB μ V/m)
2. Over Limit(dB)
= Level(dB μ V/m) – Limit Line(dB μ V/m)
= 55.45(dB μ V/m) – 74(dB μ V/m)
= -18.55(dB)

For Average Limit @ 2390MHz:

1. Level(dB μ V/m)
= Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)
= 32.22(dB/m) + 4.58(dB) + 42.6(dB μ V) – 35.86 (dB)
= 43.54 (dB μ V/m)
2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)
= 43.54(dB μ V/m) – 54(dB μ V/m)
= -10.46(dB)

Both peak and average measured complies with the limit line, so test result is “PASS”.