

RADIO TEST REPORT

For

MODEL NO.: 1843 FCC ID: C3K1843 IC ID: 3048A-1843

Test Report No. R-TR525-FCCISED-BTLE-1 Issue Date: May 3, 2019

FCC CFR47 Part 15 Subpart C
Innovation, Science and Economic Development
Canada RSS-247 Issue 2

Prepared by
Microsoft EMC Laboratory
17760 NE 67th Ct,
Redmond WA, 98052, U.S.A.
425-421-9799

Record of Revisions

Revision	Date	Section	Page(s)	Summary of Changes	Author/Revised By:
1.0	04/23/19	All	All	Version 1.0	Vishwas
2.0	05/03/2019	4	7	Updated measurement uncertainty	Daniel Salinas
		7	12	Included note regarding equipment calibration	
		8.1	13	Included note for site equivalency per KDB	

Issued: May 3, 2019
Microsoft EMC Laboratory Page **2** of **60** Report#: R-TR525-FCCISED-BTLE-2

Table of Contents

1		Rec	ord o	of Revisions	.2
2		Dev	iatio	ns from Standards	. 7
3		Faci	ilities	and Accreditations	. 7
	3.	1	Tes	t Facility	. 7
	3.	2	Acc	reditations	. 7
	3.	3	Tes	t Equipment	. 7
4		Mea	asure	ement Uncertainty	. 7
5		Prod	duct	Description	. 8
	5.	1	Tes	t Configurations	. 8
	5.	2	Env	ironmental Conditions	. 9
	5.	3	Ante	enna Requirements	. 9
	5.	4	Equ	ipment Modifications	. 9
	5.	5	Date	es of Testing	. 9
6		Tes	t Res	sults Summary	10
7		Tes	t Equ	uipment List	11
8		Tes	t Site	Description	13
	8.	1	Rad	liated Emissions Test Site	13
		8.1.	1	Radiated Measurements in 30 MHz - 1000 MHz	13
		8.1.	2	Radiated Measurements above 1GHz	13
	8.	2	Ante	enna port conducted measurements	13
	8.	3	Tes	t Setup Diagrams	14
9		Tes	t Res	sults- Conducted	17
	9.	1	Dut	y Cycle	17
		9.1.	1	Test Requirement:	17
		9.1.	2	Test Method:	17
		9.1.	3	Limits:	17
		9.1.	4	Test Results:	17
		9.1.	5	Test Data:	17
	9.	2	6-dE	Bandwidth	19
		9.2.	1	Test Requirement:	19
		9.2.	2	Test Method:	19
		9.2.	3	Limits:	19
		9.2.	4	Test Results:	19

Issued: May 3, 2019

FCC	ID:	C3K	1843
IC ID:	30	48A-	1843

9.	2.5	Test Data:	20
9.3	99%	6 Occupied Bandwidth	21
9.	3.1	Test Requirement:	22
9.	3.2	Test Method:	22
9.	3.3	Limits:	22
9.	3.4	Test Results:	22
9.	3.5	Test Data:	23
9.4	Out	put Power	25
9.	4.1	Test Requirement:	25
9.	4.2	Test Method:	25
9.	4.3	Limits:	25
9.	4.4	Test Results:	25
9.	4.5	Test Data:	26
9.5	Pea	ık Power Density	27
9.	5.1	Test Requirement:	29
9.	5.2	Test Method:	29
9.	5.3	Limits:	29
9.	5.4	Test Results:	29
9.	5.5	Test Data:	30
9.6	Cor	nducted Spurious Emissions	31
9.	6.1	Test Requirement:	32
9.	6.2	Test Method:	32
9.	6.3	Limits:	32
9.	6.4	Test Result:	33
9.	6.5	Test Data:	34
9.7	Cor	nducted Band Edge Emissions	40
9.	7.1	Test Requirement:	40
9.	7.2	Test Method:	40
9.	7.3	Limits:	40
9.	7.4	Test Result:	40
9.	7.5	Test Data:	41
9.8	Rac	liated Spurious and Band Edge Emissions	43
9.	8.1	Test Requirement:	43
9.	8.2	Test Method:	43

9.8.3	Limits:	45
9.8.4	Test Result:	45
9.8.5	Test Data:	46
9.9 AC	Line Conducted Emissions	57
9.9.1	Test Requirements	57
9.9.2	Test Method	57
9.9.3	Limit	57
9.9.4	Test Result:	57
995	Test Data:	58

Test Report Attestation

Microsoft Corporation Model: 1843

FCC ID: C3K1843 IC ID: 3048A-1843

Applicable Standards

Specification	Test Result
FCC 47CFR Rule Parts 15.207, 15.209, 15.247	Pass
Innovation, Science and Economic Development Canada RSS-247 Issue 2, RSS-GEN Issue 5	Pass

Microsoft EMC Laboratory attests that the product model identified in this report has been tested to and meets the requirements identified in the above standards. The test results in this report solely pertains to the specific sample tested, under the conditions and operating modes as provided by the customer.

This report shall not be used to claim product certification, approval, or endorsement by A2LA or any agency of any Government. Reproduction, duplication or publication of extracts from this test report is prohibited and requires prior written approval of Microsoft EMC Laboratory.

This report replaces report R-TR525-FCCISED-BTLE-1 issued April 23, 2019.

Written By: Vishwas

Radio Test Engineer

Reviewed/ Issued By: Daniel Salinas

RF Compliance Lab Technical

Manager

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page 6 of 60

Deviations from Standards

None.

Facilities and Accreditations

3.1 Test Facility

All test facilities used to collect the test data are located at Microsoft EMC Laboratory. 17760 NE 67th Ct, Redmond WA, 98052, USA

3.2 Accreditations

The lab is established and follows procedures as outlined in IEC/ISO 17025 and A2LA accreditation requirements.

A2LA Accredited Testing Certificate Number: 3472.01

FCC Registration Number: US1141

IC Site Registration Numbers: 3048A-3, 3048A-4

3.3 Test Equipment

The site and related equipment are constructed in conformance with the requirements of ANSI C63.4:2014 and other equivalent applicable standards.

Test site requirements for measurements above 1 GHz are in accordance with ANSI C63.4:2014.

ANSI C63.10:2013 and the appropriate KDB test methods were followed.

4 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the product, as specified in ETSI TR 100 028. This represents an expanded uncertainty expressed at 95% confidence level using a coverage factor k=2. These levels are for reference only and not included to determine product compliance.

Expanded uncertainty calculations are available upon request.

Test item	Uncertainty	Unit
Radiated disturbance (9 kHz to 30 MHz)	5.32	dB
Radiated disturbance (30 MHz to 1 GHz)	5.99	dB
Radiated disturbance (1 GHz to 18 GHz)	5.12	dB
Radiated disturbance (18 GHz to 26.5 GHz)	4.86	dB
Conducted Disturbance at Mains Port	3.31	dB
Uncertainty for Conducted Power test	1.277	dB
Uncertainty for Conducted Spurious emission test	2.742	dB
Uncertainty for Bandwidth test	4.98	kHz
Uncertainty for DC power test	0.05	%
Uncertainty for test site temperature	0.5	°C
Uncertainty for test site Humidity	3	%
Uncertainty for time	0.189	%

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page 7 of 60

5 Product Description

Product Description					
Company Name:	Microsoft Corporation				
Address:	One Microsoft Way				
City, State, Zip:	Redmond, WA 98052-6399				
Customer Contact:	Choon Sian Ooi				
Functional Description of the EUT:	Smart Display with 802.11a/b/g/n/ac 20/40/80/160 MHz, Bluetooth 5.0, and 24.2 GHz SRD radios				
Model:	1843				
FCC ID:	C3K1843				
IC ID:	3048A-1843				
Radio under test:	BTLE (2402- 2480 MHz)				
Modulation(s):	GFSK				
	Integral Antenna.				
Antenna Information:	Manufacturer declared max Antenna Gain in 2.4GHz band of operation: 3.6 dBi				
EUT Classification:	DTS				
Equipment Design State:	Prototype/Production Equivalent (EV4)				
Equipment Condition:	Good				
Test Sample Details:	RF Conducted Test Sample Asset no.: R-525-021419-01, S/N: 17566293000013M RF Radiated Test Sample Asset no.: R-525-021419-01, S/N: 000059790462				
	Asset no.: R-525-021419-02, S/N: 000052790462				

5.1 Test Configurations

Test software "DRTU" (V11.1904.0-09154) provided by the customer was used to program the EUT to transmit continuously.

