

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.: 2112RSU039-U6 Report Version: V01 Issue Date: 01-20-2022

RF MEASUREMENT REPORT

FCC ID:	HD5-EDA521
---------	------------

Applicant: Honeywell International Inc

Honeywell Safety and Productivity Solutions

Application Type: Certification

Product: Mobile Computer

Model No.: EDA52-1

Brand Name: Honeywell

FCC Classification: Part 15 Low Power Communication Device Transmitter

(DXX)

FCC Rule Part(s): Part 15 Subpart C (Section 15.225)

Test Date: January 7 ~ 14, 2022

Reviewed By:		
	Jame Yuan	ilac-MRA
Approved By:		ACCREDITED
	Robin Wu	TESTING LABORATORY CERTIFICATE #3628.01

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2112RSU039-U6	Rev. 01	Initial Report	01-20-2022	Valid

CONTENTS

Des	cription		Page
1.	Gene	eral Information	5
	1.1.	Applicant	5
	1.2.	Manufacturer	5
	1.3.	Testing Facility	5
	1.4.	Product Information	6
	1.5.	Radio Specification	6
	1.6.	Test Mode	6
	1.7.	Test Configuration and Software	7
	1.8.	EMI Suppression Device(s)/Modifications	7
	1.9.	Test Environment Condition	7
2.	Anter	nna Requirements	8
3.	Meas	suring Instrument	9
4.	Meas	surement Uncertainty	10
5.	Test F	Result	11
	5.1.	Summary	11
	5.2.	In-band Emission	12
	5.2.1.	Test Limit	12
	5.2.2.	Test Procedure Used	12
	5.2.3.	Test Setting	12
	5.2.4.	Test Setup	13
	5.2.5.	Test Result	13
	5.3.	Out-band Emission	14
	5.3.1.	Test Limit	14
	5.3.2.	Test Procedure Used	14
	5.3.3.	Test Setting	14
	5.3.4.	Test Setup	15
	5.3.5.	Test Result	15
	5.4.	Occupied Bandwidth	16
	5.4.1.	Test Limit	16
	5.4.2.	Test Procedure Used	16
	5.4.3.	Test Setting	16
	5.4.4.	Test Setup	17
	5.4.5.	Test Result	17
	5.5.	Frequency Tolerence	18
	5.5.1.	Test Limit	18

5.5.2	2. Test Procedure Used	18
5.5.3	3. Test Setting	18
5.5.4	1. Test Setup	19
5.5.5	5. Test Result	19
5.6.	AC Conducted Emissions Measurement	20
5.6.1	I. Test Limit	20
5.6.2	2. Test Setup	20
5.6.3	3. Test Result	20
Appendi	x A - Test Result	21
A.1	In-band Emission Test Result	21
A.2	Out-Band Emission Test Result	22
A.3	Occupied Bandwidth Test Result	23
A.4	Frequency Stability Tolerance Test Result	24
A.5	AC Conducted Emissions Test Result	25
Appendi	x B - Test Setup Photograph	28
Appendi	x C - EUT Photograph	29

1. General Information

1.1. Applicant

Honeywell International Inc Honeywell Safety and Productivity Solutions 9680 Old Bailes Road, Fort Mill, SC 29707 United States

1.2. Manufacturer

Honeywell International Inc Honeywell Safety and Productivity Solutions 9680 Old Bailes Road, Fort Mill, SC 29707 United States

1.3. Testing Facility

\boxtimes	Test Site – MRT Suzhou Laboratory						
	Laboratory Location (Suzhou - Wuzhong)						
	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China						
	Laboratory Location (Suzhou - SIP)						
	4b Building, Liand	do U Valley, No.200	Xingpu Rd., Shengp	u Town, Suzhou Indu	ıstrial Park, China		
	Laboratory Acci	reditations					
	A2LA: 3628.01		CNAS	S: L10551			
	FCC: CN1166		ISED:	CN0001			
	VOOL	□R-20025	□G-20034	□C-20020	□T-20020		
	VCCI:	□R-20141	□G-20134	□C-20103	□T-20104		
	Test Site – MRT Shenzhen Laboratory						
	Laboratory Loca	ation (Shenzhen)					
	1G, Building A, Junxiangda Building, Zhongshanyuan Road West, Nanshan District, Shenzhen, China Laboratory Accreditations						
	A2LA: 3628.02		CNAS	: L10551			
	FCC: CN1284		ISED:	CN0105			
	Test Site – MRT Taiwan Laboratory						
	Laboratory Location (Taiwan)						
	No. 38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) Laboratory Accreditations						
	TAF: L3261-1907	'25					
	FCC: 291082, TW3261 ISED: TW3261						

