

DECLARATION OF COMPLIANCE SAR ASSESSMENT PCII Report Part 1 of 2

Motorola Solutions Inc. EME Test Laboratory

Motorola Solutions Malaysia Sdn Bhd Plot 2A, Medan Bayan Lepas,

Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia.

Date of Report: 09/18/2020

Report Revision: A

Responsible Engineer: Ch'ng Jian Sheng (EME Engineer) **Report Author:** Ch'ng Jian Sheng (EME Engineer)

Date/s Tested: 08/04/2020 - 08/07/2020, 08/10/2020 - 08/13/2020, 08/16/2020 - 08/20/2020,

08/23/2020 - 08/26/2020, 09/03/2020, 09/17/2020 - 09/18/2020

Manufacturer: Motorola Solutions Inc.

Handheld Portable - APX NEXT XE ALL BAND MODEL 4.5, GRN **DUT Description:**

Test TX mode(s): FM; LTE; WLAN Max. Power output: Refer to Table 3 **Nominal Power:** Refer to Table 3 **Tx Frequency Bands:** Refer to Table 3

Signaling type: FM, TDMA, SC-FDMA, FHSS, DSSS, OFDM and NFC

Model(s) Tested: H55TGT9PW8AN (FCC), NUW2100 (ISED) Model(s) Certified: H55TGT9PW8AN (FCC), NUW2100 (ISED), H55TGT9PW8AN (FCC), NUW2101 (ISED)

437TWK4434, 437TWK4425, 437TWK4368, 437TWK4408

Classification: Occupational/Controlled **Applicant Name:** Motorola Solutions Inc.

Applicant Address: 8000 West Sunrise Boulevard, Fort Lauderdale, Florida 33322

FCC ID: AZ489FT7119; LMR 150.8-173.4 MHz, 406.125-512 MHz, 769-775 MHz, 799-

824 MHz, 851-869 MHz; LTE; WLAN 2.4 GHz; WLAN 5GHz, Bluetooth, NFC This report contains results that are immaterial for FCC equipment approval, which

are clearly identified.

IC: 109U-89FT7119; LMR 138-173.4 MHz, 406.125-430 MHz, 450-470 MHz, 769-

775 MHz, 799-824 MHz, 851-869 MHz; LTE; WLAN 2.4 GH; WLAN 5GHz,

Bluetooth, NFC

over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5).

This report contains results that are immaterial for ISED equipment approval,

which are clearly identified.

ISED Test Site registration: 24843

FCC Test Firm Registration

Serial Number(s):

Number: 823256

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report (no deviation from standard methods). This report shall not be reproduced without written approval from an officially designated representative of the Motorola **Solutions Inc EME Laboratory.**

I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Tiong Nguk Ing Deputy Technical Manager (Approved Signatory) Approval Date: 9/18/2020

Part 1 of 2

1.0	Introd	uction	5
2.0	FCC S	AR Summary	5
3.0	Abbre	viations / Definitions	6
4.0	Refere	nced Standards and Guidelines	7
5.0	SAR I	imits	8
6.0	Descri	ption of Device Under Test (DUT)	8
7.0	Option	nal Accessories and Test Criteria	10
	7.1	Antennas	10
	7.2	Battery	11
	7.3	Body worn Accessories	11
	7.4	Audio Accessories	
8.0	Descri	ption of Test System	
	8.1	Descriptions of Robotics/Probes/Readout Electronics	
	8.2	Description of Phantom(s)	
	8.3	Description of Simulated Tissue	
9.0		onal Test Equipment	
10.0		Measurement System Validation and Verification	
10.0	10.1	System Validation	
	10.2	System Verification	
	10.3	Equivalent Tissue Test Results	
11.0		onmental Test Conditions	
		Fest Setup and Methodology	
12.0	12.1	Measurements	
	12.2	DUT Configuration(s)	
	12.3	DUT Positioning Procedures	
	12.3	12.3.1 Body	
		12.3.1 Body	
		12.3.3 Face	
	12.4	DUT Test Channels	
	12.5	SAR Result Scaling Methodology	24
	12.6	DUT Test Plan	
13.0	DUT	Test Data	25
	13.1	LMR assessments for FCC	25
		13.1.1 VHF (150.8-173.4 MHz) assessments at the Body & Face	25
		13.1.2 UHF1 (406.125-470 MHz) assessments at the Body & Face	
		13.1.3 UHF2 (450-512 MHz) assessments at the Body & Face	
		13.1.4 769-775 MHz Assessments at the Body & Face	
		13.1.5 799-824 MHz Assessments at the Body & Face	
	10.0	13.1.6 851-869 MHz Assessments at the Body & Face	
	13.2	LMR Assessments for ISED.	
		13.2.1 VHF (138-173.4 MHz) assessments at the Body & Face	
		13.2.2 UHF1 (406.125-430, 450-470 MHz) assessments at the Body & Face 13.2.3 UHF2 (450-470 MHz) assessments at the Body & Face	
		15.4.5 OTH 4 (450-470 WHIZ) assessments at the DUHV 0x 1 acc).'

