CERTIFICATION TEST REPORT

Report Number.: 12935947-E8V4

Applicant: Microsoft Corporation

One Microsoft Way

Redmond, WA 98052-6399

USA

Model: 1872

FCC ID: C3K1872

IC ID: 3048A-1872

EUT Description: Portable Computing Device

Test Standard(s): FCC 47 CFR PART 15 SUBPART E

ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5

Date Of Issue:

September 16, 2019

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A.

TEL: (510) 319-4000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	Issue Date	Revisions	Revised By
V1	8/29/2019	Initial Issue	
V2	9/11/2019	Section 5.2: Table updated Section 5.3: 6dB Statement updated Section 5.4 & 8.5: Antenna Gains updated Section 5.6: Statements updated & added Section 8.3: 99% Bandwidth updated Section 10: Statement added, Setup photos Removed	Henry Lau
V3	9/13/2019	Section 6: Statement updated	Henry Lau
V4	9/16/2019	Section 8.4: 6dB Bandwidth updated	Eric Yu

TABLE OF CONTENTS

RE	РО	ORT REVISION HIST	ORY						2
TA	BL	E OF CONTENTS						•••••	3
1.	A	TTESTATION OF TI	EST RESULT	s					5
2.	T	EST METHODOLOG	SY						7
3.	F	ACILITIES AND AC	CREDITATIO	N					7
4.	С	CALIBRATION AND	UNCERTAIN	TY					8
4	4.1.	. MEASURING INS	STRUMENT (CALIBRA	TION .				8
4	4.2.	. SAMPLE CALCU	LATION						8
4	4.3.	. MEASUREMENT	UNCERTAII	VTY					8
5.	E	QUIPMENT UNDER	TEST						9
	5.1.	. EUT DESCRIPTI	ON						9
	5.2.	. MAXIMUM OUTF	PUT POWER.						9
į	5.3.	. TEST REDUCTIO	ONS CASES.						10
	5. <i>4</i> .	. DESCRIPTION C	F AVAILABL	E ANTEN	INAS .				11
į	5.5.	. SOFTWARE AND) FIRMWARE	<u> </u>					11
į	5.6.	. WORST-CASE C	ONFIGURAT	TON AND) MOD	E			11
į	5.7.	. DESCRIPTION C	F TEST SET	UP					12
6.	M	MEASUREMENT ME	ТНОО						15
7.	T	EST AND MEASURI	EMENT EQU	IPMENT.					16
8.	Α	NTENNA PORT TES	ST RESULTS	FOR 11	ax 5.8	GHz			17
8	3.1.	. ON TIME AND D	UTY CYCLE.						17
8	3.2.	. 26 dB BANDWID							
		.2.1. 802.11ax HE							
		.2.2. 802.11ax HE .2.3. 802.11ax HE							
g		. 99% BANDWIDT							
(.3.1. 802.11ax HE	20 MODE IN	THE 5.8	GHz E	BAND .	· · · · · · · · · · · · · · · · · · ·		39
		.3.2. 802.11ax HE	40 MODE IN	THE 5.8	GHz E	BAND.			43
		.3.3. 802.11ax HE							
8		. 6 dB BANDWIDT .4.1. 802.11ax HE							
		.4.1. 802.11ax HE							
		.4.3. 802.11ax HE							

Page 3 of 174

10. SETUP PHOTOS.......174

DATE: 9/16/2019

IC: 3048A-1872

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: Microsoft Corporation

One Microsoft Way

Redmond, WA 98052-6399

USA

EUT DESCRIPTION: Portable Computing Device

MODEL: 1872

SERIAL NUMBER: 006404792757(Conducted)

013880192757(Conducted) 013885392757(Radiated) 014813492757(Radiated)

DATE TESTED: July 16, 2019 – August 22, 2019, September 10 – 11, 2019 and

September 16, 2019

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart E

ISED RSS-247 Issue 2

ISED RSS-GEN Issue 5

Complies

Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

hominer de auch

Francisco DeAnda Operations Leader Consumer Technology Division UL Verification Services Inc.

Reviewed By:

Henry Lau Project Engineer

Consumer Technology Division UL Verification Services Inc.

Prepared By:

Glenn Escano Test Engineer

Consumer Technology Division UL Verification Services Inc.

DATE: 9/16/2019

IC: 3048A-1872

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 14-30, FCC KDB 662911 D01 v02r01, FCC KDB 905462 D02 v02/D03 v01r02/D06 v02, FCC KDB 789033 D02 v02r01, ANSI C63.10-2013, FCC 06-96, RSS-GEN Issue 5, and RSS-247 Issue 2.

The scope of this report covers the 802.11ax modes in the 5.8 GHz band of Model 1872.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd		
☐ Chamber A	Chamber D	Chamber I		
Chamber B	Chamber E	Chamber J		
☐ Chamber C	Chamber F	Chamber K		
	Chamber G	Chamber L		
	Chamber H	Chamber M		

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code 2324A.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided:

Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss.

 $36.5 \, dBuV + 0 \, dB + 10.1 \, dB + 0 \, dB = 46.6 \, dBuV$

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.52 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	4.88 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.24 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.37 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.17 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. EUT DESCRIPTION

The EUT is a Portable Computing Device.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

5.8 GHz BAND 802.11 ax MODE

Frequency Range	Mode	Output	Output Power
(MHz)		Power	(mW)
		(dBm)	
5.8 GHz band, 2TX			
5745-5825	802.11ax HE20 SU	21.34	136.14
5745-5825	802.11ax HE20 OFDMA, 52-Tones	21.58	143.88
5755-5795	802.11ax HE40 SU	20.89	122.74
5755-5795	802.11ax HE40 OFDMA, 106-Tones	21.53	142.23
5775	802.11ax HE80 SU	21.46	139.96
5775	802.11ax HE80 OFDMA, 242-Tones	21.72	148.59

5.3. TEST REDUCTIONS CASES

26dB Bandwidth:

- All tones were tested for each bandwidth.
- For HE20 & HE40, each Low, Mid, High RU allocation is tested to the respective Low, Mid and High channel.
- For HE80, Low, Mid & High RU allocations were tested.

99% Bandwidth:

- All tones were tested for each bandwidth.
- For HE20 & HE40, each Low, Mid, High RU allocation is tested to the respective Low, Mid and High channel.
- For HE80, Low, Mid & High RU allocation were tested.

6dB Bandwidth:

- 26 tone was tested for each bandwidth.
- For HE20 & HE40, each Low, Mid, High RU allocation is tested to the respective Low, Mid and High channel.
- For HE80, Low, Mid & High RU allocation were tested.
- As 26 Tone is the lowest bandwidth compared to the minimum 6 dB BW limit, 26 Tone is representative of all tones.

Output Power and Power Spectral Density

- All tones were tested for each bandwidth.
- For HE20 & HE40, every RU allocation per channel is the same power thus each Low, Mid, High RU allocation is tested to the respective Low, Mid and High channel.
- For HE80, Low, Mid & High RU allocations were tested.

Radiated Band Edge:

- All tones were tested for each bandwidth.
- The RU allocations closest to the band edge was tested to cover all other RU's.

Radiated Spurious Emissions:

• 26T and 242T at HE20 was investigated. It was determined that 26T at the highest power setting to be worst case thus 26T will be representative of all RU's at all tones at HE20, HE40, & HE80.

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes two dual band PIFA antennas, with a maximum gain of:

Frequency Band	Chain 0	Chain 1		
(GHz)	Antenna Gain (dBi)	Antenna Gain (dBi)		
5180-5240	6	3		
5260-5320	7.8	3.5		
5500-5700	8	4		
5745-5825	8.3	4.6		

5.5. SOFTWARE AND FIRMWARE

The operating system installed on the EUT is MTEOS 1.652.0.

