

RADIO TEST REPORT

For

MODEL NO.: 2082 FCC ID: C3K2082 IC ID: 3048A-2082

Test Report No. R-TR1125-FCCISED -NFC-1 Issue Date: March 26th, 2024

FCC CFR47 Part 15 Subpart C
Innovation, Science and Economic Development
Canada RSS-210 Issue 10

Prepared by
Microsoft EMC Laboratory
17760 NE 67th Ct,
Redmond WA, 98052, U.S.A.
425-705-0638
jems.pradhan@microsoft.com

Record of Revisions

Revision	Date	Section	Page(s)	Summary of Changes	Author/Revised By:
1.0	03/26/2024	All	All	Version 1.0	Kevin Navarro

Issued: March 26,2024
Microsoft EMC Laboratory Page **2** of **32** Report#: R-TR1125-FCC-NFC-1

Table of Contents

1		Reco	ord o	f Revisions	2
2		Devi	atior	ns from Standards	6
3		Facil	ities	and Accreditations	6
	3.	1	Tes	t Facility	6
	3.	2	Acc	reditations	6
	3.	3	Tes	t Equipment	6
4		Mea	sure	ment Uncertainty	6
5		Proc	luct [Description	7
	5.	1	Tes	t Configurations	7
	5.	2	Env	ironmental Conditions	7
	5.	3	Ante	enna Requirements	8
	5.	4	Equ	ipment Modifications	8
	5.	5	Date	es of Testing	8
	5.	6	Tes	t Samples Details	8
	5.	7	Tes	t Engineers	8
6				ults Summary	
7		Test	Equi	pment List	10
8		Test	Site	Description	12
	8.	1	Rac	liated Emissions Test Site	12
		8.1.3	1	Radiated Measurements in 9kHz- 30 MHz	
		8.1.2	2	Radiated Measurements in 30 MHz - 1000 MHz	12
	8.	2	Ante	enna port coupled measurements	12
	8.	3	Tes	t Setup Diagrams	13
9		Test		ults- Conducted	
	9.	1	20 d	dB Occupied Bandwidth	
		9.1.3	1	Test Requirement:	
		9.1.2	2	Test Method:	15
		9.1.3	3	Limits:	
		9.1.4	4	Test Results:	15
		9.1.	5	Test Data:	16
	9.	2	99%	6 Occupied Bandwidth	16

Issued: March 26,2024

9.2.1	Test Requirement:	16
9.2.2	Test Method:	16
9.2.3	Limits:	17
9.2.4	Test Results:	17
9.2.5	Test Data:	17
9.3 F	requency Stability	18
9.3.1	Test Requirement:	18
9.3.2	Test Method:	18
9.3.3	Limits:	19
9.3.4	Test Results:	19
9.4 R	adiated Spurious and Carrier Mask	21
9.4.1	Test Requirement:	21
9.4.2	Test Method:	21
9.4.3	Limits:	23
9.4.4	Test Result:	23
9.4.5	Test Data:	24
9.5 A	C Line Conducted Emissions	28
9.5.1	Test Requirements	28
9.5.2	Test Method	28
9.5.3	Limit	28
9.5.4	Test Result:	28
0 5 5	Toot Data:	20

Test Report Attestation

Microsoft Corporation Model: 2082

FCC ID: C3K2082 IC ID: 3048A-2082

Applicable Standards

Specification	Test Result
FCC 47CFR Rule Parts 15.207, 15.209, 15.225 RSS-210 Issue 10	Pass

Microsoft EMC Laboratory attests that the product model identified in this report has been tested to and meets the requirements identified in the above standards. The test results in this report solely pertains to the specific sample tested, under the conditions and operating modes as provided by the customer.

This report shall not be used to claim product certification, approval, or endorsement by A2LA or any agency of any Government. Reproduction, duplication, or publication of extracts from this test report is prohibited and requires prior written approval of Microsoft EMC Laboratory.

Reviewed By: Jems Pradhan Written/Issued By: Kevin Navarro

Radio Test Lead Radio Test Engineer

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page 5 of 32

Deviations from Standards

None.

Facilities and Accreditations

3.1 Test Facility

All test facilities used to collect the test data are located at Microsoft EMC Laboratory, 17760 NE 67th Ct. Redmond WA, 98052, USA

3.2 Accreditations

The lab is established and follows procedures as outlined in IEC/ISO 17025 and A2LA accreditation requirements.

A2LA Accredited Testing Certificate Number: 3472.01

FCC Registration Number: US1141

ISED CAB ID: US0212

3.3 Test Equipment

The site and related equipment are constructed in conformance with the requirements of ANSI C63.4:2014 and other equivalent applicable standards. The test site for measurements below 30 MHz has been demonstrated to correlate with an open field site per KDB 414788. Test site requirements for measurements above 1 GHz are in accordance with ANSI C63.4:2014.

ANSI C63.10:2013 and the appropriate KDB test methods were followed.

4 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the product, as specified in ETSI TR 100 028. This represents an expanded uncertainty expressed at 95% confidence level using a coverage factor k=2. These levels are for reference only and not included to determine product compliance.

Expanded uncertainty calculations are available upon request.

