

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7

CERTIFICATION TEST REPORT

FOR

802.11 b/g/n WLAN CLIENT

MODEL NUMBER: 1400

FCC ID: C3K1400 IC: 3048A-1400

REPORT NUMBER: 09U12915-1, Revision B

ISSUE DATE: DECEMBER 08, 2009

Prepared for
MICROSOFT CORPORATION
One Microsoft Way,
Redmond, WA 98052, U.S.A

Prepared by

COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000

FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	11/13/09	Initial Issue	F. Ibrahim
Α	11/25/09	Revised FCC ID, IC ID, and Applicant information	A. Zaffar
В	12/08/09	Added tabulated Band edge data	F. Ibrahim

TABLE OF CONTENTS

1.		ATTESTATION OF TEST RESULTS	5
2.		TEST METHODOLOGY	6
3.		FACILITIES AND ACCREDITATION	6
4.		CALIBRATION AND UNCERTAINTY	6
	4.1.	MEASURING INSTRUMENT CALIBRATION	6
	4.2.	SAMPLE CALCULATION	6
	4.3.	MEASUREMENT UNCERTAINTY	6
5.		EQUIPMENT UNDER TEST	7
	5.1.	DESCRIPTION OF EUT	7
	5.2.	MAXIMUM OUTPUT POWER	7
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
	5.4.	SOFTWARE AND FIRMWARE	7
	5.5.	WORST-CASE CONFIGURATION AND MODE	
	5.6.	DESCRIPTION OF TEST SETUP	
6.		TEST AND MEASUREMENT EQUIPMENT	10
7.		ANTENNA PORT TEST RESULTS	
	7.1.	802.11b MODE IN THE 2.4 GHz BAND	
	7.1. ² 7.1. ²	• • • • • • • • • • • • • • • • • • • •	
	7.1.3		
	7.1. ⁴ 7.1. ⁴		
	7.1.6		
	7.2.	802.11g MODE IN THE 2.4 GHz BAND	. 35
	7.2.		
	7.2.2 7.2.3		
	7.2.4	4. AVERAGE POWER	.47
	7.2.5		
	7.2.6		
	7.3. 7.3.	802.11n HT20 MODE IN THE 2.4 GHz BAND I. 6 dB BANDWIDTH	
	7.3.2	2. 99% BANDWIDTH	63
	7.3.3 7.3.4		
	7.3. ² 7.3. ³		
	7.3.6		
	7.4.	802.11n HT40 MODE IN THE 2.4 GHz BAND	. 83

7. 7. 7. 7. 7.	2. 99% BANDWIDTH	87 91 95
8.	RADIATED TEST RESULTS	107
8.1.	LIMITS AND PROCEDURE	107
8. 8.	TRANSMITTER ABOVE 1 GHz 1. TX ABOVE 1 GHz FOR 802.11b MODE IN THE 2.4 GHz BAND	108 128 148
•	RECEIVER ABOVE 1 GHz	188 189
9.	AC POWER LINE CONDUCTED EMISSIONS	196
10.	MAXIMUM PERMISSIBLE EXPOSURE	200
11.	SETUP PHOTOS	204

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: MICROSOFT CORPORATION

One Microsoft Way,

Redmond, WA 98052, U.S.A

EUT DESCRIPTION: 802.11 b/g/n 88W8786U WLAN Client

MODEL: 1400

SERIAL NUMBER: 0C607683A344

DATE TESTED: NOVEMBER 06-13, 2009

APPLICABLE STANDARDS

STANDARD
TEST RESULTS

CFR 47 Part 15 Subpart C
Pass

INDUSTRY CANADA RSS-210 Issue 7 Annex 8
Pass

INDUSTRY CANADA RSS-GEN Issue 2
Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

Tested By:

FRANK IBRAHIM EMC SUPERVISOR

COMPLIANCE CERTIFICATION SERVICES

TOM CHEN EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11b/g/n WLAN Client.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2412 - 2462	802.11b	24.23	264.85
2412 - 2462	802.11g	24.36	272.90
2412 - 2462	802.11n HT20	25.40	346.74
2422 - 2452	802.11n HT40	25.79	379.31

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes the following antennas:

- 1) PIFA antenna, with a maximum gain of 4.02 dBi.
 - 2) PWB antenna, with a maximum gain of 4.06 dBi.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was Microsoft, rev. 12.0.3.09.

The EUT driver software installed during testing was Microsoft, rev. V1.0.0.16.

The test utility software used during testing was Microsoft, rev. V1.0.1.P13.

5.5. WORST-CASE CONFIGURATION AND MODE

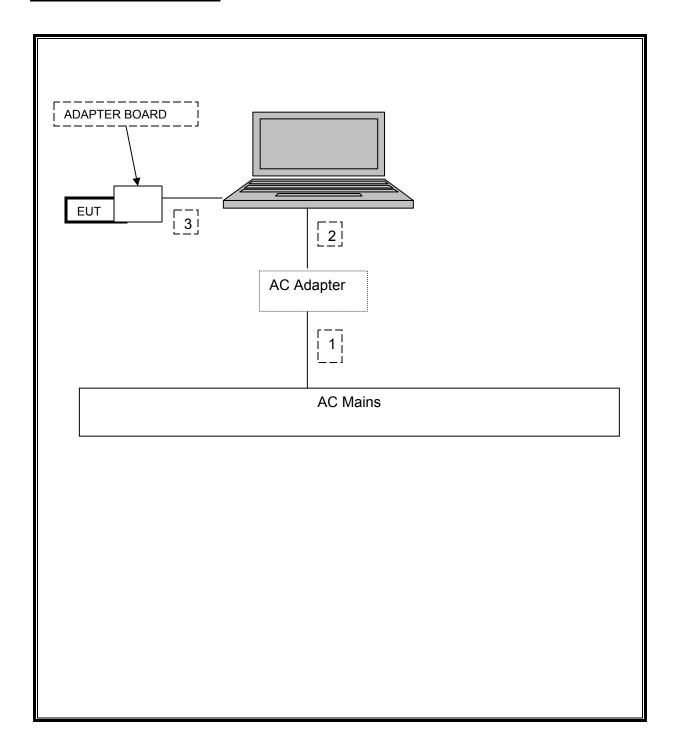
For Radiated Emissions below 1 GHz, the channel with highest output power was selected, it was determined that mid channel in the HT40 mode was the channel with highest output power; therefore, radiated emissions below 1 GHz was conducted with the EUT set to mid channel in the HT40 mode, data rate was MCS7 based on input from the client. Separate data sheet for each antenna was provided.

For Power Line Conducted Emissions test, also the channel with highest output power was selected which was mid channel in the HT40 mode. PWB antenna was selected as worst-case antenna for LC test.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufactur Model Serial Number I			FCC ID			
	er					
Laptop	Lenovo	889202U	L3-A4068	DoC		
AC Adapter	Lenovo	92P1109	Z1ZBTZ7BR5U7	N/A		
Adapter Board	Microsoft	N/A	N/A	N/A		


I/O CABLES

	I/O CABLE LIST						
Cable	Port	# of	Connector	Cable	Cable	Remarks	
No.		Identical Ports	Туре	Туре	Length		
1	AC	1	AC	Unshielded	1.8 m	N/A	
2	DC	1	DC	Unshielded	1.8 m	Ferrite on laptop's end	
3	USB	1	USB	Unshielded	0.6 m	N/A	

TEST SETUP

The EUT is connected to host laptop computer via USB cable during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Due	
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	01/05/10	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	01/14/10	
Antenna, Horn, 18 GHz	EMCO	3115	C00945	04/22/10	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	03/31/10	
Preamplifier, 1-26GHz	Agilent / HP	8449B	C01052	07/05/10	
Preamplifier, 1-26GHz	Agilent / HP	8449B	C01052	07/05/10	
Power Meter	Agilent / HP	438A	C01068	12/16/09	
Power Sensor, 18 GHz	Agilent / HP	8481A	N02784	07/28/11	
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/29/10	
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	02/06/10	

7. ANTENNA PORT TEST RESULTS

7.1. 802.11b MODE IN THE 2.4 GHz BAND

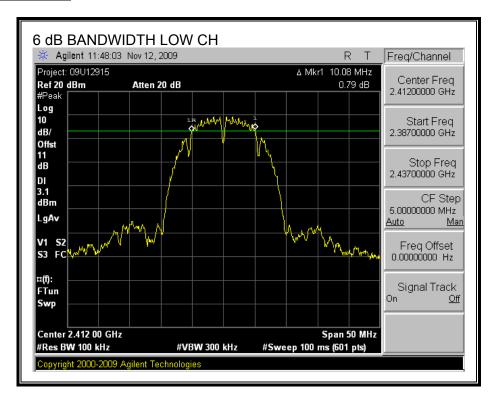
7.1.1. 6 dB BANDWIDTH

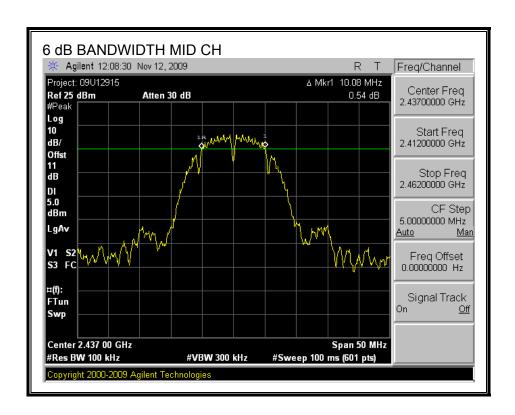
LIMITS

FCC §15.247 (a) (2)

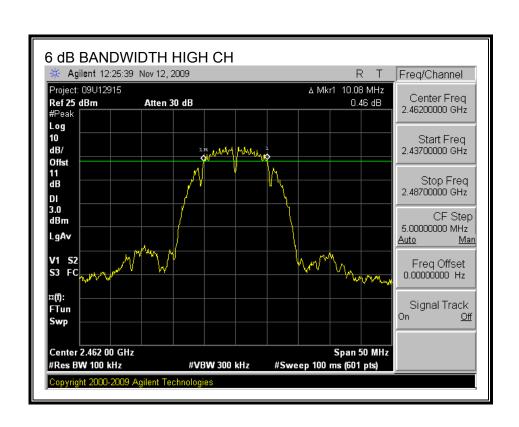
IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS


Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	10.08	0.5
Middle	2437	10.08	0.5
High	2462	10.08	0.5

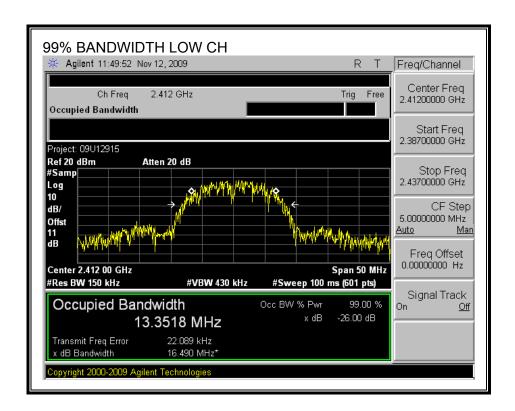
6 dB BANDWIDTH

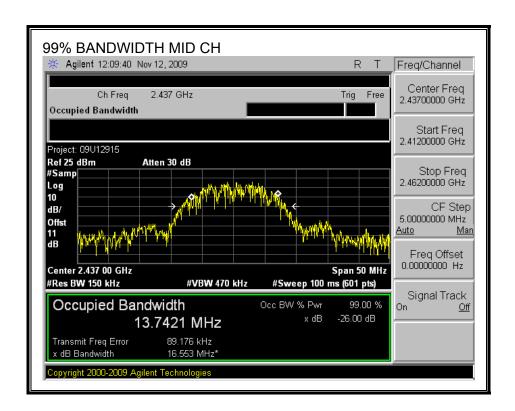
IC: 3048A-1400

7.1.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	13.3518
Middle	2437	13.7421
High	2462	13.5779

99% BANDWIDTH

REPORT NO: 09U12915-1B FCC ID: C3K1400

DATE: DECEMBER 08, 2009

IC: 3048A-1400

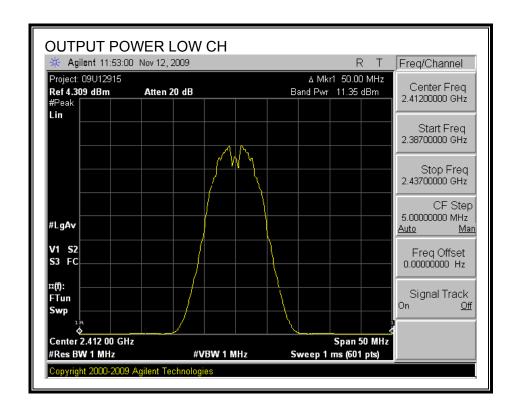
7.1.3. OUTPUT POWER

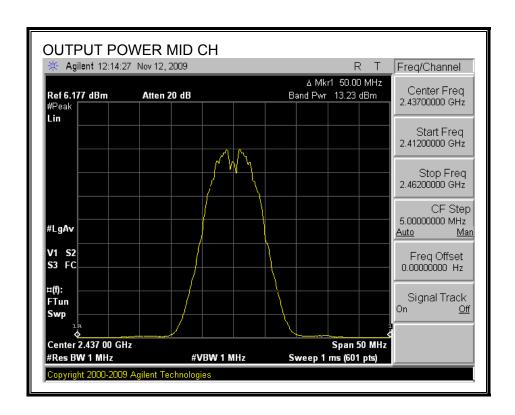
LIMITS

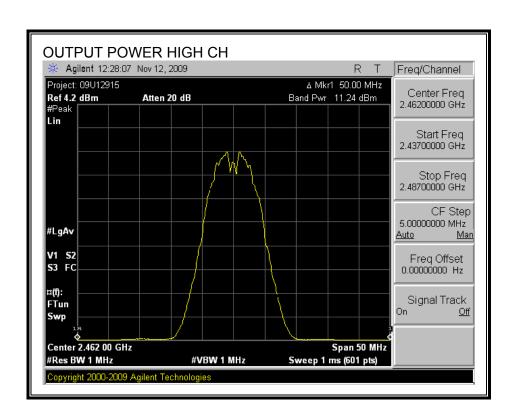
FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.


TEST PROCEDURE


Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.


RESULTS

Channel	Frequency	Spectrum	Attenuator and	Output	Limit	Margin
		Analyzer Reading	Cable Offset	Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
Low	2412	11.35	11	22.35	30	-7.65
Middle	2437	13.23	11	24.23	30	-5.77
High	2462	11.24	11	22.24	30	-7.76

OUTPUT POWER

7.1.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	20.10
Middle	2437	22.13
High	2462	20.00

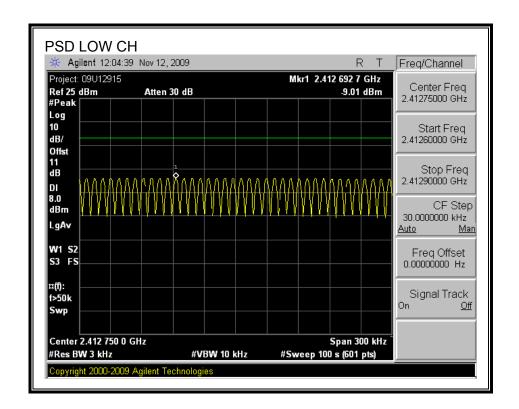
7.1.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

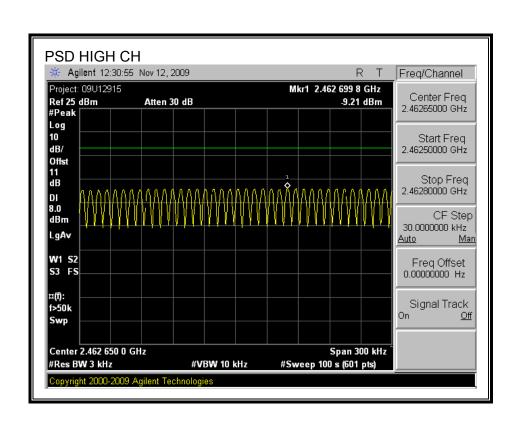
IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

RESULTS


Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-9.01	8	-17.01
Middle	2437	-7.33	8	-15.33
High	2462	-9.21	8	-17.21

POWER SPECTRAL DENSITY

DATE: DECEMBER 08, 2009

IC: 3048A-1400

IC: 3048A-1400

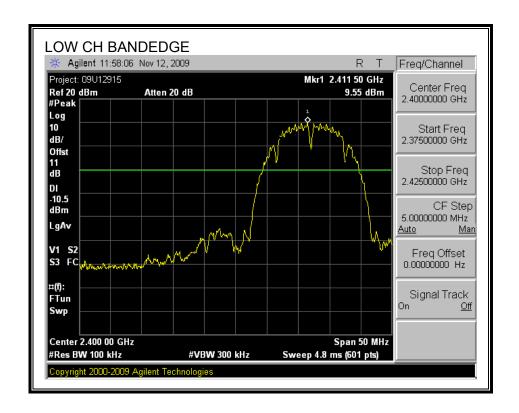
7.1.6. CONDUCTED SPURIOUS EMISSIONS

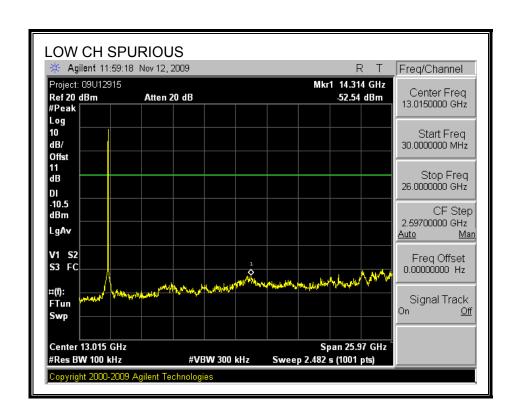
LIMITS

FCC §15.247 (d)

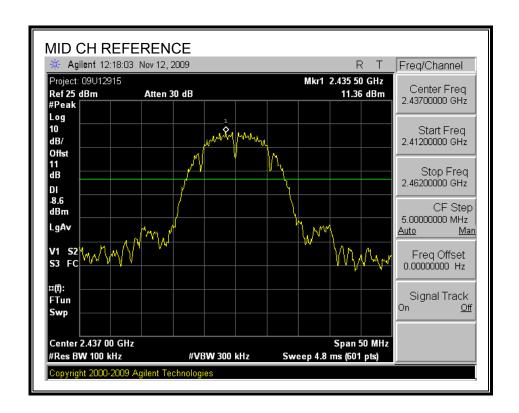
IC RSS-210 A8.5

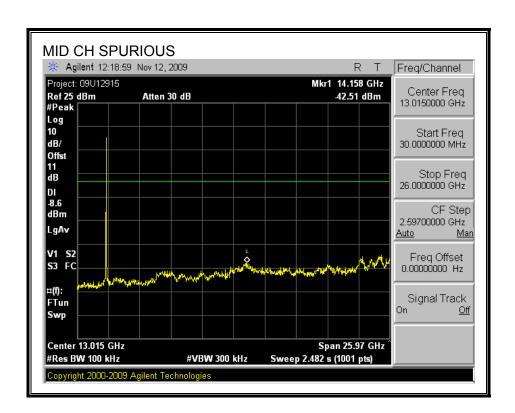
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

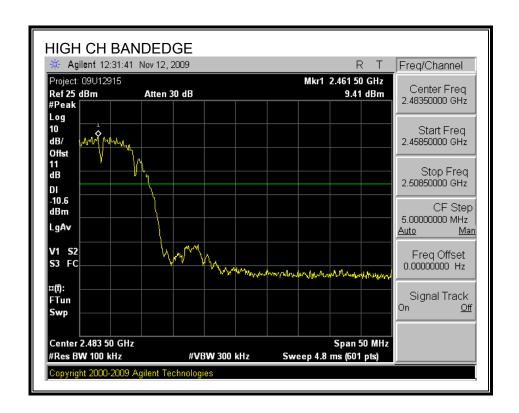

TEST PROCEDURE

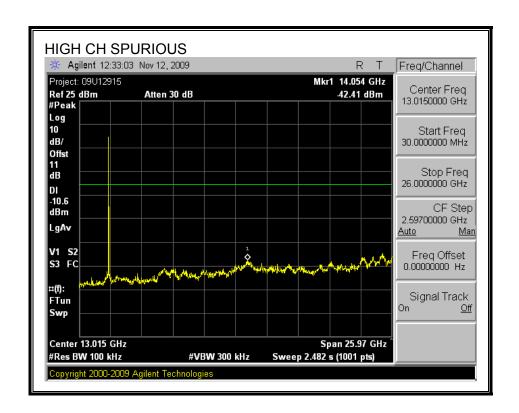

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

7.2. 802.11g MODE IN THE 2.4 GHz BAND

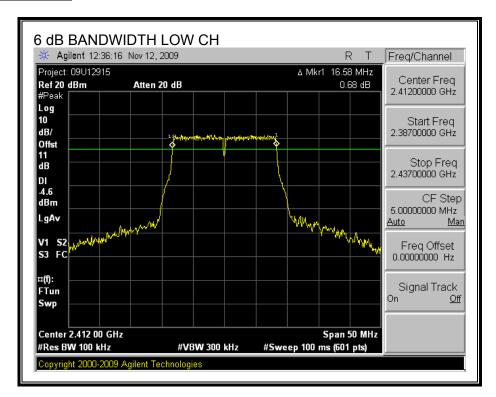
7.2.1. 6 dB BANDWIDTH

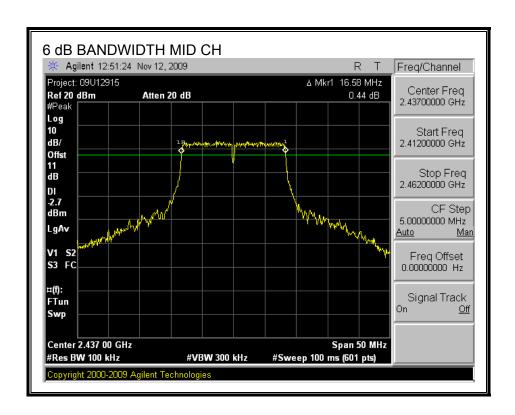
LIMITS

FCC §15.247 (a) (2)

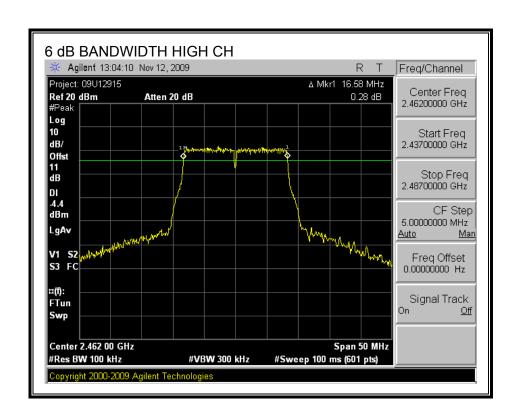
IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