Report#: R-TR525-FCCISED-BTLE-2 Page **8** of **60** Issued: May 3, 2019

The device can operate in only GFSK modulation. Channel numbers 0, 19 and 38 were used as Low, Mid and High channels, respectively.

5.2 Environmental Conditions

Ambient air temperature of the test site was within the range of 10 °C to 40 °C (50 °F to 104 °F) unless the EUT specified testing over a different temperature range. Humidity levels were in the range of 10% to 90% relative humidity. Testing conditions were within tolerance, and any deviations required from the EUT are reported.

5.3 Antenna Requirements

The antennas are permanently attached and there are no provisions for connection to an external antenna.

5.4 Equipment Modifications

No modifications were made during testing.

5.5 Dates of Testing

Testing was performed from January 28th, 2019 to April 3rd, 2019.

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page 9 of 60

6 Test Results Summary

Test Description	FCC CFR 47/ ISED Rule Part	Limit	Test Result
Duty Cycle	Reporting & Measurements	Reporting & Measurement Purposes only	N/A
6dB Bandwidth	15.247 (a)(2) RSS-247 [5.2]	≥ 500kHz	Pass
Occupied Bandwidth	Reporting & Measurements	Reporting & Measurement Purposes only	N/A
Output Power	15.247 (b)(3) RSS-247 [5.4]	≤ 1 Watt	Pass
Equivalent Isotropic Radiated Power	RSS-247 [5.4]	≤ 4 Watt	Pass
Power Spectral Density	15.247 (e) RSS-247 [5.2]	≤ 8dBm/3kHz	Pass
Conducted Band Edge/Unwanted Emissions	15.247 (d) RSS-247 [5.5]	At least 20dBc	Pass
Radiated Spurious Emissions/ Restricted Band Emissions	15.205, 15.209 RSS-247 [5.5] RSS-Gen [8.9]	FCC CFR 47 15.209 limits RSS-Gen [8.9]	Pass
AC Power Line Conducted Emissions	15.207 RSS-Gen [8.8]	FCC CFR 47 15.207 limits RSS-Gen [8.8]	Pass

7 Test Equipment List

Equipment used for Radiated and Conducted Measurements					
Manufacturer	Description	Model #	Asset #	Calibration Due	
Agilent	Spectrum Analyzer	N9030A	EMC-370	10/19/2019	
Rohde & Schwarz	EMI Test Receiver	ESU40	RF-192	4/8/2019	
Rohde & Schwarz	EMI Test Receiver	ESR26	RF-568	4/11/2019	
Rohde & Schwarz	Open Switch and Control Unit	OSP130	RF-018	N/A	
Rohde & Schwarz	Open Switch and Control Unit	OSP130	RF-019	N/A	
Rohde & Schwarz	Open Switch and Control Unit	OSP130	RF-569	N/A	
Rohde & Schwarz	Custom Filter Bank	SFUNIT RX	RF-322	N/A	
ETS-Lindgren	Antenna - Double- Ridged Guide	3117-PA	EMC-858	10/8/2019	
ETS-Lindgren	Antenna - Standard Gain	3160-09	RF-179	7/30/2019	
Sunol Sciences	Antenna - Broadband Hybrid	JB6	EMC-639	8/17/2019	
Pasternack	6dB Attenuator	PE7004-6	EMC-950	8/17/2019	
Pasternack	10dB Attenuator	PE7087-10	EMC-653	1/21/2020	
Pasternack	10dB Attenuator	PE7087-10	RF-125	9/18/2019	
Utiflex	RF Cable	OSP120/DUT3	RF-872	10/4/2019	
Utiflex	RF Cable	OSP120/DUT8	RF-869	10/4/2019	
Mouser	RF Cable	CabS02	RF-937	11/15/2019	

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019
Microsoft EMC Laboratory

Equipment used for Radiated and Conducted Measurements						
Manufacturer	Description	Model #	Asset #	Calibration Due		
Huber and Suhner	RF Cable	Sucoflex 100	RF-452	N/A		
Micro-Coax	RF Cable	UFA210A-Q- 2755-3005GU	EMC-648	N/A		
Micro-Coax	RF Cable	UFB311A-1- 0787-50U50U	EMC-351	N/A		
Micro-Coax	RF Cable	UTI Flex	RF-359	N/A		
Micro-Coax	RF Cable	UTI Flex	RF-647	N/A		
Micro-Coax	RF Cable	UTI Flex	RF-646	N/A		
Huber & Suhner	RF Cable	Sucoflex 102A	RF-269	N/A		
Rohde & Schwarz	Pre-Amplifier	TS-PR26	RF-199	11/29/2019		
PCE	Climate Meter	PCE-THB 40	EMC-1206	9/28/2019		
Madge Tech	THP Monitor	PRHTemp2000	EMC-838	3/5/2019*		
Madge Tech	THP Monitor	PRHTemp2000	EMC-170	10/18/2019		

Equipment used for AC Line Conducted Emissions Measurement						
Manufacturer	Description	Model #	Asset #	Calibration Due		
Rohde & Schwarz	Analyzer/ Receiver	ESR3	EMC-669	4/8/2019		
Teseq	EUT LISN	NNB 051	EMC-056	6/7/2019		
Teseq	EUT LISN	NNB 051	EMC-057	8/9/2019		
Micro-Coax	Cable	UFA210A-1- 1800-50U50U	EMC-367	N/A		
ETS-Lindgren	TILE Profile	Version 7.3.1.27	EMC-985	N/A		
Fluke	Multimeter	87V	EMC-192	10/18/2019		
MadgeTech	Environmental Monitor	PRHTemp2000	EMC-680	11/16/2019		
Chroma	AC Power Source	61602	EMC-055	N/A		

Note: Items with Calibration Due date marked as N/A are characterized before use, where applicable.

Note*: Equipment was within calibration during test.

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **12** of **60**

8 Test Site Description

8.1 Radiated Emissions Test Site

Radiated measurements are performed in a 3m semi-anechoic chamber, which meets NSA requirements for the frequency range of 30MHz to 1000MHz. For measurements above 1 GHz, absorbers are placed on the ground plane between the receiving antenna and the EUT to meet Site VSWR requirements in accordance with ANSI C63.4:2014. Measurements below 30 MHz were performed on a site demonstrating equivalence to an open field site per KDB 414788 D01.

8.1.1 Radiated Measurements in 9kHz- 30 MHz

The EUT is positioned as a floor standing device with center of the EUT aligned with the center of the turntable. A loop antenna is positioned at 3m from the EUT periphery at 1m height from the ground. The turntable is rotated 360 degrees to determine the highest emissions. This is repeated for two orientations of the measurement antenna- parallel and perpendicular. All possible orientations of the EUT were investigated for emissions and the landscape orientation was identified as the worst-case configuration.