Test item	Uncertainty	Unit
Radiated disturbance (9 kHz to 1 GHz)	5.99	dB
Conducted Disturbance at Mains Port	3.31	dB
Uncertainty for Conducted Power test	1.277	dB
Uncertainty for Conducted Spurious emission test	2.742	dB
Uncertainty for Bandwidth test	4.98	kHz
Uncertainty for DC power test	0.05	%
Uncertainty for test site temperature	0.5	°C
Uncertainty for test site Humidity	3	%
Uncertainty for time	0.189	%

Issued: March 26,2024 Page 6 of 32 Report#: R-TR1125-FCC-NFC-1

Product Description

Company Name:	Microsoft Corporation
Address:	One Microsoft Way
City, State, Zip:	Redmond, WA 98052-6399
Customer Contact:	Mike Boucher
Functional Description of the EUT:	I/O Accessory device with NFC and BTLE radios
Model:	2082
FCC ID:	C3K2082
IC ID:	3048A-2082
Radio under test:	NFC (13.110-14.010 MHz)
Modulation(s):	ASK/CW
Antenna Information:	Integral Antenna
Equipment Design State:	Prototype/Production Equivalent (DV)
Equipment Condition:	Good
Test Sample Details:	RF Test Samples 0E348BM24013KM, 0E34BH24013KM, 0E348KG24013KM, 0E33KCK24023KM

5.1 Test Configurations

Test firmware provided by the customer was used to program the EUT to transmit continuously. With this firmware, the device can operate in single tone carrier and ASK modulation modes. Measurements with a companion device acting as a load were also performed.

Environmental Conditions

Ambient air temperature of the test site was within the range of 10 °C to 40 °C (50 °F to 104 °F) unless the EUT specified testing over a different temperature range. Humidity levels were in the range of 10% to 90% relative humidity. Testing conditions were within tolerance, and any deviations required from the EUT are reported.

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page 7 of 32

5.3 Antenna Requirements

The antenna/coil is permanently attached and there are no provisions for connection to an external antenna.

5.4 Equipment Modifications

No modifications were made during testing.

5.5 Dates of Testing

Testing was performed from Jan 31^{st} to Mar 7^{th} , 2024.

5.6 Test Samples Details

Serial Number	Internal Lab ID	Test Cases
0E348BM24013KM	R-1125-DV-03	Radiated
0E348BH24013KM	R-1125-DV-04	Conducted
0E33KCK24023KM	R-1125-DV-06	Conducted
0E348KG24013KM	R-1125-DV-01	AC Line Conducted

5.7 Test Engineers

Name	Test Cases
Vishwas	Radiated
Vishwas	Conducted
Tucker Livingston	AC Line Conducted

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page **8** of **32**

6 Test Results Summary

Test Description	FCC CFR 47/RSS	Limit	Test Result
20 dB Bandwidth	FCC 15.215 (c)	Reporting & Measurement Purposes only	N/A
Occupied Bandwidth	RSS-Gen [6.7]	Reporting & Measurement Purposes only	N/A
Frequency Stability	FCC 15.225 (e) RSS-210 [B.6]	within ±0.01% or +/- 100 ppm	Pass
Carrier Mask	FCC 15.225 (a)(b)(c) RSS-210 [B.6]	FCC CFR 47 15.225 Limits RSS-210 [B.6] Limits	Pass
Radiated Spurious Emissions	15.205, 15.209 RSS-GEN [8.9] [8.10]	FCC CFR 47 15.209 limits RSS-GEN [8.9]	Pass

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page **9** of **32**

7 Test Equipment List

Manufacturer	Description	Model #	Asset #	Calibration Due
Rohde &	EMI Test	ESW44	RF-1331	4/3/2024
Schwarz	Receiver			
Rohde &	EMI Test	ESU40	RF-012	4/10/2024
Schwarz	Receiver	F0)//40	DE 700	0/40/0004
Rohde &	EMI Test	FSV40	RF-780	3/10/2024
Schwarz	Receiver			
Sunol Sciences	Antenna -	JB6	RF-039	5/16/2024
	Broadband			
ETS-Lindgren	Antenna -	6512	RF-202	3/8/2024
	Passive Loop			
Pasternack	6dB attenuator	PE7004-6	EMC-949	5/16/2024
Rohde &	Open Switch	OSP130	RF-1337	12/22/2024
Schwarz	and Control Unit			
Rohde &	Open Switch	OSP150	RF-1336	12/22/2024
Schwarz	and Control Unit			
Teledyne	RF Cable	57500	RF-1036	12/22/2024
Micro-Coax	RF Cable	A SERIES 505552-K 00000071	RF-1399	12/22/2024
Micro-Coax	RF Cable	142A SERIES 505508-C 00000856	RF-1398	12/22/2024
Maury Microwave	RF Cable	SB-SMA-MM-48	RF-1173	N/A
Langer	Near Field Probe Set	N/A	EMC-643	N/A
Madge Tech	Temperature meter	TCTemp2000	RF-168	03/16/2024
Madge Tech	Environmental (THP) meter	PRHTemp2000	SAR-091	07/18/2024
Test Equity	Temperature Chamber	1007S	EMC-673	N/A
Agilent	DC Power Supply	E3644A	EMC-700	N/A