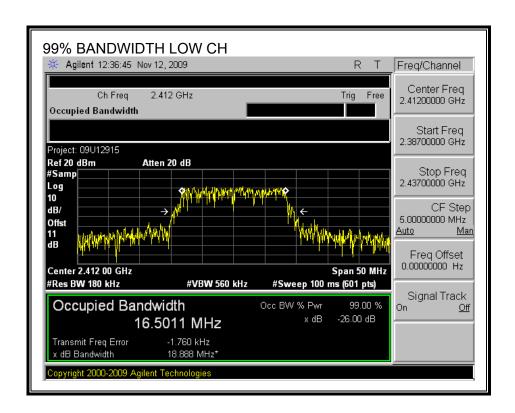

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	16.58	0.5
Middle	2437	16.58	0.5
High	2462	16.58	0.5

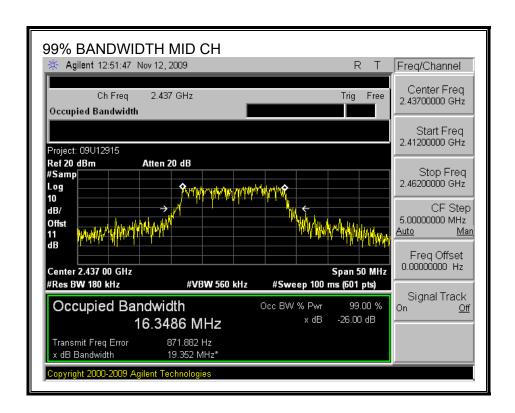
6 dB BANDWIDTH

IC: 3048A-1400

7.2.2. 99% BANDWIDTH

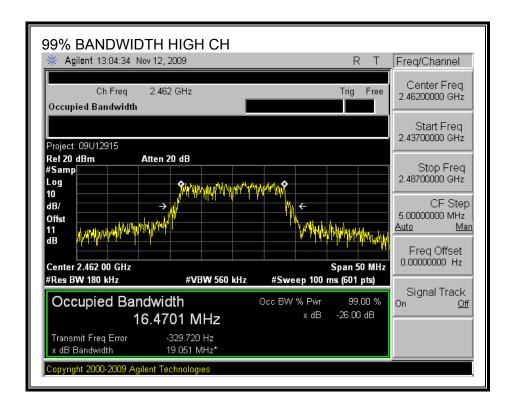
LIMITS


None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	16.5011
Middle	2437	16.3486
High	2462	16.4701


99% BANDWIDTH

REPORT NO: 09U12915-1B

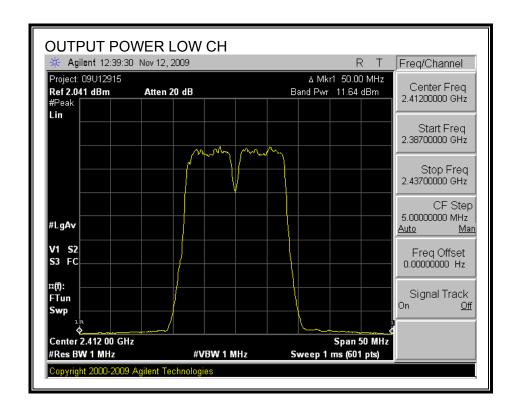
DATE: DECEMBER 08, 2009 FCC ID: C3K1400 IC: 3048A-1400

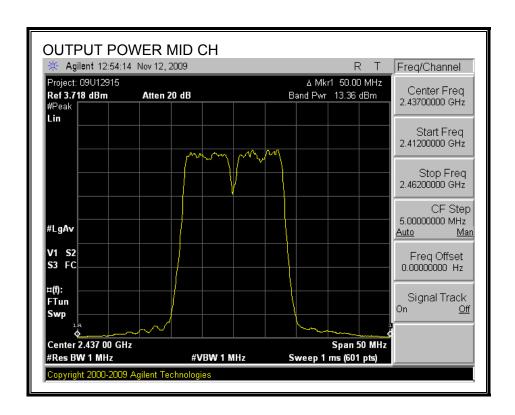
7.2.3. OUTPUT POWER

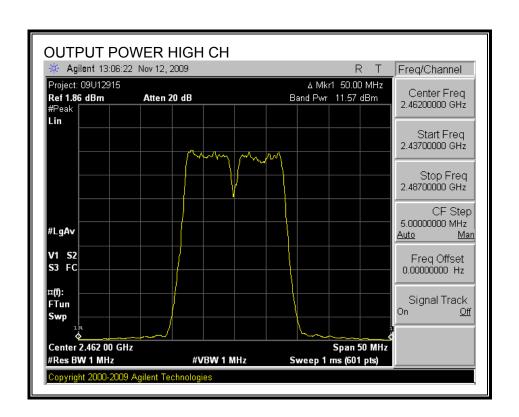
LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4


The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.


TEST PROCEDURE


Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

Channel	Frequency	Spectrum	Attenuator and	Output	Limit	Margin
		Analyzer Reading	Cable Offset	Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
Low	2412	11.64	11	22.64	30	-7.36
Middle	2437	13.36	11	24.36	30	-5.64
High	2462	11.57	11	22.57	30	-7.43

OUTPUT POWER

7.2.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

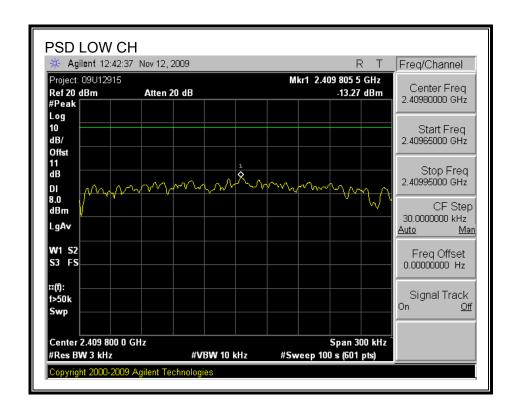
Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	16.00
Middle	2437	18.97
High	2462	16.00

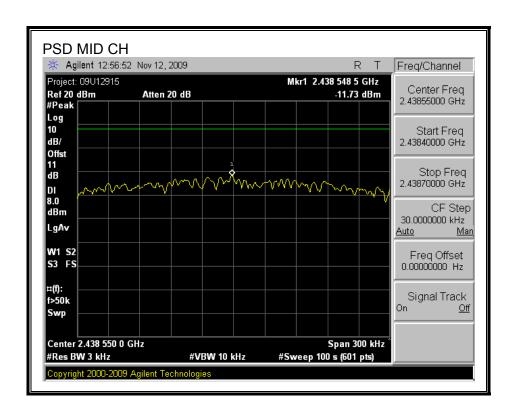
7.2.5. POWER SPECTRAL DENSITY

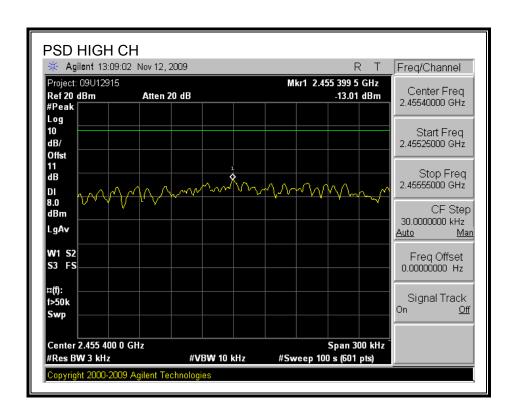
LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-13.27	8	-21.27
Middle	2437	-11.73	8	-19.73
High	2462	-13.01	8	-21.01

POWER SPECTRAL DENSITY

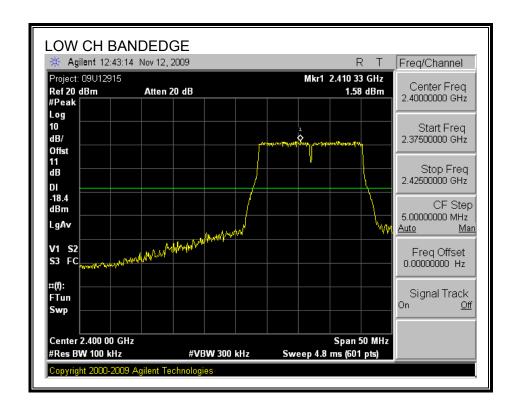
7.2.6. CONDUCTED SPURIOUS EMISSIONS

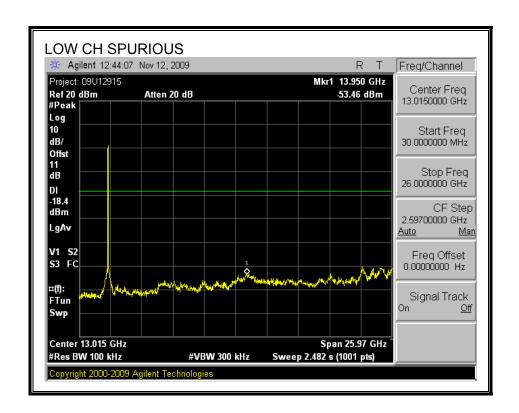
LIMITS

FCC §15.247 (d)

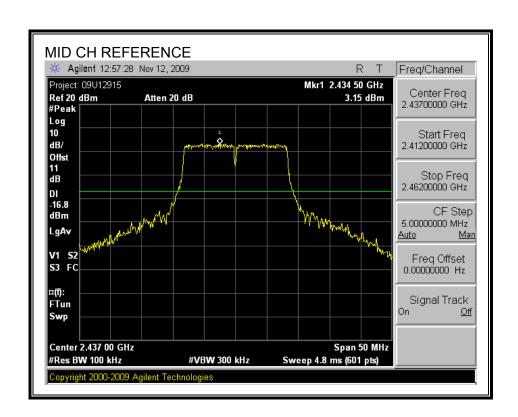
IC RSS-210 A8.5

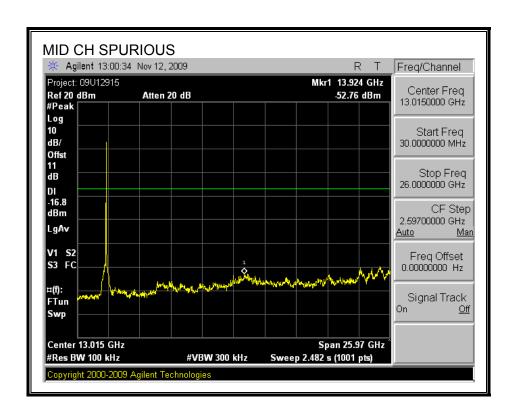
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

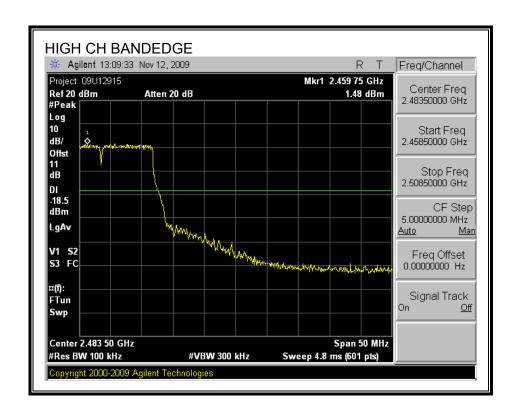

TEST PROCEDURE

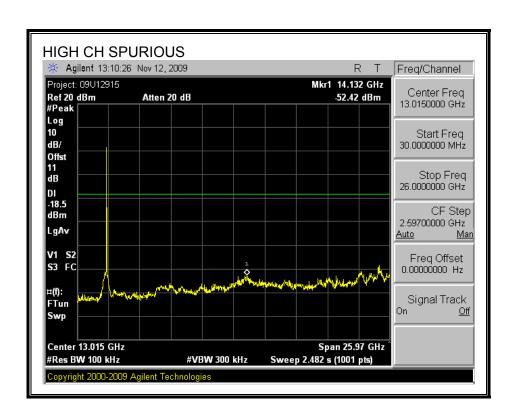

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

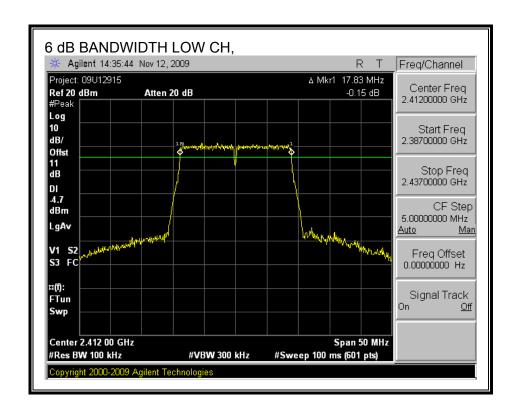
7.3. 802.11n HT20 MODE IN THE 2.4 GHz BAND

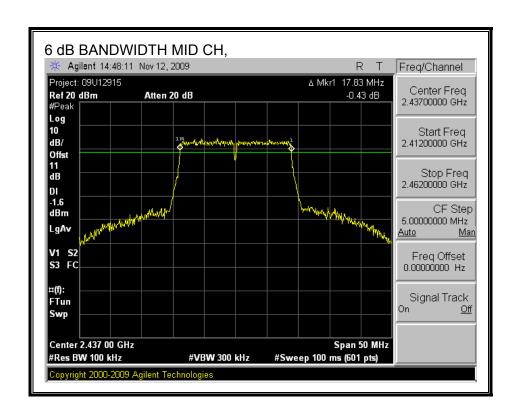
7.3.1. 6 dB BANDWIDTH

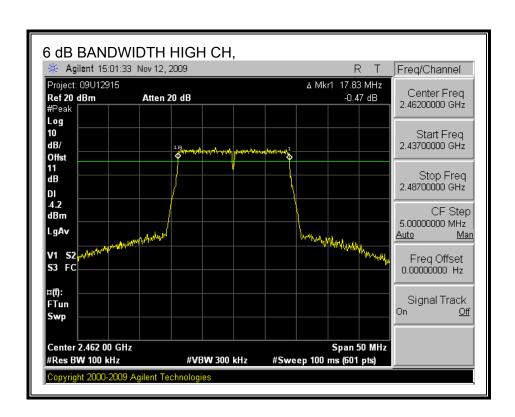
LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)


The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE

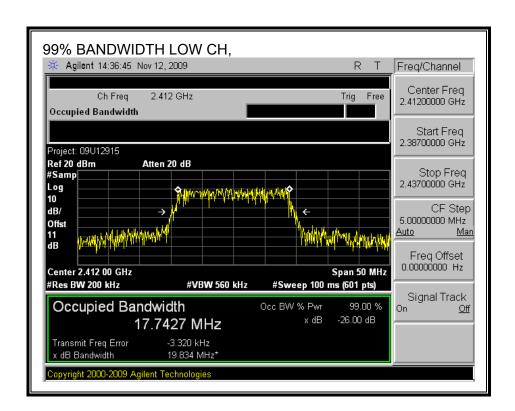

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

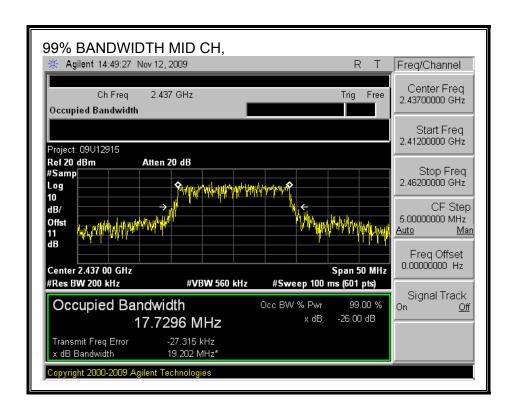
Channel	Frequency	6 dB BW	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	17.83	0.5
Middle	2437	17.83	0.5
High	2462	17.83	0.5

6 dB BANDWIDTH, CHAIN 1

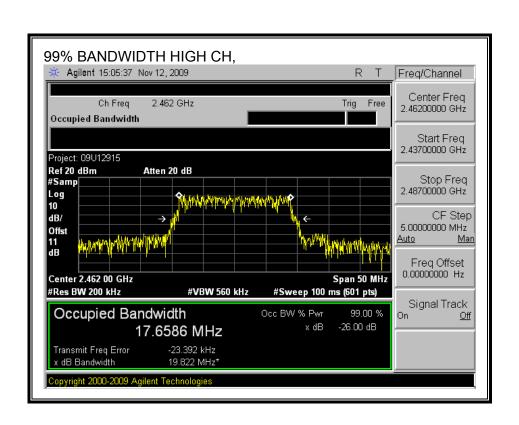
7.3.2. 99% BANDWIDTH

LIMITS


None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	17.7427
Middle	2437	17.7296
High	2462	17.6586

99% BANDWIDTH,

REPORT NO: 09U12915-1B DATE: DECEMBER 08, 2009 FCC ID: C3K1400

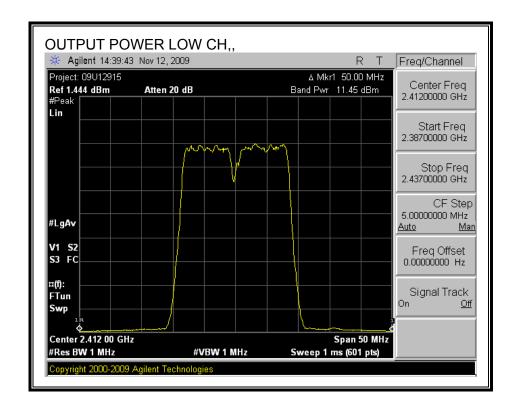
IC: 3048A-1400

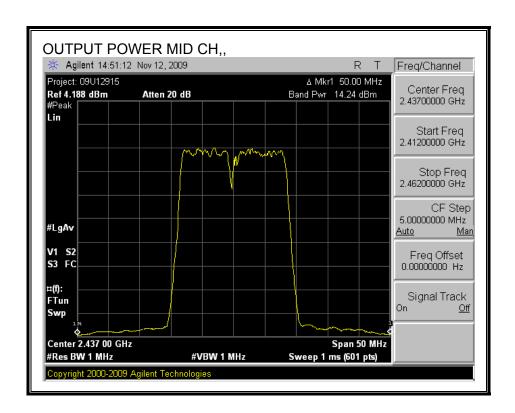
7.3.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4


The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.


TEST PROCEDURE

Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.


Channel	Frequency	Limit	Power	Attenuator +	Total	Margin
				Cable Offset	Power	
	(MHz)	(dBm)	(dBm)	(dB)	(dBm)	(dB)
Low	2412	30.00	11.45	11.00	22.75	-7.25
Mid	2437	30.00	14.24	11.00	25.40	-4.60
High	2462	30.00	11.82	11.00	23.10	-6.90

OUTPUT POWER

IC: 3048A-1400

7.3.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

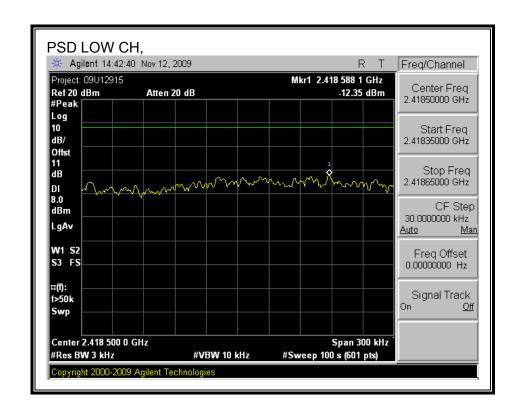
Channel	Frequency	Chain 1 Power	Total Power
	(MHz)	(dBm)	(dBm)
Low	2412	15.50	15.62
Middle	2437	18.35	18.41
High	2462	15.80	15.91

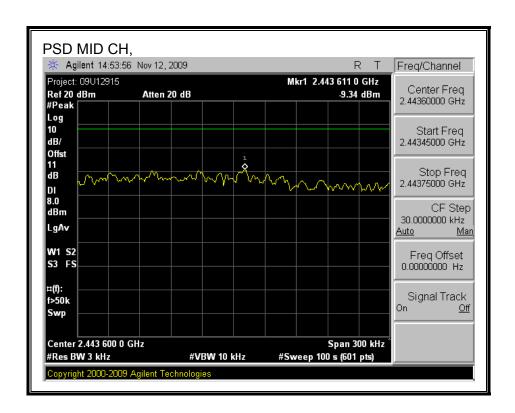
7.3.5. POWER SPECTRAL DENSITY

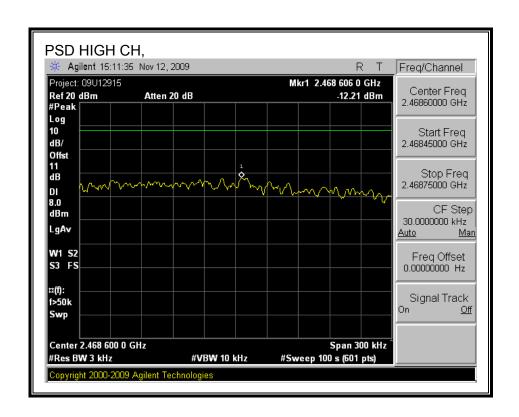
LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-12.35	8	-20.35
Middle	2437	-9.34	8	-17.34
High	2462	-12.21	8	-20.21

POWER SPECTRAL DENSITY,

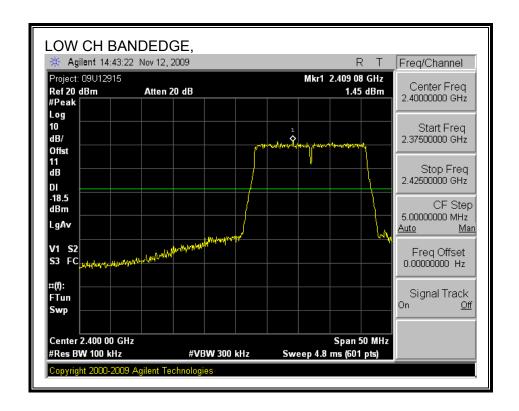
7.3.6. CONDUCTED SPURIOUS EMISSIONS

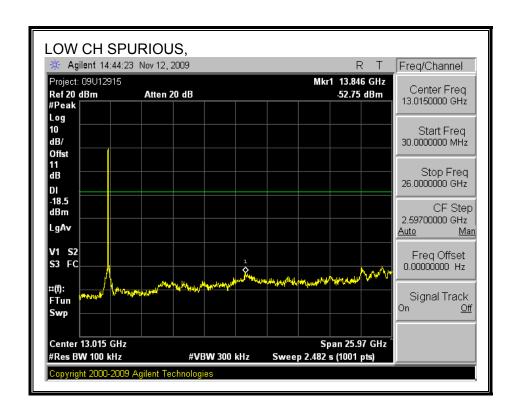
LIMITS

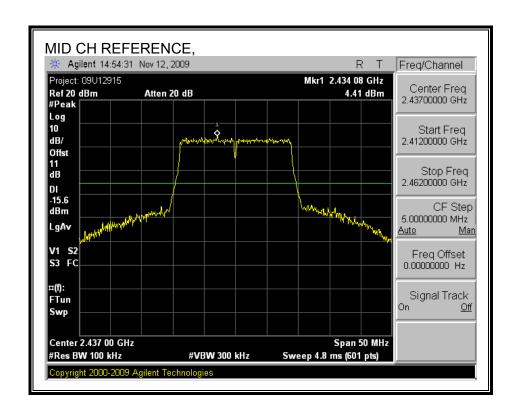
FCC §15.247 (d)