8.1.2 Radiated Measurements in 30 MHz - 1000 MHz

The EUT is positioned as a floor standing device with center of the EUT aligned with the center of the turntable. A linearly polarized broadband antenna is positioned at 3m from the EUT periphery. The turntable is rotated 360 degrees, and the antenna height varied from 1m to 4m to determine the highest emissions. This is repeated for both horizontal and vertical polarizations of the measurement antenna. All possible orientations of the EUT were investigated for emissions and the landscape standing orientation was identified as the worst-case configuration.

8.1.3 Radiated Measurements above 1GHz

The EUT is positioned as a floor standing device with center of the EUT aligned with the center of the turntable. A linearly polarized antenna is positioned 3m from the EUT periphery. Guidelines in ANSI C63.10:2013 were followed with respect to maximizing the emissions. The turntable is rotated 360 degrees, and the antenna height varied from 1m to 4m to determine the highest emissions. This is repeated for both horizontal and vertical polarizations of the measurement antenna. Measurements above 18GHz were performed at a 3m distance. Near field scanning is performed to identify suspect frequencies above 1GHz.

8.2 Antenna port conducted measurements

All antenna port conducted measurements were performed on a bench-top setup consisting of a spectrum analyzer, power meter (as necessary), splitters/combiners (as necessary), attenuators, and pre-characterized RF cables.

The correction factors between the EUT and the spectrum analyzer were added internally in the analyzer settings, where applicable. The plots displayed take these correction factors into account.

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **13** of **60**

8.3 Test Setup Diagrams

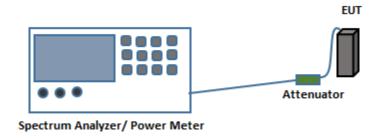


Fig.1. Test Setup for Antenna port conducted measurements

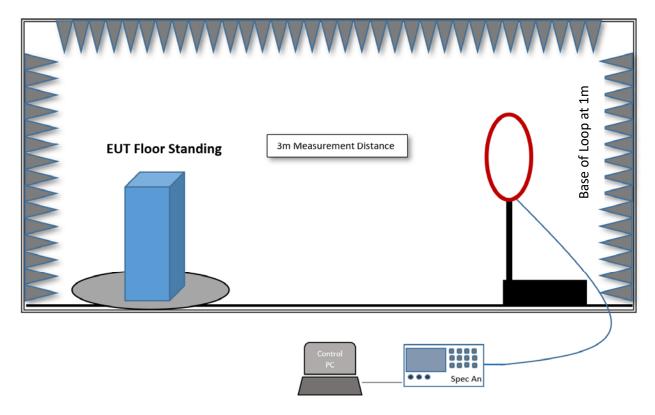


Fig.2. Test Setup for Radiated measurements in 9kHz - 30MHz Range

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **14** of **60**

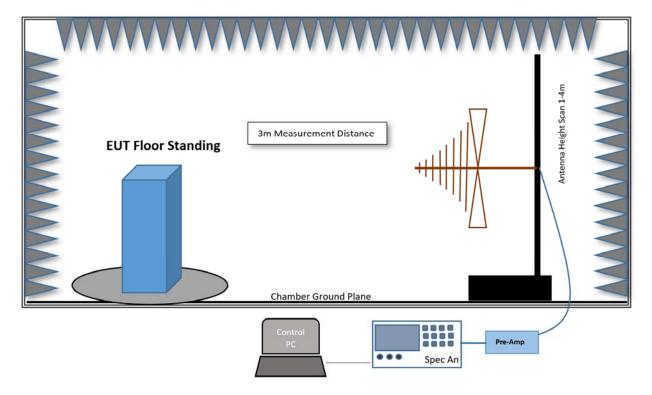


Fig.3. Test Setup for Radiated measurements in 30MHz-1GHz Range

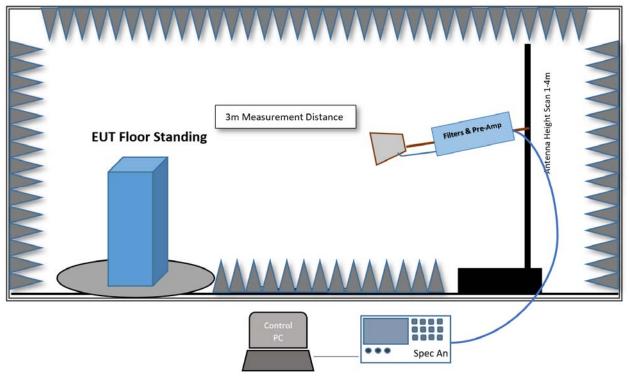


Fig.4. Test Setup for Radiated measurements in 1GHz-18GHz Range

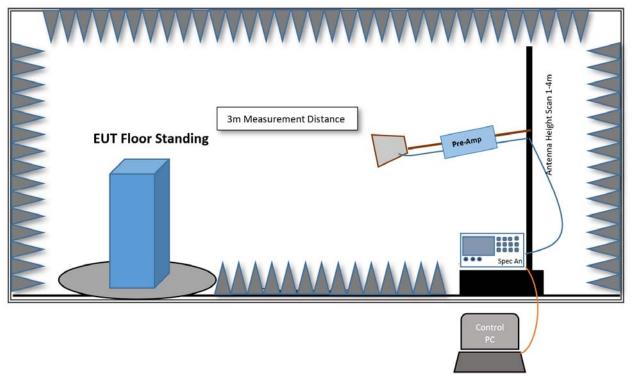


Fig.5. Test Setup for Radiated measurements >18GHz

Test Results- Conducted

9.1 Duty Cycle

9.1.1 Test Requirement:

Reporting and measurement purposes only.

9.1.2 Test Method:

Measurements were performed according to the procedure defined in ANSI C63.10: 2013.

Spectrum Analyzer Settings:

RBW ≥ Occupied Bandwidth if possible; otherwise, set RBW to the largest available value VBW ≥ RBW ≥ Signal Period

Detector = Peak

Span = 0 Hz

Sweep points > 100

9.1.3 Limits:

Reporting and measurement purposes only.

9.1.4 Test Results:

Frequency (MHz)	Band width (MHz)	On Time (ms)	Period (ms)	Duty Cycle (%)	Correction Factor (dB)
2440	2	0.209	0.747	27.979	5.532
2402	1	0.390	0.625	62.4	2.048

9.1.5 Test Data:

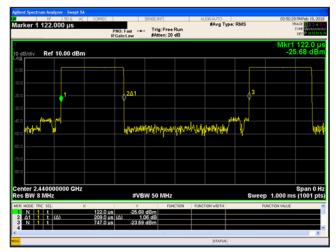


Figure 9-1 Duty Cycle 2440MHz (Ch.19) 2MHz BW

Page **17** of **60** Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019

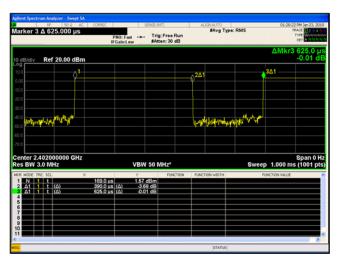


Figure 9-2 Duty Cycle 2402MHz (Ch.0) 1MHz BW

9.2 6-dB Bandwidth

9.2.1 **Test Requirement:**

FCC CFR 47 Rule Part 15.247 (a)(2)

ISED RSS-247 [5.2]

9.2.2 Test Method:

Measurements were performed according to the procedure defined in KDB 558074- Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 V05 and ANSI C63.10: 2013.

Spectrum Analyzer settings:

RBW= 100 kHz

VBW ≥ 3 RBW= 300 kHz.

Trace Mode= Peak Detector (Max Hold)

Sweep time= Auto Couple

The in-built functionality of the Spectrum Analyzer is used to measure the 6-dB bandwidth.