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page **10** of **32**

Equipment use	Equipment used for AC Line Conducted Emissions Measurement					
Manufacturer	Description	Model #	Asset #	Calibration Due		
Rohde &	EMI Test	ESR3	EMC-1396	06/12/2024		
Schwarz	Receiver					
Teseq	LISN	NNB 51	EMC-642	1/11/2025		
Fluke	Multimeter	87V	EMC-052	11/28/2024		
PCE	Environmental (THP) meter	PCE-THB 40	EMC-1205	1/4/2025		
Micro-Coax	RF Cable	UFA210A-1-	EMC-367	11/8/2024		
		1800-50U50U				
Chroma	AC Power	61602	EMC-055	N/A		
	Source					
ETS-Lindgren	TILE- Software		EMC-367	N/A		
	License/USB					

Note: Items with Calibration Due date marked as N/A are characterized before use, where applicable.

Note*: All equipment used was within calibration during applicable measurements.

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page **11** of **32**

Test Site Description

Radiated Emissions Test Site

Radiated measurements are performed in a 3m semi-anechoic chamber, which meets NSA requirements for the frequency range of 30MHz to 1000MHz in accordance with ANSI C63.4:2017.

8.1.1 Radiated Measurements in 9kHz- 30 MHz

The EUT is positioned on a turntable at a height of 80cm using a non-conducting table. A loop antenna is positioned at 3m from the EUT periphery at 1m height from the ground. The turntable is rotated 360 degrees to determine the highest emissions. This is repeated for three orientations of the measurement antenna- parallel, perpendicular and ground-parallel. All possible orientations of the EUT were investigated for emissions.

8.1.2 Radiated Measurements in 30 MHz - 1000 MHz

The EUT is positioned on a turntable at a height of 80cm using a non-conducting table. A linearly polarized broadband antenna is positioned at 3m from the EUT periphery. The turntable is rotated 360 degrees, and the antenna height varied from 1m to 4m to determine the highest emissions. This is repeated for both horizontal and vertical polarizations of the measurement antenna. All possible orientations of the EUT were investigated for emissions.

Antenna port coupled measurements. 8.2

Antenna port coupled measurements are performed by placing a near field probe near the EUT. The near field probe is connected to a spectrum analyzer through a pre-characterized cable and attenuator.

Issued: March 26,2024 Page 12 of 32 Report#: R-TR1125-FCC-NFC-1

8.3 **Test Setup Diagrams**

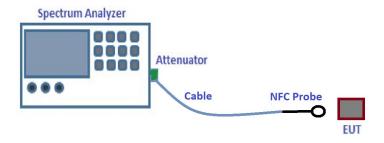


Figure 8-1 Test Setup for Antenna Port Coupled Measurements

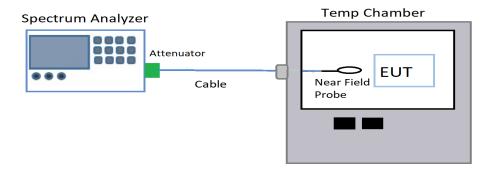


Figure 8-2 Test Setup for Antenna Port Coupled Frequency Stability Measurements

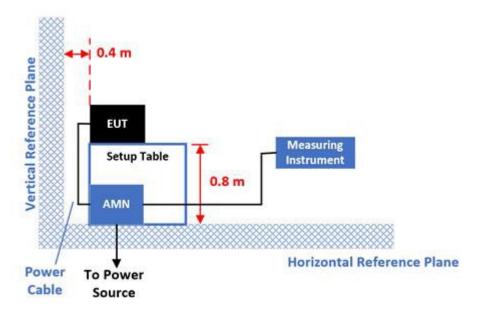


Figure 8-3 AC Line Conducted Emissions

Issued: March 26,2024 Report#: R-TR1125-FCC-NFC-1 Page 13 of 32

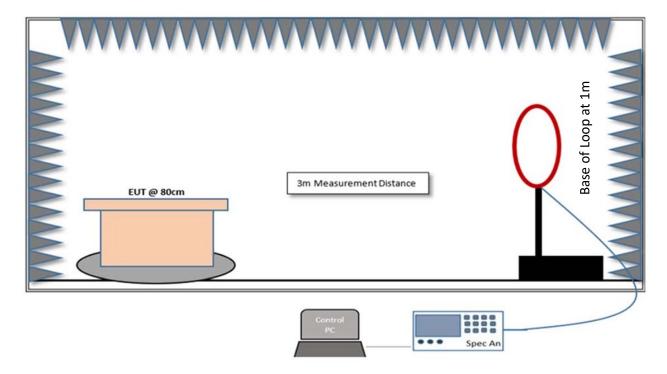


Figure 8-4 Test Setup for Radiated measurements in 9kHz - 30MHz Range.