The Wifi Driver installed on the EUT is version 99.0.43.8.

The test utility software used during testing was version 11.1916.0-09531

5.6. WORST-CASE CONFIGURATION AND MODE

WORST-CASE CONFIGURATION AND MODE FOR FINAL TEST

Please refer to UL Report number: 12935947-E4 for worst case Radiated emissions below 30MHz, 1GHz, above 18GHz, power line conducted emissions data and simultaneous TX data.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle and high channels.

For all modes, tests were performed with the EUT set at the 2Tx MIMO mode with power setting equal to SISO modes as the worst case scenario thus MIMO is representative of SISO.

The EUT has one intended orientations, X; therefore, all final radiated testing was performed with the EUT in X orientation.

Worst-case data rates as provided by the client were:

802.11ax HE20mode: MCS0 802.11ax HE40mode: MCS0 802.11ax HE80mode: MCS0

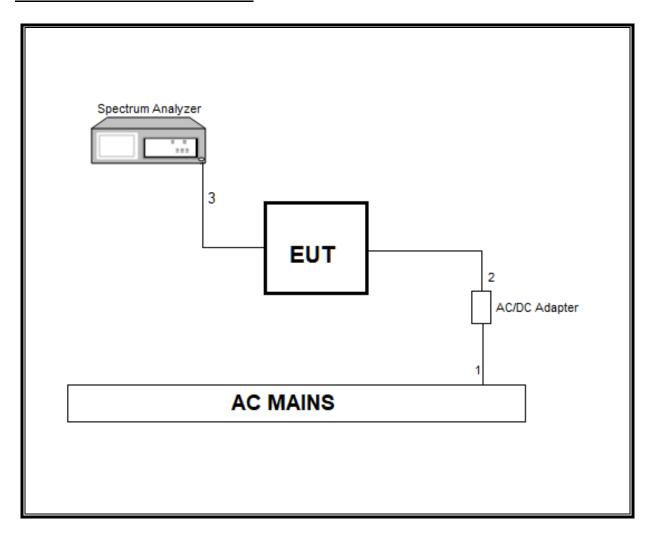
EUT does not employ CDD for HT, VHT and HE rates. CDD is supported for legacy modes only.

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List								
Description Manufacturer Model Serial Number FCC ID								
AC DC Adapter	Microsoft	1706	0C130J02T8396	DoC				
USB Mouse	Microsoft	1113	X821908-002	DoC				
USB Type C to Audio Jack	SONY	A1-0231	N/A	DoC				
Earphone	SONY	AG1100	N/A	DoC				
Earphone	SONY	AG1100	N/A	DoC				

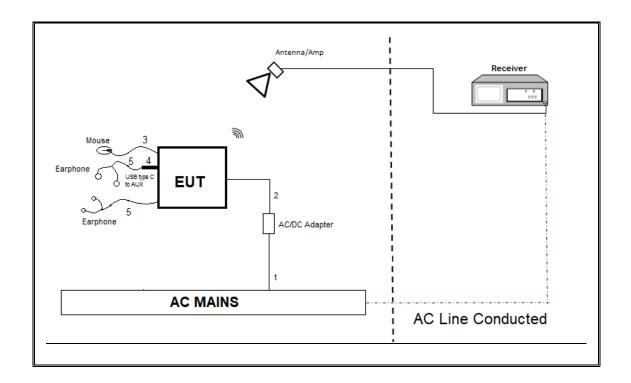
I/O CABLES (CONDUCTED TEST)


	I/O Cable List									
Cable	Cable Port # of identical Connector Cable Type Cable Remarks									
No		ports	Туре		Length (m)					
1	AC	1	AC	Un-Shielded	0.2	to AC/DC Adaptor				
2	DC	1	DC	Shielded	1	to Laptop, to EUT				
3	Antenna	1	SMA	Un-Shielded	0.2	to Analyzer				

I/O CABLES (RADIATED AND CONDUCTED EMISSIONS)

	I/O Cable List									
Cable	Port	# of identical	Connector	Cable Type	Cable	Remarks				
No		ports	Туре		Length (m)					
1	AC	1	Type C	Un-shielded	0.2	to AC/DC Adapter				
2	DC	1	DC	Shielded	1	to EUT				
3	USB	1	Type A	Shielded	1.5	EUT TO Mouse				
4	USB	1	Type C	Shielded	0.1	EUT to earphone AUX				
5	earphone	1	3.5mm	Un-shielded	1	EUT to earphone				

TEST SETUP


CONDUCTED TEST SETUP DIAGRAM

TEST SETUP

For conducted tests, the test software exercises the radio.

RADIATED AND AC LINE CONDUCTED EMISSIONS SETUP DIAGRAM

TEST SETUP

For radiated tests: EUT is connected to all support equipment. The test software exercises the radio.

6. MEASUREMENT METHOD

On Time and Duty Cycle: KDB 789033 D02 v02r01, Section B.

6 dB Emission BW: KDB 789033 D02 v02r01, Section C.2

26 dB Emission BW: KDB 789033 D02 v02r01, Section C.1

99% Occupied BW: KDB 789033 D02 v02r01, Section D.

Conducted Output Power: KDB 789033 D02 v02r01, Section E.3.b (Method PM-G)

Power Spectral Density: KDB 789033 D02 v02r01, Section F

Unwanted emissions in restricted bands: KDB 789033 D02 v02r01, Sections G.3, G.4, G.5, and G.6.

Unwanted emissions in non-restricted bands: KDB 789033 D02 v02r01, Sections G.3, G.4, and G.5.

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST									
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal				
Antenna, Passive Loop 30Hz to 1MHz	ELETRO METRICS	EM-6871	PRE0179465	05/31/2020	05/31/2019				
Antenna, Passive Loop 100kHz to 30MHz	ELETRO METRICS	EM-6872	EM-6872 PRE0179467		05/31/2019				
Amplifier, 9KHz to 1GHz, 32dB	Sonoma Instrument	310	PRE0186650	12/13/2019	12/13/2018				
Hybrid Antenna, 30MHz to 3GHz	Sunol Sciences Corp	JB3	PRE0184971	11/13/2019	11/13/2018				
Amplifier, 9kHz to 1GHz, 32 dB	Sonoma Instrument	310	PRE0180175	06/29/2020	06/29/2019				
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T120	07/10/2020	07/10/2019				
Amplifier, 1 to18GHz	MITEQ	AFS42-00101800- 25-S-42	T1568	06/18/2020	06/18/2019				
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	T862	06/05/2020	06/05/2019				
Amplifier, 1 to18GHz	MITEQ	AFS42-00101800- 25-S-42	PRE018078	08/01/2019	08/01/2018				
Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826/B	PRE0182188	08/29/2019	08/29/2018				
Rf Amplifier, 18-26.5GHz, 60dB gain	Amplical	AMP18G26.5-60	PRE0181238	05/01/2020	05/01/2019				
Antenna, Horn 26 to 40GHz	ARA	MWH-2640	MWH-2640 T90		09/11/2018				
Pre-Amp, 26-40GHz	Amplical	AMP26G40-60	AMP26G40-60 PRE0181238		05/01/2019				
Power Meter, P-series single channel	Agilent (Keysight) Technologies	N1911A	T1265	01/29/2020	01/29/2019				
Power Sensor, P-series, 50MHz to 18GHz, Wideband	Agilent (Keysight) Technologies	N1921A	T1227	02/05/2020	02/05/2019				
EMI Test Receiver	Rohde & Schwarz	ESW44	PRE0179367	05/16/2020	05/16/2019				
EMI Test Receiver	Rohde & Schwarz	ESW44	PRE0179372	02/16/2020	02/16/2019				
EMI Test Receiver	Rohde & Schwarz	ESW44	PRE0179367	05/16/2020	05/16/2019				
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T917	01/24/2020	01/24/2019				
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent (Keysight) Technologies	N9030A	T908	01/23/2020	01/23/2019				
	AC	Line Conducted							
EMI Receiver	Rohde & Schwarz	ESR	T1436	02/14/2020	02/14/2019				
LISN for Conducted Emissions CISPR-16	FCC INC.	FCC LISN 50/250	T1310	01/24/2020	01/24/2019				
Test Software List									
Radiated Software	UL	UL EM	IC	Ver 9.5, June 22, 2018 & Jan 11, 2019					
Antenna Port Software	UL	UL RI	=	Ver 9.7, May 7	, 2019				
AC Line Conducted Software	UL	UL EM	ıc	Ver 9.5, May 2	6, 2015				