		13.2.4 769-775 MHz assessments at the Body & Face	34
		13.2.5 799-824 MHz assessments at the Body & Face	35
		13.2.6 851-869 MHz assessments at the Body & Face	36
	13.3	Additional assessments for each antenna for frequency bands with SAR degr	adation 37
	13.4	Additional Assessments per ISED Notice 2016-DRS001	38
	13.5	LTE Assessments for FCC & ISED	
		13.5.1 LTE B2 (1850-1910 MHz) assessments at the Body & Face	40
		13.5.2 LTE B4 (1710-1755 MHz) assessments at the Body & Face	
		13.5.3 LTE B5 (824-849 MHz) assessments at the Body & Face	42
		13.5.4 LTE B12 (699-716 MHz) assessments at the Body & Face	43
		13.5.5 LTE B13 (777-787 MHz) assessments at the Body & Face	
		13.5.6 LTE B14 (788-798 MHz) assessments at the Body & Face	
		13.5.7 LTE B17 (704-716 MHz) assessments at the Body & Face	
	13.6	WLAN Assessments for FCC & ISED	
		13.6.1 WLAN 2.4 GHz Assessments at the Body & Face	
		13.6.2 WLAN 5.0 GHz Assessments at the Body & Face	
		(U-NII-2A 5.25-5.35 GHz)	
		13.6.3 WLAN 5.0 GHz Assessments at the Body & Face	
		(U-NII-2C 5.47-5.65 GHz)	
		(U-NII-3 5.65-5.85 GHz)	
		13.6.5 Additional Assessments per ISED Notice 2016-DRS001	
	13.7	Shortened Scan Assessment	
14.0		Itaneous Transmissions	
17.0	14.1	Simultaneous Transmission for LMR and LTE	
	14.2	Simultaneous Transmission for LMR and WLAN 2.4 GHz	
	14.2	Simultaneous Transmission for LMR and WLAN 5.0 GHz	
15.0			
		ts Summary	
		bility Assessment	
17.0	Syster	m Uncertainty	58
APP	ENDI	CES	
A		urement Uncertainty Budget	
В		Calibration Certificates	
C	Dipole	e Calibration Certificates	
	•		
_			
Part	2 of 2		
APP	ENDI	CES	
D	Syster	m Verification Check Scans	2
E	DUT S	Scans	45
F		en Scan of Highest SAR Configuration	
G	DUT	Test Position Photos	74
Η	DUT o	& New Body-worn Accessories Photos	76

Report Revision History

Date	Revision	Comments
09/18/2020	A	Initial release

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number H55TGT9PW8AN (FCC); NUW2100 (ISED). This device is classified as Occupational/Controlled.

The information herein is to show evidence of Class II Permissive Change compliance for adding model H55TGT9PW8AN (FCC); NUW2100 (ISED) into existing APX Next family (FCC ID: AZ489FT7119). This device is electrically and software identical to APX Next model except for mechanical difference where the radio has a XE top control. New body worn accessories are introduced to this device (refer to Table 6).