1.4. Product Information

Product Name	Mobile Computer	
Model No.	EDA52-1	
Serial Number	21228B84CB	
Wi-Fi Specification	802.11a/b/g/n/ac	
Bluetooth Specification	v5.0 dual mode	
NFC Specification	Active, 13.56MHz	
GNSS Specification	GPS/Galileo/BDS/GLONASS	
	GSM 850/1900	
3GPP Specification	WCDMA Band 2/4/5	
	LTE Band 2/4/5/7/12/13/17/25/26/30/38/40/41/66	
Antenna Information	Refer to section 1.5	
Working Voltage	3.8Vdc	
Accessories		
Adapter	Model No.: ADS-12B-06 05010E	
	Input Power: 100 - 240V ~ 50/60Hz, Max. 0.3A	
	Output Power: 5VDC 2.0A	
Rechargeable Li-ion Battery	Model No.: EDA52-BAT-US	
	Capacitance: 4500mAh 17.1Wh	
	Rated Voltage: 3.8V	
Remark: The information of El	JT was provided by the manufacturer, and the accuracy of the information shall	
be the responsibility of the ma	nufacturer.	

1.5. Radio Specification

Frequency Range	13.56MHz
Channel Number	1
Type of modulation	ASK
Antenna Type	Loop Antenna

Note: For other features of this EUT, test report will be issued separately.


1.6. Test Mode

Test Mode	
Mode 1: Transmit by NFC	

1.7. Test Configuration and Software

The device was tested per the guidance ANSI C63.10-2013 that was used to reference the appropriate EUT setup for radiated spurious emissions and AC line conducted emission testing.

1.8. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

1.9. Test Environment Condition

Ambient Temperature	15 ~ 35 °C
Relative Humidity	20 ~75 %RH

2. Antenna Requirements

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the Mobile Computer is permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The unit complies with the requirement of §15.203.

3. Measuring Instrument

Instrument Name	Manufacturer	Model No.	Asset No.	Cali.	Cal. Due Date	Test Site
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2022/12/29	SIP-AC3
EMI Test Receiver	R&S	ESR3	MRTSUE06613	1 year	2022/6/24	SIP-AC3
				1 year	2022/1/12	SIP-AC3
Preamplifier	EMCI	EMC001330	MRTSUE06643	1 year	2023/1/13	SIP-AC3
Loop Antenna	Schwarzbeck	FMZB 1519 B	MRTSUE06937	1 year	2022/3/9	SIP-AC3
Signal Analyzer	Keysight	N9010B	MRTSUE06559	1 year	2022/6/24	SIP-AC3
Signal Analyzer	Keysight	N9010B	MRTSUE06603	1 year	2022/10/31	SIP-AC3
Signal Analyzer	Keysight	N9020B	MRTSUE06604	1 year	2022/9/7	SIP-AC3
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2022/6/9	SIP-AC3
Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06598	1 year	2022/11/09	SIP-AC3
Horn Antenna	R&S	HF907	MRTSUE06611	1 year	2022/9/12	SIP-AC3
Thermohygrometer	testo	608-H1	MRTSUE06619	1 year	2022/11/2	SIP-AC3
Day a see a P.C. a se	FMO	EM004004505	MDT0UE00040	1 year	2022/1/12	SIP-AC3
Preamplifier	EMCI	EMC012645SE	MRTSUE06642	1 year	2023/1/13	SIP-AC3
TRILOG Antenna	Schwarzbeck	VULB 9168	MRTSUE06646	1 year	2022/8/26	SIP-AC3
Anechoic Chamber	RIKEN	SIP-AC3	MRTSUE06782	1 year	2022/12/23	SIP-AC3
Temperature Chamber	BAOYT	BYG-408CS	MRTSUE06847	1 year	2022/2/23	SIP-TR1
Communication Tester	R&S	CMW500	MRTSUE06881	1 year	2022/6/2	SIP-TR1
Thermohygrometer	testo	Testo 608-H1	MRTSUE11022	1 year	2022/11/2	SIP-TR1
Signal Analyzer	Keysight	N9030B	MRTSUE06395	1 year	2022/8/8	SIP-TR1
Two-Line V-Network	R&S	ENV216	MRTSUE06002	1 year	2022/6/8	WZ-SR2
Absorbing Clamp	R&S	MDS-21	MRTSUE06008	1 year	2022/11/30	WZ-SR2
Passive Voltage Probe	R&S	ESH2-Z3	MRTSUE06189	1 year	2022/4/13	WZ-SR2
Shielding Room	MIX-BEP	WZ-SR2	MRTSUE06215	/	/	WZ-SR2
Thermohygrometer	testo	608-H1	MRTSUE06404	1 year	2022/6/28	WZ-SR2
Four-Line V-Network	R&S	ENV432	MRTSUE06615	1 year	2022/10/10	WZ-SR2
EMI Test Receiver	R&S	ESR3	MRTSUE06909	1 year	2022/11/1	WZ-SR2

