

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7 CLASS II PERMISSIVE CHANGE

CERTIFICATION TEST REPORT

FOR

XBox 360 Wireless Controller

MODEL NUMBER: 1403

FCC ID: C3K1403 IC: 3048A-1403

REPORT NUMBER: 12U14305-1, Revision C

ISSUE DATE: JULY 23, 2012

Prepared for

MICROSOFT CORPORATION ONE MICROSOFT WAY REDMOND, WA 98052, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

> TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	3/21/12	Initial Issue	T. LEE
Α	6/26/12	Revised Radiated Test Results	T. LEE
В	07/09/12	Updated report with Correction Factor	A. Zaffar
С	07/23/12	Revert back to Radiated Emission Test Data of Initial Issue since manufacturer no longer implementing changes in Rev. A	T. LEE

TABLE OF CONTENTS

DATE: JULY 23, 2012

IC: 3048A-1403

1.	AT.	TESTATION OF TEST RESULTS	4
2.	TE	ST METHODOLOGY	5
3.	FA	CILITIES AND ACCREDITATION	5
4.	CA	LIBRATION AND UNCERTAINTY	5
	4.1.	MEASURING INSTRUMENT CALIBRATION	5
	4.2.	SAMPLE CALCULATION	5
	4.3.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	6
	5.1.	DESCRIPTION OF EUT	6
	5.2.	MAXIMUM OUTPUT POWER	6
	5.3.	DESCRIPTION OF CLASS II PERMISSIVE CHANGE	6
	<i>5.4</i> .	DESCRIPTION OF AVAILABLE ANTENNAS	6
	5.5.	SOFTWARE AND FIRMWARE	6
	5.6.	WORST-CASE CONFIGURATION AND MODE	7
	5.7.	DESCRIPTION OF TEST SETUP	8
6.	TE	ST AND MEASUREMENT EQUIPMENT	10
7.	AN	TENNA PORT TEST RESULTS	11
	7.1		
	7.1	.2. DUTY CYCLE CORRECTION FACTOR	16
8.	RA	DIATED TEST RESULTS	17
	8.1.	LIMITS AND PROCEDURE	17
	8.2.	TRANSMITTER ABOVE 1 GHz	18
	8.3.	WORST-CASE BELOW 1 GHz	25
9.	SE	TUP PHOTOS	28

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: MICROSOFT CORPORATION

ONE MICROSOFT

REDMOND, WA 98052, U.S.A.

EUT DESCRIPTION: XBox 360 Wireless Controller

MODEL: 1403

SERIAL NUMBER: ES2-EMC1 and DV1, S/N 58804125223 (CONDUCTED), EVI-

EMC1 (RADIATED)

DATE TESTED: FEBRUARY 24- JULY 23, 2012

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	PASS
INDUSTRY CANADA RSS-210 Issue 7 Annex 8	PASS
INDUSTRY CANADA RSS-GEN Issue 2	PASS

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

TIMOTHY K. LEE STAFF ENGINNER

UL CCS

STEVE AGUILAR EMC TECHNICIAN

teru Guilan

UL CCS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a frequency hopping transceiver Xbox 360 Wireless controller. EUT is using the proprietary communication protocol to interact with Xbox 360 console. Proprietary communication protocol is detailed in the theory of operation.

The EUT is manufactured by Microsoft, Model 1403.

5.2. MAXIMUM OUTPUT POWER

The measured average power values were within ± 0.5 dB of the original values. Refer to original report number "09U12392-1A FCC IC FHSS REPORT_FINAL" for exact output power values and for all antenna port results.

5.3. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

The change filed under this application has the following changes.

New PCBA layout Replacing radio ROM chip to RAM Master chip, Addition of memory flash and FW to support RAM

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an inverted-F antenna, which is soldered to the printed circuit board. This antenna has a maximum gain of -0.2 dBi

5.5. SOFTWARE AND FIRMWARE

The test utility software used during testing was Wireless Device Test Ver. 113 and XboxACCUsbUartTestTool Ver. 1-21-2012. Product firmware version: 4.10 and 4.27.