2.0 FCC SAR Summary

Table 1

Equipment Class	Frequency band	Max Calc at Body (W/kg)	Max Calc at Face (W/kg)
	(MHz)	1g-SAR	1g-SAR
	150.8-173.4	0.58	0.45
	406.125-470	6.18	4.86
TNF	450-512	7.511	4.581
INF	769-775	3.89	1.93 ²
	799-824	6.46 ³	2.05
	851-869	6.374	1.23
	LTE B2	0.082	0.322
	LTE B4	0.079	0.267
	LTE B5	0.046	0.105
PCF	LTE B12	0.050	0.097
	LTE B13	0.086	0.097
	LTE B14	0.099	0.083
	LTE B17	0.031	0.111
DTS	2.4 GHz	0.111 ⁵	0.119
NII	5.0 GHz	0.059	0.767
Highest Simultaneous Transmission SAR	Sum of SAR (W/kg)	7.62 ⁶	5.63 ⁶

FCC ID: AZ489FT7119 / IC: 109U-89FT7119 Report ID: P12464-EME-00206

Notes:

3.0 Abbreviations / Definitions

BT: Bluetooth

CNR: Calibration Not Required

CW: Continuous Wave

DSS: Direct Spread Spectrum

DTS: Digital Transmission System

DUT: Device Under Test

DXX: Part 15 Low Power Communication Device Transmitter

EME: Electromagnetic Energy

FHSS: Frequency Hopping Spread Spectrum

FM: Frequency Modulation LMR: Land Mobile Radio LTE: Long Term Evolution

NA: Not Applicable

OFDM: Orthogonal Frequency Division Multiplexing

PCF: PCS Licensed Transmitter Held to Face

PSM: Public Safety Microphone

PTT: Push to Talk

OPSK: Quadrature Pulse Shift Key

RB: Resource Blocks

RSM: Remote Speaker Microphone SAR: Specific Absorption Rate

TDMA: Time Division Multiple Access

TNF: Licensed Non-Broadcast Transmitter Held to Face 16QAM: 16 State Quadrature Amplitude Modulation

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

¹ New highest SAR value at 450-512 MHz for body-worn accessory & face is 7.51 & 4.58 W/kg compared to previous on file SAR value of 6.08 & 4.48 W/kg.

² New highest SAR value at 769-775 MHz for face is 1.93 W/kg compared to previous on file SAR value of 1.72 W/kg.

³ New highest SAR value at 799-824 MHz for body-worn accessory is 6.46 W/kg compared to previous on file SAR value of 5.41 W/kg.

⁴ New highest SAR value at 851-869 MHz for body-worn accessory is 6.37 W/kg compared to previous on file SAR value of 4.53 W/kg.

⁵ New highest SAR value at 2.4 GHz for body-worn accessory is 0.11 W/kg compared to previous on file SAR value of 0.05 W/kg.

⁶ New highest simultaneous transmission SAR value for body-worn accessory & face is 7.62 & 5.63 W/kg compared to previous on file SAR value of 6.60 W/kg & 5.58 W/kg.

FCC ID: AZ489FT7119 / IC: 109U-89FT7119 Report ID: P12464-EME-00206

4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1 (2016) Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997.
- IEEE 1528 (2013), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
- Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2014)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
- FCC KDB 643646 D01 SAR Test for PTT Radios v01r03
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 RF Exposure Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 648474 D04 Handset SAR v01r03

5.0 SAR Limits

Table 2

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure	(Occupational / Controlled Exposure		
	Environment)	Environment)		
Spatial Average - ANSI -				
(averaged over the whole body)	0.08	0.4		
Spatial Peak - ANSI -				
(averaged over any 1-g of tissue)	1.6	8.0		
Spatial Peak – ICNIRP/ANSI -				
(hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0		
Spatial Peak - ICNIRP -				
(Head and Trunk 10-g)	2.0	10.0		

6.0 Description of Device Under Test (DUT)

This portable device operates in the LMR bands using either frequency modulation (FM) with 100% transmit duty cycle or TDMA signals with maximum of 50% transmit duty cycle. For conservative assessment, FM signal was tested. It also contains LTE and WLAN technologies for data application, Bluetooth for short range wireless devices.