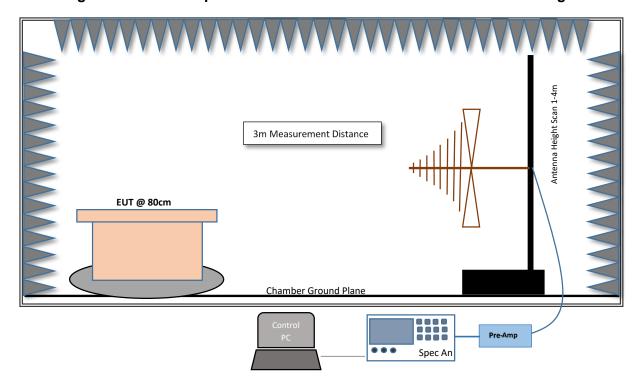


Figure 8-5 Test Setup for Radiated measurements in 30MHz-1GHz Range.

9 Test Results- Conducted

9.1 20 dB Occupied Bandwidth

9.1.1 **Test Requirement:**

The 20 dB Occupied Bandwidth is measured as the width of the spectral envelope of the modulated signal, at an amplitude level reduced 20 dB from maximum value of the spectral envelope. This test is performed for reporting and measurement purposes only.

9.1.2 **Test Method:**

Measurements are performed according to ANSI C63.10: 2013 section 6.9.

Spectrum Analyzer settings:

Set analyzer center frequency to the nominal EUT channel frequency.

Span is set to between 2 and 5 times the OBW bandwidth.

RBW: 1% to 5% of the OBW= 30 kHz

VBW ≥ 3 RBW= 100 kHz

Detector = Peak

Sweep time = Auto Couple

Trace mode = max hold

Place two markers, one at the lowest frequency and the other at the highest frequency of the Spectral envelope 20 dB below the maximum value. The 20 dB bandwidth is the difference in frequency between these two markers.

9.1.3 **Limits**:

For reporting purpose only.

9.1.4 Test Results:

Frequency	Test	20 dB Occupied
(MHz)	Mode	Bandwidth (kHz)
13.56	ASK	225.8

Issued: March 26,2024 Page 15 of 32 Report#: R-TR1125-FCC-NFC-1

9.1.5 **Test Data:**

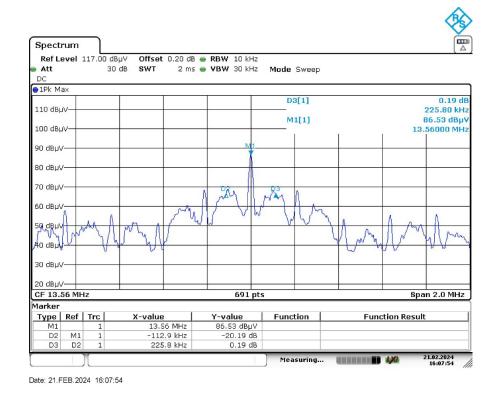


Figure 9-1 20 dB Occupied Bandwidth

9.2 99% Occupied Bandwidth

9.2.1 Test Requirement:

The 99% Occupied Channel Bandwidth is the bandwidth that contains 99% of the power of the signal. This test is performed for reporting and measurement purposes only.

9.2.2 **Test Method:**

Measurements are performed according to ANSI C63.10: 2013 section 6.9.

Spectrum Analyzer settings:

Set analyzer center frequency to the nominal EUT channel frequency.

Span is set to between 2 and 5 times the OBW bandwidth.

RBW: 1% to 5% of the OBW= 30 kHz

VBW ≥ 3 RBW= 100 kHz

Detector = Peak

Sweep time = Auto Couple

Trace mode = max hold

Use the 99% power bandwidth function of the instrument.

Report#: R-TR1125-FCC-NFC-1 Page 16 of 32 Issued: March 26,2024

9.2.3 **Limits**:

For reporting purpose only.

9.2.4 Test Results:

Frequency	Test	99% Bandwidth
(MHz)	Mode	(kHz)
13.56	ASK	680.173

9.2.5 **Test Data:**

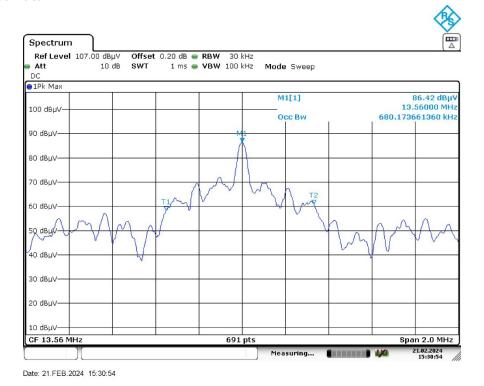


Figure 9-2 99% Bandwidth.

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page **17** of **32**

9.3 Frequency Stability

9.3.1 **Test Requirement:**

FCC CFR 47 Rule Part 15.225 (e)

9.3.2 **Test Method:**

Measurements were performed according to the procedure defined in ANSI C63.10: 2013 Section 6.8.

Spectrum Analyzer settings:

RBW= 100 Hz

VBW = 300 Hz

Span = 10 kHz

Detector = Peak

Sweep Points = 32001

Sweep Time = Auto

Sweep Mode = Continuous

First capture the reference frequency at nominal voltage (from EUT spec) and nominal temperature (20°C).