NOTES:

- 1. Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Page 16 of 174

8. ANTENNA PORT TEST RESULTS FOR 11ax 5.8 GHz

8.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

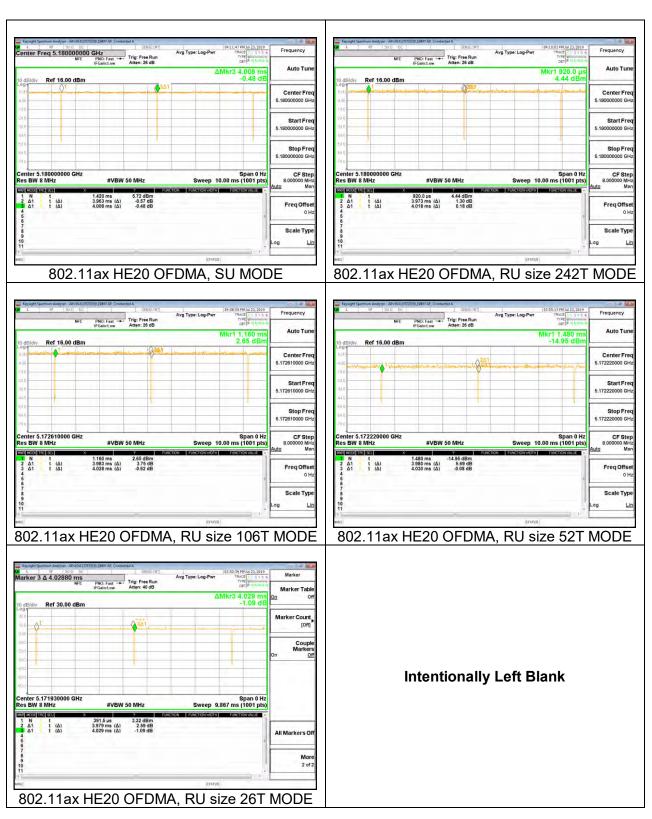
PROCEDURE

KDB 558074 D01 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

802.11ax HE20

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11ax HE20 OFDMA,	3.963	4.008	0.989	98.88%	0.00	0.010
SU	3.903	4.008	0.969	90.00%	0.00	0.010
802.11ax HE20 OFDMA,	3.973	4.018	0.989	98.88%	0.00	0.010
RU size 242T	3.973	4.018	0.369	30.00/0	0.00	0.010
802.11ax HE20 OFDMA,	3.983	4.028	0.989	98.88%	0.00	0.010
RU size 106T	3.983	4.028	0.989	98.88%	0.00	0.010
802.11ax HE20 OFDMA,	3.980	4.030	0.000	00.70%	0.00	0.010
RU size 52T	3.980	4.030	0.988	98.76%	0.00	0.010
802.11ax HE20 OFDMA,	3.979	4.029	0.000	98.76%	0.00	0.010
RU size 26T	3.979	4.029	0.988	96.76%	0.00	0.010


802.11ax HE40

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11ax HE40 OFDMA,	2.000	4.020	0.007	00.00/	0.00	0.010
SU	3.966	4.020	0.987	98.66%	0.00	0.010
802.11ax HE40 OFDMA,	3.976	4.030	0.987	98.66%	0.00	0.010
RU size 484T	3.970	4.050	0.967	96.00%	0.00	0.010
802.11ax HE40 OFDMA,	3.976	4.030	0.987	98.66%	0.00	0.010
RU size 242T	3.976	4.030	0.967	96.00%	0.00	0.010
802.11ax HE40 OFDMA,	3.976	4.020	0.989	98.91%	0.00	0.010
RU size 106T	3.970	4.020	0.969	96.91%	0.00	0.010
802.11ax HE40 OFDMA,	3.976	4.030	0.987	98.66%	0.00	0.010
RU size 52T	3.970	4.030	0.367	36.00/0	0.00	0.010
802.11ax HE40 OFDMA,	3.976	4.020	0.989	98.91%	0.00	0.010
RU size 26T	3.970	4.020	0.369	50.9170	0.00	0.010

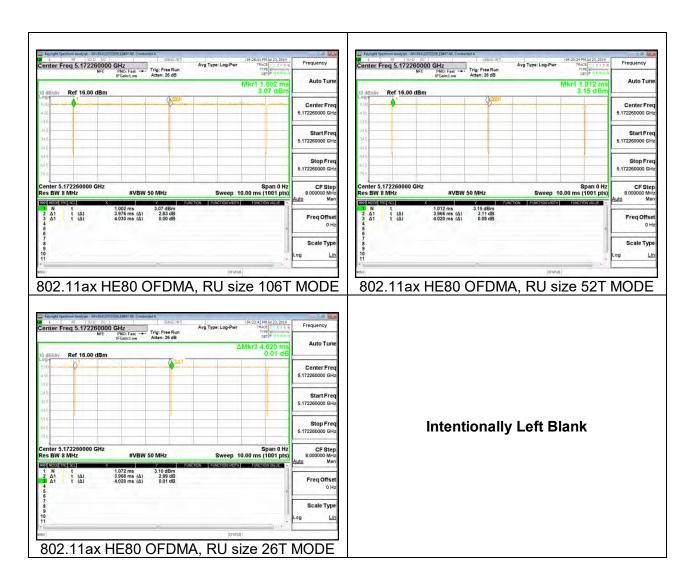
802.11ax HE80

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		х	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11ax HE80 OFDMA,						
SU	3.976	4.030	0.987	98.66%	0.00	0.010
802.11ax HE80 OFDMA,						
RU size 996T	3.976	4.030	0.987	98.66%	0.00	0.010
802.11ax HE80 OFDMA,						
RU size 484T	3.976	4.030	0.987	98.66%	0.00	0.010
802.11ax HE80 OFDMA,						
RU size 242T	3.966	4.020	0.987	98.66%	0.00	0.010
802.11ax HE80 OFDMA,						
RU size 106T	3.976	4.030	0.987	98.66%	0.00	0.010
802.11ax HE80 OFDMA,						
RU size 52T	3.966	4.020	0.987	98.66%	0.00	0.010
802.11ax HE80 OFDMA,						
RU size 26T	3.966	4.020	0.987	98.66%	0.00	0.010