5.6. WORST-CASE CONFIGURATION AND MODE

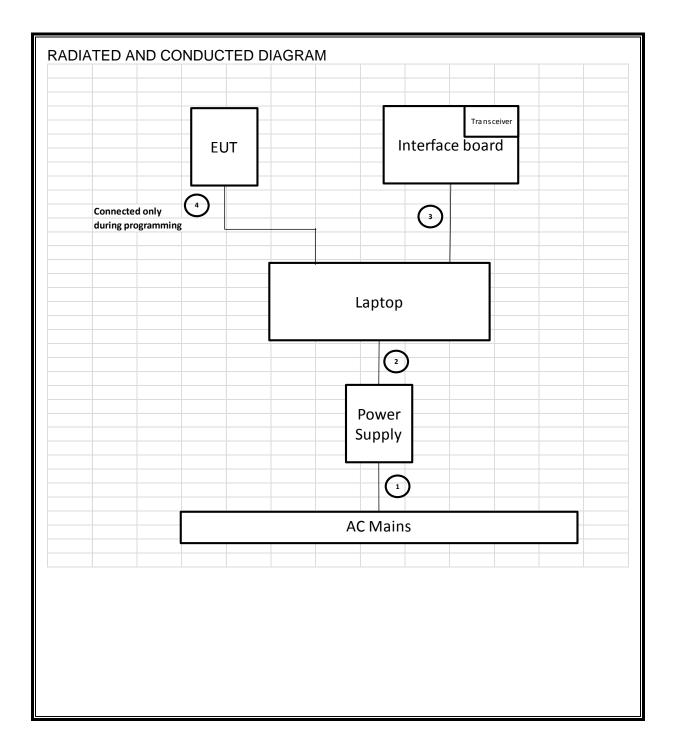
The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2482 MHz.

The EUT is a portable device that has two orientations; therefore X and Y orientations have been investigated. The worst case was found to be Y orientation.

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Description	Manufacturer	Model	Serial Number	FCC ID
Laptop	LENOVO	L420	LR-78PNB	DoC
AC Adaptor	LENOVO	42T4418	11S42T14418ZiZGWG13PA94	DoC
USB Controller Cable	MICROSOFT	N/A	EV3C-0007	N/A
Front Panel Module	MICROSOFT	1410	EV2C-IB039	C3K1410
Front Panel Module	MICROSOFT	1409	4104G003394213(FW 6.80)	C3K1409


I/O CABLES

			1/0 (CABLE LIST		
Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks
1	AC	1	US 115V	Un-shielded	0.9m	none
2	DC	1	DC	Shielded	1.8m	Ferrite
3	USB	1	I/O	Shielded	0.5m	none
4	USB	1	I/O	Shielded	2.8m	Ferrite

TEST SETUP

The EUT is tested as stand-alone unit.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	Asset	Cal Date	Cal Due			
Power Meter	Agilent / HP	437B	N02778	8/11/2010	8/11/2012			
Power Sensor, 18 GHz	Agilent / HP	8481A	N02782	7/29/2011	7/29/2013			
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01161	12/16/2011	12/16/2012			
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01012	9/2/2011	9/2/2012			
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	7/18/2011	7/18/2012			
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00558	11/11/2011	11/11/2012			
Antenna, Horn, 18 GHz	EMCO	3115	C00872	9/20/2011	9/20/2012			
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	C00980	7/28/2011	7/28/2012			
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01171	1/26/2012	1/26/2013			

7. ANTENNA PORT TEST RESULTS

7.1.1. CONDUCTED SPURIOUS EMISSIONS

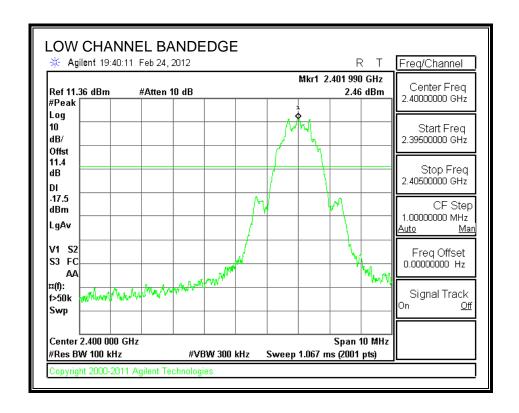
LIMITS

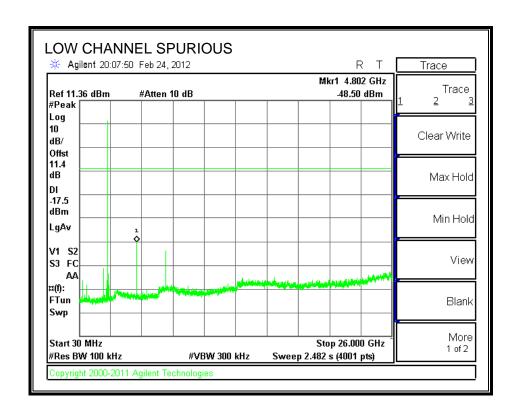
FCC §15.247 (d)