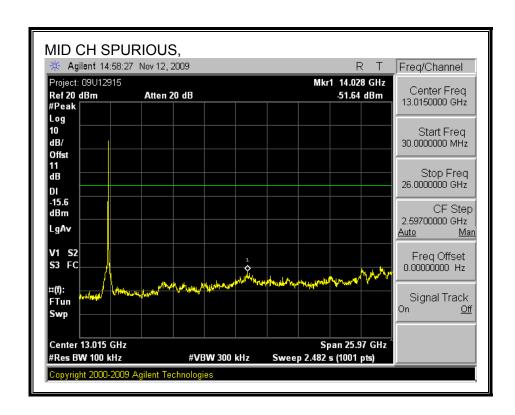
IC RSS-210 A8.5

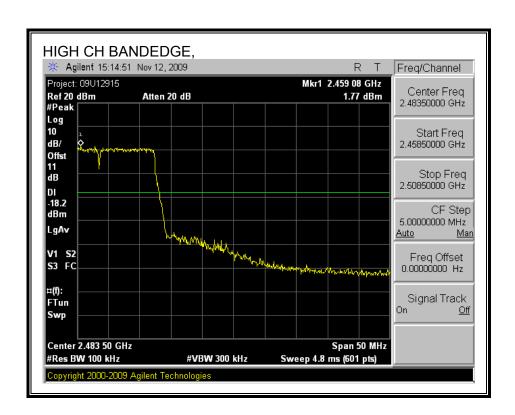
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

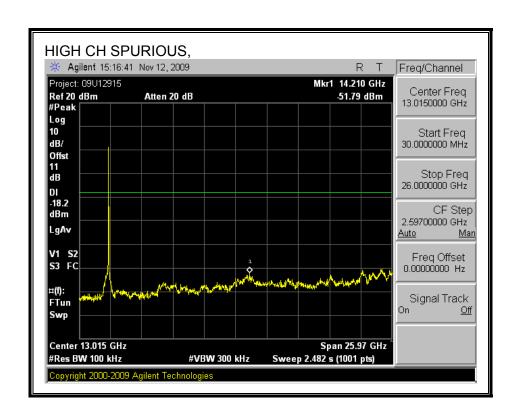

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS



7.4. 802.11n HT40 MODE IN THE 2.4 GHz BAND

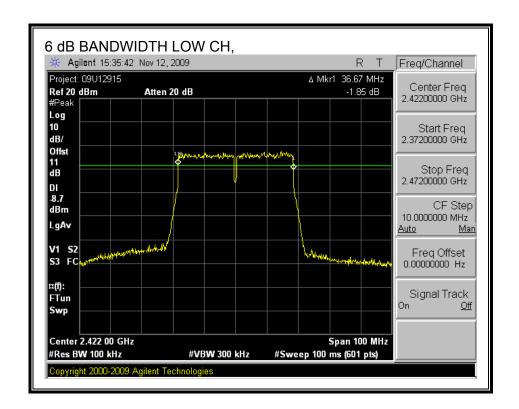
7.4.1. 6 dB BANDWIDTH

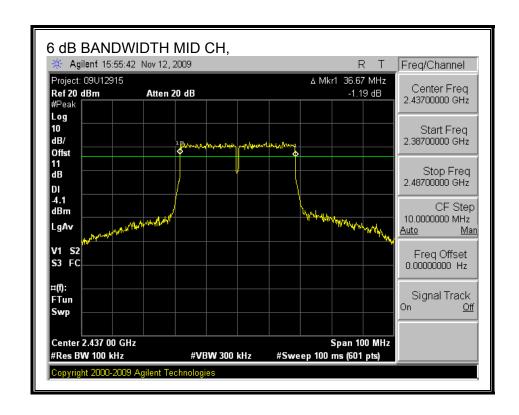
LIMITS

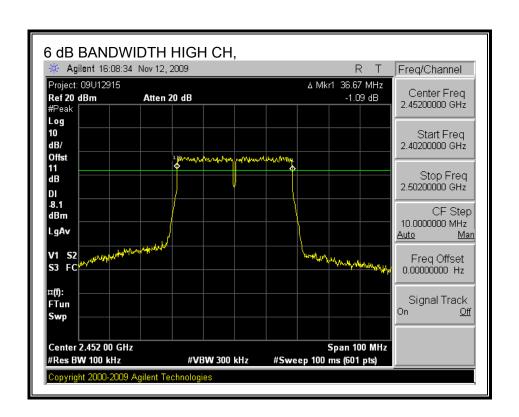
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

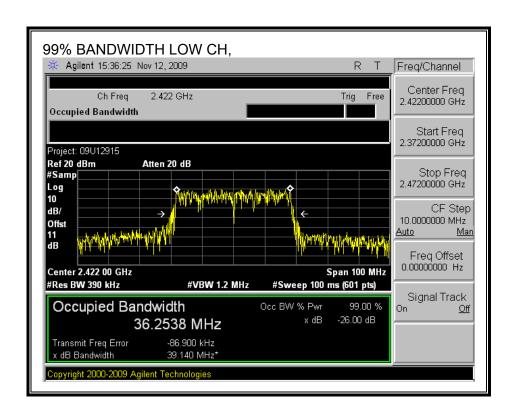
Channel	Frequency	6 dB BW	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2422	36.67	0.5
Middle	2437	36.67	0.5
High	2452	36.67	0.5

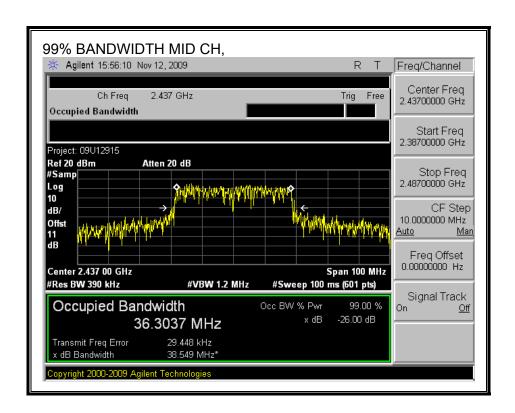
6 dB BANDWIDTH,

7.4.2. 99% BANDWIDTH

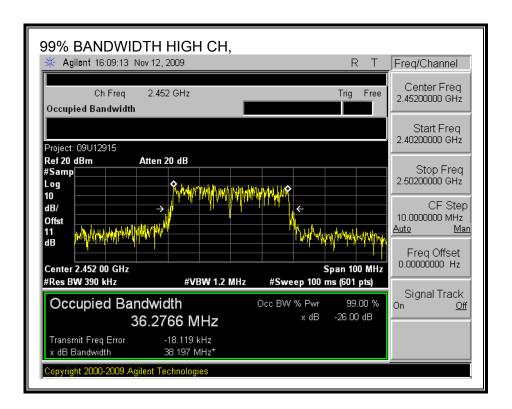
LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS


Channel	Frequency	99% Bandwidth	
	(MHz)	(MHz)	
Low	2422	36.2538	
Middle	2437	36.3037	
High	2452	36.2766	

99% BANDWIDTH,

REPORT NO: 09U12915-1B FCC ID: C3K1400

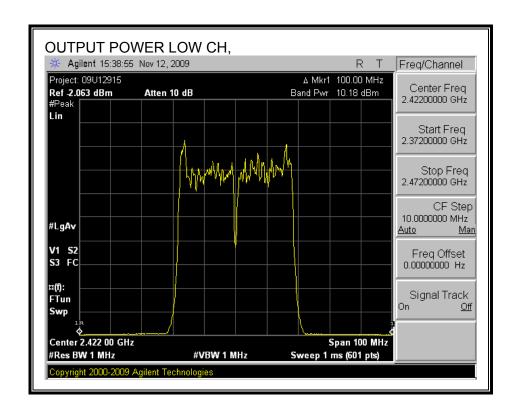
7.4.3. OUTPUT POWER

LIMITS

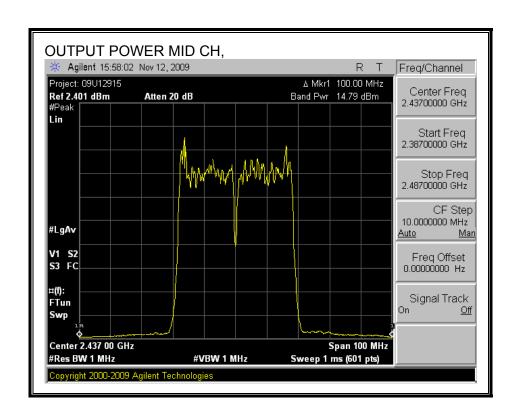
FCC §15.247 (b)

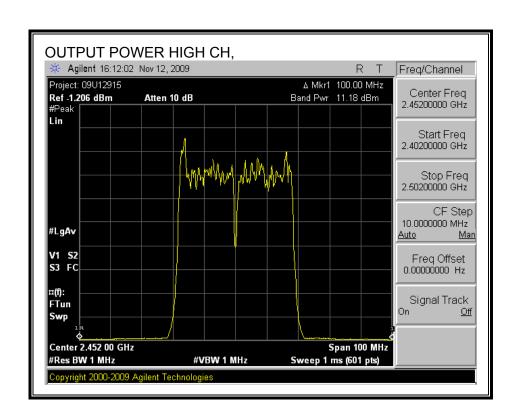
IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.


TEST PROCEDURE

Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.


RESULTS


Channel	Frequency	Limit	Power	Attenuator +	Total	Margin
				Cable Offset	Power	
	(MHz)	(dBm)	(dBm)	(dB)	(dBm)	(dB)
Low	2422	30.00	10.18	11.00	21.18	-8.82
Mid	2437	30.00	14.79	11.00	25.79	-4.21
High	2452	30.00	11.18	11.00	22.18	-7.82

OUTPUT POWER

IC: 3048A-1400

7.4.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2422	13.77
Middle	2437	18.50
High	2452	14.70

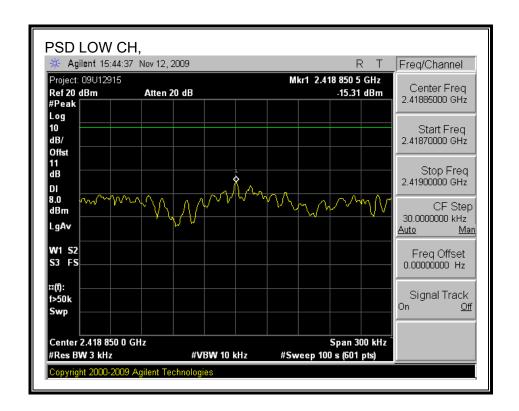
7.4.5. POWER SPECTRAL DENSITY

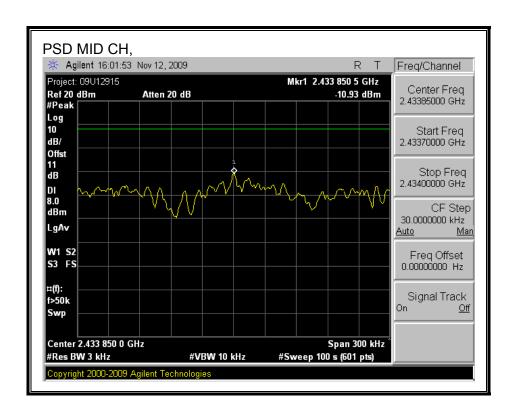
LIMITS

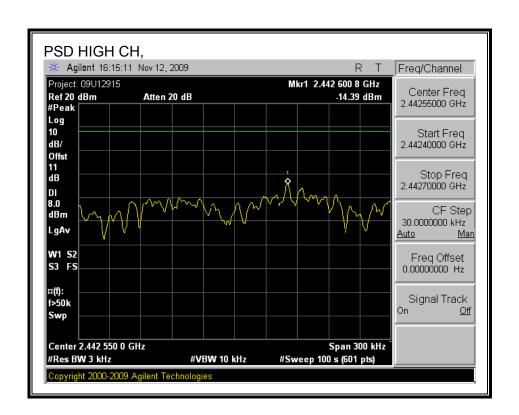
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.


RESULTS

Channel	Frequency	Chain 1	Limit	Margin
		PSD		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2422	-15.31	8	-23.31
Middle	2437	-10.93	8	-18.93
High	2452	-14.39	8	-22.39

POWER SPECTRAL DENSITY,

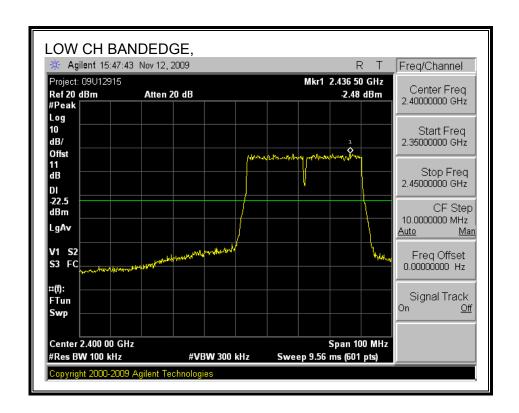
7.4.6. CONDUCTED SPURIOUS EMISSIONS

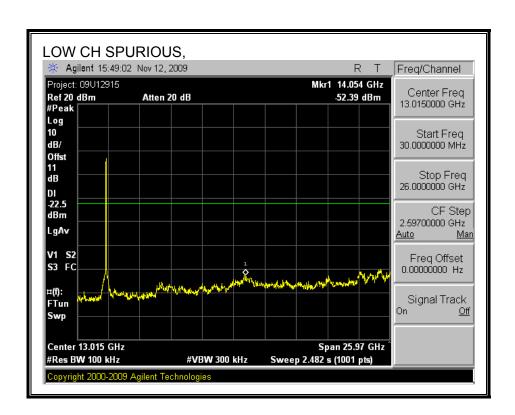
LIMITS

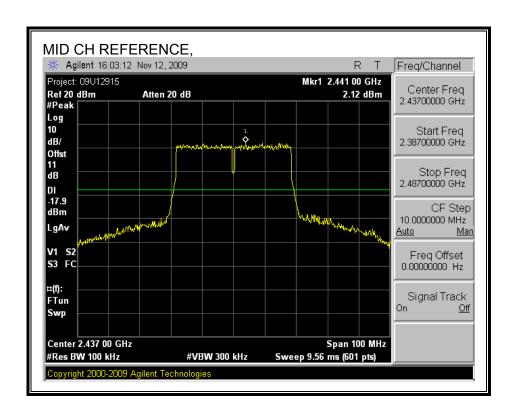
FCC §15.247 (d)

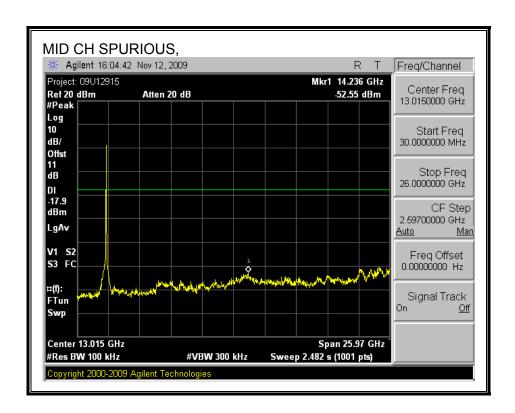
IC RSS-210 A8.5

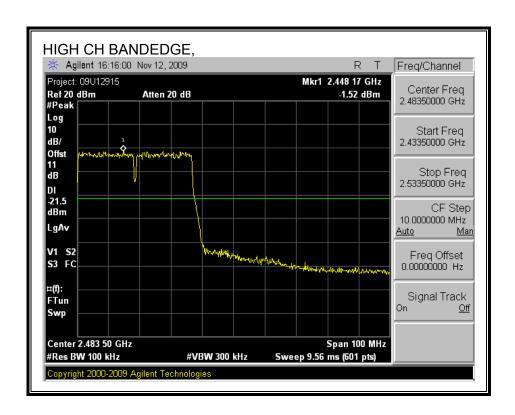
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

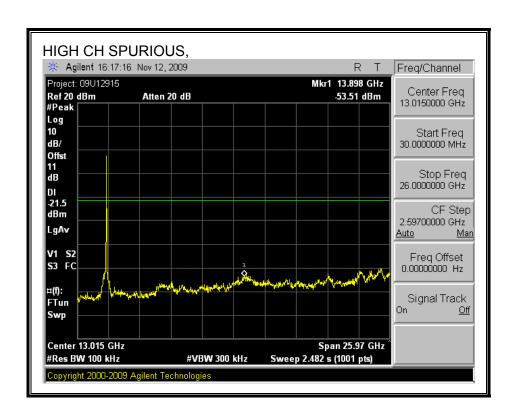

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS



8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

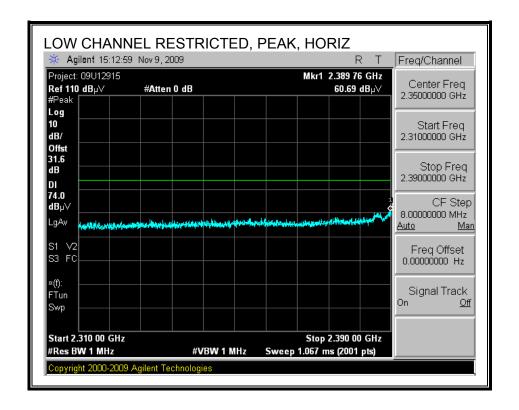
TEST PROCEDURE

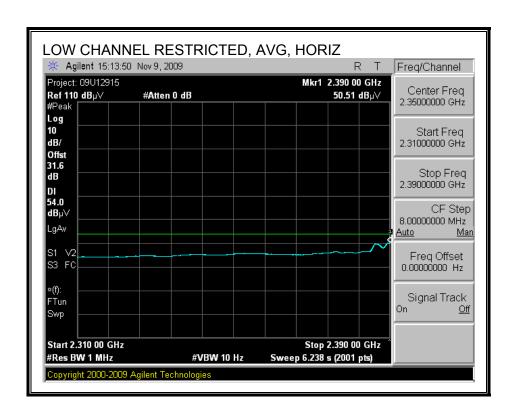
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

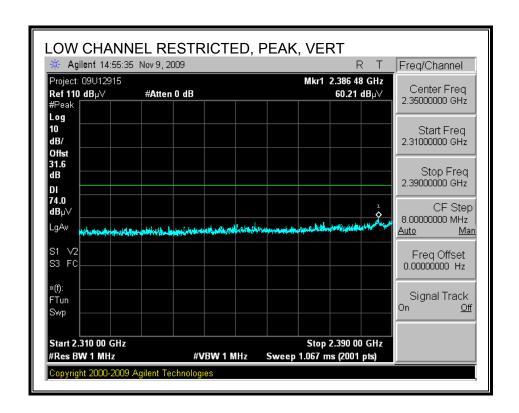
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

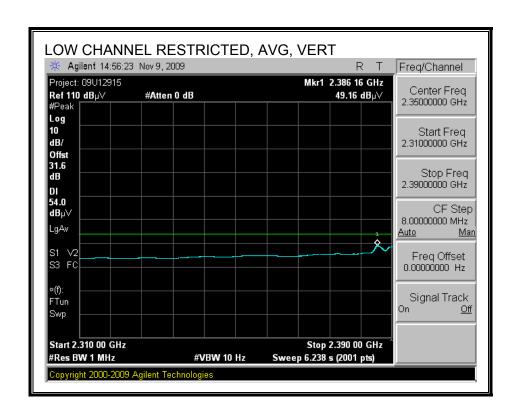
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

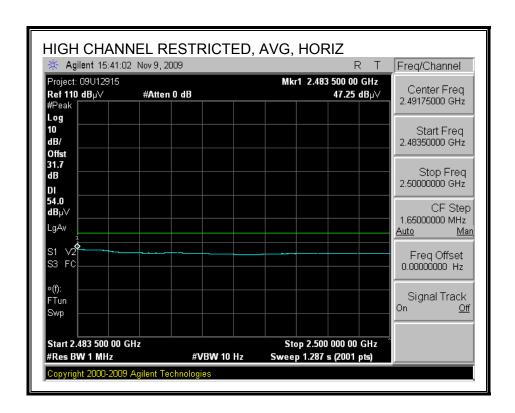

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

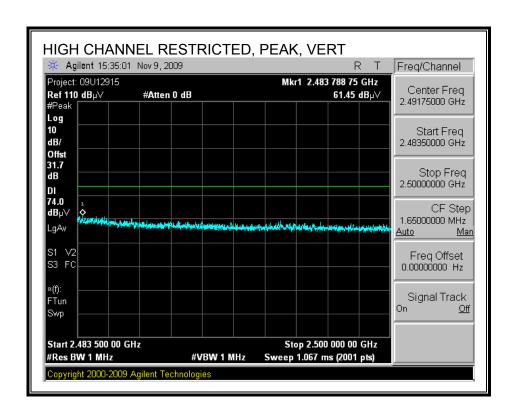

8.2. TRANSMITTER ABOVE 1 GHz

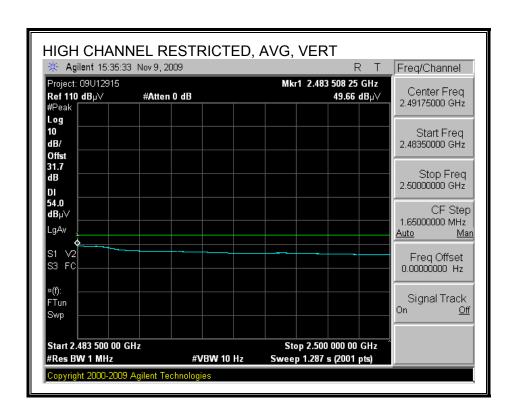
8.2.1. TX ABOVE 1 GHz FOR 802.11b MODE IN THE 2.4 GHz BAND