Software	Version	Function
EMI Software	V3	EMI Test Software

4. Measurement Uncertainty

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement

Measurement Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

9kHz~150kHz: 3.74dB 150kHz~30MHz: 3.44dB

Radiated Disturbance

Measurement Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

Horizontal: 9kHz~300MHz: 5.04dB

300MHz~1GHz: 4.95dB 1GHz~40GHz: 6.40dB

Vertical: 9kHz~300MHz: 5.24dB

300MHz~1GHz: 6.03dB 1GHz~40GHz: 6.40dB

Occupied Bandwidth

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

0.28%

5. Test Result

5.1. Summary

FCC Part Section(s)	Test Description Test Condition		Test Result
15.225 (a), (b), (c)	In-Band Emission		Pass
15.225(d)	Out-Band Emission		Pass
2.4040	20dB Bandwidth	Radiated	Pass
2.1049	99% Bandwidth		Fass
15.225(e)	Frequency Stability Tolerance		Pass
15 207	AC Conducted Emissions	Line Conducted	Door
15.207	150kHz - 30MHz	Line Conducted	Pass

Notes:

- 1) For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

5.2. In-band Emission

5.2.1. Test Limit

FCC Part 15 Subpart C Paragraph 15.225					
Frequency (MHz)	Distance (m)	Level (µV/m)			
13.553 ~13.567	30	15848			
13.410 ~13.553, 13.567 ~13.710	30	334			
13.110 ~13.410, 13.710 ~14.010	30	106			

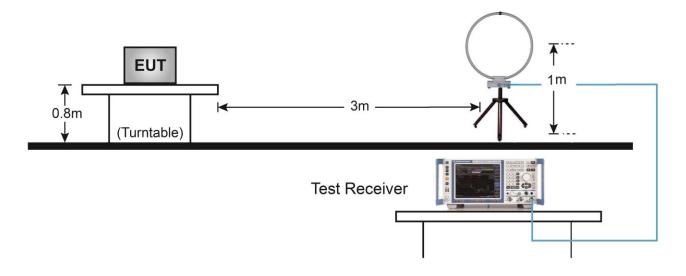
Note 1: The lower limit shall apply at the transition frequency.

Note 2: Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Note 3: E field strength (dB μ V/m) = 20 log E field strength (μ V/m)

5.2.2. Test Procedure Used

ANSI C63.10-2013 - Section 6.4.7


5.2.3. Test Setting

- 1. RBW = 9kHz
- 2. VBW = 3 * RBW
- 3. Detector = Peak
- 4. Trace mode = Max hold
- 5. Sweep = Auto couple
- 6. Allow the trace to stabilize

5.2.4. Test Setup

9kHz ~ 30MHz Test Setup:

5.2.5. Test Result

Refer to Appendix A.1.

5.3. Out-band Emission

5.3.1. Test Limit

FCC Part 15 Subpart C Paragraph 15.209					
Frequency (MHz)	Distance (m)	Level (µV/m)			
0.009 - 0.490	300	2400/F (kHz)			
0.490 - 1.705	30	24000/F (kHz)			
1.705 - 30	30	30			
30 - 88	3	100			
88 - 216	3	150			
216 - 960	3	200			
Above 960	3	500			

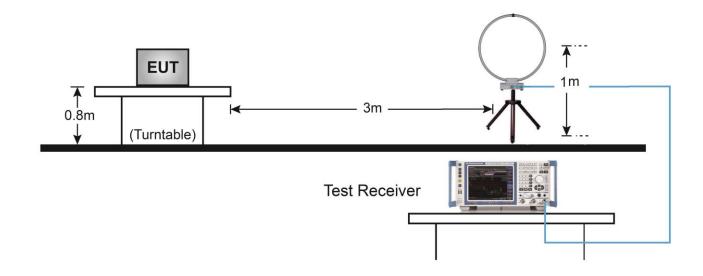
Note 1: The lower limit shall apply at the transition frequency.