9.2.3 Limits:

The 6-dB bandwidth shall be at least 500 kHz

9.2.4 Test Results:

Frequency (MHz)	Bandwidth (MHz)	Channel No.	6dB Bandwidth (kHz)	Limit (kHz)	Result
2402	2	0	1139	>500	Pass
2440	2	19	1133	>500	Pass
2480	2	39	1141	>500	Pass
2402	1	0	643.9	>500	Pass
2440	1	19	641.9	>500	Pass
2480	1	39	649	>500	Pass

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **19** of **60**

9.2.5 Test Data:

Figure 9-3 6dB Bandwidth (Ch. 0) 2MHz BW

Figure 9-4 6dB Bandwidth (Ch. 19) 2MHz BW

Figure 9-5 6dB Bandwidth (Ch. 39) 2MHz BW

Report#: R-TR525-FCCISED-BTLE-2 Page **20** of **60** Issued: May 3, 2019

Figure 9-6 6dB Bandwidth (Ch.0) 1MHz BW

Figure 9-7 6dB Bandwidth (Ch. 19) 1MHz BW

Figure 9-8 6dB Bandwidth (Ch. 39) 1MHz BW

9.3 99% Occupied Bandwidth

9.3.1 Test Requirement:

The 99% Occupied Channel Bandwidth is the bandwidth that contains 99 % of the power of the signal. This test is performed for reporting and measurement purposes only.

9.3.2 Test Method:

Measurements are performed according to ANSI C63.10: 2013.

Spectrum Analyzer settings:

Set analyzer center frequency to the nominal EUT channel frequency

Span is set to between 1.5 and 5.0 times the DTS bandwidth

RBW: 1% to 5% of the OBW= 30 kHz

VBW: ≥ 3 RBW= 100 kHz

Detector = Peak

Sweep time = Auto Couple

Trace mode = max hold

Use the 99% power bandwidth function of the instrument.

9.3.3 Limits:

For reporting purpose only.

9.3.4 Test Results:

Frequency (MHz)	Bandwidth (MHz)	Channel No.	99% Bandwidth (MHz)
2402	2	0	2.08
2440	2	19	2.07
2480	2	39	2.07
2402	1	0	1.04
2440	1	19	1.04
2480	1	39	1.04

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page 22 of 60

9.3.5 Test Data:

Figure 9-9 99% Bandwidth (Ch. 0) 2MHz BW

Figure 9-10 99% Bandwidth (Ch. 19) 2MHz BW

Figure 9-11 99% Bandwidth (Ch. 39) 2MHz BW

Report#: R-TR525-FCCISED-BTLE-2 Page 23 of 60 Issued: May 3, 2019

Figure 9-12 99% Bandwidth (Ch. 0) 1MHz BW

Figure 9-13 99% Bandwidth (Ch. 19) 1MHz BW

Figure 9-14 99% Bandwidth (Ch. 39) 1MHz BW

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019
Microsoft EMC Laboratory

9.4 Output Power

9.4.1 Test Requirement:

FCC CFR 47 Rule Part 15.247 (b)(3)

ISED RSS-247 [5.4]

9.4.2 Test Method:

Measurements were performed according to the procedure defined in KDB 558074 - Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 V05 and ANSI C63.10: 2013.

Spectrum Analyzer settings:

Peak Power:

RBW= 1 MHz

VBW= 3 MHz

Trace Mode= Peak Detector (Max Hold)

Sweep time= Auto Couple

Span= 3 MHz

9.4.3 Limits:

15.247: The maximum permissible peak output power is 30dBm (1 W)

RSS-247: The maximum peak conducted output power shall not exceed 30dBm (1 W) and the maximum radiated output power shall not exceed 36dBm (4 W) EIRP.

9.4.4 Test Results:

Frequency (MHz)	Bandwidth (MHz)	Channel No.	Cond. Peak Power (dBm)	Cond. Peak Power (W)	Cond. Peak Limit (dBm)	Margin (dB)	Result
2402	2	0	3.709	2.349	30	-26.291	Pass
2440	2	19	4.308	2.696	30	-25.692	Pass
2480	2	39	4.196	2.628	30	-25.804	Pass
2402	1	0	3.814	2.407	30	-26.186	Pass
2440	1	19	4.373	2.737	30	-25.627	Pass
2480	1	39	4.187	2.622	30	-25.813	Pass

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page 25 of 60

Frequency (MHz)	Bandwidth (MHz)	Channel No.	Cond. Peak Power (dBm)	Max Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
2402	2	0	3.709	3.6	7.309	36	-28.691	Pass
2440	2	19	4.308	3.6	7.098	36	-28.092	Pass
2480	2	39	4.196	3.6	7.796	36	-28.204	Pass
2402	1	0	3.814	3.6	7.414	36	-28.586	Pass
2440	1	19	4.373	3.6	7.973	36	-28.027	Pass
2480	1	39	4.187	3.6	7.787	36	-28.213	Pass

9.4.5 **Test Data**:



Figure 9-15 Peak Power (Ch. 0) 2MHz BW

Figure 9-16 Peak Power (Ch. 19) 2MHz BW

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **26** of **60**



Figure 9-2 Peak Power (Ch. 39) 2MHz BW

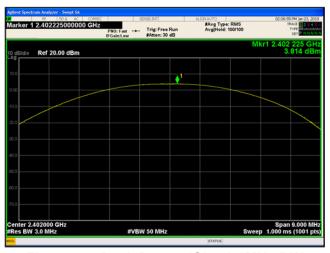


Figure 9-3 Peak Power (Ch. 0) 1MHz BW



Figure 9-4 Peak Power (Ch. 19) 1MHz BW

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019
Microsoft EMC Laboratory

Figure 9-5 Peak Power (Ch. 39) 1MHz BW

9.5 Peak Power Density

9.5.1 Test Requirement:

FCC CFR 47 Rule Part 15.247 (e)

ISED RSS-247 [5.2]

9.5.2 **Test Method**:

Measurements were performed according to the procedure defined in KDB 558074 - Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 V05 and ANSI C63.10: 2013.

Spectrum Analyzer settings:

RBW= 100 kHz

VBW= 300 kHz

Trace Mode= Peak Detector (Max Hold)

Sweep time= Auto Couple

Use the peak marker function to determine the maximum amplitude level within the RBW If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

9.5.3 Limits:

The maximum permissible power density is 8dBm/3kHz.

9.5.4 Test Results:

Frequency (MHz)	Bandwidth (MHz)	Channel No.	Power Spectral Density (dBm/100kHz)	Limit (dBm/3kHz)	Result
2402	2	0	3.554	8	Pass
2440	2	19	4.172	8	Pass
2480	2	39	4.020	8	Pass
2402	1	0	3.615	8	Pass
2440	1	19	4.191	8	Pass
2480	1	39	4.019	8	Pass

The test data shows that the EUT passes the requirement using 100kHz RBW setting and hence will meet the requirement for 3kHz BW.

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page 29 of 60

9.5.5 **Test Data**:



Figure 9-6 Power Spectral Density (Ch. 0) 2MHz BW

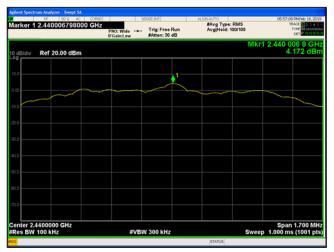


Figure 9-7 Power Spectral Density (Ch. 19) 2MHz BW

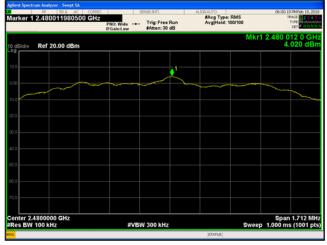


Figure 9-8 Power Spectral Density (Ch. 39) 2MHz BW

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **30** of **60**

Figure 9-24 Power Spectral Density (Ch. 0) 1MHz BW

Figure 9-25 Power Spectral Density (Ch. 19) 1MHz BW

Figure 9-26 Power Spectral Density (Ch. 39) 1MHz BW

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019
Microsoft EMC Laboratory

9.6 Conducted Spurious Emissions

9.6.1 **Test Requirement:**

FCC CFR 47 Rule Part 15.247 (d)

ISED RSS-247 [5.5]

9.6.2 **Test Method**:

Measurements were performed according to the procedure defined in KDB 558074 - Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 V05 and ANSI C63.10: 2013.