WITH PIFA ANTENNA


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

BANDEDGE TABULATED DATA for EUT with PIFA antenna

High Frequency Measurement Compliance Certification Services, Fremont 5m Chamber

Tom Chen Test Engr: 11/09/09 Date: Project #: 09U12915

EUT Description: 802.11 bgn WLAN Client

1400 FCC 15.247 EUT M/N: Test Target:

Mode Oper: 802.11b 1MB, TX Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m

AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

Average Field Strength Limit

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det	AntHigh	Table Angle	Notes
GHz	(m)	dBuV	dB/m	đВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
b Mode 11	VIB Low	CH, Pow	er settir	ng 18,2	20.2dBn	ı									
2.390	3.0	29.1	28.1	3.5	0.0	0.0	0.0	60.7	74.0	-13.3	H	P	106.0	237.0	
2.390	3.0	19.0	28.1	3.5	0.0	0.0	0.0	50.5	54.0	-3.5	H	A	106.0	237.0	
b Mode 11	VIB Low	CH, Pow	er settir	ng 18,2	20.2dBn	n.									
2.386	3.0	28.7	28.1	3.5	0.0	0.0	0.0	60.2	74.0	-13.8	V	P	99.0	348.0	
2.386	3.0	17.6	28.1	3.5	0.0	0.0	0.0	49.2	54.0	-4.8	V	A	99.0	348.0	
b Mode 11	VIB High	CH, Pov	ver setti	ing 18	,19.95dl	Bm									
2.485	3.0	27.6	28.2	3.5	0.0	0.0	0.0	59.3	74.0	-14.7	H	P	142.0	17.0	
2.483	3.0	15.5	28.2	3.5	0.0	0.0	0.0	47.2	54.0	-6.8	H	A	142.0	17.0	
b Mode 11	VIB High	CH, Pov	ver setti	ing 18	,19.95dl	Bm									
2.484	3.0	29.7	28.2	3.5	0.0	0.0	0.0	61.4	74.0	-12.6	V	P A	118.0	306.0	
2.484	3.0	17.9	28.2	3.5	0.0	0.0	0.0	49.7	54.0	-4.3	V	A	118.0	306.0	
b Mode 11	MB Low	CH. Pow	er settir	ng 14.	18.4dBn	i									
2.387	3.0	26.9	28.1		0.0	0.0	0.0	58.4	74.0	-15.6	v	P	99.0	348.0	
2.386	3.0	14.3	28.1	3.5	0.0	0.0	0.0	45.9	54.0	-8.1	V	P A	99.0	348.0	
b Mode 11			er settir		20.7dB:	m.									
2.387	3.0	30.7	28.1		0.0	0.0	0.0	62.2	74.0	-11.8	Н	P	107.0	237.0	
2.386	3.0	21.1	28.1	3.5	0.0	0.0	0.0	52.6	54.0	-1.4	Н	P A	107.0	237.0	
b Mode 11	MB Low	CH. Pow	er settir	ne 19.3	20.7dBn	n.							•		
2.386	3.0	29.7	28.1		0.0	0.0	0.0	61.2	74.0	-12.8	V	P	99.0	348.0	
2.386	3.0	20.2	28.1	3.5	0.0	0.0	0.0	51.7	54.0	- 2. 3	V	A	99.0	348.0	
b Mode 11						A									
2.484	3.0	29.2	28.2	3.5	0.0	0.0	0.0	60.9	74.0	-13.1	н	P	142.0	15.0	
2.483	3.0	20.2	28.2	3.5	0.0	0.0	0.0	51.9	54.0	-2.1	Н	A	142.0	15.0	
b Mode 11	VIB High	CH, Pov	ver setti	ing 19	,20.2541	Bm							•		
2.484	3.0	28.5	28.2	3.5	0.0	0.0	0.0	60.2	74.0	-13.8	Н	P	142.0	17.0	
2.483	3.0	18.0	28.2	3.5	0.0	0.0	0.0	49.7	54.0	-4.3	H	A	142.0	17.0	
b Mode 11					,20.2541	Bm									
2.484	3.0	30.6	28.2	3.5	0.0	0.0	0.0	62.3	74.0	-11.7	v	P	118.0	306.0	
2.483	3.0	20.0	28.2	3.5	0.0	0.0	0.0	51.7	54.0	- 2. 3	V	A	118.0	306.0	
	· · · · · · · · · · · · · · · · · · ·					1									

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor. (EUT with PIFA antenna)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

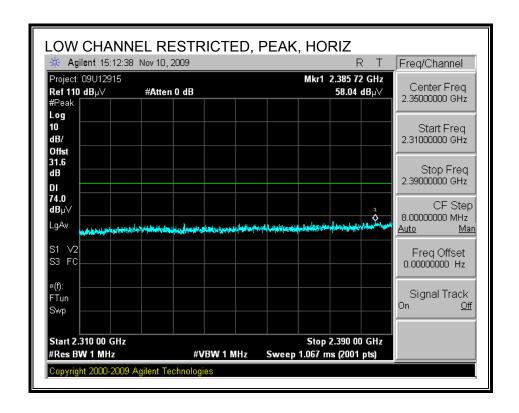
Compliance Certification Services, Fremont 5m Chamber

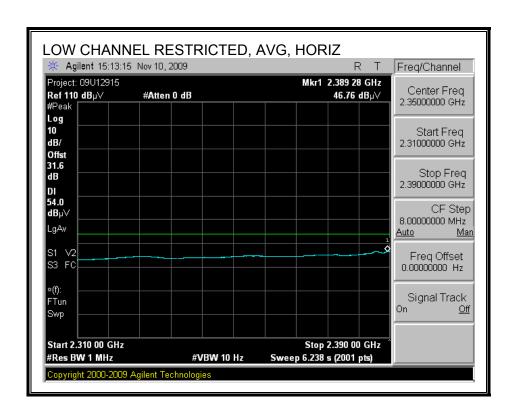
Tom Chen Test Engr: Date: 11/10/09 Project #: 09U12915

EUT Description: 802.11 bgn WLAN Client

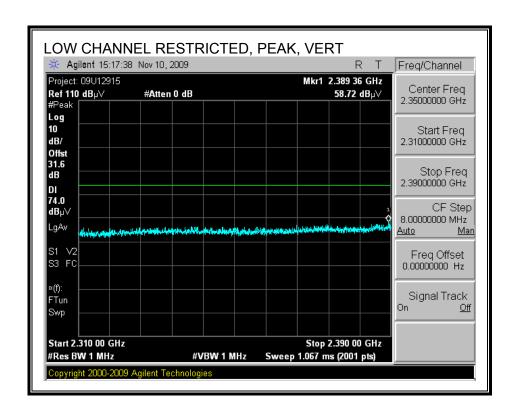
EUT M/N: 1400 FCC 15.247 Test Target: Mode Oper: 802.11b 1MB, TX

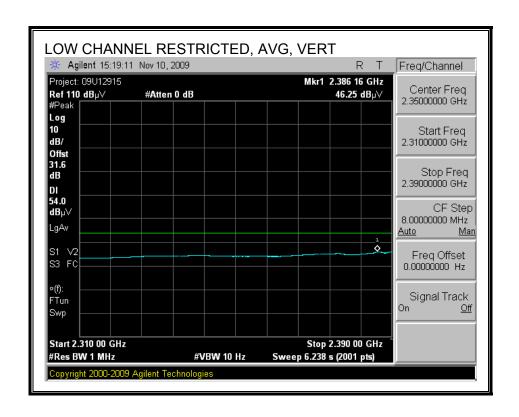
Measurement Frequency Amp Preamp Gain f Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Lir Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lir Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter Peak Field Strength Limit Margin vs. Average Limit

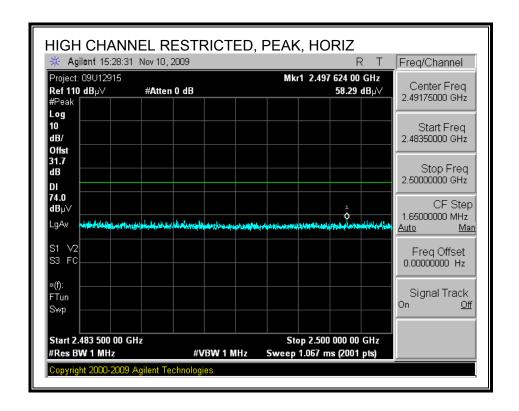

f GHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB		Corr. dBuV/m	Limit dBuV/m		Ant. Pol. V/H	Det. P/A/QP	Notes
2412 MHz	Low CI	I, b mode	pwr 18	, 20.1	lBm								
4.824	3.0	42.5	32.7	5.8	-34.8	0.0	0.0	46.1	74.0	-27.9	V	P	
7.236	3.0	38.9	35.4	7.2	-34.1	0.0	0.0	47.4	74.0	-26.6	V	P	
4.824	3.0	39.1	32.7	5.8	-34.8	0.0	0.0	42.7	54.0	-11.3	V	A	
7.236	3.0	32.0	35.4	7.2	-34.1	0.0	0.0	40.5	54.0	-13.5	V	A	
4.824	3.0	40.8	32.7	5.8	-34.8	0.0	0.0	44.4	74.0	-29.6	Н	P	
7.236	3.0	38.6	35.4	7.2	-34.1	0.0	0.0	47.1	74.0	-26.9	H	P	
4.824	3.0	36.7	32.7	5.8	-34.8	0.0	0.0	40.3	54.0	-13.7	H	A	
7.236	3.0	31.7	35.4	7.2	-34.1	0.0	0.0	40.2	54.0	-13.8	Н	A	
2437 MHz	Mid CI	I, b mode	pwr 10	, 22.1	3dBm								
4.874	3.0	45.0	32.7	5.8	-34.8	0.0	0.0	48.8	74.0	-25.2	н	P	
7.311	3.0	39.4	35.5	7.3	-34.1	0.0	0.0	48.1	74.0	-25.9	H	P	
4.874	3.0	42.1	32.7	5.8	-34.8	0.0	0.0	45.8	54.0	-8.2	Н	A	
7.311	3.0	33.7	35.5	7.3	-34.1	0.0	0.0	42.4	54.0	-11.6	H	A	
4.874	3.0	44.7	32.7	5.8	-34.8	0.0	0.0	48.4	74.0	-25.6	V	P	
7.311	3.0	40.2	35.5	7.3	-34.1	0.0	0.0	48.9	74.0	-25.1	V	P	
4.874	3.0	42.2	32.7	5.8	-34.8	0.0	0.0	45.9	54.0	-8.1	V	A	
7.311	3.0	34.4	35.5	7.3	-34.1	0.0	0.0	43.0	54.0	-11.0	V	A	
2462 MHz	Mid CI	L b mode	pwr 18	, 20.0d	Вm								
4.924	3.0	37.8	32.7	5.9	-34.8	0.0	0.0	41.6	74.0	-32.4	V	P	
7.386	3.0	35.6	35.6	7.3	-34.1	0.0	0.0	44.4	74.0	-29.6	V	P	
4.924	3.0	29.8	32.7	5.9	-34.8	0.0	0.0	33.7	54.0	- 20. 3	v	A	
7.386	3.0	26.8	35.6	7.3	-34.1	0.0	0.0	35.6	54.0	-18.4	V	A	
4.924	3.0	36.5	32.7	5.9	-34.8	0.0	0.0	40.3	74.0	-33.7	Н	P	
7.386	3.0	36.4	35.6	7.3	-34.1	0.0	0.0	45.2	74.0	-28.8	Н	P	
4.924	3.0	26.1	32.7	5.9	-34.8	0.0	0.0	29.9	54.0	-24.1	H	A	
7.386	3.0	27.3	35.6	7.3	-34.1	0.0	0.0	36.1	54.0	-17.9	Н	A	


Rev. 4.1.2.7

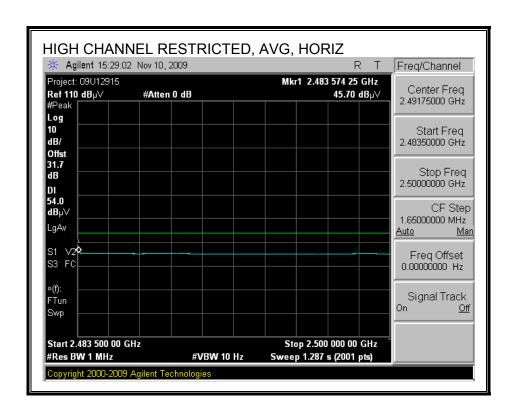
Note: No other emissions were detected above the system noise floor.


WITH PWB ANTENNA

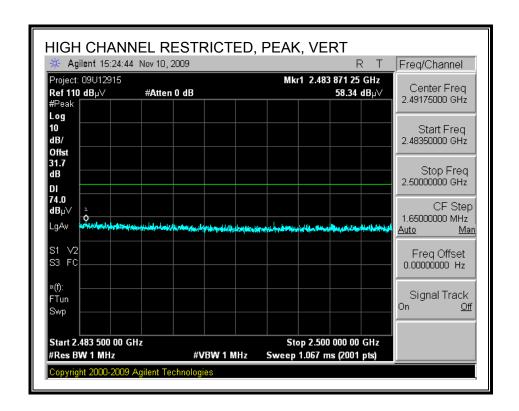

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

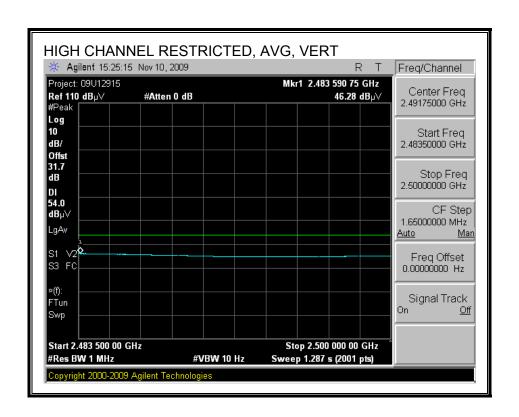


RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



REPORT NO: 09U12915-1B DATE: DECEMBER 08, 2009 FCC ID: C3K1400

IC: 3048A-1400



RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

REPORT NO: 09U12915-1B DATE: DECEMBER 08, 2009 FCC ID: C3K1400

IC: 3048A-1400

BANDEDGE TABULATED DATA for EUT with PWB antenna

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Tom Chen Test Engr: Date: 11/10/09 091112915 Project #:

EUT Description: 802.11 bgn WLAN Client

1400 EUT M/N:

Test Target: FCC 247 Mode Oper:

802.11b , TX with PWB Antenna Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Avg Average Field Strength @ 3 m
AF Antenna Factor Peak Calculated Peak Field Strength
CL Cable Loss HPF High Pass Filter Peak Field Strength Limit Margin vs. Average Limit Margin vs. Peak Limit

f	Dist	Read	AF	\mathbf{CL}	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	AntHigh	Table Angle	Notes
GHz	(m)	dBuV	dB/m	đВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
2412 MHz	Low CI	I, b mode	pwr 18												
2.386	3.0	26.5	28.1	3.5	0.0	0.0	0.0	58.0	74.0	-16.0	H	P	100.0	355.0	PWB ANT
2.389	3.0	15.2	28.1	3.5	0.0	0.0	0.0	46.8	54.0	-7.2	H	A	100.0	355.0	PWB ANT
2412 MHz	Low Cl	I, b mode	pwr 18												
2.389	3.0	27.2	28.1	3.5	0.0	0.0	0.0	58.7	74.0	-15.3	V	P	123.0	160.0	PWB ANT
2.386	3.0	14.7	28.1	3.5	0.0	0.0	0.0	46.2	54.0	-7.8	V	A	123.0	160.0	PWB ANT
2462 MHz	High C	H, b mod	le pwr l	8											
2.484	3.0	26.6	28.2	3.5	0.0	0.0	0.0	58.3	74.0	-15.7	V	P	109.0	351.0	PWB ANT
2.484	3.0	14.6	28.2	3.5	0.0	0.0	0.0	46.3	54.0	-7.7	V	A	109.0	351.0	PWB ANT
2462 MHz	High C	H, b mod	le pwr 1	8											
2.498	3.0	26.6	28.2	3.5	0.0	0.0	0.0	58.3	74.0	-15.7	H	P	100.0	345.0	PWB ANT
2.484	3.0	14.0	28.2	3.5	0.0	0.0	0.0	45.7	54.0	-8.3	H	A	100.0	345.0	PWB ANT

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor. (EUT with PWB antenna)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

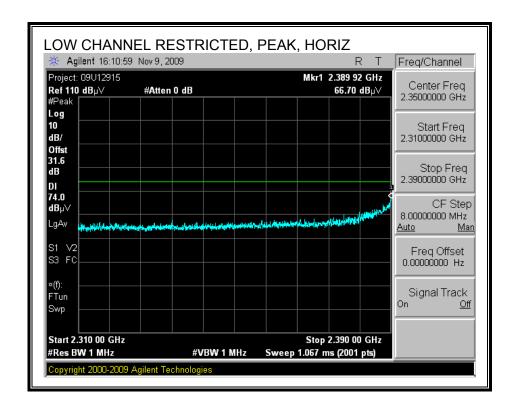
Compliance Certification Services, Fremont 5m Chamber

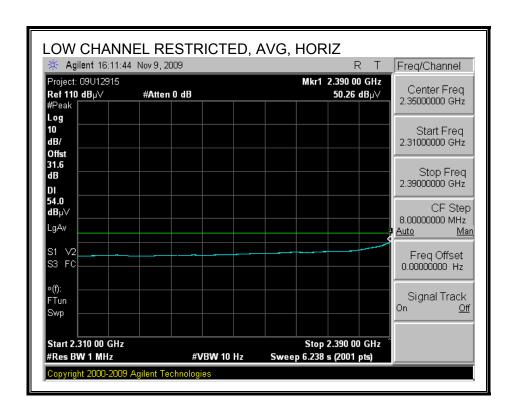
Tom Chen Test Engr: 11/11/09 Date: Project #: 09U12915

EUT Description: 802.11 bgn WLAN Client

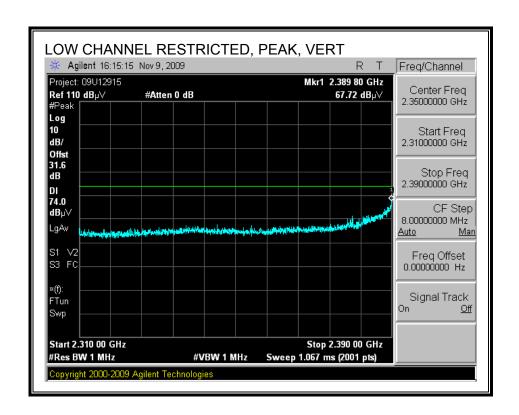
EUT M/N: 1400 Test Target: FCC 15.247 Mode Oper: 802.11b 1MB, TX

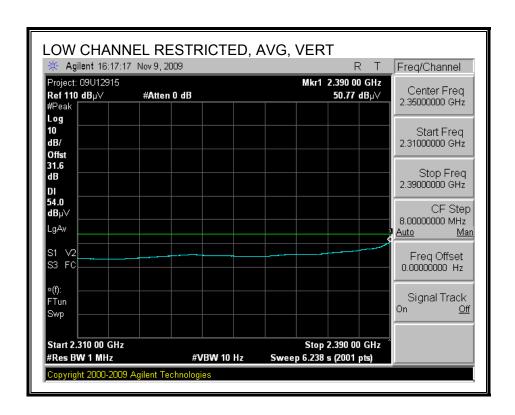
Measurement Frequency Amp Preamp Gain f Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Lir Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lir Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter Peak Field Strength Limit Margin vs. Average Limit

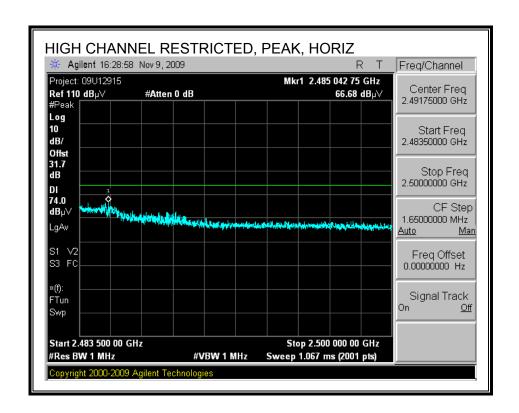

f GHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB		Corr. dBuV/m	Limit dBuV/m		Ant. Pol. V/H	Det. P/A/QP	Notes
2412 MHz	Low Cl	L b mode	pwr 18										
4.824	3.0	42.2	32.7	5.8	-34.8	0.0	0.0	45.8	74.0	-28.2	Н	P	
7.236	3.0	35.3	35.4	7.2	-34.1	0.0	0.0	43.8	74.0	-3 0.2	Н	P	
4.824	3.0	39.0	32.7	5.8	-34.8	0.0	0.0	42.6	54.0	-11.4	H	A	
7.236	3.0	25.0	35.4	7.2	-34.1	0.0	0.0	33.5	54.0	-20.5	H	A	
4.824	3.0	42.1	32.7	5.8	-34.8	0.0	0.0	45.8	74.0	-28.2	v	P	
7.236	3.0	35.5	35.4	7.2	-34.1	0.0	0.0	44.0	74.0	-30.0	v	P	
4.824	3.0	38.1	32.7	5.8	-34.8	0.0	0.0	41.8	54.0	-12.2	v	A	
7.236	3.0	26.7	35.4	7.2	-34.1	0.0	0.0	35.2	54.0	-18.8	v	A	
2437 MHz	Mid CI	I, b mode	pwr 10	,									
4.874	3.0	45.7	32.7	5.8	-34.8	0.0	0.0	49.4	74.0	-24.6	v	P	
7.311	3.0	37.1	35.5	7.3	-34.1	0.0	0.0	45.7	74.0	- 28. 3	v	P	
4.874	3.0	43.6	32.7	5.8	-34.8	0.0	0.0	47.4	54.0	-6.7	v	A	
7.311	3.0	28.1	35.5	7.3	-34.1	0.0	0.0	36.7	54.0	-17.3	v	A	
4.874	3.0	45.4	32.7	5.8	-34.8	0.0	0.0	49.1	74.0	-24.9	H	P	
7.311	3.0	38.9	35.5	7.3	-34.1	0.0	0.0	47.6	74.0	-26.4	Н	P	
4.874	3.0	42.9	32.7	5.8	-34.8	0.0	0.0	46.6	54.0	-7.4	H	A	
7.311	3.0	32.8	35.5	7.3	-34.1	0.0	0.0	41.4	54.0	-12.6	H	A	
2462 MHz	High C	H, b mod	le pwr l	8									
4.924	3.0	39.2	32.7	5.9	-34.8	0.0	0.0	43.0	74.0	-31.0	H	P	
7.386	3.0	37.2	35.6	7.3	-34.1	0.0	0.0	45.9	74.0	-28.1	H	P	
4.924	3.0	34.2	32.7	5.9	-34.8	0.0	0.0	38.0	54.0	-16.0	H	A	
7.386	3.0	28.7	35.6	7.3	-34.1	0.0	0.0	37.5	54.0	-16.5	H	A	
4.924	3.0	38.9	32.7	5.9	-34.8	0.0	0.0	42.8	74.0	-31.2	v	P	
7.386	3.0	34.6	35.6	7.3	-34.1	0.0	0.0	43.4	74.0	-30.6	v	P	
4.924	3.0	32.8	32.7	5.9	-34.8	0.0	0.0	36.6	54.0	-17.4	v	A	
7.386	3.0	23.8	35.6	7.3	-34.1	0.0	0.0	32.5	54.0	-21.5	v	A	
						:							

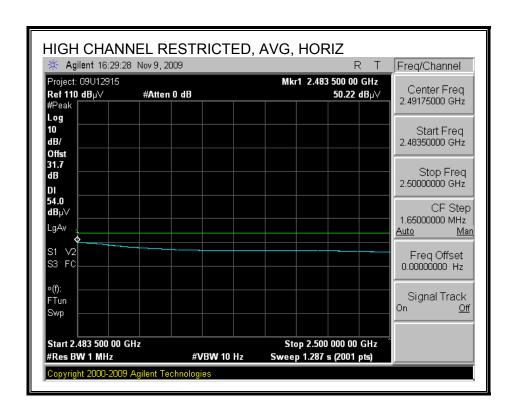

Rev. 4.1.2.7

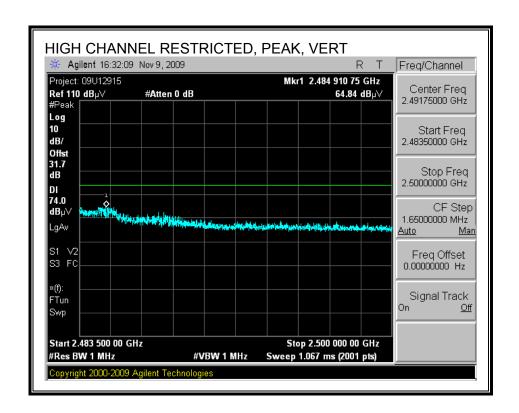
Note: No other emissions were detected above the system noise floor.