Note 2: Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

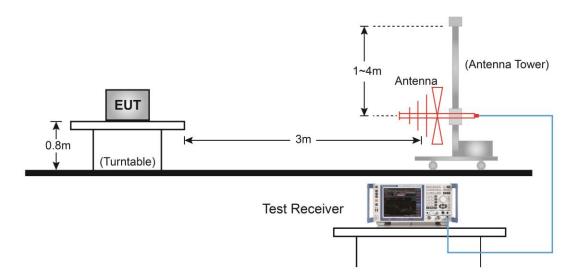
Note 3: E field strength $(dB\mu V/m) = 20 \log E$ field strength $(\mu V/m)$

5.3.2. Test Procedure Used

ANSI C63.10-2013 - Section 6.5.4


5.3.3. Test Setting

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 9kHz for emission below 30MHz and 100kHz for emission between 30MHz and 1GHz
- 3. VBW = 3 * RBW
- 4. Detector = Peak
- 5. Trace mode = Max hold
- 6. Sweep = Auto couple
- 7. Allow the trace to stabilize



5.3.4. Test Setup

9kHz ~ 30MHz Test Setup:

30MHz ~ 1GHz Test Setup:

5.3.5. Test Result

Refer to Appendix A.2.

5.4. Occupied Bandwidth

5.4.1. Test Limit

The occupied bandwidth is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequency.

5.4.2. Test Procedure Used

ANSI C63.10-2013 - Section 6.9.2 (20dB Bandwidth)

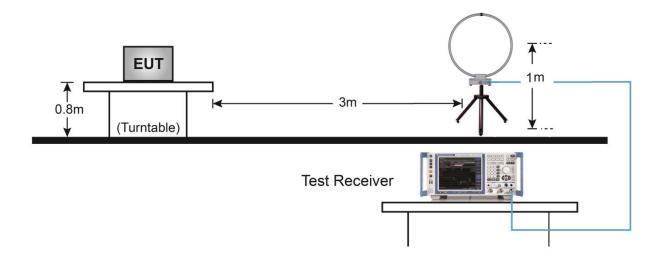
ANSI C63.10-2013 - Section 6.9.3 (99% Bandwidth)

5.4.3. Test Setting

20dB Bandwidth

- 1. Set RBW ≥ 1% to 5% of the 20dB bandwidth
- 2. VBW = approximately three times RBW
- 3. Span = approximately 2 to 5 times the 20dB bandwidth, centered on a hopping channel
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace to stabilize
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

99% Bandwidth


- 1. Spectrum analyzer frequency is set to the nominal EUT channel center frequency.
- 2. Set RBW ≥ 1% to 5% of the OBW
- 3. VBW = Approximately three times RBW
- 4. Reference level set to keep signal from exceeding maximum input mixer level for linear operation
- 5. Detector = Peak
- 6. Trace mode = Max hold

- 7. Sweep = Auto couple
- 8. Allow the trace to stabilize
- 9. Using 99% power bandwidth function of the instrument and report the measured bandwidth

5.4.4. Test Setup

5.4.5. Test Result

Refer to Appendix A.3.

5.5. Frequency Tolerence

5.5.1. Test Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency.

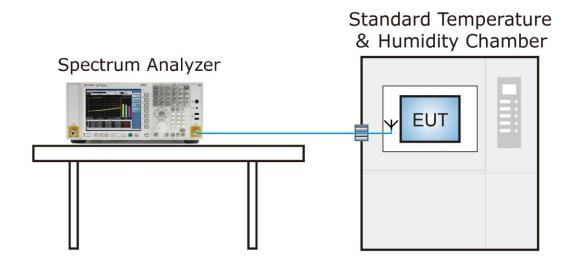
5.5.2. Test Procedure Used

ANSI C63.10-2013 - Section 6.8

5.5.3. Test Setting

Frequency Stability Under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to highest. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C decreased per stage until the lowest temperature reached.