DUTY CYCLE PLOTS

DATE: 9/16/2019

IC: 3048A-1872



802.11ax HE80 OFDMA, RU size 484T MODE

802.11ax HE80 OFDMA, RU size 242T MODE

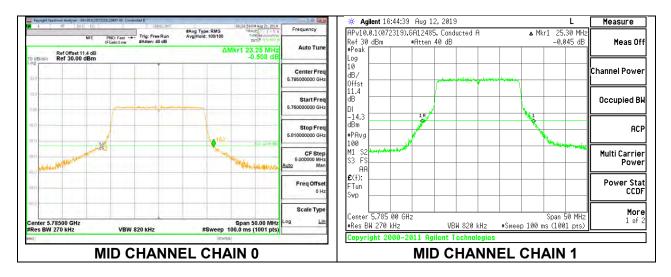
DATE: 9/16/2019

IC: 3048A-1872

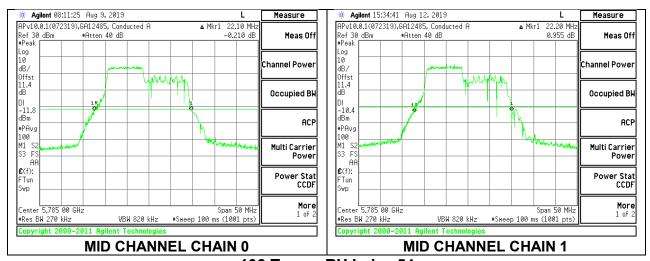
8.2. 26 dB BANDWIDTH

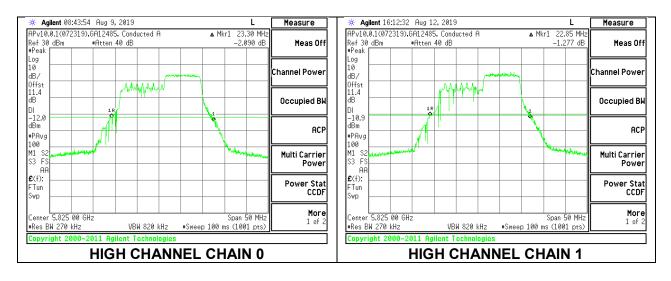
LIMITS

None; for reporting purposes only.

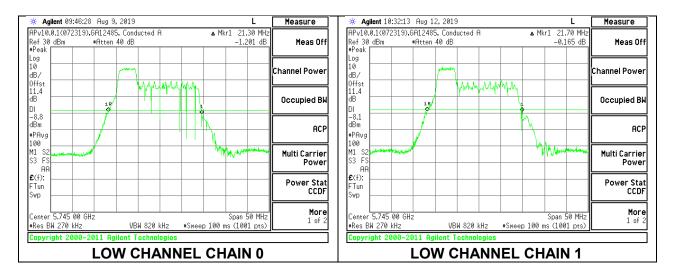

RESULTS

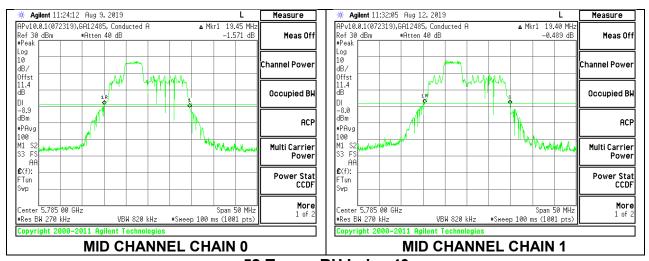
8.2.1. 802.11ax HE20 MODE IN THE 5.8 GHz BAND

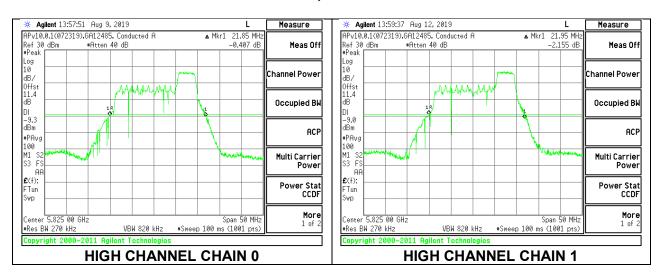

2TX Chain 0 + Chain 1 OFDMA MODE


RU Size	RU Index	Channel	Frequency	26 dB Bandwidth	26 dB Bandwidth
				Chain 0	Chain 1
(Tones)			(MHz)	(MHz)	(MHz)
242T	61	Low	5745	23.20	24.25
		Mid	5785	23.25	25.30
		High	5825	23.05	24.90
106T	53	Low	5745	21.95	22.20
		Mid	5785	22.10	22.20
	54	High	5825	23.30	22.85
52T	37	Low	5745	21.30	21.70
	38	Mid	5785	19.45	19.40
	40	High	5825	21.85	21.95
26T	0	Low	5745	20.55	20.95
	4	Mid	5785	21.35	19.20
	8	High	5825	20.65	20.70

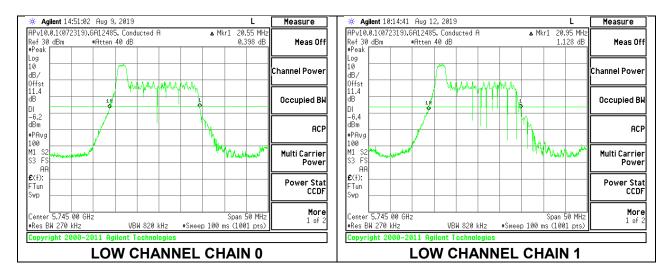
242-Tones, RU Index 61

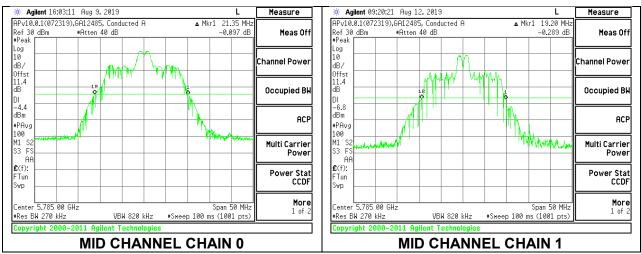


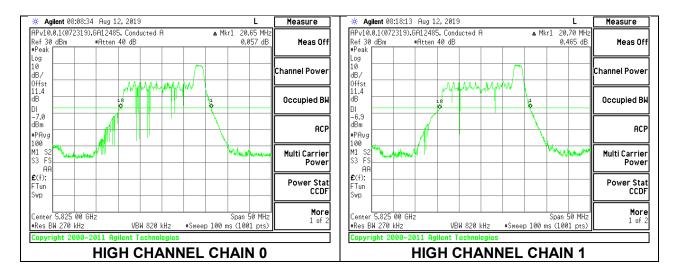

106-Tones, RU Index 53



52-Tones, RU Index 37

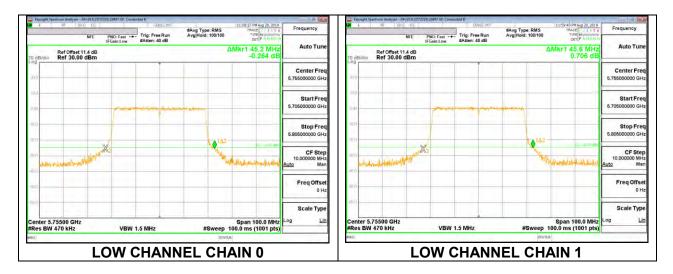



52-Tones, RU Index 40



26-Tones, RU Index 0

26-Tones, RU Index 4



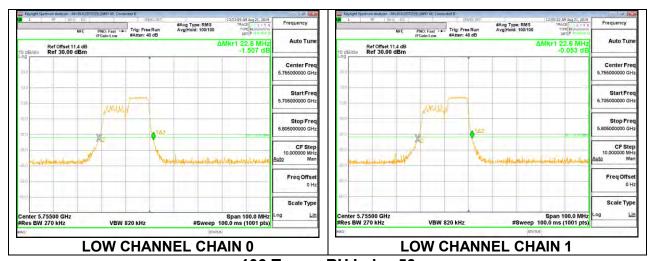
8.2.2. 802.11ax HE40 MODE IN THE 5.8 GHz BAND