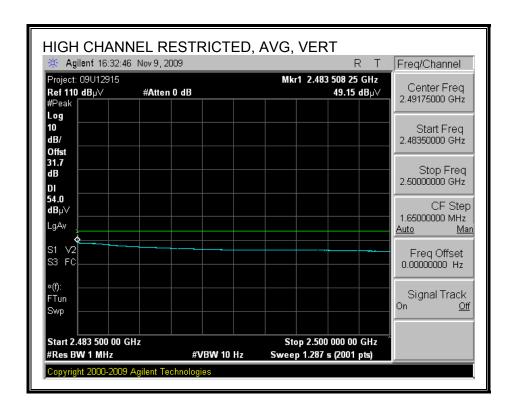

8.2.2. TX ABOVE 1 GHz FOR 802.11g MODE IN THE 2.4 GHz BAND WITH PIFA ANTENNA


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

BANDEDGE TABULATED DATA for EUT with PIFA antenna

High Frequency Measurement Compliance Certification Services, Fremont 5m Chamber

Tom Chen Test Engr: 11/09/09 Date:

Project #:

09U12915 EUT Description: 802.11 bgn WLAN Client

EUT M/N: 1400

Test Target: FCC 15.247 Mode Oper: 802.11gb 6MB, TX

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lin
AF Antenna Factor Peak Calculated Peak Field Strength
CL Cable Loss HPF High Pass Filter Margin vs. Peak Limit Margin vs. Average Limit

Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det.	Ant.High	Table Angle	Notes
(m)	dBuV	dB/m	đВ	đВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
MB Low	CH, Pow	er settir	ıg 23,	16.57dB	m									
3.0	36.3	28.1	3.5	0.0	0.0	0.0	67.8	74.0	-6.2	H	P	131.0	237.0	
3.0	19.7	28.1	3.5	0.0	0.0	0.0	51.2	54.0	-2.8	H	A	131.0	237.0	
MB Low	CH, Pow	er settir	ıg 22,	15.9dBn	n									
3.0	35.1	28.1	3.5	0.0	0.0	0.0	66.7	74.0	-7.3	H	P	131.0	237.0	
3.0	18.7	28.1	3.5	0.0	0.0	0.0	50.3	54.0	-3.7	H	A	131.0	237.0	
MB Low	CH, Pow	er settir	ıg 22,	15.9dBn	n									
3.0	36.2	28.1	3.5	0.0	0.0	0.0	67.7	74.0	-6.3	V	P	121.0	298.0	
3.0	19.2	28.1	3.5	0.0	0.0	0.0	50.8	54.0	-3.2	V	A	121.0	298.0	
MB High	CH, Po	wer setti	ng 22	,15.9dB	m									
3.0	35.0	28.2	3.5	0.0	0.0	0.0	66.7	74.0	-7.3	H	P	136.0	16.0	
3.0	18.5	28.2	3.5	0.0	0.0	0.0	50.2	54.0	-3.8	H	A	136.0	16.0	
MB High	CH, Po	wer setti	ng 22	,15.9dB	m									
3.0	33.1	28.2	3.5	0.0	0.0	0.0	64.8	74.0	-9.2	V	P	120.0	295.0	
3.0	17.4	28.2	3.5	0.0	0.0	0.0	49.2	54.0	-4.8	V	A	120.0	295.0	
	(m) MB Low 3.0 3.0 3.0 MB Low 3.0 3.0 MB Low 3.0 3.0 3.0 MB High 3.0 MB High 3.0 MB High 3.0	(m) dBuV MB Low CH, Pow 3.0 36.3 3.0 19.7 MB Low CH, Pow 3.0 35.1 3.0 18.7 MB Low CH, Pow 3.0 36.2 3.0 35.0 MB High CH, Por 3.0 35.0 3.0 18.5 MB High CH, Por 3.0 33.1	(m) dBuV dB/m MB Low CH, Power settin 3.0 36.3 28.1 3.0 19.7 28.1 MB Low CH, Power settin 3.0 35.1 28.1 3.0 18.7 28.1 MB Low CH, Power settin 3.0 36.2 28.1 3.0 19.2 28.1 MB High CH, Power settin 3.0 35.0 28.2 3.0 18.5 28.2 MB High CH, Power settin 3.0 33.1 28.2	m dBuV dB/m dB	(m) dBuV dB/m dB dB dB dB dB dB dB d	(m) dBuV dB/m dB dB dB MB Low CH, Power setting 23,16.57dBm 3.0 36.3 28.1 3.5 0.0 0.0 MB Low CH, Power setting 22,15.9dBm 3.0 35.1 28.1 3.5 0.0 0.0 3.0 18.7 28.1 3.5 0.0 0.0 MB Low CH, Power setting 22,15.9dBm 3.0 36.2 28.1 3.5 0.0 0.0 MB Low CH, Power setting 22,15.9dBm 3.0 36.2 28.1 3.5 0.0 0.0 MB High CH, Power setting 22,15.9dBm 3.0 36.0 28.1 3.5 0.0 0.0 MB High CH, Power setting 22,15.9dBm 3.0 35.0 28.2 3.5 0.0 0.0 MB High CH, Power setting 22,15.9dBm 3.0 35.0 28.2 3.5 0.0 0.0 MB High CH, Power setting 22,15.9dBm 3.0 33.1 28.2 3.5 0.0 0.0	(m) dBuV dB/m dB dB dB dB dB	(m) dBuV dB/m dB dB dB dB dB dBuV/m MB Low CH, Power setting 23, 16.57dBm 3.0 36.3 28.1 3.5 0.0 0.0 0.0 51.2 MB Low CH, Power setting 22, 15.9dBm 3.0 35.1 28.1 3.5 0.0 0.0 0.0 66.7 3.0 18.7 28.1 3.5 0.0 0.0 0.0 50.3 MB Low CH, Power setting 22, 15.9dBm 3.0 36.2 28.1 3.5 0.0 0.0 0.0 50.3 MB Low CH, Power setting 22, 15.9dBm 3.0 36.2 28.1 3.5 0.0 0.0 0.0 50.3 MB High CH, Power setting 22, 15.9dBm 3.0 38.0 28.2 3.5 0.0 0.0 0.0 50.8 MB High CH, Power setting 22, 15.9dBm 3.0 38.0 28.2 3.5 0.0 0.0 0.0 50.2 MB High CH, Power setting 22, 15.9dBm 3.0 38.0 28.2 3.5 0.0 0.0 0.0 50.2	(m) dBuV dB/m dB dB dB dB dBuV/m dBuV/m	(m) dBuV dB/m dB dB dB dB dB dB dB d	(m) dBuV dB/m dB dB dB dB dB dB uV/m dBuV/m dB uV/m dB V/H MB Low CH, Power setting 23,16.57dBm 3.0 36.3 28.1 3.5 0.0 0.0 0.0 67.8 74.0 -6.2 H 3.0 19.7 28.1 3.5 0.0 0.0 0.0 51.2 54.0 -2.8 H MB Low CH, Power setting 22,159dBm 3.0 18.7 28.1 3.5 0.0 0.0 0.0 50.3 54.0 -7.3 H MB Low CH, Power setting 22,15.9dBm 3.0 36.2 28.1 3.5 0.0 0.0 67.7 74.0 -7.3 H MB Low CH, Power setting 22,15.9dBm 3.0 36.2 28.1 3.5 0.0 0.0 67.7 74.0 -6.3 V 3.0 19.2 28.1 3.5 0.0 0.0 50.8 54.0 -3.2 V MB High CH, Power setting 22,15.9dBm 3.0 <t< td=""><td> MB Low CH, Power setting 22, 15.9dBm</td><td> MB Low CH, Power setting 22,16.57dBm Section 19.00 Section 22,15.9dBm Section 22,15.9dBm Section 22,15.9dBm Section 22,15.9dBm Section 22,15.9dBm Section 23,0 Section 23,0 Section 24,0 Section</td><td> MB Low CH, Power setting 23,16.57dBm Sequence Seq</td></t<>	MB Low CH, Power setting 22, 15.9dBm	MB Low CH, Power setting 22,16.57dBm Section 19.00 Section 22,15.9dBm Section 22,15.9dBm Section 22,15.9dBm Section 22,15.9dBm Section 22,15.9dBm Section 23,0 Section 23,0 Section 24,0 Section	MB Low CH, Power setting 23,16.57dBm Sequence Seq

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor. (EUT with PIFA antenna)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

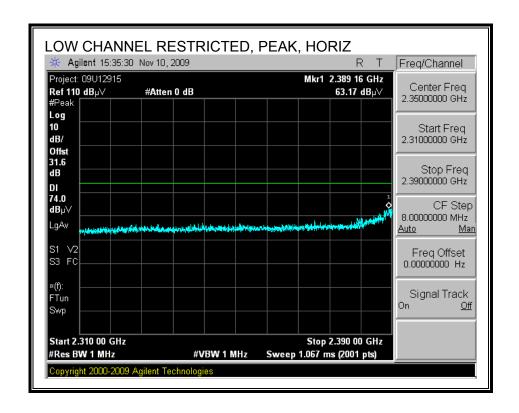
Compliance Certification Services, Fremont 5m Chamber

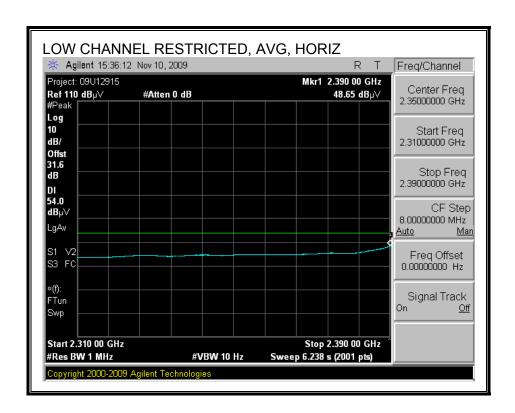
Tom Chen Test Engr: 11/10/09 Date: Project #: 09U12915

EUT Description: 802.11 bgn WLAN Client

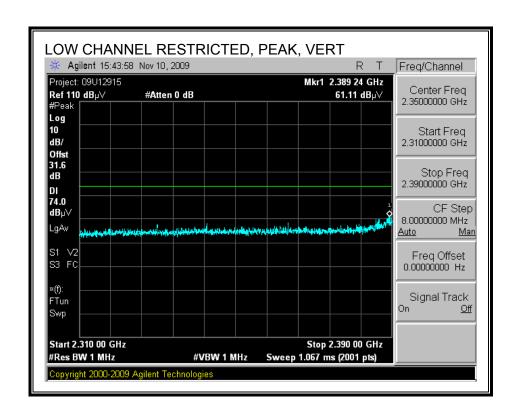
EUT M/N: 1400 FCC 15.247 Test Target: Mode Oper: 802.11g 6MB, TX

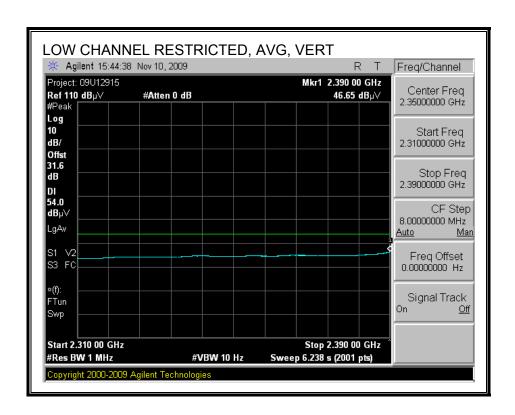
f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Lin Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lin Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter Peak Field Strength Limit Margin vs. Average Limit

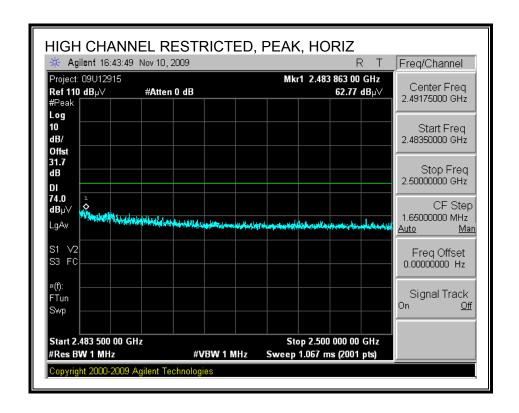

f GHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB		Corr. dBuV/m	Limit dBuV/m		Ant. Pol. V/H	Det. P/A/QP	Notes
2412 MHz	Low Cl	H, g mode	pwr 22	,16.0d	Bm								
4.824	3.0	39.9	32.7	5.8	-34.8	0.0	0.0	43.6	74.0	-30.4	H	P	
7.236	3.0	34.0	35.4	7.2	-34.1	0.0	0.0	42.4	74.0	-31.6	H	P	
4.824	3.0	27.1	32.7	5.8	-34.8	0.0	0.0	30.7	54.0	- 23. 3	H	A	
7.236	3.0	21.5	35.4	7.2	-34.1	0.0	0.0	30.0	54.0	-24.0	H	A	
4.824	3.0	39.6	32.7	5.8	-34.8	0.0	0.0	43.3	74.0	-30.7	V	P	
7.236	3.0	34.6	35.4	7.2	-34.1	0.0	0.0	43.0	74.0	-31.0	V	P	
4.824	3.0	26.1	32.7	5.8	-34.8	0.0	0.0	29.7	54.0	- 24. 3	V	A	
7.236	3.0	22.2	35.4	7.2	-34.1	0.0	0.0	30.7	54.0	- 23. 3	V	A	
2437 MHz	Mid CI	I, g mode	pwr 25	18.97	dBm								
4.874	3.0	40.8	32.7	5.8	-34.8	0.0	0.0	44.5	74.0	-29.5	H	P	
7.311	3.0	37.8	35.5	7.3	-34.1	0.0	0.0	46.4	74.0	-27.6	H	P	
4.874	3.0	26.9	32.7	5.8	-34.8	0.0	0.0	30.7	54.0	- 23. 3	H	A	
7.311	3.0	23.9	35.5	7.3	-34.1	0.0	0.0	32.6	54.0	-21.4	H	A	
4.874	3.0	39.5	32.7	5.8	-34.8	0.0	0.0	43.2	74.0	-30.8	V	P	
7.311	3.0	41.1	35.5	7.3	-34.1	0.0	0.0	49.7	74.0	-24.3	V	P	
4.874	3.0	25.5	32.7	5.8	-34.8	0.0	0.0	29.3	54.0	-24.7	V	A	
7.311	3.0	24.8	35.5	7.3	-34.1	0.0	0.0	33.4	54.0	-20.6	V	A	
2462 MHz	High C	H, g mod	le pwr 2	2,16.0	dBm								
4.924	3.0	35.1	32.7	5.9	-34.8	0.0	0.0	38.9	74.0	-35.1	H	P	
7.386	3.0	34.9	35.6	7.3	-34.1	0.0	0.0	43.7	74.0	-30.3	H	P	
4.924	3.0	24.3	32.7	5.9	-34.8	0.0	0.0	28.1	54.0	-25.9	Н	A	
7.386	3.0	22.4	35.6	7.3	-34.1	0.0	0.0	31.1	54.0	-22.9	H	A	
4.924	3.0	35.4	32.7	5.9	-34.8	0.0	0.0	39.2	74.0	-34.8	V	P	
7.386	3.0	35.5	35.6	7.3	-34.1	0.0	0.0	44.2	74.0	-29.8	V	P	
4.924	3.0	23.0	32.7	5.9	-34.8	0.0	0.0	26.9	54.0	-27.2	V	A	
7.386	3.0	22.8	35.6	7.3	-34.1	0.0	0.0	31.5	54.0	-22.5	V	A	

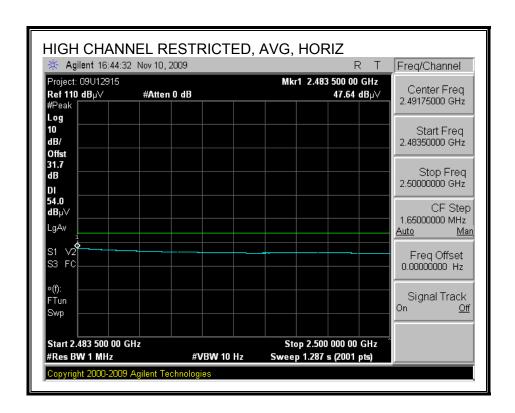

Rev. 4.1.2.7

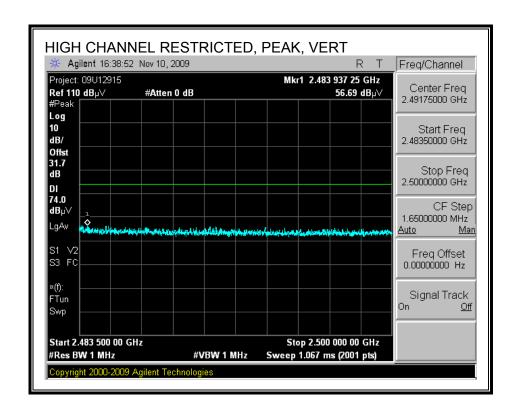
Note: No other emissions were detected above the system noise floor.


WITH PWB ANTENNA

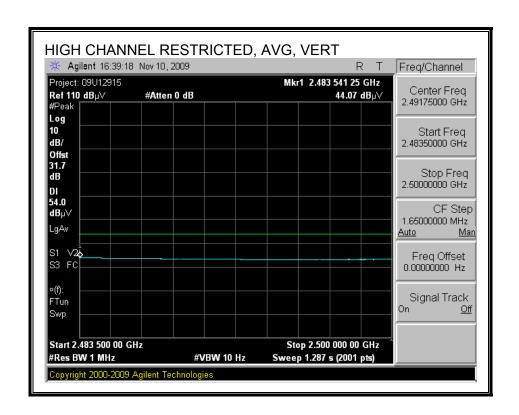

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

REPORT NO: 09U12915-1B DATE: DECEMBER 08, 2009 FCC ID: C3K1400

IC: 3048A-1400

BANDEDGE TABULATED DATA for EUT with PWB antenna

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Tom Chen Test Engr: Date: 11/10/09 091112915 Project #:

EUT Description: 802.11 bgn WLAN Client

1400 EUT M/N: Test Target: FCC 247

Mode Oper: 802.11g, TX with PWB Antenna

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Avg Average Field Strength @ 3 m
AF Antenna Factor Peak Calculated Peak Field Strength
CL Cable Loss HPF High Pass Filter Peak Field Strength Limit Margin vs. Average Limit Margin vs. Peak Limit

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	đВ	dВ	dВ	đВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
Fundame	ntal 241	MHz L	w CH,	g mod	e pwr 2	2									Y Pos
2.389	3.0	31.6	28.1	3.5	0.0	0.0	0.0	63.2	74.0	-10.8	H	P	102.0	354.0	PWB ANT
2.390	3.0	17.1	28.1	3.5	0.0	0.0	0.0	48.7	54.0	-5.3	H	A	102.0	354.0	PWB ANT
2412 MH	z Low Cl	I, g mode	рwт 22												
2.389	3.0	29.6	28.1	3.5	0.0	0.0	0.0	61.1	74.0	-12.9	V	P	119.0	180.0	PWB ANT
2.390	3.0	15.1	28.1	3.5	0.0	0.0	0.0	46.7	54.0	-7.3	V	A	119.0	180.0	PWB ANT
2462 MH	z High C	H, g mod	le pwr 2	2											
2.484	3.0	25.0	28.2	3.5	0.0	0.0	0.0	56.7	74.0	-17.3	V	P	98.0	114.0	PWB ANT
2.484	3.0	12.3	28.2	3.5	0.0	0.0	0.0	44.1	54.0	-9.9	V	A	98.0	114.0	PWB ANT
2462 MH	z High C	H, g mod	le pwr 2	2											
2.484	3.0	31.0	28.2	3.5	0.0	0.0	0.0	62.8	74.0	-11.2	H	P	128.0	330.0	PWB ANT
2.483	3.0	15.9	28.2	3.5	0.0	0.0	0.0	47.6	54.0	-6.4	н	A	128.0	330.0	PWB ANT

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor. (EUT with PWB antenna)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

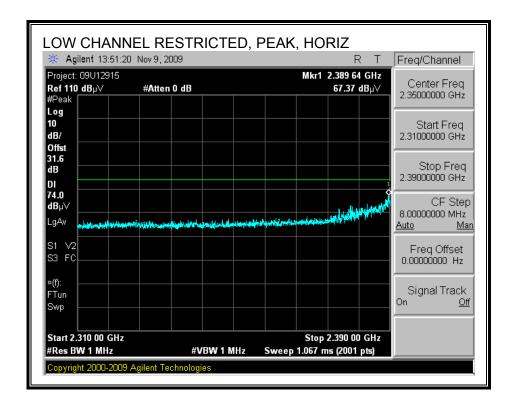
Tom Chen Test Engr: 11/11/09 Date: Project #: 09U12915

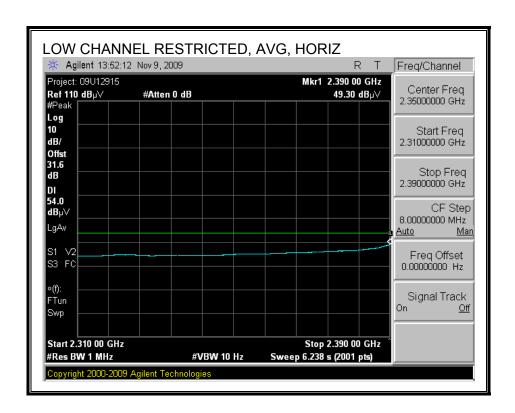
EUT Description: 802.11 bgn WLAN Client

EUT M/N: 1400 FCC 247 Test Target:

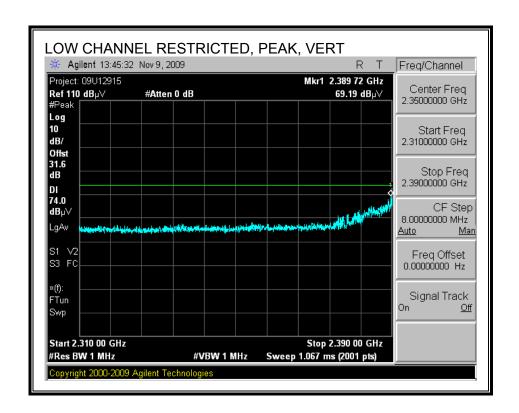
Mode Oper: 802.11g, TX with PWB Antenna

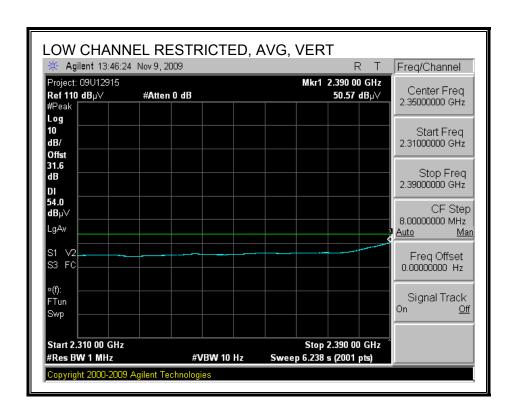
f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Lin Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lin AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter Peak Field Strength Limit Margin vs. Average Limit

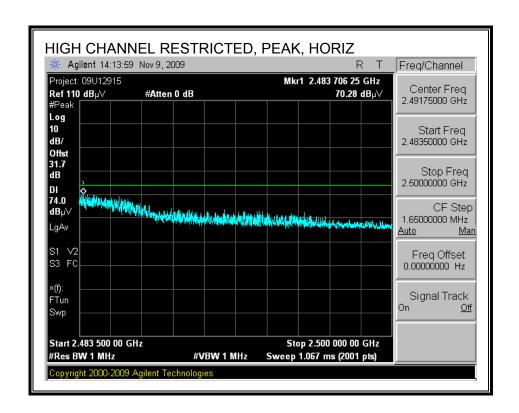

f GHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB		Corr. dBuV/m		Margin dB	Ant Pol V/H	Det. P/A/QP	Notes
2412MHz	Low CH	L, Power	22										
4.824	3.0	41.5	32.8	5.8	-34.8	0.0	0.0	45.3	74.0	-28.7	v	P	PWB ANT
7.236	3.0	37.4	35.1	7.2	-34.7	0.0	0.0	45.0	74.0	-29.0	V	P	PWB ANT
4.824	3.0	29.4	32.8	5.8	-34.8	0.0	0.0	33.1	54.0	-20.9	V	A	PWB ANT
7.236	3.0	25.3	35.1	7.2	-34.7	0.0	0.0	33.0	54.0	-21.0	v	A	PWB ANT
4.824	3.0	42.2	32.8	5.8	-34.8	0.0	0.0	45.9	74.0	-28.1	H	P	PWB ANT
7.236	3.0	37.9	35.1	7.2	-34.7	0.0	0.0	45.5	74.0	-28.5	H	P	PWB ANT
4.824	3.0	28.9	32.8	5.8	-34.8	0.0	0.0	32.6	54.0	-21.4	H	A	PWB ANT
7.236	3.0	25.1	35.1	7.2	-34.7	0.0	0.0	32.8	54.0	-21.2	H	A	PWB ANT
2437MHz	Mid CH	, Power 2	25										
4.874	3.0	42.1	32.8	5.8	-34.9	0.0	0.0	45.9	74.0	-28.1	Н	P	PWB ANT
7.311	3.0	40.9	35.2	7.3	-34.7	0.0	0.0	48.7	74.0	-25.3	Н	P	PWB ANT
4.874	3.0	29.1	32.8	5.8	-34.9	0.0	0.0	32.9	54.0	-21.1	Н	A	PWB ANT
7.311	3.0	25.8	35.2	7.3	-34.7	0.0	0.0	33.6	54.0	-20.4	H	A	PWB ANT
4.874	3.0	41.8	32.8	5.8	-34.9	0.0	0.0	45.5	74.0	-28.5	v	P	PWB ANT
7.311	3.0	39.3	35.2	7.3	-34.7	0.0	0.0	47.1	74.0	-26.9	V	P	PWB ANT
4.874	3.0	29.1	32.8	5.8	-34.9	0.0	0.0	32.9	54.0	-21.1	V	A	PWB ANT
7.311	3.0	25.8	35.2	7.3	-34.7	0.0	0.0	33.6	54.0	-20.4	v	A	PWB ANT
2462MHz	High C	H, Power	22										
4.924	3.0	38.1	32.8	5.9	-34.9	0.0	0.0	41.9	74.0	-32.1	V	P	PWB ANT
7.386	3.0	38.0	35.3	7.3	-34.6	0.0	0.0	45.9	74.0	-28.1	V	P	PWB ANT
4.924	3.0	25.9	32.8	5.9	-34.9	0.0	0.0	29.8	54.0	-24.2	V	A	PWB ANT
7.386	3.0	25.1	35.3	7.3	-34.6	0.0	0.0	33.1	54.0	-20.9	v	A	PWB ANT
4.924	3.0	38.9	32.8	5.9	-34.9	0.0	0.0	42.8	74.0	-31.2	H	P	PWB ANT
7.386	3.0	38.9	35.3	7.3	-34.6	0.0	0.0	46.9	74.0	-27.1	H	P	PWB ANT
4.924	3.0	27.3	32.8	5.9	-34.9	0.0	0.0	31.2	54.0	-22.8	H	A	PWB ANT
7.386	3.0	25.5	35.3	7.3	-34.6	0.0	0.0	33.4	54.0	-20.6	H	A	PWB ANT

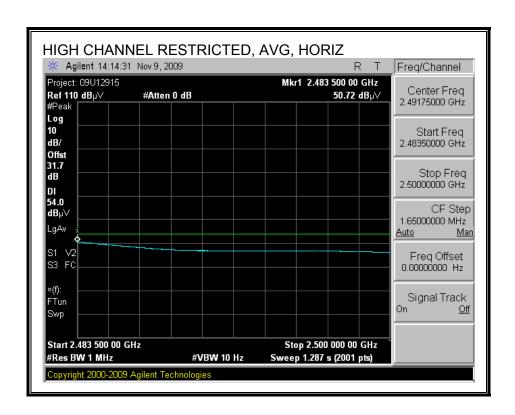

Rev. 4.1.2.7

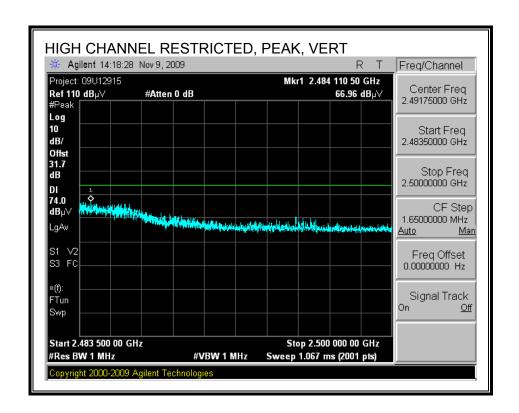
Note: No other emissions were detected above the system noise floor.

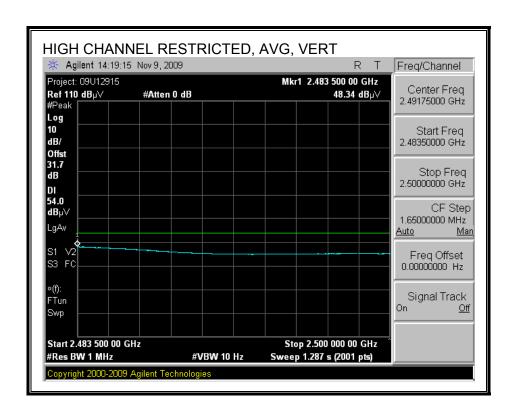

8.2.3. TX ABOVE 1 GHz FOR 802.11n HT20 MODE IN THE 2.4 GHz BAND WITH PIFA ANTENNA


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

BANDEDGE TABULATED DATA for EUT with PIFA antenna

High Frequency Measurement Compliance Certification Services, Fremont 5m Chamber

Tom Chen Test Engr: 11/09/09 Date: Project #: 09U12915

EUT Description: 802.11 bgn WLAN Client

1400 EUT M/N: Test Target: FCC 247 Mode Oper: 802.11n HT20, TX

Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit
Read Analyzer Reading Avg Average Field Strength @ 3 m

AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

Average Field Strength Limit

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	đВ	dВ	dВ	đВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
HT20 MC	S7 Low	CH, Powe	er settin	g 20,	15.5dBn	n.									
2.390	3.0	37.6	28.1	3.5	0.0	0.0	0.0	69.2	74.0	-4.8	V	P	100.0	297.0	
2.390	3.0	19.0	28.1	3.5	0.0	0.0	0.0	50.6	54.0	-3.4	V	A	100.0	297.0	
HT20 MC	S7 Low	CH, Powe	er settin	g 20,	15.5dBn	n.									
2.390	3.0	35.8	28.1	3.5	0.0	0.0	0.0	67.4	74.0	-6.6	H	P	133.0	238.0	
2.390	3.0	17.7	28.1	3.5	0.0	0.0	0.0	49.3	54.0	-4.7	H	A	133.0	238.0	
HT20 MC	S7 High	CH, Pow	ver setti	ng 21,	15.8dB:	n									
2.484	3.0	38.5	28.2	3.5	0.0	0.0	0.0	70.3	74.0	-3.7	H	P	136.0	21.0	
2.483	3.0	19.0	28.2	3.5	0.0	0.0	0.0	50.7	54.0	-3.3	H	A	136.0	21.0	
HT20 MC	S7 High	CH, Pow	ver setti	ng 21,	15.8dB:	n									
2.484	3.0	35.2	28.2	3.5	0.0	0.0	0.0	67.0	74.0	-7.0	v	P	100.0	298.0	
2.483	3.0	16.6	28.2	3.5	0.0	0.0	0.0	48.3	54.0	-5.7	V	A	100.0	298.0	
HT20 MC	S7 Low	CH, Powe	er settin	g 22,1	6.2dBm	i									
2.390	3.0	41.2	28.1	3.5	0.0	0.0	0.0	72.7	74.0	-1.3	V	P	100.0	297.0	
2.390	3.0	20.7	28.1	3.5	0.0	0.0	0.0	52.3	54.0	-1.7	V	A	100.0	297.0	
HT20 MC	S7 High	CH, Pow	ver setti	ng 22,	16.2dB:	n							Ĭ		
2.484	3.0	38.2	28.2	3.5	0.0	0.0	0.0	69.9	74.0	-4.1	V	P	121.0	296.0	
2.484	3.0	18.5	28.2	3.5	0.0	0.0	0.0	50.2	54.0	-3.8	V	A	121.0	296.0	
HT20 MC	S7 High	CH, Pow	ver setti	ng 22,	16.2dB:	n									
2.484	3.0	39.2	28.2	3.5	0.0	0.0	0.0	70.9	74.0	-3.1	H	P	137.0	19.0	
2.484	3.0	19.4	28.2	3.5	0.0	0.0	0.0	51.1	54.0	-2.9	н	A	137.0	19.0	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor. (EUT with PIFA antenna)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

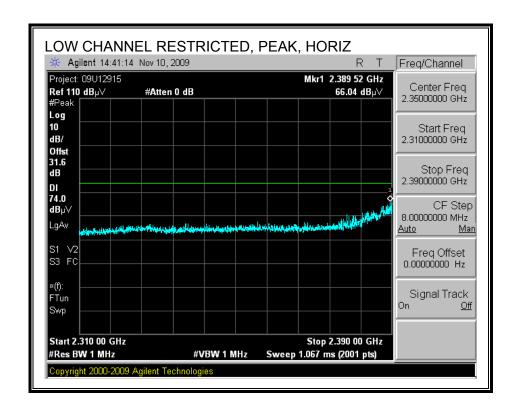
Compliance Certification Services, Fremont 5m Chamber

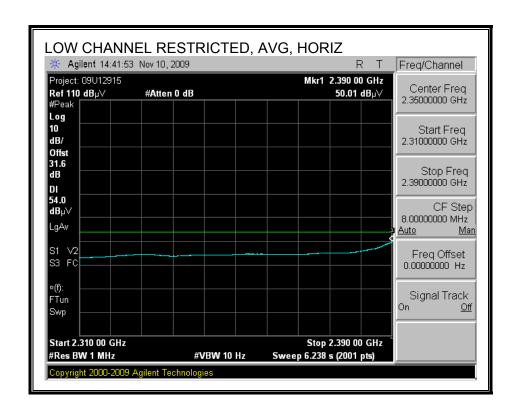
Tom Chen Test Engr: 11/10/09 Date: Project #: 09U12915

EUT Description: 802.11 bgn WLAN Client

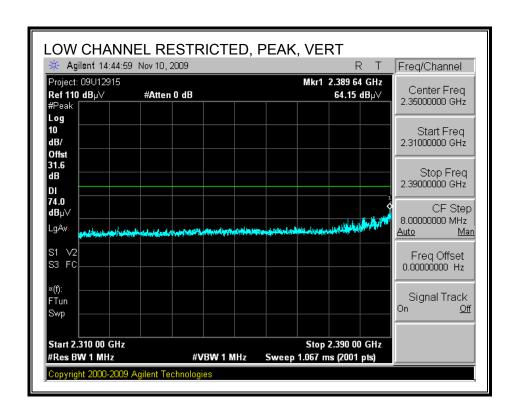
1400 EUT M/N: FCC 247 Test Target: Mode Oper: 802.11n HT20, TX

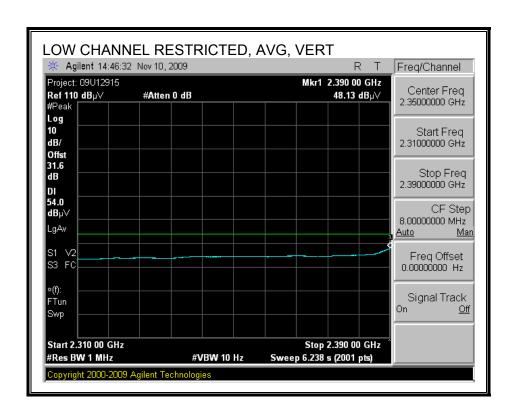
Measurement Frequency Amp Preamp Gain f Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Lin Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lin Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter Peak Field Strength Limit Margin vs. Average Limit

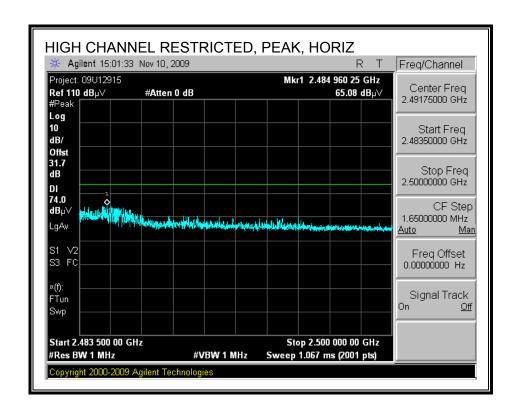

f GHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB		Corr. dBuV/m			Ant Pol V/H	Det. P/A/QP	Notes
2412 MHz	Low CI	H, HT20 p	wr 20,1	5.6dB:	m								
4.824	3.0	38.7	32.7	5.8	-34.8	0.0	0.0	42.4	74.0	-31.6	V	P	
7.236	3.0	34.8	35.4	7.2	-34.1	0.0	0.0	43.2	74.0	-30.8	V	P	
4.824	3.0	25.8	32.7	5.8	-34.8	0.0	0.0	29.4	54.0	-24.6	V	A	
7.236	3.0	21.0	35.4	7.2	-34.1	0.0	0.0	29.5	54.0	-24.5	V	A	
4.824	3.0	40.0	32.7	5.8	-34.8	0.0	0.0	43.6	74.0	-30.4	Н	P	
7.236	3.0	34.3	35.4	7.2	-34.1	0.0	0.0	42.8	74.0	-31.2	H	P	
4.824	3.0	26.4	32.7	5.8	-34.8	0.0	0.0	30.1	54.0	-23.9	H	A	
7.236	3.0	21.6	35.4	7.2	-34.1	0.0	0.0	30.1	54.0	-23.9	H	A	
2437 MHz	Mid CI	I, HT20 p	wr 26,1	8.35dE	3m					Ĭ			
4.874	3.0	41.8	32.7	5.8	-34.8	0.0	0.0	45.5	74.0	-28.5	H	P	
7.311	3.0	39.7	35.5	7.3	-34.1	0.0	0.0	48.3	74.0	-25.7	H	P	
4.874	3.0	27.7	32.7	5.8	-34.8	0.0	0.0	31.5	54.0	-22.5	H	A	
7.311	3.0	24.4	35.5	7.3	-34.1	0.0	0.0	33.1	54.0	-20.9	H	A	
4.874	3.0	43.4	32.7	5.8	-34.8	0.0	0.0	47.1	74.0	-26.9	V	P	
7.311	3.0	38.0	35.5	7.3	-34.1	0.0	0.0	46.6	74.0	-27.4	v	P	
4.874	3.0	25.9	32.7	5.8	-34.8	0.0	0.0	29.7	54.0	- 24. 3	V	A	
7.311	3.0	23.5	35.5	7.3	-34.1	0.0	0.0	32.1	54.0	-21.9	V	A	
2462 MHz	High C	H, HT20	pwr 21,	16.0dE	3m								
4.924	3.0	36.9	32.7	5.9	-34.8	0.0	0.0	40.7	74.0	-33.3	v	P	
7.386	3.0	33.8	35.6	7.3	-34.1	0.0	0.0	42.6	74.0	-31.4	v	P	
4.924	3.0	24.0	32.7	5.9	-34.8	0.0	0.0	27.8	54.0	-26.2	V	A	
7.386	3.0	21.6	35.6	7.3	-34.1	0.0	0.0	30.4	54.0	- 23.6	V	A	
4.924	3.0	36.3	32.7	5.9	-34.8	0.0	0.0	40.1	74.0	-33.9	Н	P	
7.386	3.0	35.0	35.6	7.3	-34.1	0.0	0.0	43.8	74.0	-30.2	Н	P	
4.924	3.0	24.2	32.7	5.9	-34.8	0.0	0.0	28.0	54.0	-26.0	Н	A	
7.386	3.0	22.0	35.6	7.3	-34.1	0.0	0.0	30.8	54.0	-23.2	Н	A	

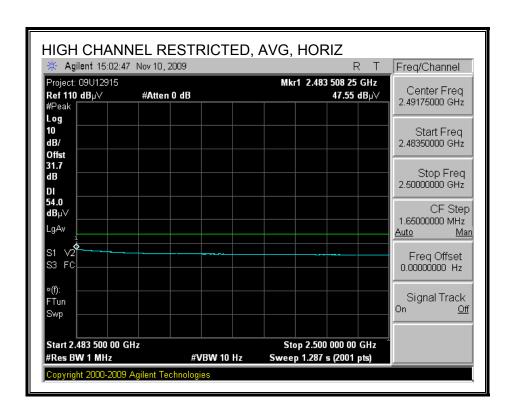

Rev. 4.1.2.7

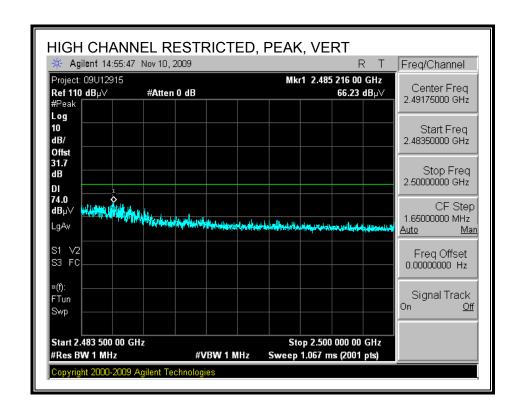
Note: No other emissions were detected above the system noise floor.

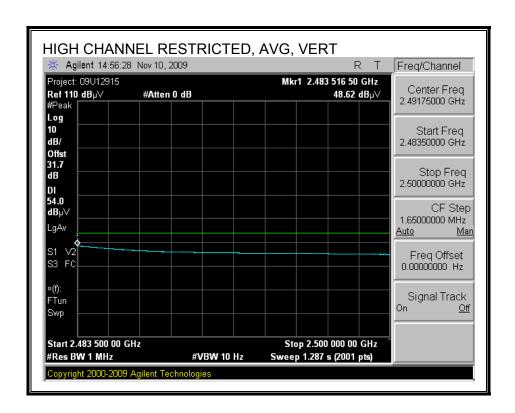

WITH PWB ANTENNA


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

BANDEDGE TABULATED DATA for EUT with PWB antenna

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen
Date: 11/10/09
Project #: 09U12915

EUT Description: 802.11 bgn WLAN Client

EUT M/N: 1400 Test Target: FCC 247

Mode Oper: 802.11n HT20, TX with PWB Antenna

 f
 Measurement Frequency
 Amp
 Preamp Gain
 Average Field Strength Limit

 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

 CL
 Cable Loss
 HPF
 High Pass Filter

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det	Ant.High	Table Angle	Notes
GHz	(m)	dBuV	dB/m	dВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
2412 MH	z Low Cl	I, HT20 J	wr 20,1	5.6dB	m										
2.390	3.0	34.5	28.1	3.5	0.0	0.0	0.0	66.0	74.0	-8.0	H	P	100.0	354.0	PWB ANT
2.390	3.0	18.5	28.1	3.5	0.0	0.0	0.0	50.0	54.0	-4.0	H	A	100.0	354.0	PWB ANT
2412 MH	z Low Cl	I, HT20 J	wr 20,1	5.6dB	m										
2.390	3.0	32.6	28.1	3.5	0.0	0.0	0.0	64.1	74.0	-9.9	V	P	117.0	179.0	PWB ANT
2.390	3.0	16.6	28.1	3.5	0.0	0.0	0.0	48.1	54.0	-5.9	V	A	117.0	179.0	PWB ANT
2462 MH	z High C	H, HT20	pwr 21,	15.6dI	Bm										
2.485	3.0	34.5	28.2	3.5	0.0	0.0	0.0	66.2	74.0	-7.8	V	P	100.0	347.0	PWB ANT
2.484	3.0	16.9	28.2	3.5	0.0	0.0	0.0	48.6	54.0	-5.4	V	A	100.0	347.0	PWB ANT
2462 MH:	z High C	H, HT20	pwr 21,	15.8dI	Bm										
2.485	3.0	33.4	28.2	3.5	0.0	0.0	0.0	65.1	74.0	-8.9	H	P	99.0	347.0	PWB ANT
2 494	3.0	12 0	70 7	3.5	0.0	0.0	0.0	47.5	E40	£ E	ч	ā	99 N	2470	DW/R ANT

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor. (EUT with PWB antenna)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen
Date: 11/11/09
Project #: 09U12915

EUT Description: 802.11 bgn WLAN Client

Cable Loss

EUT M/N: 1400 Test Target: FCC 247

CL

Mode Oper: 802.11n HT20, TX with PWB Antenna

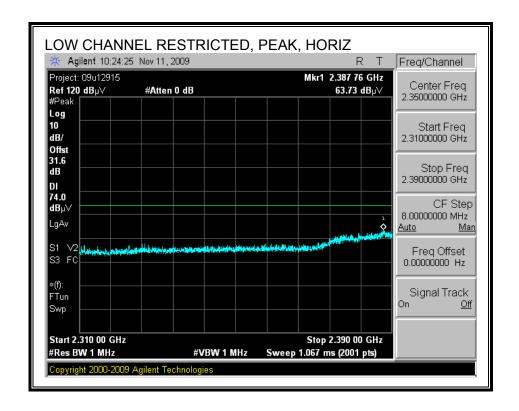
 f
 Measurement Frequency Amp
 Preamp Gain
 Average Field Strength Limit