Frequency Stability Under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change. For hand-carried battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

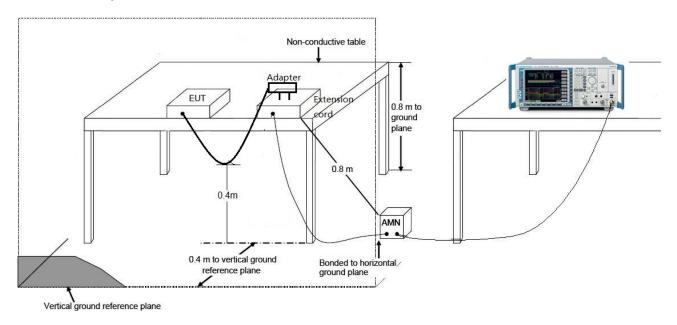


5.5.4. Test Setup

5.5.5. Test Result

Refer to Appendix A.4.

5.6. AC Conducted Emissions Measurement


5.6.1. Test Limit

FCC Part 15 Subpart C Paragraph 15.207					
Frequency (MHz)	QP (dBµV)	ΑV (dBμV)			
0.15 - 0.50	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30	60	50			

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

5.6.2. Test Setup

5.6.3. Test Result

Refer to Appendix A.5.

Appendix A - Test Result

A.1 In-band Emission Test Result

Test Engineer	Stephen Dong	Test Date	20222/01/07
Test Mode	Mode1	Test Site	SIP-AC3

Frequency (MHz)	Reading Level (dBµV/m)	Factor (dB)	Measure Level (dBµV/m)	Limit (@3m) (dBµV/m)	Margin [dB]
Face On	, , ,	· ,	, , ,	· · · /	
13.35	10.71	19.98	30.69	80.51	-49.82
13.55	17.03	19.84	36.87	90.49	-53.62
13.56	27.58	19.85	47.43	124.00	-76.57
13.57	17.30	19.86	37.16	90.49	-53.33
13.77	9.84	20.01	29.85	80.51	-50.66
Face Off					
13.23	15.15	19.89	35.04	80.51	-45.47
13.55	19.94	19.84	39.78	90.49	-50.71
13.56	29.53	19.85	49.38	124.00	-74.62
13.57	21.48	19.86	41.34	90.49	-49.15
13.76	17.94	20.01	37.95	80.51	-42.56

Note 1: All measurements were performed using a loop antenna. The antenna was positioned in two orthogonal (face on and face off) and the position with the highest emission level was recorded.

Note 2: Measurements were tested at 3m and the data was extrapolated to the specified measurement distance of 30m using the square of an inverse linear extrapolation factor (40 dB/decade) as specified in &15.31(f)(2).

Extrapolation Factor = 40*Log(30/3) = 40 dB

For example, Limit (@3m) = $20*log(106) + 40 = 80.51 dB\mu V/m$

Note 3: All measurements were recorded using an EMI test receiver employing a peak detector.

A.2 Out-Band Emission Test Result

Test Engineer	Stephen Dong	Test Date	20222/01/07
Test Mode	Mode1	Test Site	SIP-AC3

	Out-Band Emission Below 30MHz							
Frequency	Reading Level	Factor	Measure Level	Limit(@3m)	Margin (dB)	Detector		
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)				
Face On	Face On							
27.12	5.76	20.09	25.85	69.54	-43.69	Peak		
Face Off								
27.12	4.97	20.09	25.06	69.54	-44.48	Peak		