The LMR bands in this device operate in a half duplex system. A half duplex system only allows the user to transmit or receive. This device cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device.

This device also incorporates a Class 1 Bluetooth device which is a Frequency Hopping Spread Spectrum (FHSS) technology. The Bluetooth radio modem is used to wireless link audio accessories. The maximum actual transmission duty cycle is imposed by the Bluetooth standard. The maximum duty cycle for BT is 77.26%.

The intended operating positions are "at the face" with the DUT at least 2.5 cm from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio. Operation at the body without an audio accessory attached is possible by means of BT accessories.

Table 3 below summarizes the technologies, bands, maximum duty cycles and maximum output powers. Maximum output powers are defined as upper limit of the production line final test station.

Table 3

Table 3								
Technologies	Tx Band (MHz)	Transmission	Duty Cycle (%)	Nominal Power (W)	Max Power (W)			
LMR	136-174	FM	*50	6.00	6.60			
LMR	380-470	FM	*50	5.00	5.70			
LMR	450-520	FM	*50	5.00	5.70			
LMR	762-776; 792-806	FM	*50	2.50	2.99			
LMR	806-825; 851-870	FM	*50	3.00	3.60			
LTE Band 2	1850-1910	QPSK, 16QAM	100	0.200	0.252			
LTE Band 4	1710-1755	QPSK, 16QAM	100	0.200	0.252			
LTE Band 5	824-849	QPSK, 16QAM	100	0.200	0.252			
LTE Band 12	699-716	QPSK, 16QAM	100	0.200	0.252			
LTE Band 13	777-787	QPSK, 16QAM	100	0.200	0.252			
LTE Band 14	788-798	QPSK, 16QAM	100	0.200	0.252			
LTE Band 17	704-716	QPSK, 16QAM	100	0.200	0.252			
Bluetooth	2400-2485	FHSS	77.26	0.009	0.0115			
Bluetooth LE	2400-2485	FHSS	62.68	0.009	0.0115			
NFC	13.56	NFC	100	0.035	0.035			
WLAN 802.11 b	2412-2462	DSSS	99.20	0.178	0.200			
WLAN 802.11 g /n (20 MHz)	2412-2462	OFDM	94.90 (802.11g) 94.36 (802.11n)	0.033 (CH 1) / 0.150 (CH 2-11)	0.045 (CH 1) / 0.158 (CH 2-11)			
WLAN 802.11 n (40 MHz)	2412-2462	OFDM	89.08	0.100 (CH 3) / 0.063 (CH 9) / 0.150 (Other channels)	0.126 (CH 3) / 0.079 (CH 9) / 0.158 (Other channels)			
WLAN 802.11 a / n / ac (20 MHz)	5180-5825	OFDM	96.30 (802.11a) 95.59 (802.11 n/ac)	0.089 (CH 140) / 0.126 (other Channels)	0.126 (CH 140) / 0.158 (other Channels)			
WLAN 802.11 n / ac (40 MHz)	5180-5825	OFDM	90.94	0.089 (CH 38, CH 102) 0.112 (CH 62) 0.126 (other Channels)	0.100 (CH 38, CH 102) / 0.126 (CH 62) / 0.158 (other Channels)			
WLAN 802.11 ac (80 MHz)	5180-5825	OFDM	80.27	0.063 (CH 42) 0.089 (CH 106) 0.100 (other Channels)	0.079 (CH 42) 0.100 (CH 106) 0.126 (other Channels)			

Note - * includes 50% PTT operation

Optional Accessories and Test Criteria

FCC ID: AZ489FT7119 / IC: 109U-89FT7119

This device is offered with optional accessories. The following sections identify the test criteria and details for each accessory category applicable for this PCII filing only. Detail listing of all approved offered accessories available in the original filing report.

7.1 Antennas

7.0

There are optional removable antennas and internal LTE, WLAN/BT antennas offered for this product. The Table below lists their descriptions.