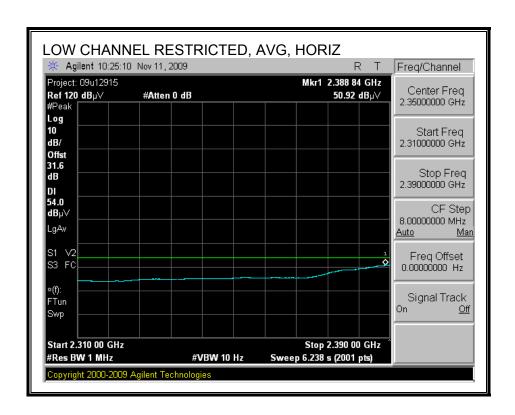
 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

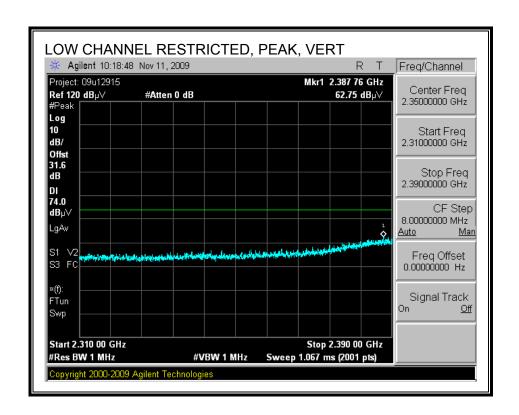
 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

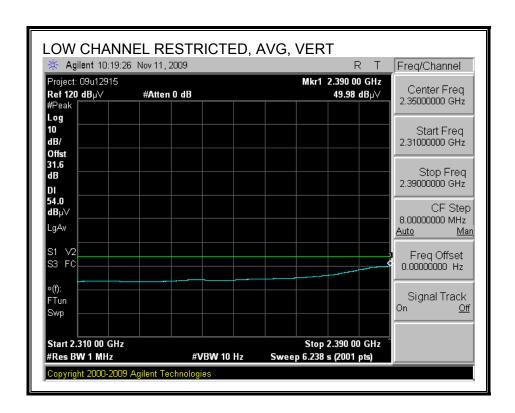
HPF High Pass Filter

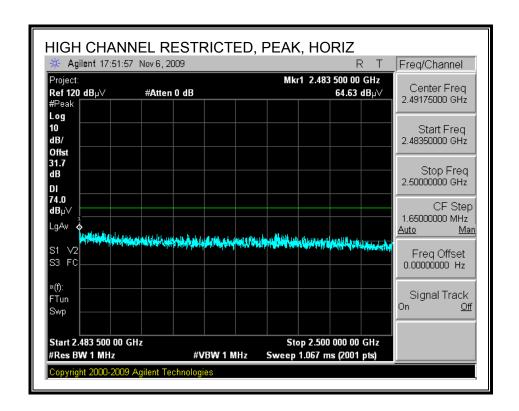

f Dist Read AF CLAmp D Corr Пtг Corr. Limit Margin Ant Pol Det Notes GHz (m) dBuV dB/m đВ đВ đВ đВ dBuV/m dBuV/m đВ V/HP/A/QP 2412MHz Low CH, Power 20 28.8 PWB ANT 4.824 3.0 41.5 32.8 5.8 -34.8 0.0 0.045.2 74.0 7.236 3.0 37.3 35.1 7.2 -34.7 0.0 0.044.9 74.0 -29.1 н P PWB ANT 4.824 3.0 28.6 32.8 5.8 -34.8 0.00.032.3 54.0 -21.7 н A PWB ANT 7.236 24.9 35.1 7.2 0.032.5 -21.5 PWB ANT 3.0 -34.7 0.0 54.0 н 4.824 3.0 40.6 32.8 5.8 -34.8 0.00.0 44.3 74.0 -29.7 v P PWB ANT 7.236 3.0 37.5 35.1 -34.7 0.00.045.1 74.0 -28.9 v PWB ANT 7.2 28.7 -21.6 v 4.824 3.0 32.8 5.8 -34.8 0.032.4 54.0 А PWB ANT 7.236 3.0 25.0 35.1 7.2 32.7 -21.3 V A PWB ANT 2437MHz Mid CH, Power 26 45.7 74.0 -28.3 PWB ANT 4.874 3.0 41.9 32.8 5.8 -34.9 N.N 0.0v PWB ANT 7.311 35.2 7.3 -34.745.4 74.0 -28.7 4.874 3.0 27.8 32.8 5.8 -34.90.0 0.031.6 54.0 -22.4A PWB ANT 7.311 3.0 25.3 35.2 7.3 -34.7 0.0 0.0 33.1 54.0 -20.9v A PWB ANT 4.874 3.0 32.8 -34.9 0.074.0 -27.5 н PWB ANT 7.311 3.0 35.2 -34.750.0 74.0 н P 42.2 7.3 0.0 0.0 -24.0 PWB ANT 4.874 3.0 29.5 32.8 5.8 -34.9 0.033.3 54.0 -20.7 н A PWB ANT 35.2 -20.1 7.311 3.0 26.1 7.3 33.9 н PWB ANT -34.7 0.0 0.0 54.0 A 2462MHz High CH, Power 21 4.924 38.7 5.9 -34.9 42.5 74.0 н P PWB ANT 32.8 7.386 39.9 47.9 -26.1 Н PWB ANT 3.0 35.3 7.3 -34.6 0.0 0.074.0 4.924 3.0 28.1 32.8 5.9 -34.9 0.0 0.032.0 54.0 -22.0 н A PWB ANT 7.386 3.0 25.6 35.3 -34.6 0.0 0.0 33.6 54.0 20.4 н PWB ANT 4.924 3.0 39.3 32.8 5.9 -34.9 0.0 0.043.1 74.0 -30.9 PWB ANT 7.386 3.0 38.1 35.3 7.3 -34.6 0.0 0.046.1 74.0 -27.9 v Р PWB ANT V 4.924 3.0 26.7 32.8 5.9 -34.9 0.00.030.6 54.0 A PWB ANI 7.386 3.0 7.3 33.1 -20.9v PWB ANT 25.2 35.3 -34.6 0.0 0.054.0 A

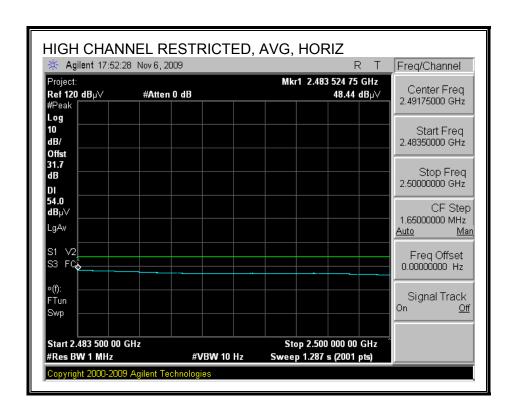

Rev. 4.1.2.7

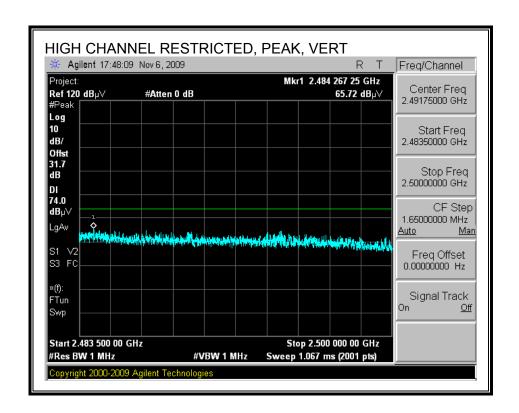
Note: No other emissions were detected above the system noise floor.

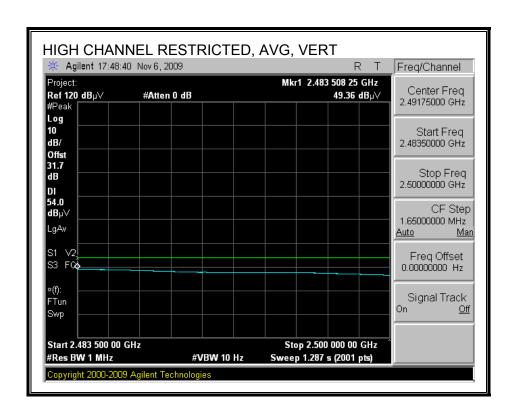

8.2.4. TX ABOVE 1 GHz FOR 802.11n HT40 MODE IN THE 2.4 GHz BAND WITH PIFA ANTENNA


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

BANDEDGE TABULATED DATA for EUT with PIFA antenna

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Thanh Nguyen Test Engr: Date: 11/06/09 091112915 Project #:

EUT Description: 802.11 bgn WLAN Client

EUT M/N: 1400 Test Target: FCC 247 Mode Oper:

Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m

AF Antenna Factor Peak Calculated Peak Field Strength

CL Cable Loss HPF High Pass Filter Margin vs. Average Limit Margin vs. Peak Limit

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant. Pol.	Det	AntHigh	Table Angle	Notes
GHz	(m)	dBuV	dB/m	đВ	đВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
Module A	344, Ур	osition (pward												
HT 40, hi	gh ch, se	t lf 14.4	dbm												
2.485	3.0	38.2	28.2	3.5	0.0	0.0	0.0	69.9	74.0	-4.1	H	P	187.0	149.0	PIFA Antenna
2.484	3.0	18.9	28.2	3.5	0.0	0.0	0.0	50.6	54.0	-3.4	H	A	187.0	149.0	PIFA Antenna
2.485	3.0	30.0	28.2	3.5	0.0	0.0	0.0	61.7	74.0	-12.3	V	P	172.0	345.0	PIFA Antenna
2.484	3.0	13.6	28.2	3.5	0.0	0.0	0.0	45.3	54.0	-8.7	V	A	172.0	345.0	PIFA Antenna
Module	A344, X	position	Side												
2422MHz	Low CH	L, Power	1D, 13.7	7dBm											
2.388	3.0	31.2	28.1	3.5	0.0	0.0	0.0	62.8	74.0	-11.2	V	P	118.0	343.0	PIFA Antenna
2.390	3.0	18.4	28.1	3.5	0.0	0.0	0.0	50.0	54.0	-4.0	V	A	118.0	343.0	PIFA Antenna
2422MHz	Low CH	L, Power	1D, 13.7	7 dBm	L										
2.388	3.0	32.1	28.1	3.5	0.0	0.0	0.0	63.7	74.0	-10.3	H	P	100.0	14.0	PIFA Antenna
2.389	3.0	19.3	28.1	3.5	0.0	0.0	0.0	50.9	54.0	-3.1	н	A	100.0	14.0	PIFA Antenna

Note: No other emissions were detected above the system noise floor.

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen
Date: 11/09/09
Project #: 09U12915

EUT Description: 802.11 bgn WLAN Client

EUT M/N: 1400
Test Target: FCC 247
Mode Oper: 802.11n HT40, TX

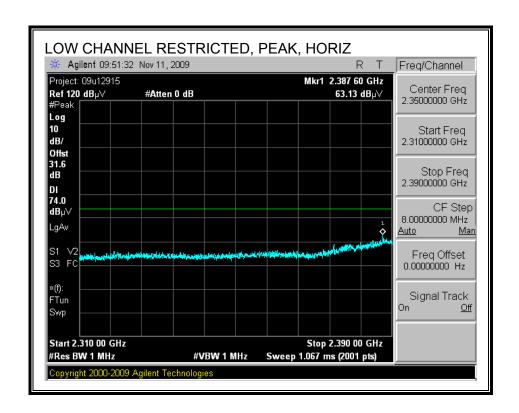
 f
 Measurement Frequency Amp
 Preamp Gain
 Average Field Strength Limit

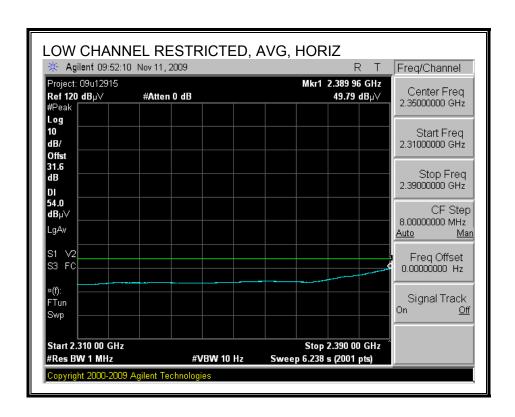
 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

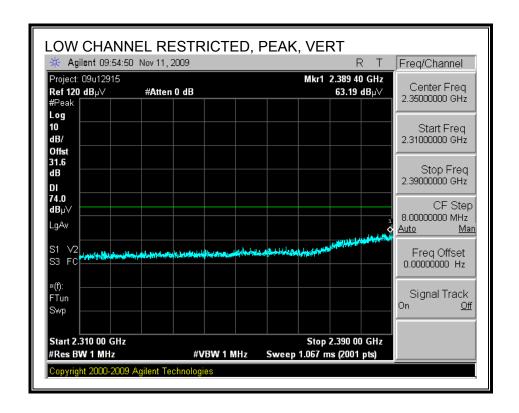
 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

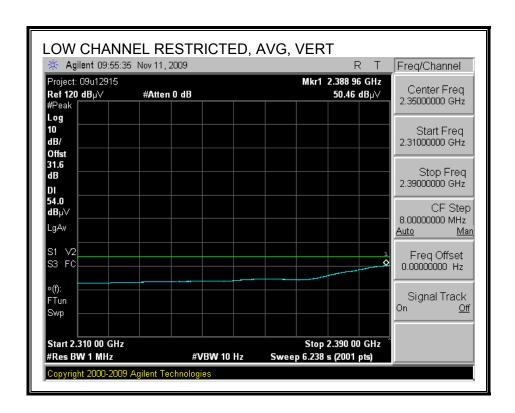
 CL
 Cable Loss
 HPF
 High Pass Filter

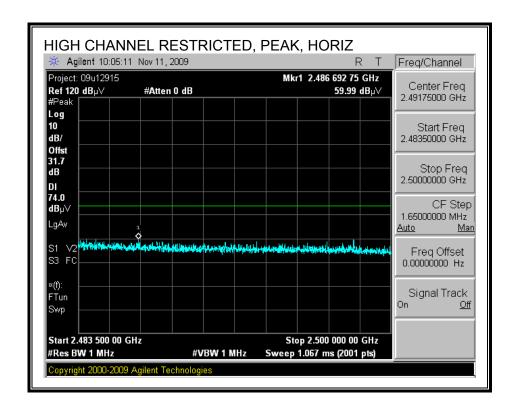

f GHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB		Corr. dBuV/m			Ant Pol V/H	Det. P/A/OP	Notes
	; 47					ш		ALD UV/JIE	uDu v/iii	ш	V/11	r/m/Qr	
HT40 Low		wer setti	······································	,,	,	ļ							
4.844	3.0	36.1	32.7	5.8	-34.8	0.0	0.0	39.8	74.0	-34.2	V	P	
7.266	3.0	34.2	35.4	7.2	-34.1	0.0	0.0	42.7	74.0	-31.3	V	P	
4.844	3.0	23.4	32.7	5.8	-34.8	0.0	0.0	27.0	54.0	-27.0	V	A	
7.266	3.0	22.1	35.4	7.2	-34.1	0.0	0.0	30.6	54.0	- 23.4	V	A	
4.844	3.0	36.2	32.7	5.8	-34.8	0.0	0.0	39.8	74.0	-34.2	H	P	
7.266	3.0	34.6	35.4	7.2	-34.1	0.0	0.0	43.1	74.0	-30.9	H	P	
4.844	3.0	24.1	32.7	5.8	-34.8	0.0	0.0	27.8	54.0	-26.2	H	A	
7.266	3.0	21.8	35.4	7.2	-34.1	0.0	0.0	30.4	54.0	- 23.6	H	A	
HT40 Mid	CH, Po	wer setti	ng 26, 1	8.15dE	3m								
4.874	3.0	37.9	32.7	5.8	-34.8	0.0	0.0	41.6	74.0	-32.4	V	P	
7.311	3.0	34.0	35.5	7.3	-34.1	0.0	0.0	42.6	74.0	-31.4	V	P	
4.874	3.0	25.1	32.7	5.8	-34.8	0.0	0.0	28.9	54.0	-25.1	v	A	
7.311	3.0	21.8	35.5	7.3	-34.1	0.0	0.0	30.4	54.0	- 23.6	v	A	
4.874	3.0	36.1	32.7	5.8	-34.8	0.0	0.0	39.9	74.0	-34.1	H	P	
7.311	3.0	34.9	35.5	7.3	-34.1	0.0	0.0	43.5	74.0	-30.5	H	P	
4.874	3.0	23.9	32.7	5.8	-34.8	0.0	0.0	27.6	54.0	-26.4	H	A	
7.311	3.0	22.1	35.5	7.3	-34.1	0.0	0.0	30.7	54.0	- 23. 3	H	A	
HT40 Hig	h CH, P	ower seti	ing lF,	14.7dE	3m								
4.904	3.0	35.1	32.7	5.9	-34.8	0.0	0.0	38.9	74.0	-35.1	H	P	
7.356	3.0	33.9	35.5	7.3	-34.1	0.0	0.0	42.6	74.0	-31.4	Н	P	
4.904	3.0	24.4	32.7	5.9	-34.8	0.0	0.0	28.2	54.0	-25.8	Н	A	
7.356	3.0	22.0	35.5	7.3	-34.1	0.0	0.0	30.7	54.0	- 23.3	Н	A	
4.904	3.0	36.0	32.7	5.9	-34.8	0.0	0.0	39.8	74.0	-34.2	V	P	
7.356	3.0	34.1	35.5	7.3	-34.1	0.0	0.0	42.9	74.0	-31.1	v	P	
4.904	3.0	23.0	32.7	5.9	-34.8	0.0	0.0	26.7	54.0	-27.3	v	A	
7.356	3.0	21.8	35.5	7.3	-34.1	0.0	0.0	30.6	54.0	-23.4	v	A	
					- "-		-10						
	-											·····	

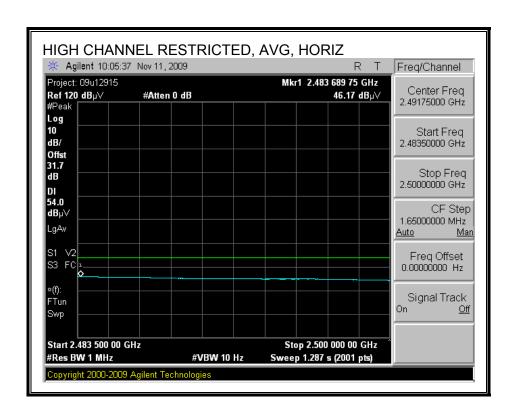

Rev. 4.1.2.7

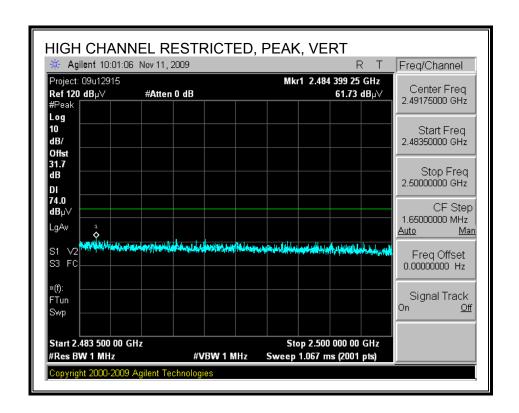
Note: No other emissions were detected above the system noise floor.