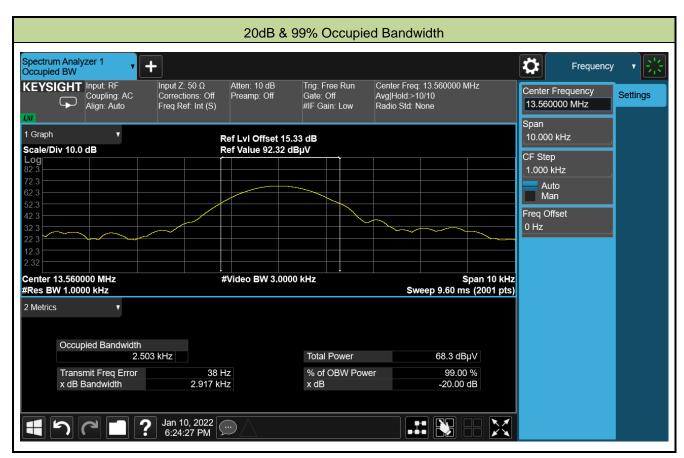
	Out-Band Emission Above 30MHz						
Polarization	Frequency (MHz)	Reading Level	Factor (dB)	Measure Level	Limit (dBµV/m)	Margin (dB)	Detector
		(dBµV/m)		(dBµV/m)			
Н	41.64	6.54	18.02	24.56	40.00	-15.44	Peak
Н	147.86	7.13	18.16	25.29	43.50	-18.21	Peak
Н	316.64	7.21	19.01	26.22	46.00	-19.78	Peak
Н	504.33	7.35	23.49	30.84	46.00	-15.16	Peak
Н	791.45	7.51	28.35	35.86	46.00	-10.14	Peak
Н	926.28	7.66	29.90	37.56	46.00	-8.44	Peak
V	40.67	10.31	17.92	28.23	40.00	-11.77	Peak
V	158.53	6.87	18.17	25.04	40.00	-14.96	Peak
V	414.61	6.91	21.19	28.10	43.50	-15.40	Peak
V	545.07	7.87	23.90	31.77	46.00	-14.23	Peak
V	689.12	7.61	26.66	34.27	46.00	-11.73	Peak
V	945.68	8.56	30.14	38.70	46.00	-7.30	Peak

Note 1: Below 30MHz measurement was performed using a loop antenna. The antenna was positioned in two orthogonal (face on and face off) and the position with the highest emission level was recorded.

Note 2: Measurements were tested at 3m and the data was extrapolated to the specified measurement distance of 30m using the square of an inverse linear extrapolation factor (40 dB/decade) as specified in \$15.31(f)(2). Extrapolation Factor = 40*Log(30/3) = 40 dB

For example, Limit (@3m) = $20*log(30) + 40 = 69.54 dB\mu V/m$

Note 3: All measurements were recorded using an EMI test receiver employing a peak detector.



A.3 Occupied Bandwidth Test Result

Test Engineer	Stephen Dong	Test Date	20222/01/10
Test Mode	Mode1	Test Site	SIP-AC3

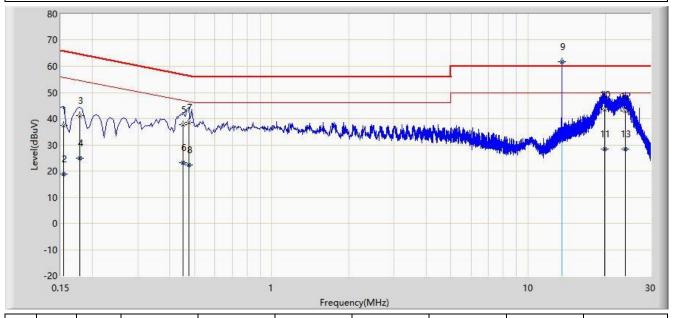
Frequency	20dB Occupied Bandwidth	99% Occupied Bandwidth
(MHz)	(kHz)	(kHz)
13.56	2.917	2.503

Note: Because the measured signal is CW adjusting the RBW per C63.10-2013 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

A.4 Frequency Stability Tolerance Test Result

Test Engineer	Nandy Zhang	Test Date	2022/01/08
Test Mode	Mode1	Test Site	SIP-TR1

Reference Voltage: 3.85Vdc								
Deviation Limit: +/- 0.01% = 1356Hz								
Voltage	Power	Temp Frequency Tolerance (%)						
(%)	Battery	(°C)	0 minutes	2 minutes	5 minutes	10 minutes		
	3.8	-20	0.000661	0.000660	0.000660	0.000659		
		-10	0.000656	0.000655	0.000654	0.000654		
		0	0.000261	0.000276	0.000279	0.000280		
4000/		+10	-0.000026	-0.000019	-0.000016	-0.000011		
100%		+20	-0.000320	-0.000318	-0.000317	-0.000312		
		+30	-0.000594	-0.000590	-0.000587	-0.000585		
		+40	-0.000686	-0.000683	-0.000683	-0.000683		
		+50	-0.000678	-0.000680	-0.000682	-0.000683		
Battery Upper	4.35	+ 20	-0.000260	-0.000253	-0.000250	-0.000246		
Battery Endpoint	3.45	+ 20	-0.000282	-0.000280	-0.000276	-0.000272		


Note 1: Frequency Tolerance (ppm) = $\{[Measured\ Frequency\ (MHz)\ -\ Declared\ Frequency\ (MHz)\}\ *10^6$.