- o After power on, use trace 1 on the spectrum analyzer. Select view to freeze the plot.
- o Use marker \rightarrow peak search to establish the reference frequency. Marker 1 will now be the reference frequency.
- o Record the reference frequency M1(1)

Once the reference frequency has been established, use trace 2 to compare the frequency shift during the rest of the voltage and temperature values as defined in ANSI C63.10 section 6.8.

- o Select Trace → 2, Clear write
- o Select Marker → 2. Delta
- o Select Marker to Trace → 2
- o Select Trace → Max hold (ensure trace 2 is selected)
- o Select Marker → Peak Search
- o Record the frequency shift D2[2]

Repeat step 2 for the remaining voltage and temperature values as defined in ANSI C63.10 section 6.8.

- o Select Trace → 2, Clear write
- o Select Trace → Max hold (ensure trace 2 is selected)
- o Select Marker → Peak Search
- o Record the frequency shift D2[2]

Issued: March 26,2024 Page 18 of 32 Report#: R-TR1125-FCC-NFC-1

Sample Plot:

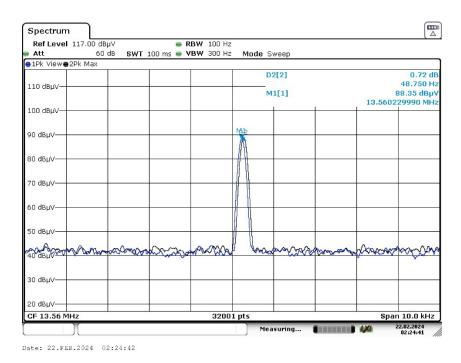


Figure 9-3 Frequency Stability (13.56MHz)

9.3.3 **Limits:**

15.225 (e): The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency over a temperature variation of -20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

9.3.4 **Test Results:**

Pass.

1.) Results with varying temperature

Power Supply (Vdc)= 4 V

Temperature (°c)	Startup (MHz)	Startup Frequency Shift (Hz)	Startup Delta (ppm)	Frequency Shift (Hz) at 2 mins	2 mins (MHz)	2 mins Delta (ppm)
50.00	13.5602003	-29.6900000	2.189	-39.06000000	13.5601909	2.88048212
40.00	13.5602103	19.6900000	1.451	-29.37000000	13.5602006	2.16589247
30.00	13.5602300	0.0000000	0.000	-10.00000000	13.5602200	0.73745062
20.00	13.5602300	0.0000000	0.000	9.69000000	13.5602397	-0.71458965
10.00	13.5602787	-48.7500000	-3.595	-48.75000000	13.5601812	3.59507177
0.00	13.5602981	68.1200000	-5.024	58.75000000	13.5602887	-4.33252239
-10.00	13.5602984	68.4400000	-5.047	78.12000000	13.5603081	-5.76096424
-20.00	13.5602884	58.4400000	-4.310	48.75000000	13.5602787	-3.59507177

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page 19 of 32

Microsoft EMC Laboratory

Frequency Shift (Hz) at 5 mins	5 mins (MHz)	5 mins Delta (ppm)	Frequency Shift (Hz) at 10mins	10 mins (MHz)	10 mins Delta (ppm)	Limit (ppm)	Result
-39.06000000	13.5601909	2.88048212	-29.69000000	13.5602003	2.1895	±100	Pass
-29.37000000	13.5602006	2.16589247	-29.69000000	13.5602003	2.18949089	±100	Pass
-10.00000000	13.5602200	0.73745062	-10.00000000	13.5602200	0.73745062	±100	Pass
9.69000000	13.5602397	-0.71458965	9.69000000	13.5602397	-0.71458965	±100	Pass
48.75000000	13.5602787	-3.59507177	48.75000000	13.5602787	-3.59507177	±100	Pass
68.12000000	13.5602981	-5.02351362	68.12000000	13.5602981	-5.02351362	±100	Pass
78.12000000	13.5603081	-5.76096424	78.12000000	13.5603081	-5.76096424	±100	Pass
68.12000000	13.5602981	-5.02351362	58.44000000	13.5602884	-4.30966142	±100	Pass

2.) Results with varying Supply voltage

Ambient temperature: 20 °c

Power Supply (VDC)	Startup (Temp.)	Frequency Shift (Hz)	Delta (ppm)	Frequency Shift (Hz) at 2mins	2 mins (MHz)	Delta (ppm)
4.6	20.00	0.0000	0.000	9.69000000	13.5602397	-0.71458965
3.4	20.00	19.3700	-1.428	9.69000000	13.5602397	-0.71458965

Frequency Shift (Hz) at 5mins	5 mins (MHz)	Delta (ppm)	Frequency Shift (Hz) at 10mins	10 mins (MHz)	Delta (ppm)	Limit (ppm)	Res ult
9.69000000	13.5602397	-0.71458965	9.69000000	13.5602397	-0.71458965	±100	Pass
9.69000000	13.5602397	-0.71458965	9.69000000	13.5602397	-0.71458965	±100	Pass

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page **20** of **32**

9.4 Radiated Spurious and Carrier Mask

9.4.1 **Test Requirement:**

FCC CFR 47 Rule Part 15.225 (a)(b)(c)(d) and 15.209

9.4.2 **Test Method:**

Radiated spurious measurements were made from 9kHz to the 10th harmonic of the transmit fundamental frequency following ANSI C63.10:2013 procedures. The limit for radiated spurious emissions is per 15.209. Emissions observed in the restricted bands listed in 15.205 and RSS-Gen were tested for compliance per limits in 15.209. Limits for Carrier Mask are as defined in 15.225.