Table 4

Antenna	Antenna Antenna B Selected T							
No.	Models	Description	for test	Tested				
1	KT000026A01	All Band Antenna, ½ wave, -6 dBi (VHF), -1.5 dBi (UHF), -0.9 dBi (7/800MHz)	Yes	Yes				
2	AN000297A01	All Band Antenna, ½ wave, -6.5 dBi (VHF), -0.5 dBi (UHF), -1 dBi (7/800MHz)	Yes	Yes				
3	PMAD4088B	VHF Wideband Antenna, 136-174 MHz, 5/8 wave, -8.14 dBd	Yes	Yes				
4	PMAD4094A	VHF Stubby Antenna, 147-160 MHz, ¼wave, -12.14dBd	Yes	Yes				
5	PMAD4095A	VHF Stubby Antenna, 160-174MHz, ¼ wave, -12.14d Bd	Yes	Yes				
6	PMAD4093A	VHF Stubby Antenna, 136-147MHz, ¼ wave, -12.14 dBd	Yes	Yes				
7	PMAE4100A	UHF Stubby Antenna, 380-470MHz, ¼ wave, 0 dBi	Yes	Yes				
8	PMAE4022B	UHF Whip Antenna, 380-480MHz, , 1/4 wave, 0 dBi	Yes	Yes				
9	PMAE4049A	UHF Whip Antenna, 450-527 MHz, , ¼ wave, 1.9 dBi	Yes	Yes				
10	PMAE4102A	UHF Stubby Antenna, 450-527MHz, ¼ wave, 1.7 dBi	Yes	Yes				
11	AN000296A01	7/800 Stubby Antenna, 760-870MHz, 1/4 wave, -0.8 dBi	Yes	Yes				
12	NAF5080A	7/800 Whip Antenna, 7/800MHz, ¼ wave, 0 dBi	Yes	Yes				
13	PMAF4022A	7/800 Stubby Antenna, 7/800 MHz, ¼ wave, 0 dBi	Yes	Yes				
14	PMAF4002A*	7/800 PSM Antenna, 7/800MHz, ½ wave, 0 dBi	Yes	Yes				
15	PMAE4065A*	UHF GPS PSM Antenna, 380-520 MHz, ½ wave, -2 dBd	Yes	Yes				
16	AN000304A01	LTE Antenna, 699-798 MHz, 824-849 MHz, 1710-2155MHz, ¹ / ₄ wave, Band 4 (1.02 dBi), Band 2 (2.15 dBi), Band 12 (-3.18 dBi), Band 13 (-3.00 dBi), Band 14 (-3.52 dBi), Band 5 (-2.34 dBi), Band 17 (-3.65 dBi)	Yes	Yes				
17	AN000304A03	WiFi/BT Antenna, 2400-2480 MHz, 5150-5850 MHz, ¼ wave, 2400 MHz (3.1 dBi), 2440 MHz (3.2 dBi), 2480 MHz (2.9 dBi), 5150MHz (2.8 dBi), 5500MHz (4.0 dBi), 5850MHz (1.9 dBi)	Yes	Yes				

Note - * For PSM only

FCC ID: AZ489FT7119 / IC: 109U-89FT7119

7.2 Battery

There are the batteries applicable for this PCII filing. The Table below lists their descriptions.

Table 5

Battery No.	Battery Models	Description	Selected for test	Tested
1	NNTN9087A	Standard Battery, IMPRES GEN2, Li-ion, IP68, 3800mAh Typical	Yes	Yes
2	NNTN9089A	High Capacity Battery, IMPRES GEN2, Li-ion, 5650mAh Typical	Yes	Yes
3	NNTN9216A	Standard Battery Pack, IMPRES GEN2, Li-ion, IP68, 4400mAh Typical	Yes	Yes

7.3 Body worn Accessories

These are the body worn applicable for this PCII filing. The Table below lists their descriptions. Appendix G illustrates the tested body worn accessories.