Note 2: Battery upper voltage is 4.35Vdc, battery endpoint voltage is 3.45Vdc, which are declared by the manufacturer.

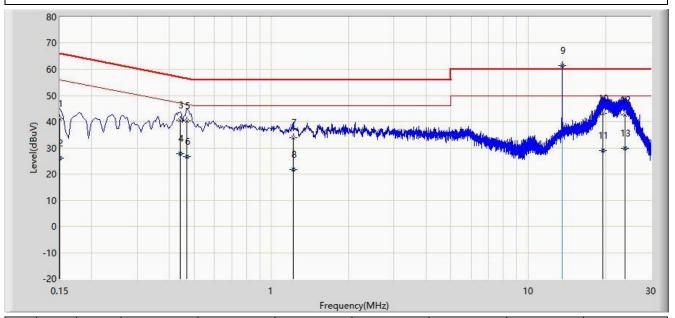
A.5 AC Conducted Emissions Test Result

Site: WZ-SR2	Time: 2022/01/14 - 17:36				
Limit: FCC_Part15.207_CE_AC Power_Class B	Engineer: Helen Han				
Probe: ENV216_101683_Filter Off_E	Polarity: Line				
EUT: Mobile Computer	Power: AC 120V/60Hz				
Test Mode: NFC Working					

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBµV)	(dB)	
				(dBµV)	(dBµV)				
1			0.154	37.362	27.461	-28.419	65.781	9.900	QP
2			0.154	18.811	8.910	-36.971	55.781	9.900	AV
3			0.178	41.119	31.219	-23.460	64.578	9.900	QP
4			0.178	24.798	14.898	-29.780	54.578	9.900	AV
5			0.450	37.739	27.822	-19.136	56.875	9.916	QP
6			0.450	23.327	13.411	-23.548	46.875	9.916	AV
7			0.474	38.431	28.513	-18.012	56.444	9.918	QP
8			0.474	22.217	12.299	-24.226	46.444	9.918	AV
9			13.558	61.606	50.651	N/A	N/A	10.955	PK
10		*	19.890	43.526	32.066	-16.474	60.000	11.460	QP
11			19.890	28.534	17.074	-21.466	50.000	11.460	AV
12			23.938	42.838	31.092	-17.162	60.000	11.746	QP
13			23.938	28.344	16.599	-21.656	50.000	11.746	AV

Note:

- 1. Point 9 is NFC fundamental frequency.
- 2. Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)



Factor (dB) = Cable Loss (dB) + LISN Factor (dB).

Site: WZ-SR2	Time: 2022/01/14 - 17:44				
Limit: FCC_Part15.207_CE_AC Power_Class B	Engineer: Helen Han				
Probe: ENV216_101683_Filter Off_E	Polarity: Neutral				
EUT: Mobile Computer	Power: AC 120V/60Hz				
Test Mode: NFC Working					

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBµV)	(dB)	
				(dBµV)	(dBµV)				
1			0.150	41.205	31.285	-24.795	66.000	9.920	QP
2			0.150	26.117	16.198	-29.883	56.000	9.920	AV
3			0.442	40.649	30.723	-16.375	57.024	9.926	QP
4			0.442	27.939	18.013	-19.085	47.024	9.926	AV
5		*	0.470	40.233	30.305	-16.281	56.514	9.928	QP
6			0.470	26.763	16.835	-19.751	46.514	9.928	AV
7			1.218	33.845	23.879	-22.155	56.000	9.966	QP
8			1.218	21.707	11.740	-24.293	46.000	9.966	AV
9			13.558	61.451	50.486	N/A	N/A	10.965	PK
10			19.570	43.307	31.657	-16.693	60.000	11.650	QP
11			19.570	29.019	17.369	-20.981	50.000	11.650	AV
12			23.870	42.621	30.763	-17.379	60.000	11.858	QP
13			23.870	29.877	18.020	-20.123	50.000	11.858	AV

Note:

- 1. Point 9 is NFC fundamental frequency.
- 2. Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB) Factor (dB) = Cable Loss (dB) + LISN Factor (dB).

Appendix B - Test Setup Photograph

Refer to "2112RSU039-UT" file.

Appendix C - EUT Photograph

Refer to "2112RSU039-UE" file.