IC RSS-210 A8.5

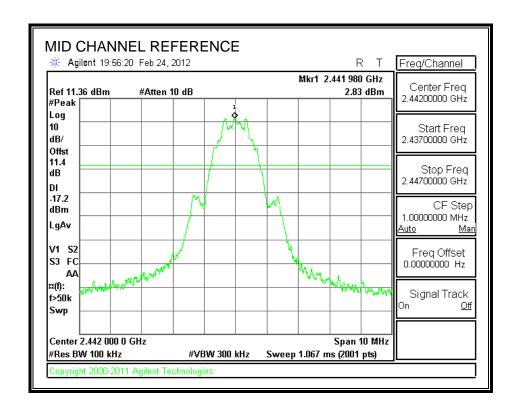
Limit = -20 dBc

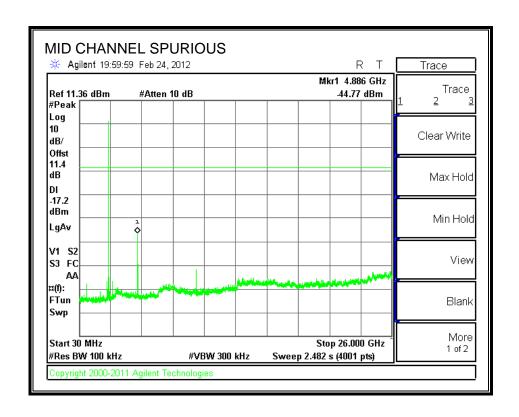
TEST PROCEDURE

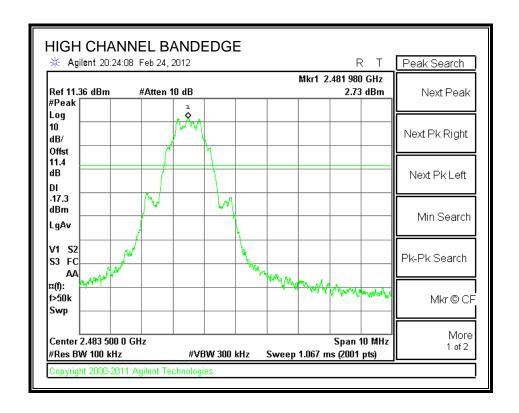

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

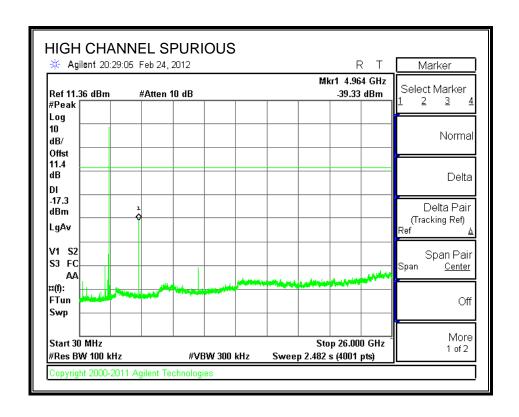

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

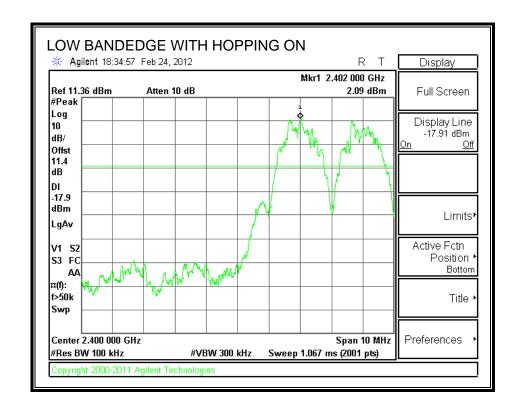
The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