Guidelines in ANSI C63.10:2013 were followed with respect to maximizing the emissions. Carrier Mask Measurements were performed at 1m measurement distance to improve SNR.

A pre-amp was required for this test, to provide the measuring system with sufficient sensitivity. The peak reading of the emission, after being corrected by the antenna factor, cable loss, preamp gain, etc., is the peak field strength.

Parallel, perpendicular, and ground parallel loop orientations were investigated. Worst-case maximized data for all loop orientations is shown in this test report.

Radiated Spurious Emissions

Spectrum Analyzer Settings:

9 kHz - 150 kHz

RBW= 1 kHz

VBW= 3 kHz

Trace Mode: Peak Detector (Max Hold)

Span= 1 - 150 kHz Sweep time= Auto

Sweep points ≥ 2 x Span/RBW

150 kHz - 30 MHz

RBW= 10 kHz

VBW= 30 kHz

Trace Mode: Peak Detector (Max Hold)

Span= 150 kHz - 30 MHz

Sweep time= Auto

Sweep points ≥ 2 x Span/RBW

30 MHz - 1 GHz:

RBW = 120 kHz

VBW ≥ 3 X RBW

Trace Mode: Peak Detector (Max Hold). Final measurements performed using QP Detector.

Span= 30 MHz - 1 GHz

Sweep time= Auto

Sweep points ≥ 2 x Span/RBW

Final Peak Measurements

RBW = 10 kHz

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page 21 of 32

Microsoft EMC Laboratory

VBW ≥ 30 kHz Detector = Peak IF filter = 6dB Sweep time = auto

Trace mode = max hold. Allow sweeps to continue until the trace stabilizes.

Final Quasi-Peak Measurements

RBW = 200 Hz; 9 kHz

IF filter = 6dB

Detector = Quasi-Peak Measurement Time = 15s

Final Average Measurements (9 kHz – 90 kHz, 110 kHz – 490 kHz)

RBW = 1 kHz

VBW ≥ 3 kHz

Detector = Average

IF filter = 6dB

Measurement time = 0.1 to 1s

Trace mode = max hold. Allow sweeps to continue until the trace stabilizes.

Sample Calculation:

Field Strength Level:

Amplitude (Analyzer level) + AFCL (Antenna Factor and Cable losses) - Amplifier Gain = 50 dBuV + 33 dB/m - 25 dB = 58 dBuV/m

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page 22 of 32

9.4.3 **Limits**:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (meters)	Field Strength Limit (dBµV/m)
13.110 -13.410	106	30	40.51
13.410-13.533	334	30	50.47
13.553-13.567	15,848	30	84
13.567-13.710	334	30	50.47
13.710-14.010	106	30	40.51

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (meters)	Field Strength Limit (dBµV/m)
0.009-0.490	2400/F (kHz)	300	48.5 - 13.8
0.490-1.705	24000/F (kHz)	30	33.8- 23.0
1.705-30	30	30	29.5
30-88	100	3	40
88-216	150	3	43.5
216-960	200	3	46
960-1000	500	3	54

9.4.4 **Test Result:**

Pass.

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page **23** of **32**

9.4.5 **Test Data:**

9.4.5.1 Carrier Mask Emission

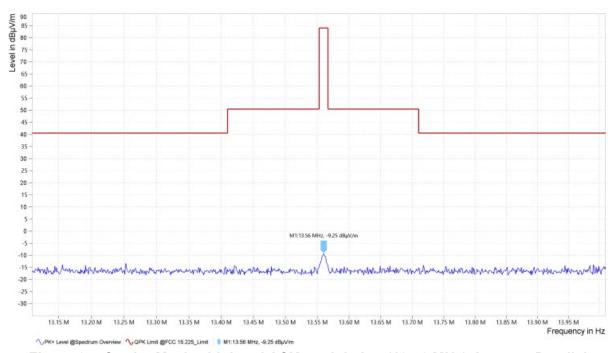


Figure 9-4 Carrier Mask with Load ASK modulation (13.56 MHz)-Antenna Parallel Orientation

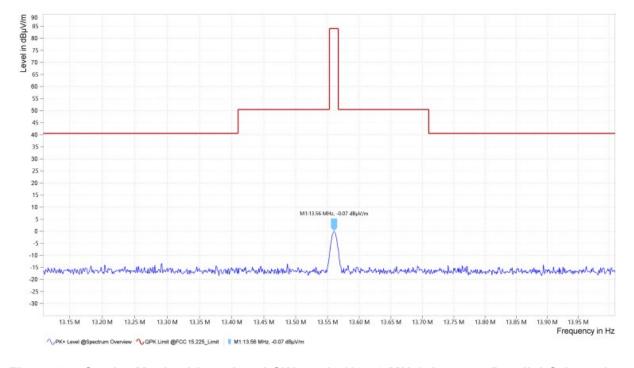


Figure 9-5 Carrier Mask without Load CW mode (13.56 MHz)-Antenna Parallel Orientation