Spectrum Analyzer settings:

Identification of Reference Level:

RBW= 100 kHz

 $VBW \ge 3 \times RBW$

Trace Mode= Peak Detector (Max Hold)

Sweep time= Auto Couple

Span >1.5 times DTS Bandwidth

Peak Marker function to determine the max PSD level.

Conducted Spurious Emissions:

RBW= 1 MHz

VBW≥ 3 x RBW = 3 MHz

Trace Mode = Peak Detector (Max Hold)

Sweep time = Auto Couple

Span= 30 MHz- 12 GHz; 12 GHz – 25 GHz

Sweep Points = 30000

9.6.3 Limits:

All spurious emissions at least 20 dBc.

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **32** of **60**

9.6.4 Test Result:

Bandwidth (MHz)	Carrier Frequency (MHz)	Emission Frequency (MHz)	Emissions Amplitude (dBm/MHz)	Limit (dBm)	Margin (dB)	Result
2	2402	11930.20	-39.90	-16.45	-23.45	Pass
2	2402	24932.00	-24.15	-16.45	-7.70	Pass
2	2440	11883.10	-39.86	-15.83	-24.03	Pass
2	2440	24965.30	-23.65	15.83	-7.82	Pass
2	2480	11150.10	-30.78	-15.98	-14.80	Pass
2	2480	24977.50	-23.68	-15.98	-7.70	Pass
1	2402	2411.30	-39.27	-16.39	-22.88	Pass
1	2402	24265.00	-23.81	-16.39	-7.42	Pass
1	2440	2449.60	-39.27	-15.81	-23.46	Pass
1	2440	24853.10	-24.30	-15.81	-8.49	Pass
1	2480	2489.50	-38.15	-15.98	-22.17	Pass
1	2480	24800.70	-24.59	-15.98	-8.61	Pass
	(MHz) 2 2 2 2 2 1 1 1 1	(MHz) Frequency (MHz) 2 2402 2 2402 2 2440 2 2440 2 2480 2 2480 1 2402 1 2402 1 2440 1 2440 1 2440 1 2480	(MHz) Frequency (MHz) Frequency (MHz) 2 2402 11930.20 2 2402 24932.00 2 2440 11883.10 2 2440 24965.30 2 2480 11150.10 2 2480 24977.50 1 2402 2411.30 1 2402 24265.00 1 2440 2449.60 1 2440 24853.10 1 2480 2489.50	(MHz) Frequency (MHz) Frequency (MHz) Amplitude (dBm/MHz) 2 2402 11930.20 -39.90 2 2402 24932.00 -24.15 2 2440 11883.10 -39.86 2 2440 24965.30 -23.65 2 2480 11150.10 -30.78 2 2480 24977.50 -23.68 1 2402 2411.30 -39.27 1 2402 24265.00 -23.81 1 2440 2449.60 -39.27 1 2440 24853.10 -24.30 1 2480 2489.50 -38.15	(MHz) Frequency (MHz) Frequency (MHz) Amplitude (dBm/MHz) Limit (dBm) 2 2402 11930.20 -39.90 -16.45 2 2402 24932.00 -24.15 -16.45 2 2440 11883.10 -39.86 -15.83 2 2440 24965.30 -23.65 15.83 2 2480 11150.10 -30.78 -15.98 2 2480 24977.50 -23.68 -15.98 1 2402 2411.30 -39.27 -16.39 1 2402 24265.00 -23.81 -16.39 1 2440 2449.60 -39.27 -15.81 1 2440 24853.10 -24.30 -15.81 1 2480 2489.50 -38.15 -15.98	(MHz) Frequency (MHz) Frequency (MHz) Amplitude (dBm/MHz) Limit (dBm) Margin (dB) 2 2402 11930.20 -39.90 -16.45 -23.45 2 2402 24932.00 -24.15 -16.45 -7.70 2 2440 11883.10 -39.86 -15.83 -24.03 2 2440 24965.30 -23.65 15.83 -7.82 2 2480 11150.10 -30.78 -15.98 -14.80 2 2480 24977.50 -23.68 -15.98 -7.70 1 2402 2411.30 -39.27 -16.39 -22.88 1 2402 24265.00 -23.81 -16.39 -7.42 1 2440 2449.60 -39.27 -15.81 -23.46 1 2440 24853.10 -24.30 -15.81 -8.49 1 2480 2489.50 -38.15 -15.98 -22.17

9.6.5

9.6.6 **Test Data**:

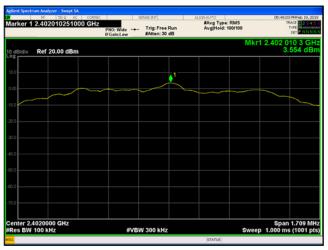


Figure 9-27 Reference Level Measurement (Ch.0) 2MHz BW

Figure 9-28 Conducted Spurious Emissions 30-12000 MHz (Ch. 0) 2MHz BW

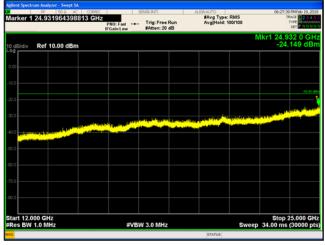


Figure 9-29 Conducted Spurious Emissions 12-25 GHz (Ch.0) 2MHz BW

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **34** of **60**

Figure 9-30 Reference Level Measurement (Ch.19) 2MHz BW

Figure 9-31 Conducted Spurious Emissions 30-12000 MHz (Ch. 19) 2MHz BW

Figure 9-32 Conducted Spurious Emissions 12-25 GHz (Ch. 19) 2MHz BW

Report#: R-TR525-FCCISED-BTLE-2 Page **35** of **60 Microsoft EMC Laboratory**

Figure 9-33 Reference Level Measurement (Ch.39) 2MHz BW

Figure 9-34 Conducted Spurious Emissions 30-12000 MHz (Ch.39) 2MHz BW

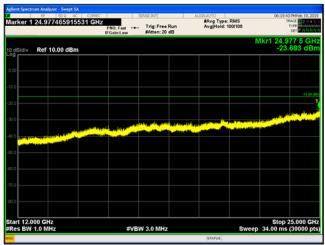


Figure 9-35 Conducted Spurious Emissions 12-25GHz (Ch.39) 2MHz BW

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019
Microsoft EMC Laboratory

Figure 9-36 Reference Level Measurement (Ch.0) 1MHz BW



Figure 9-37 Conducted Spurious Emissions 30-12000 MHz (Ch. 0) 1MHz BW

Figure 9-38 Conducted Spurious Emissions 12-25 GHz (Ch.0) 1MHz BW

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019
Microsoft EMC Laboratory

Figure 9-39 Reference Level Measurement (Ch.19) 1MHz BW

Figure 9-40 Conducted Spurious Emissions 30-12000 MHz (Ch. 19) 1MHz BW

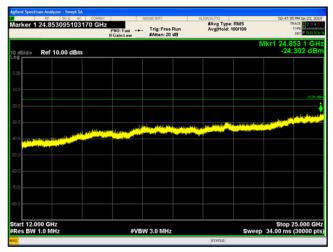


Figure 9-41 Conducted Spurious Emissions 12-25 GHz (Ch. 19) 1MHz BW

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **38** of **60** Microsoft EMC Laboratory

Figure 9-42 Reference Level Measurement (Ch.39) 1MHz BW

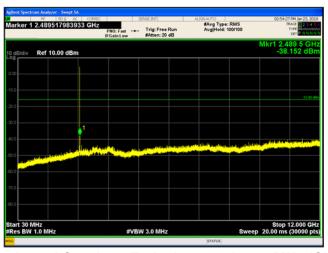


Figure 9-43 Conducted Spurious Emissions 30-12000 MHz (Ch.39) 1MHz BW

Figure 9-44 Conducted Spurious Emissions 30-12000 MHz (Ch.39) 1MHz BW

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019

Microsoft EMC Laboratory

9.7 Conducted Band Edge Emissions

9.7.1 Test Requirement:

FCC CFR 47 Rule Part 15.247 (d)

ISED RSS-247 [5.5]

9.7.2 Test Method:

Measurements were performed according to the procedure defined in KDB 558074 - Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 V05 and ANSI C63.10: 2013.