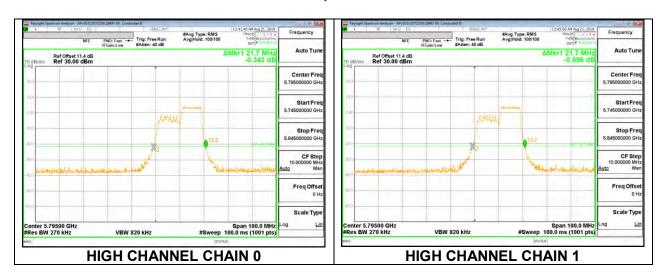
2TX Chain 0 + Chain 1 OFDMA MODE

RU Size	RU Index	Channel	Frequency	26 dB Bandwidth	26 dB Bandwidth
				Chain 0	Chain 1
(Tones)			(MHz)	(MHz)	(MHz)
484T	65	Low	5755	45.20	45.60
		High	5795	46.80	45.80
242T	61	Low	5755	23.30	23.10
	62	High	5795	22.90	22.50
106T	53	Low	5755	22.30	22.50
	54	Low	5755	22.60	22.60
	56	High	5795	21.70	21.70
52T	37	Low	5755	21.90	21.80
	40	Low	5755	22.00	21.70
	44	High	5795	21.30	21.50
26T	0	Low	5755	20.90	20.70
	8	Low	5755	21.40	21.30
	17	High	5795	21.10	21.00

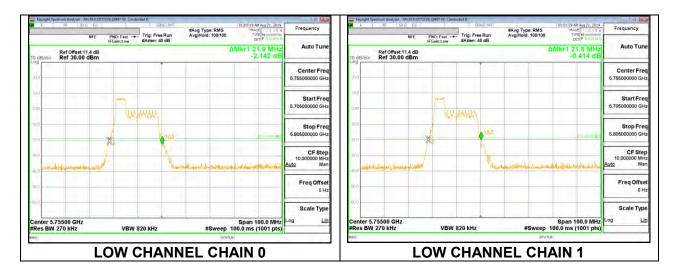
484-Tones, RU Index 65

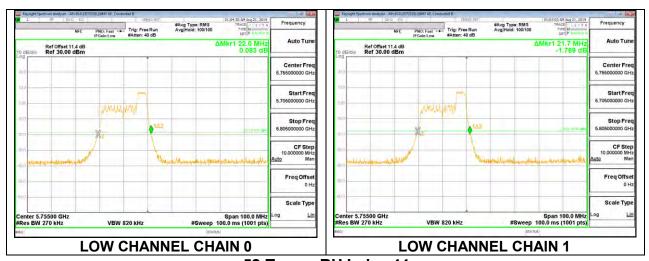
242-Tones, RU Index 61


242-Tones, RU Index 62

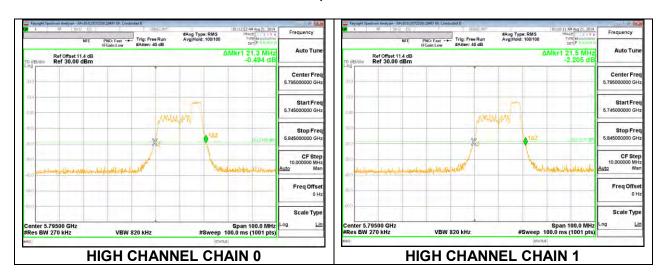

Page 29 of 174

106-Tones, RU Index 53

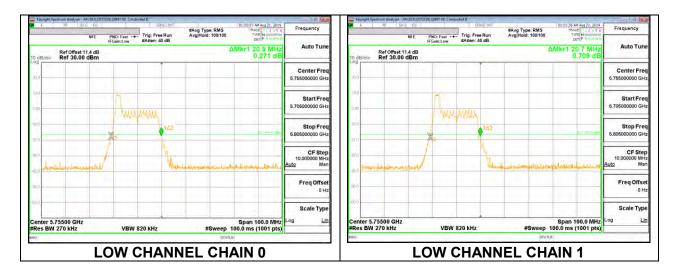


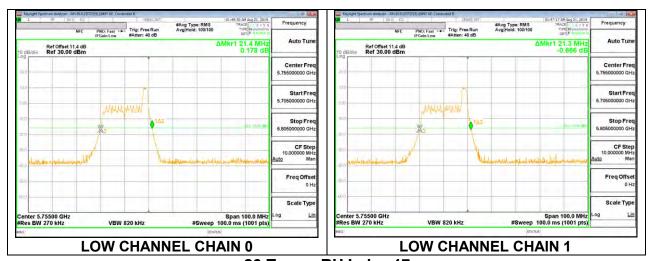


106-Tones, RU Index 56

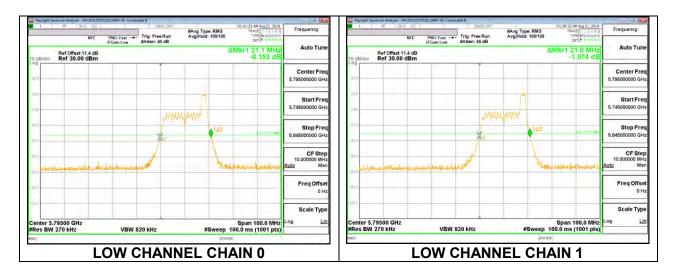


52-Tones, RU Index 37



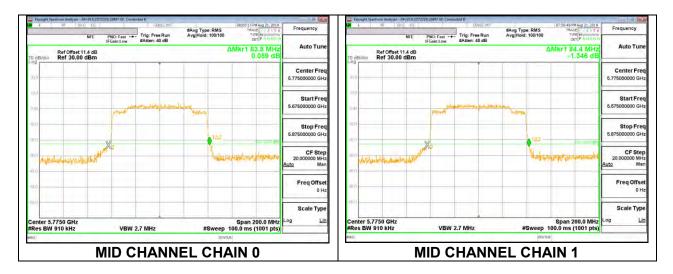


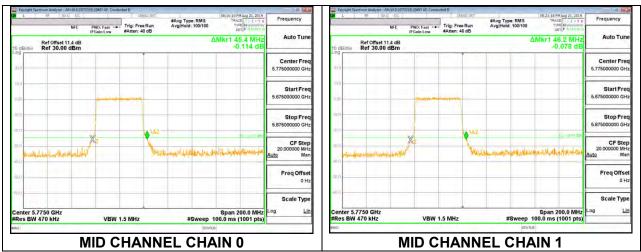
52-Tones, RU Index 44



26-Tones, RU Index 0

26-Tones, RU Index 17

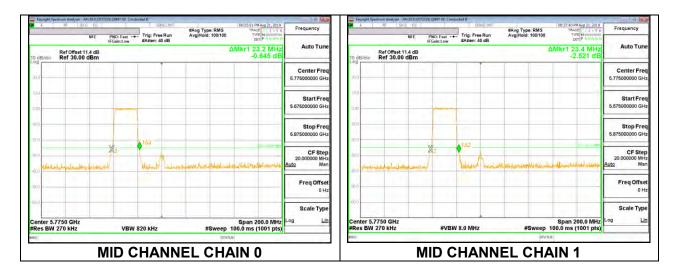



8.2.3. 802.11ax HE80 MODE IN THE 5.8 GHz BAND

2TX Chain 0 + Chain 1 OFDMA MODE


RU Size	RU Index	Channel	Frequency	26 dB Bandwidth	26 dB Bandwidth
				Chain 0	Chain 1
(Tones)			(MHz)	(MHz)	(MHz)
996T	67	Mid	5775	83.80	84.40
484T	65	Mid	5775	45.40	46.20
	66	Mid	5775	45.40	44.80
	61	Mid	5775	23.20	23.40
242T	62	Mid	5775	42.00	41.80
	64	Mid	5775	23.00	23.00
	53	Mid	5775	24.00	23.60
106T	56	Mid	5775	21.20	21.40
	60	Mid	5775	21.80	21.40
	37	Mid	5775	22.00	22.00
52T	44	Mid	5775	21.20	21.00
	52	Mid	5775	21.60	21.40
	0	Mid	5775	21.00	21.00
26T	18	Mid	5775	39.20	39.00
	36	Mid	5775	20.80	21.00