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page 24 of 32

9.4.5.2 Emissions in 9 kHz - 30 MHz

EUT in all modes and antenna in all orientations were tested and worst-case results are reported below:

i) Antenna in parallel orientation and EUT is with load:

,	RSE 9 kHz – 30 MHz-Parallel Orientation									
Carrier Frequency (MHz)	Emission Frequency (MHz)	Raw Quasi- Peak Amplitude (dBµV/m)	Correction Factor (dB)	Corrected Quasi- Peak Field Strength (dBµV/m)	Quasi- Peak Limit (dBµV/m)	Quasi- Peak Margin (dB)				
13.56	0.027	-13.67	-2.43	-16.10	38.92	55.02				
13.56	0.544	-4.32	11.57	7.25	32.89	25.65				
13.56	11.657	-13.64	-4.79	-18.43	29.50	47.93				
13.56	11.892	-15.20	-4.81	-20.01	29.50	49.51				
13.56	13.558*	-5.53	-5.13	-10.66	29.50	40.16				
13.56	23.129	-2.96	-5.41	-8.37	29.50	37.87				

^{*}Fundamental emission

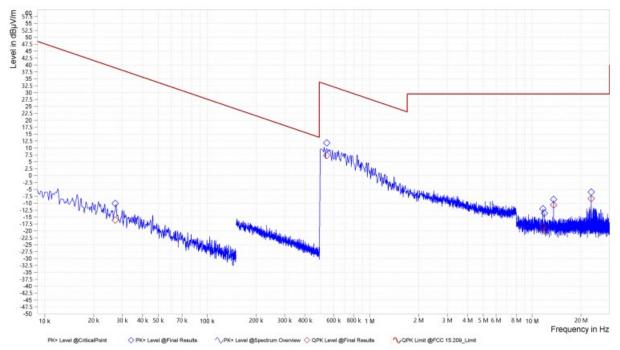


Figure 9-6 Radiated Spurious Emissions 9 kHz – 30 MHz ASK Modulation

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024

Microsoft EMC Laboratory

ii) Antenna in parallel orientation and EUT is without load:

,	RSE 9 kHz – 30 MHz-Parallel Orientation									
Carrier Frequency (MHz)	Emission Frequency (MHz)	requency (MHz) Peak Amplitude (dBµV/m)		Corrected Quasi- Peak Field Strength (dBµV/m)	Quasi- Peak Limit (dBµV/m)	Quasi- Peak Margin (dB)				
13.56	0.031	-16.91	-3.68	-20.59	37.70	58.29				
13.56	0.513	-4.19	12.06	7.87	33.41	25.54				
13.56	0.696	-5.44	9.62	4.18	30.76	26.58				
13.56	13.558*	3.07	-5.13	-2.06	29.50	31.56				
13.56	21.663	-6.26	-5.13	-11.39	29.50	40.89				
13.56	23.129	-1.48	-5.41	-6.89	29.50	36.39				

^{*}Fundamental emission

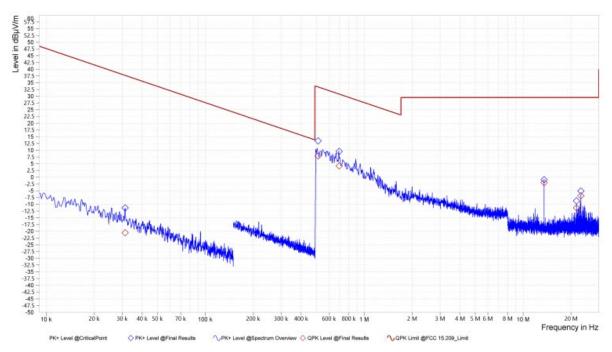


Figure 9-7 Radiated Spurious Emissions 9 kHz - 30 MHz CW Modulation

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page **26** of **32**

9.4.5.3 Emissions in 30 MHz- 1 GHz range

All modes were tested, and worst-case results are reported.

EUT in X orientation and with Load i)

	RSE 30-1000 MHz										
Carrier Frequency (MHz)	Emission Frequency (MHz)	Raw Quasi- Peak Amplitude (dBµV/m)	ak Factor		Quasi- Peak Limit (dBµV/m)	Quasi- Peak Margin (dB)					
13.56	189.808	9.00	19.52	28.52	43.50	14.98					
13.56	203.388	14.40	20.03	34.43	43.50	9.07					
13.56	216.979	11.30	18.82	30.12	46.00	15.88					
13.56	230.499	8.92	19.32	28.24	46.00	17.76					
13.56	379.685	2.89	23.67	26.56	46.00	19.44					
13.56	953.569	-3.06	32.78	29.72	46.00	16.28					

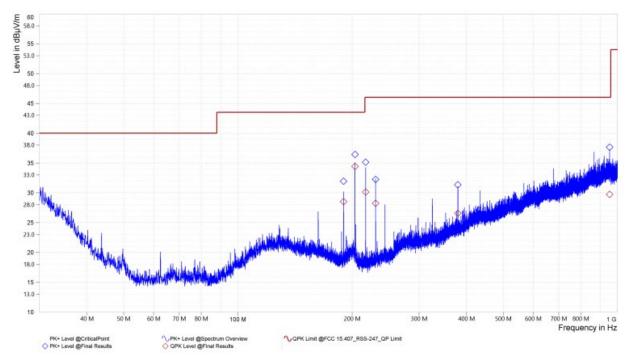


Figure 9-8 Radiated Spurious Emissions 30MHz – 1 GHz – X orientation.