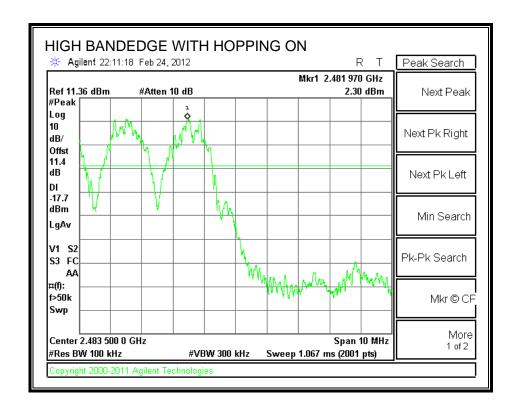

RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL

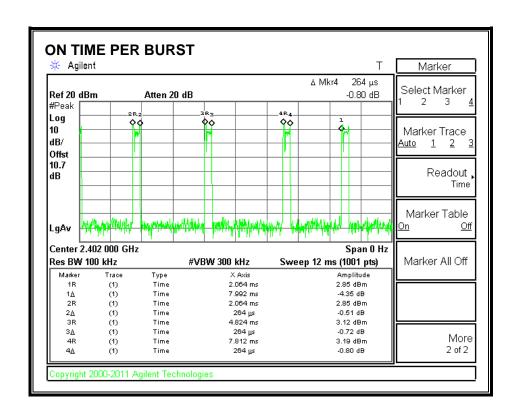



SPURIOUS EMISSIONS, MID CHANNEL




SPURIOUS EMISSIONS, HIGH CHANNEL

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON


7.1.2. DUTY CYCLE CORRECTION FACTOR

LIMITS

None; for reporting purposes only.

RESULTS

Mode	Tx on	Tx on + Tx off	Duty Cycle Correction Factor
	(msec)	(msec)	(dB)
FHSS	0.792	7.992	-20.08

On time = First Peak on time + Second Peak on time + Third Peak on time

= 0.264ms + 0.264ms + 0.264ms

= 0.792 ms

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

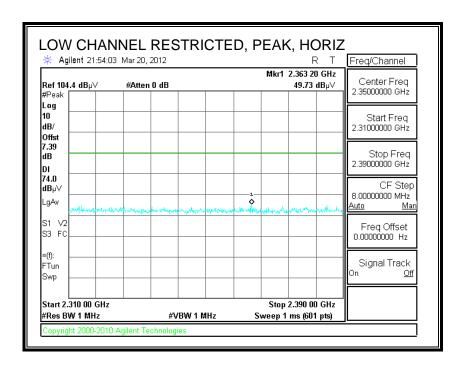
IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.


For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

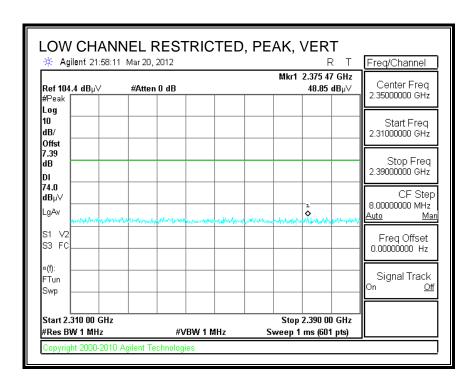
8.2. TRANSMITTER ABOVE 1 GHz

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

AVERAGE FIELD STRENGTH CALCULATION:

AVG Field Strength = Peak Reading – Duty Cycle Correction Factor

= 49.73 dBuV - 20.08 dBuV


= 29.65 dBuV

AVG Margin = AVE Reading – AVE Power Limit

= 29.65 dBuV - 54 dBuV

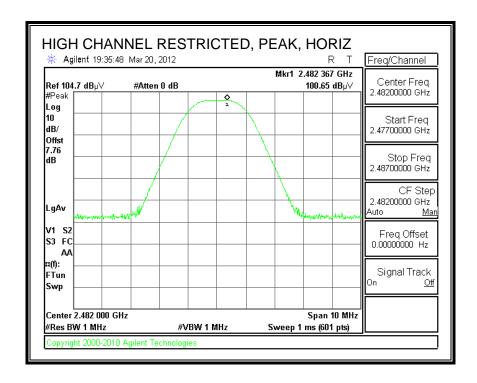
= -24.35 dBuV

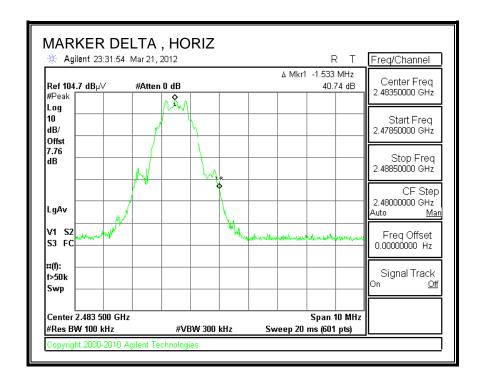
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