996-Tones, RU Index 67

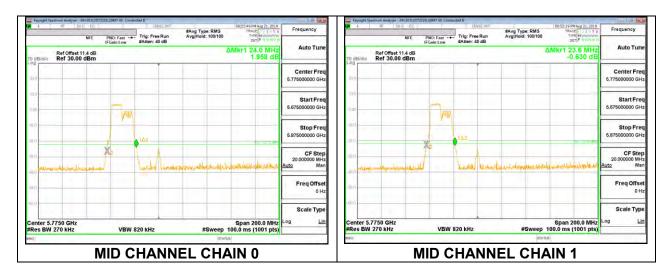




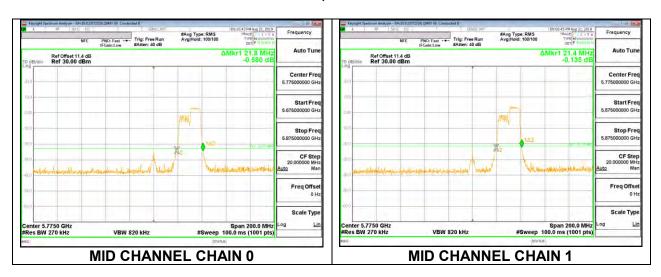
484-Tones, RU Index 66



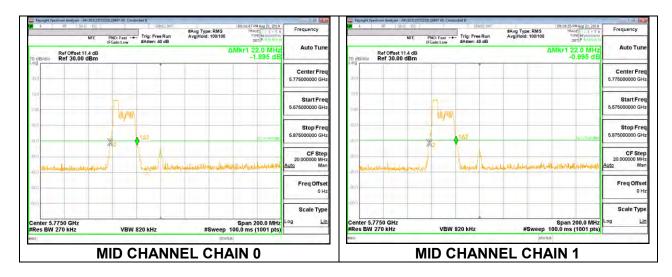
242-Tones, RU Index 61

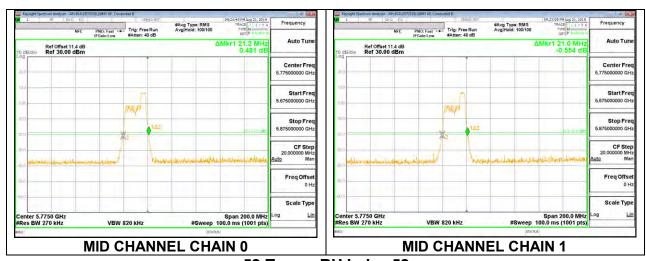


242-Tones, RU Index 64

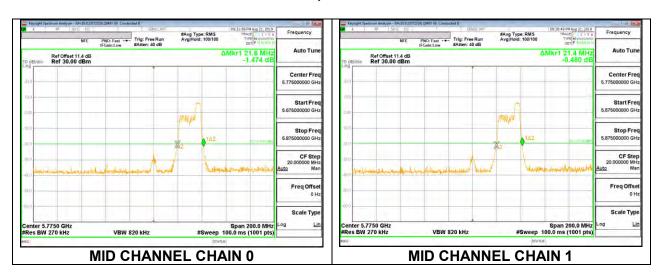


106-Tones, RU Index 53

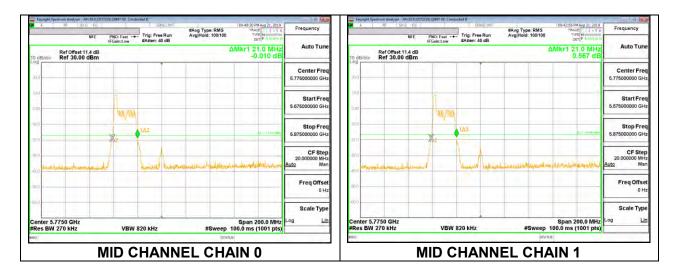




106-Tones, RU Index 60



52-Tones, RU Index 37




52-Tones, RU Index 52


26-Tones, RU Index 0

26-Tones, RU Index 18

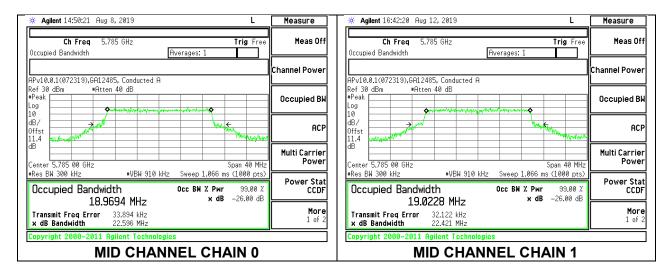
26-Tones, RU Index 36

Page 38 of 174

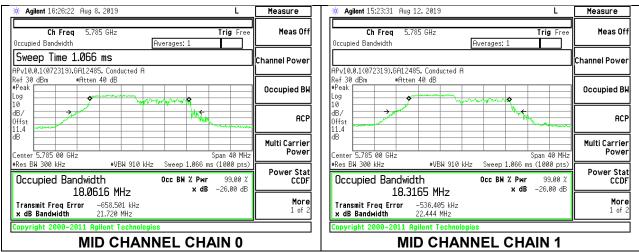
8.3. 99% BANDWIDTH

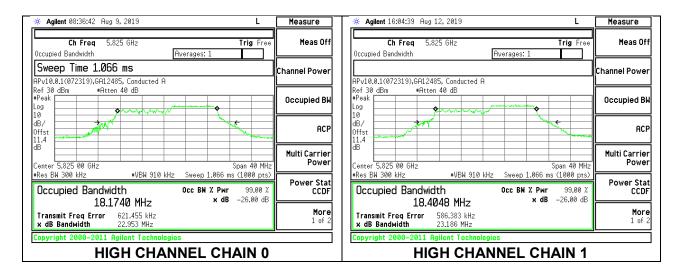
LIMITS

None; for reporting purposes only.