Table 6

		Table 0			
Body worn No.	Body worn Models	Description	Selected for test	Tested	Comments
1	NTN8266B	Belt Clip Kit	Yes	Yes	Tested with PMLN8208A
2	PMLN7965B	3" Belt Clip	Yes	Yes	Tested with PMLN8208A
3	PMLN8208A*	XE Classic Holster	Yes	Yes	Tested with NTN8266B, PMLN7965B, RLN6486A & RLN6488A
4	PMLN8209A*	XE Boston Leather Holster	Yes	Yes	Tested with RLN6486A & RLN6488A; Only compatible with standard batteries
5	RLN6486A*	Boston Leather Firemans Radio Strap	Yes	Yes	Tested with PMLN8208A, PMLN8209A & RLN6488A
6	RLN6487A*	Boston Leather Firemans Radio Strap - XL	No	No	By similarity to RLN6486A
7	RLN6488A*	Boston Leather Anti-Swap Strap for Boston Leather Firemans Radio Strap	Yes	Yes	Tested with PMLN8208A, PMLN8209A & RLN6486A
8	AY000223A01 *	Boston Leather Firemans Radio Strap with button back holder	No	No	By similarity to RLN6486A
9	AY000229A01 *	Boston Leather Firemans Radio Strap with button back holder - XL	No	No	By similarity to RLN6486A
10	4205823V08	Belt clip for PSM	Yes	Yes	Tested with PSM only

^{*}New body worn introduced for this model

7.4 Audio Accessories

These are the audio accessories applicable for this PCII filing. The Table below lists their descriptions.

Table 7

Audio	Audio Acc.		Selected		
No.	Models	Description	for test	Tested	Comments
1	PMMN4123A	Audio Accessory-Remote Speaker Microphone, MC550	Yes	Yes	
2	NMN6274B	Audio Accessory-Remote Speaker Microphone, IMPRES XP RSM For APX With Dual Microphone Noise Suppression, 3.5mm THRD Jack	Yes	Yes	
3	RLN5312B	Audio Accessory adapter With PTT	Yes	Yes	Test with BDN6783B
4	BDN6783B	CMRT Earpiece With Microphone and PTT - Black	Yes	Yes	Test with RLN5312B

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

Table 8

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner Engineering AG SPEAG DASY5	52.10.2.1495	DAE4	EX3DV4 (E-Field)

The DASY5TM system is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 Description of Phantom(s)

Table 9

Phanto m Type	Phantom(s) Used	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)
Triple Flat	NA	200MHz -6GHz; Er = 3-5, Loss Tangent = ≤0.05	280x175x175			
SAM	NA	300MHz -6GHz; Er = < 5, Loss Tangent = ≤0.05	Human Model	2mm +/- 0.2mm	Wood	< 0.05
Oval Flat	V	300MHz -6GHz; Er = 4+/- 1, Loss Tangent = ≤0.05	600x400x190			

8.3 Description of Simulated Tissue

FCC ID: AZ489FT7119 / IC: 109U-89FT7119

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Simulated Tissue Composition (percent by mass)

Table 10

	150	150MHz		450MHz		750MHz		835MHz	
Ingredients	Head	Body	Head	Body	Head	Body	Head	Body	
Sugar	55.4	49.7	56.0	46.5	57.0	46	57.0	44.9	
Diacetin	0	0	0	0	0	0	NA	NA	
De ionized - Water	38.35	46.2	39.1	50.53	40.12	51.8	40.45	53.06	
Salt	5.15	3.00	3.8	1.87	1.78	1.1	1.45	0.94	
HEC	1	1	1	1	1	1	1	1	
Bact.	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	

Table 10 Continued

Tuble 10 Continued						
	1800MHz		2450N	ИНz	5GHz (1)	
Ingredients	Head	Body	Head	Body	Head	Body
Sugar	NA	NA	NA	NA	NA	NA
Diacetin	51.5	35.0	51.0	34.5	NA	NA
De ionized - Water	47.82	64.35	48.75	65.20	NA	NA
Salt	0.58	0.55	0.15	0.20	NA	NA
HEC	NA	NA	NA	NA	NA	NA
Bact.	0.1	0.1	0.1	0.1	NA	NA

Note: (1) SPEAG provides Motorola proprietary stimulant ingredients for the 5GHz band.

9.0 Additional Test Equipment

The Table below lists additional test equipment used during the SAR assessment.