AVERAGE FIELD STRENGTH CALCULATION:

AVG Field Strength = Peak Reading – Duty Cycle Correction Factor

= 48.85 dBuV - 20.08 dBuV/m


= 28.77 dBuV/m


AVG Margin = AVE Reading – AVE Power Limit

= 28.77 dBuV - 54 dBuV

= -25.23 dBuV

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL, MARKER DELTA)

MARKER DELTA CALCULATION:

_ Peak Reading = Fundamental Peak Field Strength - Delta

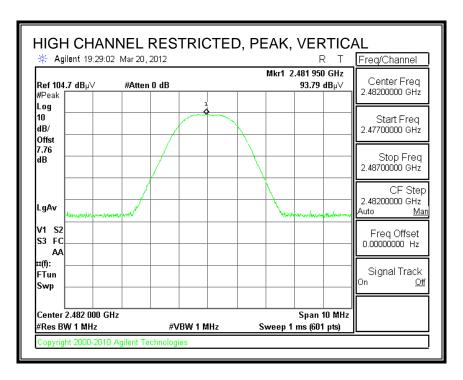
_Peak Margin = Peak Reading - 74

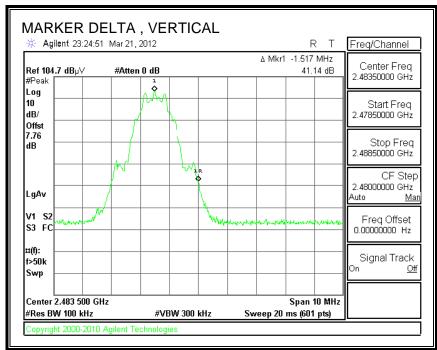
			Fundamental (dBuV/m)	Reading (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)
	Delta (dB)	Horn Antenna	Peak	Peak	Peak	Peak
High Ch, 2482MHz	40.74	Horizontal	100.65	59.91	74	-14.09

AVERAGE FIELD STRENGTH CALCULATION:

AVG Field Strength = Peak Reading – Duty Cycle Correction Factor

= 59.91 dBuV - 20.08 dBuV


= 39.83 dBuV


AVG Margin = AVE Reading – AVE Power Limit

= 39.83 dBuV - 54 dBuV

= -14.17 dBuV

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

DELTA MARKER CALCULATION

_ Peak Reading = Fundamental Peak Field Strength - Delta

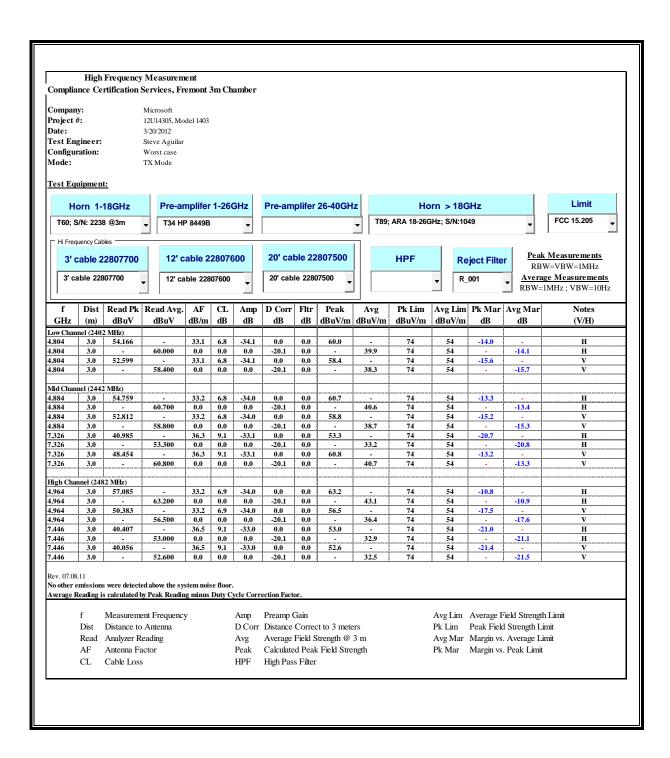
_Peak Margin = Peak Reading - 74

			Fundamental (dBuV/m)	Reading (dBuV/m)	Limit (dBuV/m)	Margin (dBuV/m)
	Delta (dB)	Horn Antenna	Peak	Peak	Peak	Peak
High Ch, 2482MHz	41.14	Horizontal	93.79	52.65	74	-21.43