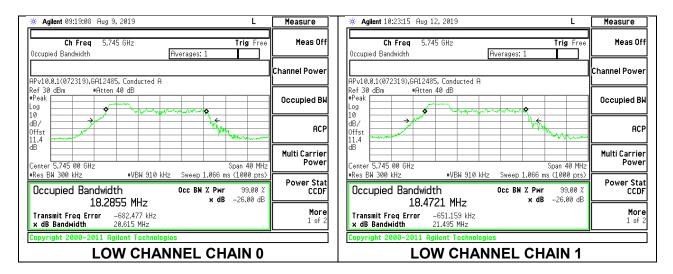

RESULTS

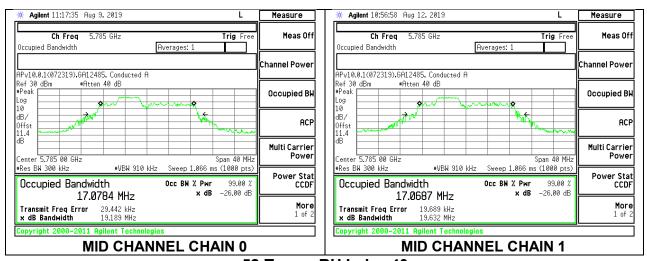
8.3.1. 802.11ax HE20 MODE IN THE 5.8 GHz BAND

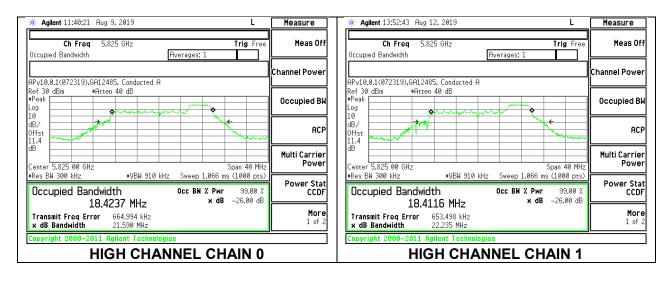

2TX Chain 0 + Chain 1 OFDMA MODE


RU Size	RU Index	Channel	Frequency	99% Bandwidth	99% Bandwidth
				Chain 0	Chain 1
(Tones)			(MHz)	(MHz)	(MHz)
242T	61	Low	5745	18.9788	19.0043
		Mid	5785	18.9694	19.0228
		High	5825	18.9885	19.0319
106T	53	Low	5745	18.2710	18.3055
		Mid	5785	18.0616	18.3165
	54	High	5825	18.1740	18.4048
52T	37	Low	5745	18.2855	18.4721
	38	Mid	5785	17.0784	17.0687
	40	High	5825	18.4237	18.4116
26T	0	Low	5745	18.5344	18.5808
	4	Mid	5785	17.1919	17.1286
	8	High	5825	18.6282	18.6459

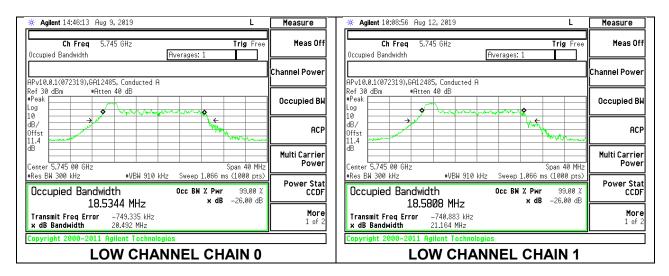
242-Tones, RU Index 61

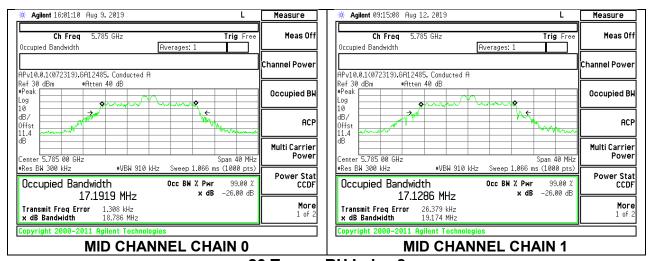



106-Tones, RU Index 53

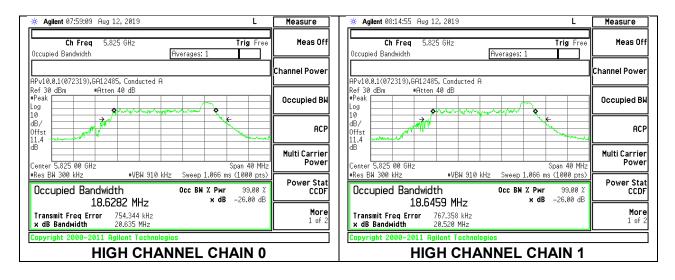


52-Tones, RU Index 37



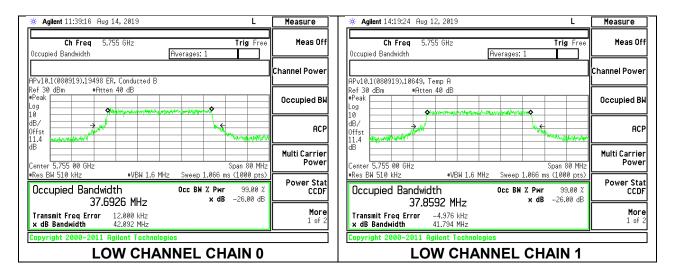


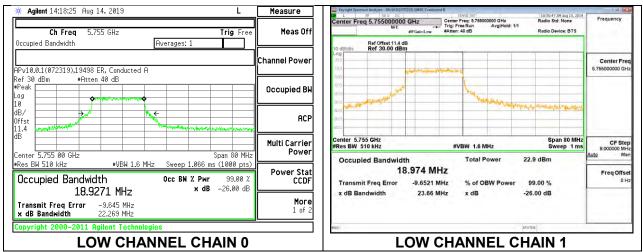
52-Tones, RU Index 40



26-Tones, RU Index 0

26-Tones, RU Index 8

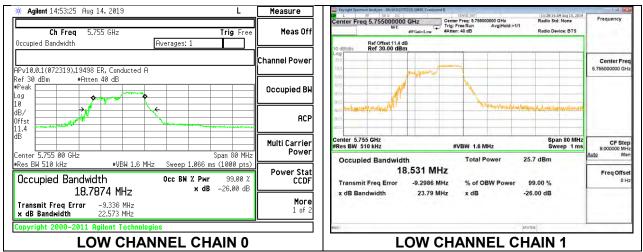



8.3.2. 802.11ax HE40 MODE IN THE 5.8 GHz BAND

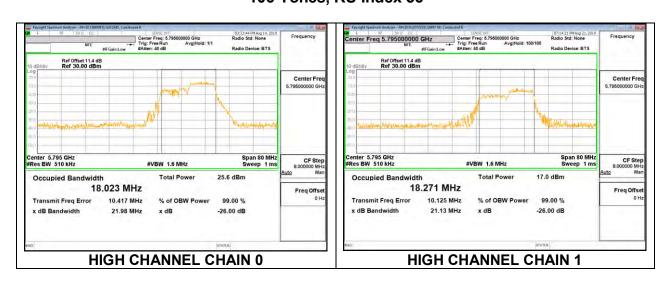
2TX Chain 0 + Chain 1 OFDMA MODE

RU Size	RU Index	Channel	Frequency	99% Bandwidth	99% Bandwidth
				Chain 0	Chain 1
(Tones)			(MHz)	(MHz)	(MHz)
484T	65	Low	5755	37.6926	37.8592
		High	5795	38.008	37.7115
242T	61	Low	5755	18.9271	18.974
	62	High	5795	18.992	18.966
106T	53	Low	5755	17.806	17.933
	54	Low	5755	18.7874	18.531
	56	High	5795	18.023	18.271
52T	37	Low	5755	18.107	18.048
	40	Low	5755	18.420	18.059
	44	High	5795	18.235	18.050
26T	0	Low	5755	18.345	18.082
	8	Low	5755	19.011	18.982
	17	High	5795	18.466	17.683