Spectrum analyzer settings:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation

RBW = 100 kHz

VBW = 300 kHz

Sweep = Auto Couple

Detector function = Peak

Trace = Max Hold

The trace was allowed to stabilize. The marker was set on the emission at the band edge, or on the highest modulation product outside of the band if this level is greater than that at the band edge. The delta marker function was set, and the marker-to-peak function moved to the peak of the in-band emission.

9.7.3 Limits:

All spurious emissions at least 20dBc.

9.7.4 Test Result:

Pass.

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **40** of **60**

9.7.5 **Test Data**:

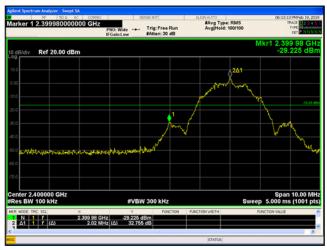


Figure 9-45 Conducted-Low Band Edge (Ch. 0) 2MHz BW

Figure 9-46 Conducted- High Band Edge (Ch. 39) 2MHz BW

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **41** of **60**

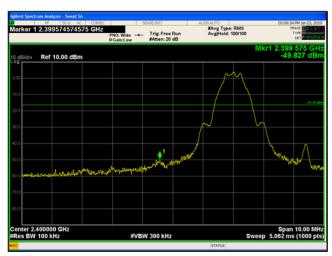


Figure 9-47 Conducted-Low Band Edge (Ch. 0) 1MHz BW

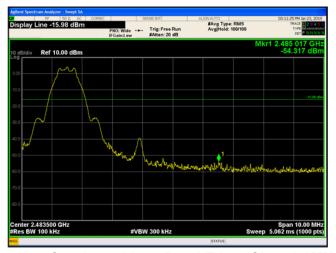


Figure 9-48 Conducted-Low Band Edge (Ch. 39) 1MHz BW

9.8 Radiated Spurious and Band Edge Emissions

9.8.1 **Test Requirement:**

FCC CFR 47 Rule Part 15.247 (d)

ISED RSS-247 [5.5] and RSS GEN [8.9]

9.8.2 Test Method:

Measurements were performed according to the procedure defined in KDB 558074 - Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 V05 and ANSI C63.10: 2013.

Radiated spurious measurements are made from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The limit for radiated spurious emissions is per 15.209 and RSS-247 [5.5]. Additionally, emissions found in the restricted bands listed in 15.205 and RSS-Gen were tested for compliance per limits in 15.209 and RSS-Gen.

The EUT was tested near the low, middle and high channels of operation. Guidelines in ANSI C63.10:2013 were followed with respect to maximizing the emissions.

A pre-amp and a high pass filter were required for this test, to provide the measuring system with sufficient sensitivity. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength.

Both horizontal and vertical antenna polarizations were investigated. Worst-case maximized data for both polarizations is shown in this test report.

Radiated Spurious Emissions

Spectrum Analyzer Settings:

30 MHz- 1 GHz:

RBW = 120 kHz

VBW ≥ 3 X RBW

Trace Mode: Peak Detector (Max Hold). Final measurements performed using QP Detector.

Span= 30 MHz - 1 GHz

Sweep time= Auto

Sweep points ≥ 2 x Span/RBW

Above 1 GHz:

RBW= 1 MHz

VBW= 3 MHz

Trace Mode: Peak Detector (Max Hold) and RMS Average Detector (Max Hold)

Span= 1 - 18 GHz and 18 - 26.5 GHz.

Sweep time= Auto

Sweep points ≥ 2 x Span/RBW

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **43** of **60**

Final Measurements above 1 GHz

Peak Measurements

Spectrum Analyzer Settings:

RBW= 1 MHz VBW= 3 MHz

Trace Mode: Peak Detector (Max Hold)

Span= wide enough to encompass the emission

Sweep Points ≥ 2 × Span/RBW

Sweep Time = Auto

RMS Average Measurements

Spectrum Analyzer Settings:

RBW = 1 MHz

VBW ≥ 3 × RBW

Detector = RMS

Span = wide enough to encompass the emission

Sweep points ≥ 2 × Span/RBW

Sweep time = auto

Trace = Average at least 100 traces

Trace Averaging Type= power (RMS)

The duty cycle correction factor is added to the emission level.

Restricted Band-Edge Emissions

Peak Measurements

Spectrum Analyzer Settings:

RBW = 1 MHzVBW = 3 MHz

Trace Mode: Peak Detector (Max Hold)

Span = 2310 - 2500 MHz

Sweep Points = 401

Sweep Time = Auto

Average Measurements

Spectrum Analyzer Settings:

RBW= 1 MHz

VBW= 3 kHz

VBW Mode = Linear

Trace Mode: RMS (Average)

Span= 2310 - 2500 MHz

Sweep Points = 401

Sweep Time = Auto

Sweep Count = 150

Sample Calculation:

<u>Field Strength Level:</u> Amplitude (Analyzer level) + AFCL (Antenna Factor and Cable losses) – Amplifier Gain = 50dBuV + 33 dB – 25 dB = 58dBuV/m

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **44** of **60**

9.8.3 Limits:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (meters)	Corrected Field Strength for 3m measurement distance (dBµV/m)
0.009-0.490	2400/F (kHz)	300	48.5 - 13.8
0.490-1.705	24000/F (kHz)	30	33.8- 23.0
1.705-30	30	30	29.5
30-88	100	3	40
88-216	150	3	43.5
216-960	200	3	46
960-1000	500	3	54
Above 1000 (Restricted Frequency Bands)	500	3	54 (Average) 74 (Peak)

9.8.4 Test Result:

Pass.