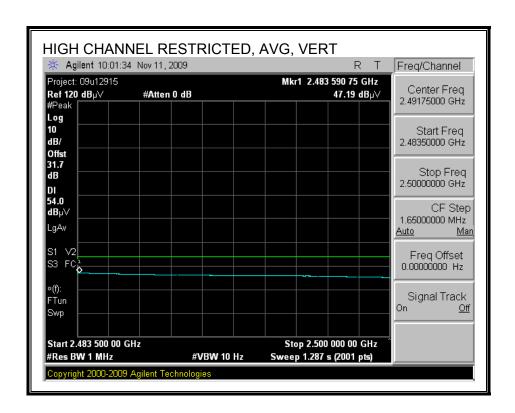

WITH PWB ANTENNA


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

BANDEDGE TABULATED DATA for EUT with PWB antenna

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen
Date: 11/11/09
Project #: 09U12915

EUT Description: 802.11 bgn WLAN Client

EUT M/N: 1400 Test Target: FCC 247

Mode Oper: 802.11n HT40, TX with PWB Antenna

f Measurement Frequency Amp Preamp Gain

Distance to Antenna D Corr Distance Correct to 3 meters

Read Analyzer Reading Avg Average Field Strength @ 3 m

AF Antenna Factor Peak Calculated Peak Field Strength

Average Field Strength Limit Peak Field Strength Limit Margin vs. Average Limit Margin vs. Peak Limit

CL Cable Loss HPF	High Pass Filter
-------------------	------------------

f	Dist	Read	AF	CL	Amp	D Corr	Fltr	Corr.	Limit	Margin	Ant Pol	Det	AntHigh	Table Angle	Notes
GHz	(m)	dBuV	dB/m	đВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	cm	Degree	
2422MHz	Low CH	L, Power	1D												
2.388	3.0	31.5	28.1	3.5	0.0	0.0	0.0	63.1	74.0	-10.9	H	P	99.0	189.0	PWB ANT
2.390	3.0	18.2	28.1	3.5	0.0	0.0	0.0	49.8	54.0	-4.2	H	A	99.0	189.0	PWB ANT
2422MHz	Low CH	L, Power	lD												
2.389	3.0	31.6	28.1	3.5	0.0	0.0	0.0	63.2	74.0	-10.8	V	P	99.0	273.0	PWB ANT
2.389	3.0	18.9	28.1	3.5	0.0	0.0	0.0	50.5	54.0	-3.5	V	A	99.0	273.0	PWB ANT
2452MHz	High C	H, Power	1F												
2.484	3.0	30.0	28.2	3.5	0.0	0.0	0.0	61.7	74.0	-12.3	V	P	130.0	262.0	PWB ANT
2.484	3.0	15.5	28.2	3.5	0.0	0.0	0.0	47.2	54.0	-6.8	V	A	130.0	262.0	PWB ANT
2452MHz	High C	H, Power	1F												
2.487	3.0	28.3	28.2	3.5	0.0	0.0	0.0	60.0	74.0	-14.0	H	P	100.0	186.0	PWB ANT
2.484	3.0	14.5	28.2	3.5	0.0	0.0	0.0	46.2	54.0	-7.8	H	A	100.0	186.0	PWB ANT
2422MHz	Low CH	L, Power	1E							Ĭ			Ĭ		
2.388	3.0	33.3	28.1	3.5	0.0	0.0	0.0	64.9	74.0	-9.1	V	P	99.0	273.0	PWB ANT
2.390	3.0	20.2	28.1	3.5	0.0	0.0	0.0	51.8	54.0	-2.2	v	A	99.0	273.0	PWB ANT
2422MHz	Low CH	L, Power	1E												
2.390	3.0	30.7	28.1	3.5	0.0	0.0	0.0	62.3	74.0	-11.7	H	P	100.0	189.0	PWB ANT
2.390	3.0	18.8	28.1	3.5	0.0	0.0	0.0	50.4	54.0	-3.6	Н	A	100.0	189.0	PWB ANT

ev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

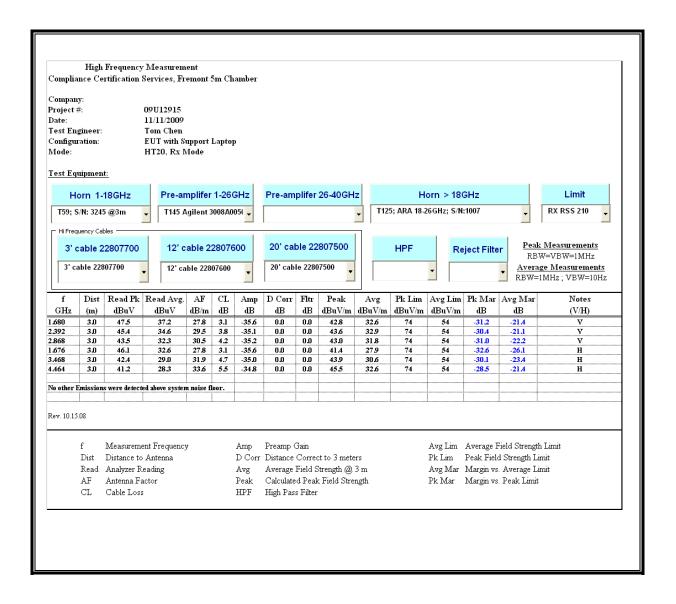
Tom Chen Test Engr: 11/11/09 Date: Project #: 09U12915

EUT Description: 802.11 bgn WLAN Client

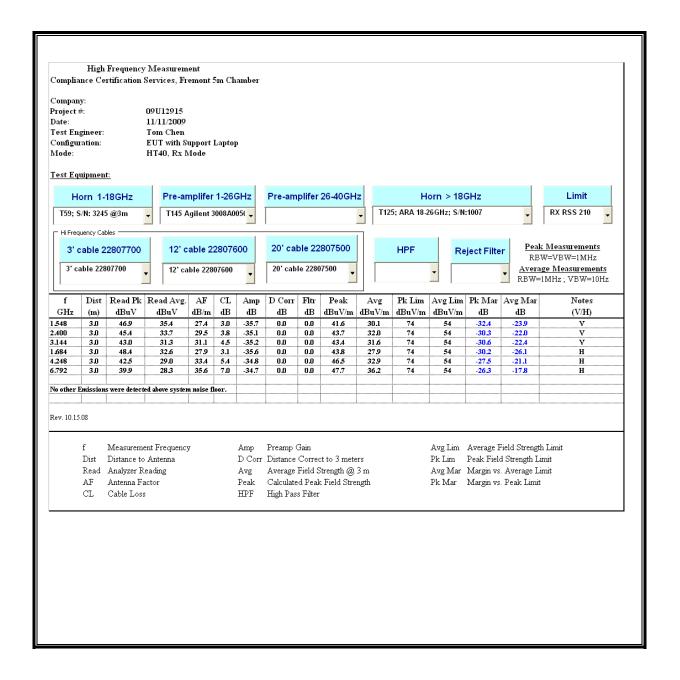
EUT M/N: 1400 Test Target:

Mode Oper: 802.11n HT40, TX with PWB Antenna

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Lin
Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Lin
AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter Peak Field Strength Limit Margin vs. Average Limit

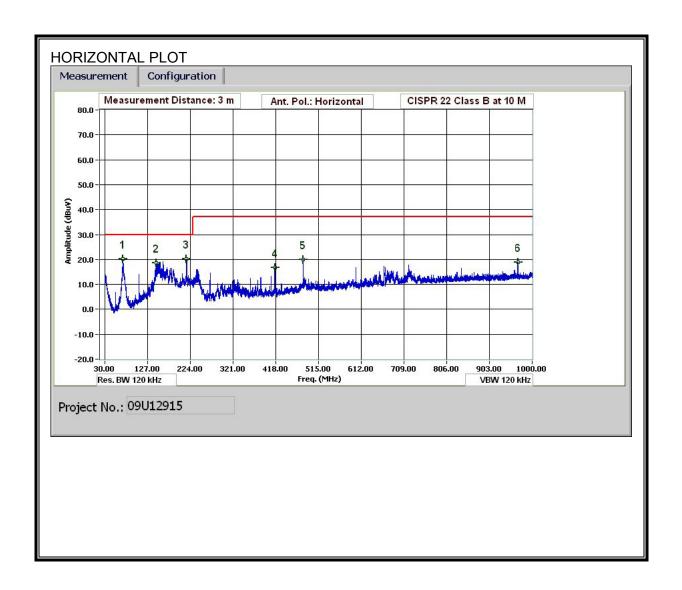

f GHz	Dist (m)	Read dBuV	AF dB/m	GL GL	Amp dB	D Corr dB		Corr. dBuV/m		Margin dB	Ant Pol V/H	Det. P/A/QP	Notes
2422MHz	Low CH	L Power	1D										
4.844	3.0	38.7	32.8	5.8	-34.8	0.0	0.0	42.5	74.0	-31.5	V	P	PWB ANT
7.266	3.0	37.5	35.1	7.2	-34.7	0.0	0.0	45.2	74.0	-28.8	V	P	PWB ANT
4.844	3.0	26.4	32.8	5.8	-34.8	0.0	0.0	30.1	54.0	- 23.9	V	A	PWB ANT
7.266	3.0	25.1	35.1	7.2	-34.7	0.0	0.0	32.8	54.0	-21.2	V	A	PWB ANT
4.844	3.0	39.5	32.8	5.8	-34.8	0.0	0.0	43.3	74.0	-30.7	Н	P	PWB ANT
7.266	3.0	37.5	35.1	7.2	-34.7	0.0	0.0	45.2	74.0	-28.8	Н	P	PWB ANT
4.844	3.0	27.1	32.8	5.8	-34.8	0.0	0.0	30.9	54.0	- 23.1	Н	A	PWB ANT
7.266	3.0	25.2	35.1	7.2	-34.7	0.0	0.0	32.9	54.0	-21.1	Н	A	PWB ANT
2437MHz	Mid CH	, Power 2	26										
4.874	3.0	38.6	32.8	5.8	-34.9	0.0	0.0	42.4	74.0	-31.6	Н	P	PWB ANT
7.311	3.0	38.0	35.2	7.3	-34.7	0.0	0.0	45.8	74.0	-28.2	Н	P	PWB ANT
4.874	3.0	27.5	32.8	5.8	-34.9	0.0	0.0	31.3	54.0	-22.7	Н	A	PWB ANT
7.311	3.0	25.7	35.2	7.3	-34.7	0.0	0.0	33.5	54.0	-20.5	Н	A	PWB ANT
4.874	3.0	39.4	32.8	5.8	-34.9	0.0	0.0	43.1	74.0	-30.9	V	P	PWB ANT
7.311	3.0	37.8	35.2	7.3	-34.7	0.0	0.0	45.6	74.0	-28.4	V	P	PWB ANT
4.874	3.0	26.7	32.8	5.8	-34.9	0.0	0.0	30.5	54.0	-23.5	V	A	PWB ANT
7.311	3.0	25.6	35.2	7.3	-34.7	0.0	0.0	33.4	54.0	-20.6	V	A	PWB ANT
2452MHz	High C	H, Power	1 F										
4.904	3.0	38.8	32.8	5.9	-34.9	0.0	0.0	42.6	74.0	-31.4	V	P	PWB ANT
7.356	3.0	37.2	35.3	7.3	-34.6	0.0	0.0	45.1	74.0	-28.9	V	P	PWB ANT
4.904	3.0	26.6	32.8	5.9	-34.9	0.0	0.0	30.4	54.0	- 23.6	V	A	PWB ANT
7.356	3.0	24.8	35.3	7.3	-34.6	0.0	0.0	32.7	54.0	-21.4	V	A	PWB ANT
4.904	3.0	38.4	32.8	5.9	-34.9	0.0	0.0	42.3	74.0	-31.7	Н	P	PWB ANT
7.356	3.0	37.5	35.3	7.3	-34.6	0.0	0.0	45.4	74.0	-28.6	Н	P	PWB ANT
4.904	3.0	27.1	32.8	5.9	-34.9	0.0	0.0	30.9	54.0	- 23.1	Н	A	PWB ANT
7.356	3.0	24.7	35.3	7.3	-34.6	0.0	0.0	32.6	54.0	-21.4	Н	A	PWB ANT

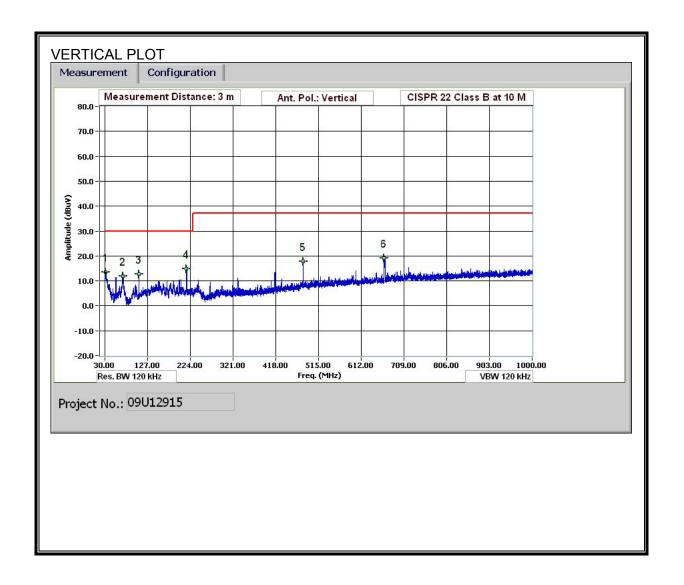
Rev. 4.1.2.7


Note: No other emissions were detected above the system noise floor.

8.3. RECEIVER ABOVE 1 GHz

8.3.1. RX ABOVE 1 GHz FOR 20 MHz BANDWIDTH IN THE 2.4 GHz BAND


8.3.2. RX ABOVE 1 GHz FOR 40 MHz BANDWIDTH IN THE 2.4 GHz BAND


8.4. WORST-CASE BELOW 1 GHz

PIFA Antenna

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

HORIZONTAL AND VERTICAL DATA

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

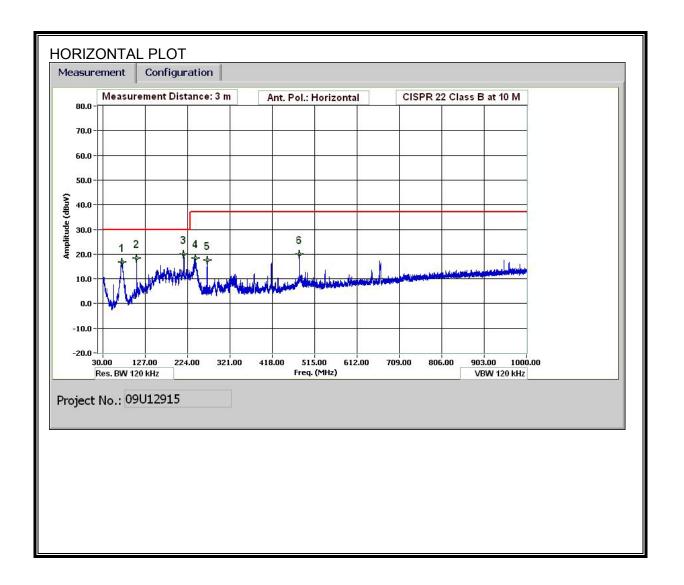
Tom Chen Test Engr: 11/13/09 Date: Project #: 09U12915

EUT Description: 802.11 bgn WLAN Client EUT M/N: 1400 with PIFA Antenna

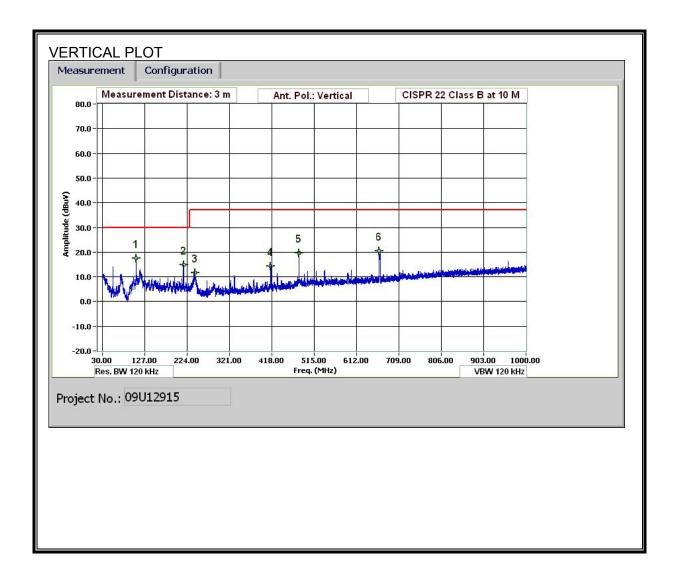
Test Target: FCC 247 Mode Oper: TX Worst case

Margin Margin vs. Limit

f Measurement Frequency Amp Preamp Gain
Dist Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Filter Filter Insert Loss
AF Antenna Factor Corr. Calculated Field Strength
CL Cable Loss Limit Field Strength Limit


f	Dist	Read	AF	CL	Amp	D Corr	Filter	Corr.	Limit	Margin	Ant Pol	Det	Notes
MHz	(m)	dBuV	dB/m	dВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
Horizontal													
71.522	3.0	50.4	7.9	0.7	28.3	-10.5	0.0	20.2	30.0	-9.8	H	P	
146.765	3.0	43.3	12.8	1.1	28.3	-10.5	0.0	18.5	30.0	-11.5	н	P	
215.648	3.0	45.7	11.9	1.3	28.2	-10.5	0.0	20.2	30.0	-9.8	Н	P	
416.296	3.0	38.3	15.2	1.8	28.1	-10.5	0.0	16.9	37.0	-20.1	H	P	
480.019	3.0	39.8	16.4	2.0	27.9	-10.5	0.0	19.8	37.0	-17.2	H	P	
967.479	3.0	32.1	22.3	2.9	27.9	-10.5	0.0	19.0	37.0	-18.0	Н	P	
Vertical								•					
32.160	3.0	32.8	19.2	0.5	28.4	-10.5	0.0	13.6	30.0	-16.4	v	P	
71.042	3.0	42.0	8.0	0.7	28.3	-10.5	0.0	11.9	30.0	-18.1	V	P	
107.883	3.0	39.2	11.4	1.0	28.3	-10.5	0.0	12.8	30.0	-17.2	V	P	
215.048	3.0	40.2	11.9	1.3	28.2	-10.5	0.0	14.7	30.0	-15.3	V	P	
480.019	3.0	37.9	16.4	2.0	27.9	-10.5	0.0	17.9	37.0	-19.1	V	P	
663.866	3.0	35.3	19.2	2.4	27.3	-10.5	0.0	19.0	37.0	-18.0	v	P	
								0		•			

Rev. 1.27.09


Note: No other emissions were detected above the system noise floor.

PWB Antenna

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

HORIZONTAL AND VERTICAL DATA

30-1000MHz Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen
Date: 11/09/09
Project #: 09U12915

EUT Description: 802.11 bgn WLAN Client

EUT M/N: 1400
Test Target: FCC 247
Mode Oper: TX Worst case

f Measurement Frequency Amp Preamp Gain Margin Margin vs. Limit

Dist Distance to Antenna D Corr Distance Correct to 3 meters
Read Analyzer Reading Filter Filter Insert Loss
AF Antenna Factor Corr. Calculated Field Strength
CL Cable Loss Limit Field Strength Limit

f	Dist	Read	AF	CL	Amp	D Corr	Filter	Corr.	Limit	Margin	Ant Pol	Det	Notes
MHz	(m)	dBuV	dB/m	dВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
Horizontal													
73.682	3.0	48.1	8.0	0.8	29.6	-10.5	0.0	16.8	30.0	-13.2	н	P	
107.883	3.0	45.8	11.5	0.9	29.5	-10.5	0.0	18.3	30.0	-11.7	H	P	
215.528	3.0	45.9	11.9	1.3	28.9	-10.5	0.0	19.8	30.0	-10.2	H	P	
241.809	3.0	44.5	11.8	1.4	28.8	-10.5	0.0	18.5	37.0	-18.5	н	P	
269.290	3.0	42.9	12.4	1.5	28.8	-10.5	0.0	17.5	37.0	-19.5	H	P	
480.019	3.0	41.6	16.4	2.1	29.6	-10.5	0.0	20.0	37.0	-17.0	н	P	
Vertical													
107.643	3.0	45.1	11.5	0.9	29.5	-10.5	0.0	17.5	30.0	-12.5	V	P	
215.768	3.0	41.0	11.9	1.3	28.9	-10.5	0.0	14.9	30.0	-15.1	V	P	
241.689	3.0	37.6	11.8	1.4	28.8	-10.5	0.0	11.6	37.0	-25.4	V	P	
414.976	3.0	36.8	15.3	1.9	29.4	-10.5	0.0	14.2	37.0	-22.8	V	P	
480.019	3.0	41.1	16.4	2.1	29.6	-10.5	0.0	19.6	37.0	-17.4	V	P	
663.986	3.0	39.1	18.9	2.5	29.6	-10.5	0.0	20.5	37.0	-16.5	V	P	

Rev. 1.27.09

Note: No other emissions were detected above the system noise floor.

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

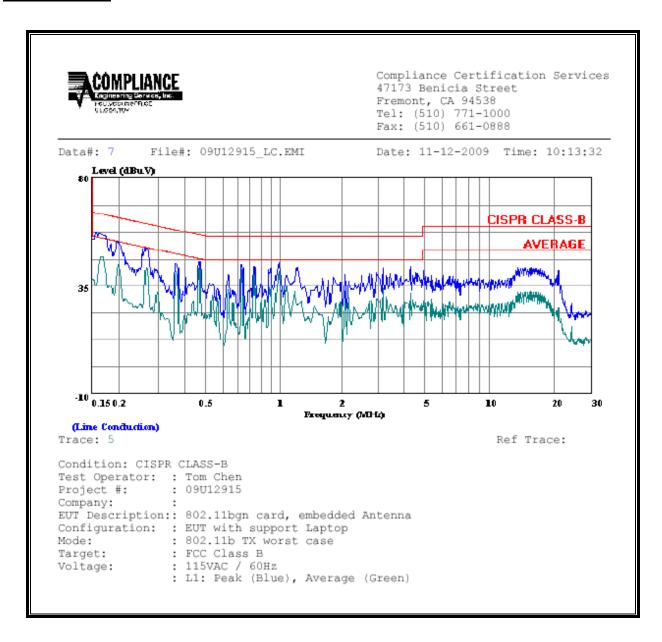
FCC §15.207 (a)

RSS-Gen 7.2.2

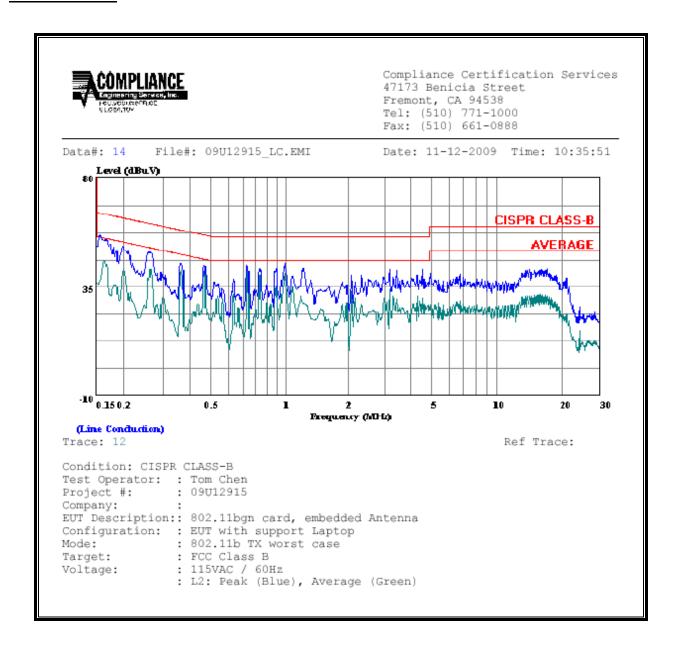
Frequency of Emission (MHz)	Conducted I	.imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE


ANSI C63.4

RESULTS


6 WORST EMISSIONS

		CONDUC	TED EMISS	IONS DA	ATA (115	VAC 60H	z)		
Freq.			Closs	Limit	EN_B	Marg	in	Remark	
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV(dB)	L1/L2
0.16	57.41		35.67	0.00	65.62	55.62	-8.21	-19.95	L1
0.20	53.80		43.00	0.00	63.82	53.82	-10.02	-10.82	L1
0.26	50.93		41.09	0.00	61.34	51.34	-10.41	-10.25	L1
0.16	56.71		37.51	0.00	65.73	55.73	-9.02	-18.22	L2
0.20	51.79		41.31	0.00	63.69	53.69	-11.90	-12.38	L2
0.26	49.46		37.79	0.00	61.43	51.43	-11.97	-13.64	L2
6 Worst I	Data								

LINE 1 RESULTS

LINE 2 RESULTS

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f 61.4	4.89/f 0.163	*(900/f²) 1.0	6
300–1500 1500–100,000			f/300 5	6 6
	for General Populati	on/Uncontrolled Ex	posure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180%)	30 30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500	27.5	0.073	0.2 f/1500	30 30
1500–100,000			1.0	30

f = frequency in MHz
* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
280	2.19		6
280/f	2.19/ <i>f</i>		6
28	2.19/f		6
28	0.073	2*	6
1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
61.4	0.163	10	6
61.4	0.163	10	616 000 /f ^{1.2}
0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}
	Electric Field Strength; rms (V/m) 280 280/f 28 28 1.585f ^{0.5} 61.4 61.4	Electric Field Strength; rms (V/m) (A/m) 280 2.19 280/f 2.19/f 28 2.19/f 28 0.073 1.585f ^{0.5} 0.0042f ^{0.5} 61.4 0.163	Electric Field Strength; rms (V/m) Magnetic Field Strength; rms (A/m) Power Density (W/m²) 280 2.19 280/f 2.19/f 28 2.19/f 28 0.073 2* 1.585f ^{0.5} 0.0042f ^{0.5} f/150 61.4 0.163 10 61.4 0.163 10

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

where

Px = Power of transmitter x

Gx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		()	(alDuss)	(4D:)	(\Alles AO)	/ma\A//ama A/2\
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)