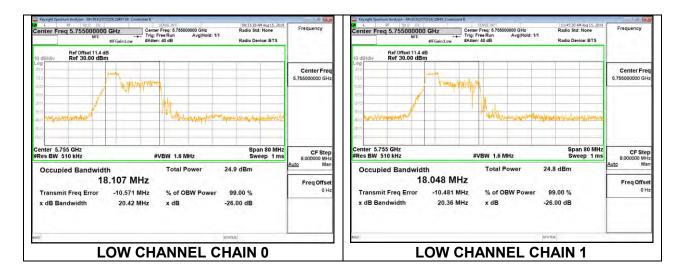
484-Tones, RU Index 65

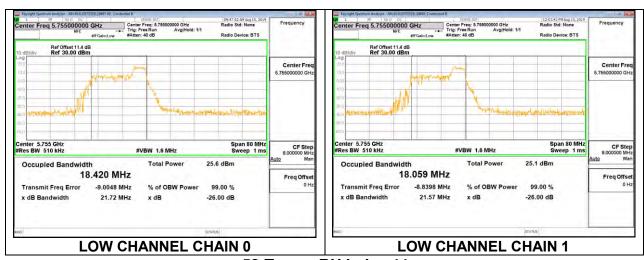


242-Tones, RU Index 62

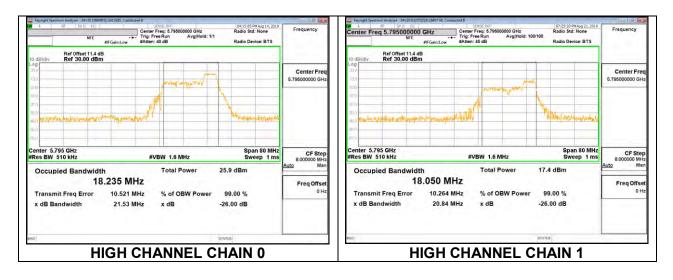


106-Tones, RU Index 53

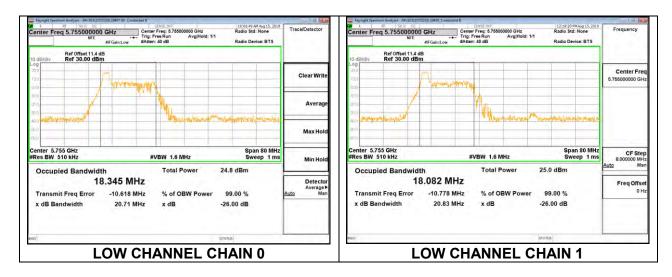


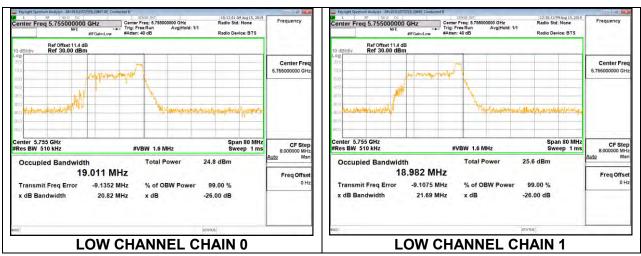


106-Tones, RU Index 56



52-Tones, RU Index 37

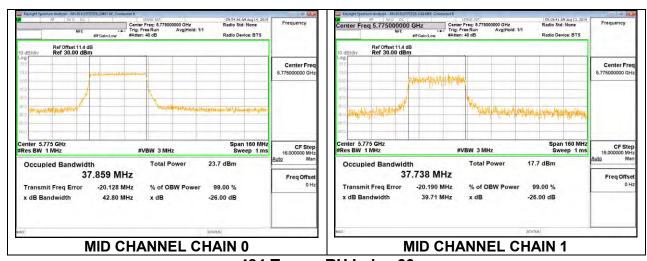




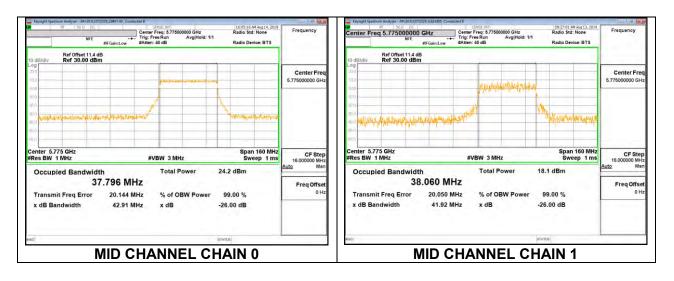
52-Tones, RU Index 44

26-Tones, RU Index 0

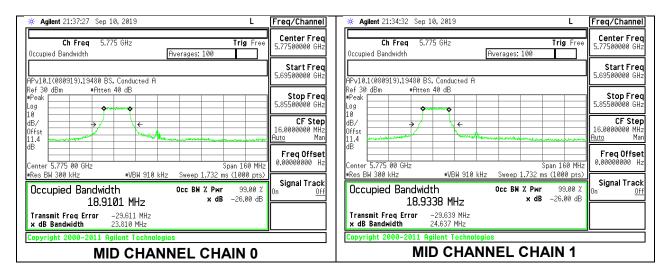
26-Tones, RU Index 17

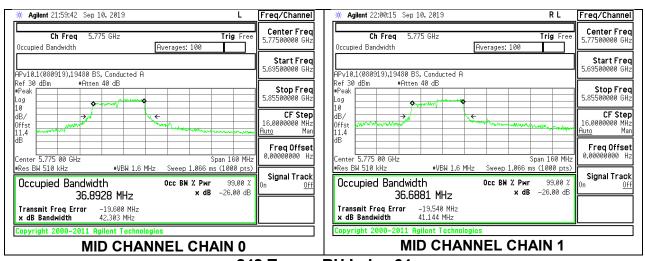

8.3.3. 802.11ax HE80 MODE IN THE 5.8 GHz BAND

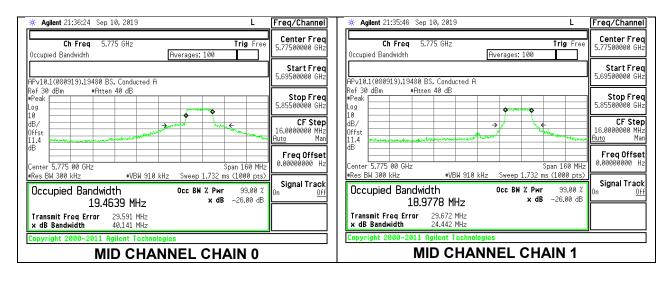
2TX Chain 0 + Chain 1 OFDMA MODE


RU Size	RU Index	Channel	Frequency		99% Bandwidth
				Chain 0	Chain 1
(Tones)			(MHz)	(MHz)	(MHz)
996T	67	Mid	5775	76.560	76.694
484T	65	Mid	5775	37.859	37.738
	66	Mid	5775	37.796	38.060
242T	61	Mid	5775	18.9101	18.9338
	62	Mid	5775	36.8928	36.6881
	64	Mid	5775	19.4639	18.9778
106T	53	Mid	5775	17.6616	17.8748
	56	Mid	5775	17.6210	17.5272
	60	Mid	5775	17.5050	17.5967
52T	37	Mid	5775	17.5049	17.7296
	44	Mid	5775	17.8184	17.6335
	52	Mid	5775	18.0384	17.9377
26T	0	Mid	5775	17.7222	17.8854
	18	Mid	5775	35.6569	36.5702
	36	Mid	5775	18.1868	17.3888

996-Tones, RU Index 67




484-Tones, RU Index 66



242-Tones, RU Index 61

242-Tones, RU Index 62