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page **27** of **32**

9.5 AC Line Conducted Emissions

9.5.1 **Test Requirements**

FCC CFR 47 Rule Part 15.207 (a)

ISED RSS Gen [8.8]

9.5.2 Test Method

Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the Unsymmetric radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with the power cords that are used under normal operating conditions. These measurements are made using a LISN (Line Impedance Stabilization Network). AC powered peripherals are attached to a second LISN with the 50-ohm measuring port terminated by a 50-ohm resistive load.

Worst case results were recorded when the EUT was transmitting continuously with a passive tag load.

EMI Receiver Settings:

150 kHz - 30 MHz:

RBW= 9 kHz VBW ≥ 3 X RBW

Trace Mode: Peak Detector (Max Hold).

Final measurements were performed using Quasi-Peak and Average Detectors.

Span= 150 kHz - 30 MHz

Sweep time= Auto

9.5.3 **Limit**

	Conducted	limit (dBµV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

9.5.4 Test Result:

Pass

Issued: March 26,2024 Page 28 of 32 Report#: R-TR1125-FCC-NFC-1

9.5.5 **Test Data**:

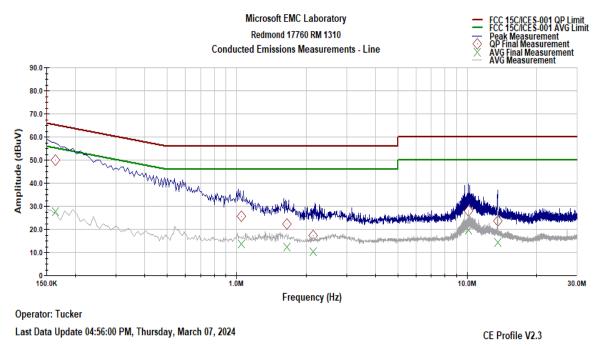


Figure 9-9 AC Line Conducted Emissions - Line (150 kHz - 30 MHz)

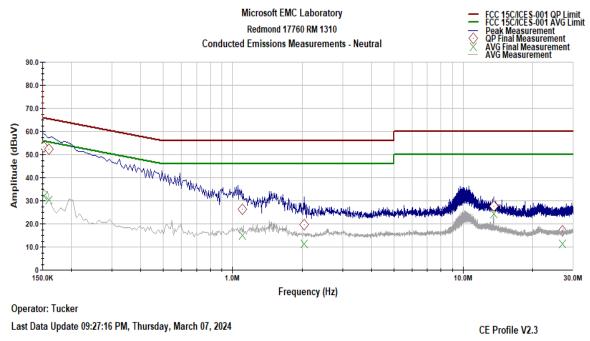


Figure 9-10 AC Line Conducted Emissions - Neutral (150 kHz - 30 MHz)

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page 29 of 32

	AC Conducted Line Emissions Data – ASK with Load										
Frequency (MHz)	QP Amplitude (dBµV)	AVG Amplitude (dBµV)	Quasi- Peak Limit (dBµV)	Average Limit (dBµV)	Line Tested (L or N)	Quasi- Peak Margin (dB)	Average Margin (dB)				
0.164	50.138	27.771	65.267	55.267	L	-15.129	-27.496				
1.052	25.594	13.747	56.000	46.000	L	-30.406	-32.253				
1.651	22.436	12.272	56.000	46.000	L	-33.564	-33.728				
2.042	17.449	10.416	56.000	46.000	L	-38.551	-35.584				
10.163	28.130	19.589	60.000	50.000	L	-31.870	-30.411				
13.559	23.696	14.438	60.000	50.000	L	-36.304	-35.562				
0.152	53.387	31.971	65.890	55.890	N	-12.503	-23.919				
0.160	52.425	30.217	65.464	55.464	N	-13.039	-25.247				
1.102	31.564	14.958	56.000	46.000	N	-29.578	-31.042				
2.042	30.002	11.238	56.000	46.000	N	-36.445	-34.762				
13.558	30.560	24.306	60.000	50.000	N	-32.451	-25.694				
26.988	25.062	11.350	60.000	50.000	N	-42.971	-38.650				

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page **30** of **32** Microsoft EMC Laboratory

End of Report

Report#: R-TR1125-FCC-NFC-1 Issued: March 26,2024 Page **31** of **32**

Issued: March 26,2024 Microsoft EMC Laboratory Report#: R-TR1125-FCC-NFC-1 Page **32** of **32**