AVERAGE FIELD STRENGTH CALCULATION:

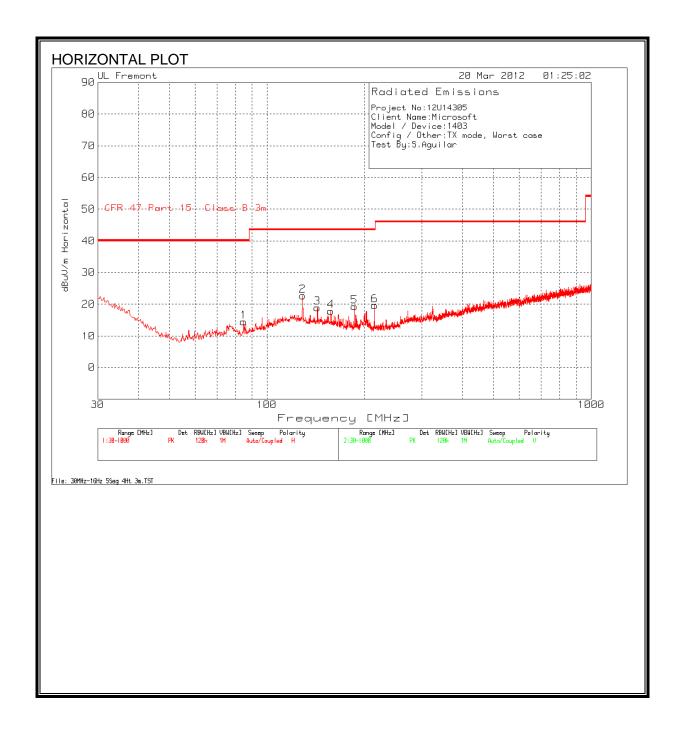
AVG Field Strength = Peak Reading – Duty Cycle Correction Factor

= 52.65 dBuV - 20.08 dBuV/m


= 32.57 dBuV/m

AVG Margin = AVE Reading – AVE Power Limit

= 32.57 dBuV - 54 dBuV


= -21.43 dBuV

HARMONICS AND SPURIOUS EMISSIONS

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

DATE: JULY 23, 2012

IC: 3048A-1403

HORIZONTAL AND VERTICAL DATA

Project:		12U14305							
Client Name: Model/Device		Microsoft							
		1403							
Configuration	on:	-	Worst case	2					
Tested by:		S.Aguilar							
Test	Meter		Pre Amp	Antenna		Class B			
Frequency	Reading	Detector	Factor	Factor	Corrected	PK limit	QP	Height	
[MHz]	[dB(μV)]		[dB]	[dB/m]	[dB(µV/m)]	[dB(µV/m)]	Margin [dB]	[cm]	Polarit
Range 1 30	0 - 1000MH	łz							
84.6643	34.28	PK	-27.1	7.3	14.48	40	-25.52	300	Horz
128.8609	35.74	PK	-26.7	13.7	22.74	43.5	-20.76	200	Horz
143.0116	32.91	PK	-26.6	12.6	18.91	43.5	-24.59	200	Horz
157.3561	32.35	PK	-26.5	12	17.85	43.5	-25.65	101	Horz
186.0452	34.47	PK	-26.4	11.2	19.27	43.5	-24.23	101	Horz
214.5404	35.34	PK	-26.2	10.5	19.64	43.5	-23.86	101	Horz
Range 2 3	0 - 1000MI	 Hz							
41.4369	38.75	PK	-27.4	12.9	24.25	40	-15.75	300	Vert
55.1998	41.31	PK	-27.3	7.1	21.11	40	-18.89	100	Vert
63.729	39.48	PK	-27.2	7.6	19.88	40	-20.12	100	Vert
110.2518	36.44	PK	-26.7	12.8	22.54	43.5	-20.96	100	Vert
165.8853	40.69	PK	-26.5	11.8	25.99	43.5	-17.51	100	Vert
198.9359	34.15	PK	-26.2	12.2	20.15	43.5	-23.35	200	Vert
PK - Peak de	etector								
		tor							
QP - Quasi-r									