Report#: R-TR525-FCCISED-BTLE-2 Page **45** of **60**

9.8.5 Test Data:

9.8.5.1 Radiated Restricted Band-edge emissions

Date: 12.APR.2019 23:29:42

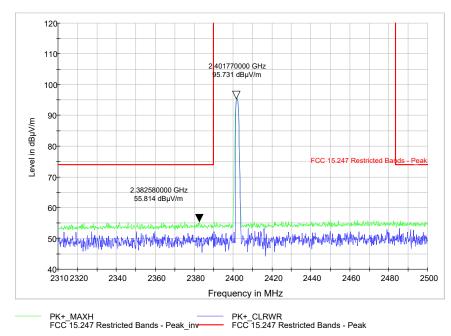


Figure 9-49 Radiated Restricted Band Edge (Ch. 0) Peak

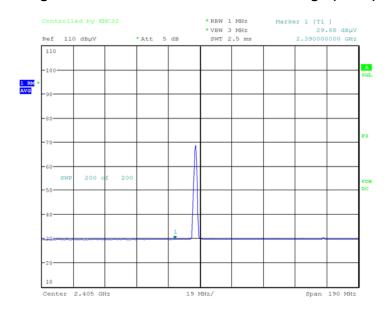


Figure 9-50 Radiated Restricted Band Edge (Ch. 0) Average

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page 46 of 60

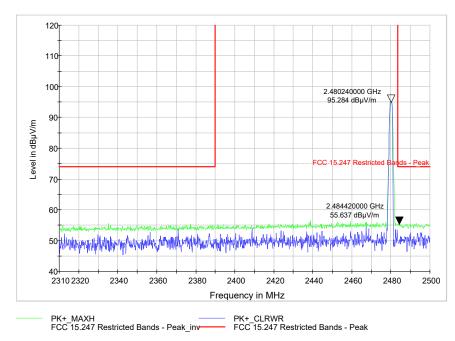
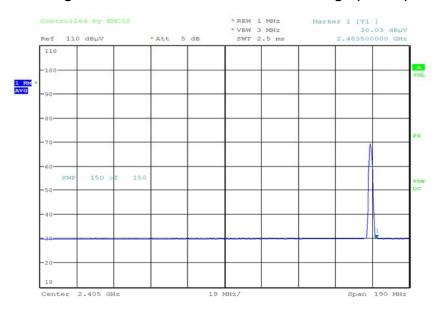



Figure 9-51 Radiated Restricted Band Edge (Ch. 39) Peak

Date: 22.FEB.2019 20:40:58

Figure 9-52 Radiated Restricted Band Edge (Ch. 39) Average

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019
Microsoft EMC Laboratory

	Band edge Average Data									
Carrier Frequency (MHz)	Spurious Frequency (MHz)	Raw Avg. Amplitude (dBµV)	System Correction Factor (dB)	Duty cycle correction factor(dB)	Corrected Avg. Field Strength (dBµV/m)	Average Limit (dBµV/m)	Margin (dB)			
2402	2390.0	29.68	12.8	2.11	44.59	54	-9.41			
2480	2483.5	30.03	13.2	2.113	45.34	54	-8.66			

Issued: May 3, 2019 Microsoft EMC Laboratory Report#: R-TR525-FCCISED-BTLE-2 Page **48** of **60**

9.8.5.2 Emissions in 9KHz – 30MHz range

All channels were tested and worst-case results from channel 19 are shown here.

	RSE 9KHz – 30MHz									
Carrier Frequency (MHz)	Loop orientation	Emission Frequency (MHz)	Raw Quasi- Peak Amplitude (dBµV/m)	Corrected Quasi- Peak Field Strength (dBµV/m)		Quasi- Peak Limit (dBµV/m)	Quasi- Peak Margin (dB)			
2440	Perpendicular	0.518	-4.30	12.00	7.70	33.32	-25.62			
2440	Perpendicular	11.953	-15.13	-5.00	-20.13	29.54	-49.67			
2440	Perpendicular	20.878	-8.58	-5.50	-14.08	29.54	-43.62			
2440	Parallel	0.514	19.70	-12.00	7.70	33.39	-25.69			
2440	Parallel	11.892	-12.61	-5.00	-17.61	29.54	-47.15			

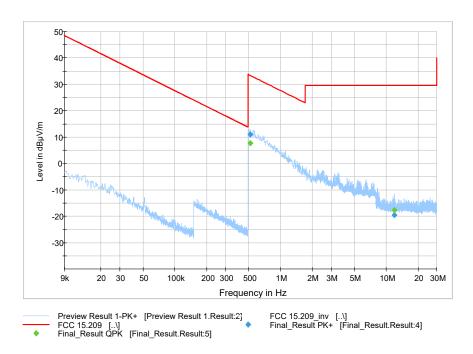


Figure 9-53 Radiated Spurious Emissions (Ch. 19) 2440 (9KHz - 30MHz) - Parallel orientation

Report#: R-TR525-FCCISED-BTLE-2 Page **49** of **60** Issued: May 3, 2019

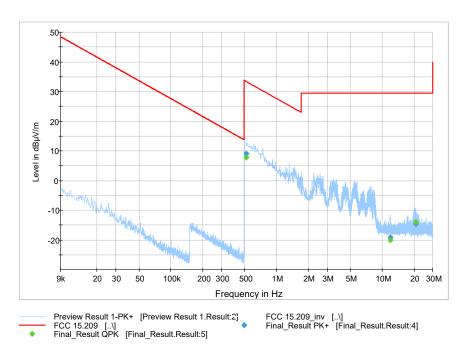


Figure 9-54 Radiated Spurious Emissions (Ch. 19) 2440 (9KHz – 30MHz) – Perpendicular orientation

9.8.5.3 Emissions in 30 MHz- 1 GHz range

All channels were tested and worst-case results from channel 0 and 19 are shown here.

RSE 30-1000 MHz									
Carrier Frequency (MHz)	Emission Frequency (MHz)	Raw Quasi- Peak Amplitude (dBµV/m)	Correction Factor (dB)	Corrected Quasi- Peak Field Strength (dBµV/m)	Quasi- Peak Limit (dBµV/m)	Quasi- Peak Margin (dB)			
2402	936.54	-7.25	33.2	25.95	46.02	-20.07			
2440	945.50	-7.18	33.2	26.02	46.02	-20.00			

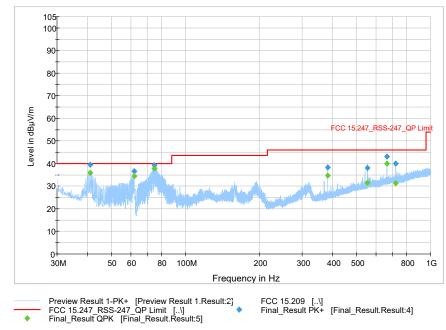


Figure 9-55 Radiated Spurious Emissions (30MHz - 1GHz) - Ambient - Radio OFF -**Digital Transmissions**

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **51** of **60**

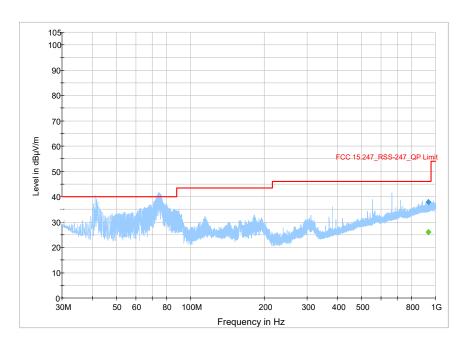


Figure 9-56 Radiated Spurious Emissions (Ch. 0) 2402 (30MHz - 1GHz)

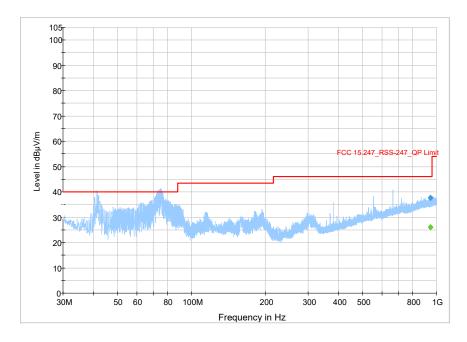


Figure 9-57 Radiated Spurious Emissions (Ch. 19) 2440 (30MHz - 1GHz)

9.8.5.4 Emissions in 1-18 GHz range

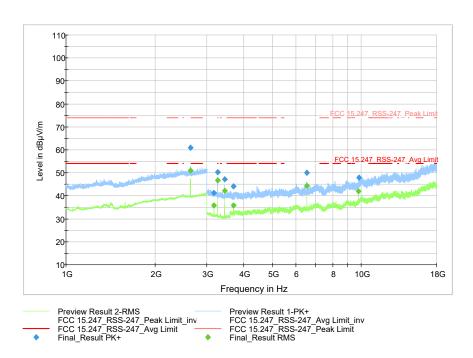


Figure 9-58 Radiated Spurious Emissions 1-18 GHz – Ambient – Radio OFF – Digital **Transmissions**

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **53** of **60**

	RSE 1 - 18GHz Average Data									
Carrier Frequency (MHz)	Frequency Frequency Amplitude Factor Correction Avg. Fiel						Margin (dB)			
2402	17795.5	20.11	23.5	0	43.61	54	-10.39			
2440	17781.4	19.97	23.5	0	43.47	54	-10.53			
2480	17840.6	19.76	23.9	0	43.66	54	-10.34			

RSE 1 - 18GHz Peak Data									
Carrier Frequency (MHz)	Frequency (MHz)	Raw Peak Amplitude (dBµV)	Correction Factor (dB)	Corrected Peak Field Strength (dBµV/m)	Peak Limit (dBµV/m)	Margin (dB)			
2402	17996.6	31.76	23.5	55.26	74	-18.74			
2440	17776.3	31.37	23.5	54.87	74	-19.13			
2480	17760.4	32.09	23.4	55.49	74	-18.51			

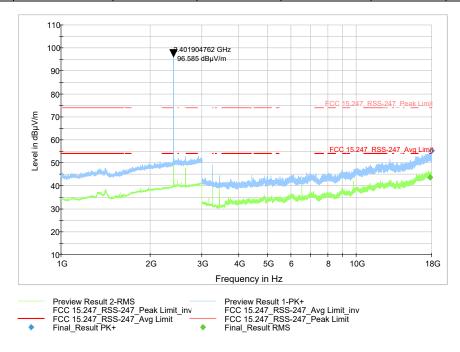


Figure 9-59 Radiated Spurious Emissions 1-18 GHz (Ch. 0)

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **54** of **60**

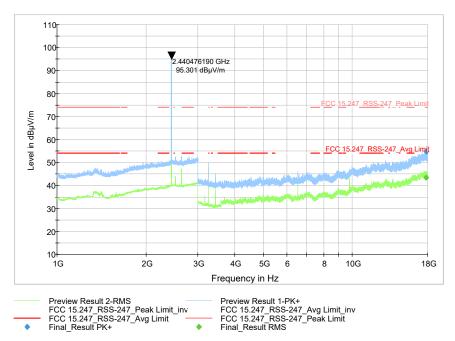


Figure 9-60 Radiated Spurious Emissions 1-18 GHz (Ch. 19)

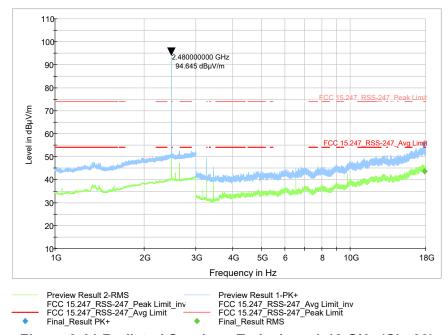


Figure 9-61 Radiated Spurious Emissions 1-18 GHz (Ch. 39)

9.8.5.5 Emissions in 18-26.5 GHz range

All channels were tested and worst-case results from channel 39 (2480 MHz) shown here. No significant emissions to report above noise floor.

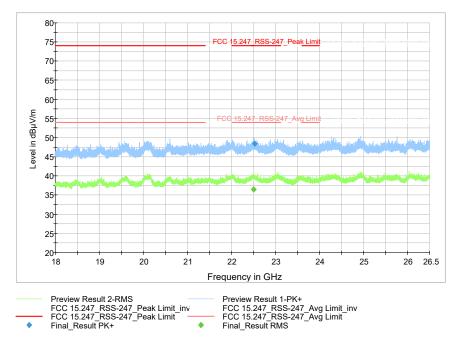


Figure 9-62 Radiated Spurious Emissions (Ch. 39) (18 – 26.5 GHz)

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page 56 of 60

9.9 AC Line Conducted Emissions

9.9.1 Test Requirements

FCC CFR 47 Rule Part 15.207 (a)

ISED RSS Gen [8.8]

9.9.2 Test Method

Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the Unsymmetric radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with the power cords that are used under normal operating conditions. These measurements are made using a LISN (Line Impedance Stabilization Network). AC powered peripherals are attached to a second LISN with the 50-ohm measuring port terminated by a 50-ohm resistive load.

The EUT is set to continuously transmit on Ch.39 at 4dBm power setting.

EMI Receiver Settings:

150 kHz - 30 MHz:

RBW= 9 kHz

VBW ≥ 3 X RBW

Trace Mode: Peak Detector (Max Hold).

Final measurements were performed using Quasi-Peak and Average Detectors.

Span= 150 kHz - 30 MHz

Sweep time= Auto

9.9.3 Limit

	Conducte	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

9.9.4 Test Result:

Pass

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page 57 of 60

9.9.5 Test Data:

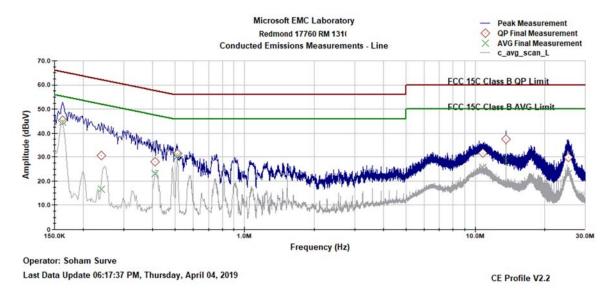


Figure 9-63 AC Line Conducted Emissions- Neutral (150 kHz- 30 MHz)

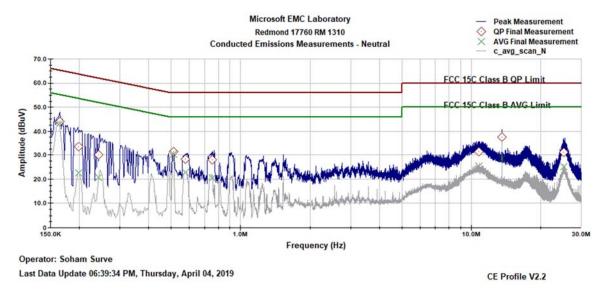


Figure 9-64 AC Line Conducted Emissions- Line (150 kHz- 30 MHz)

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019

Microsoft EMC Laboratory

Frequency (MHz)	QP Net Reading (dBµV)	AVG Net Reading (dBµV)	Quasi- Peak Limit (dBµV)	Average Limit (dBµV)	Line Tested (L or N)	Quasi- Peak Margin (dB)	Average Margin (dB)
0.163	44.94	44.35	65.30	55.30	L	-20.37	-10.95
0.513	31.21	30.00	56.00	46.00	L	-24.79	-16.00
13.562	39.25	29.39	60.00	50.00	L	-20.75	-20.61
0.584	27.53	21.28	56.00	46.00	L	-28.47	-24.72
24.565	30.46	25.10	60.00	50.00	L	-29.54	-24.90
10.778	29.43	23.32	60.00	50.00	L	-30.57	-26.68
0.251	28.31	24.81	61.73	51.73	L	-33.43	-26.92
0.163	44.93	44.28	65.29	55.29	N	-20.37	-11.01
0.511	31.66	30.50	56.00	46.00	N	-24.34	-15.50
13.562	37.45	27.79	60.00	50.00	N	-22.55	-22.21
0.581	28.10	22.19	56.00	46.00	N	-27.90	-23.81
11.199	28.36	22.55	60.00	50.00	N	-31.64	-27.45
25.03	29.27	22.55	60.00	50.00	N	-30.74	-27.45
0.244	25.50	22.05	61.95	51.95	N	-36.45	-29.90

End of Report

Report#: R-TR525-FCCISED-BTLE-2 Issued: May 3, 2019 Page **60** of **60**