Table 11

Table 11							
Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date			
SPEAG Probe	EX3DV4	7519	05/29/2020	05/29/2021			
SPEAG Probe	EX3DV4	7533	11/06/2019	11/06/2020			
SPEAG DAE	DAE4	1294	05/27/2020	05/27/2021			
SPEAG DAE	DAE4	684	05/26/2020	05/26/2021			
Dielectric Assessment Kit	DAK-12	1069	02/25/2020	02/25/2021			
Dielectric Assessment Kit	DAK-3.5	1156	02/25/2020	02/25/2021			
Network Analyzer	E5071B	MY42403218	9/13/2019	9/13/2020			
Amplifier	50W 1000A	14715	CNR	CNR			
Amplifier	5S1G4	313326	CNR	CNR			
Amplifier	5S4G11	312663	CNR	CNR			
Bi-Directional Coupler	3020A	40295	09/12/2019	09/12/2020			
Bi-Directional Coupler	3022	81640	09/22/2019	09/22/2020			
Bi-Directional Coupler	3020A	41931	07/09/2020	07/09/2021			
Power Meter	E4416A	MY50001037	08/30/2019	08/30/2021			
Power Meter	E4418B	MY45107917	07/01/2019	07/01/2021			
Power Meter	E4416A	GB41293747	11/19/2018	11/19/2020			
Power Meter	E4417A	GB41292245	12/12/2019	12/12/2020			
Power Sensor	E9301B	MY50280001	04/22/2020	04/22/2021			
Power Sensor	E9301B	MY55210006	04/22/2020	04/22/2021			
Power Sensor	E9301B	MY50180003	07/04/2020	07/04/2021			
Power Sensor	E9301B	MY41495594	5/18/2020	5/18/2021			
WiFi Power Sensor	NRP-Z11	121252	3/11/2019	3/11/2021			
Vector Signal Generator	E4438C	MY47272101	10/29/2019	10/29/2021			
Vector Signal Generator	E9301B	MY55210006	04/22/2020	04/22/2021			
Temperature & Humidity Logger	DSB	16326820	11/25/2019	11/25/2020			
Temperature Probe	80PK-22	5032017	12/24/2019	12/24/2020			
Thermometer	HH202A	35881	12/24/2019	12/24/2020			
SPEAG Dipole	CLA150	4016	10/10/2018	10/10/2021			
SPEAG Dipole	D450V3	1054	03/11/2019	03/11/2022			
SPEAG Dipole	D450V3	1053	10/19/2018	10/19/2021			
SPEAG Dipole	D750V3	1142	11/20/2019	11/20/2022			
SPEAG Dipole	D750V3	1098	10/15/2018	10/15/2021			
SPEAG Dipole	D835V2	4d029	02/24/2020	02/24/2023			
SPEAG Dipole	D1800V2	278	10/15/2018	10/15/2021			
SPEAG Dipole	D2450V3	703	10/16/2018	10/16/2021			
SPEAG Dipole	D2450V3	782	02/20/2020	02/20/2023			
SPEAG Dipole	D5GHzV2	1026	10/18/2018	10/18/2021			
SPEAG Dipole	D5GHzV2	1027	01/31/2020	01/30/2023			
Wideband radio Communication Tester	CMW500	153170	05/03/2019	05/03/2021			

10.0 SAR Measurement System Validation and Verification

DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively.

10.1 System Validation

The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below.

Table 12

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
σ $\epsilon_{\rm r}$ Sensitivity Linear	rity Isotropy
CW	J
CW	
07/15/2020 Head 0.78 49.8 Pass Pass	Pass
0//0//2020 Body 0.83 59.0 Pass Pass	
07/02/2020 Head 450 0.89 42.3 Pass Pass	Pass
07/01/2020 Body 0.99 56.6 Pass Pass	s Pass
07/03/2020 Head 750 0.85 42.7 Pass Pass	Pass
07/02/2020 Body 750 0.94 55.7 Pass Pass	Pass
07/03/2020 Head 835 0.94 41.5 Pass Pass	Pass
07/02/2020 Body 833 1.02 54.8 Pass Pass	Pass
07/05/2020 Head 1800 1.35 40.5 Pass Pass	Pass
07/06/2020 Body 1800 1.48 51.7 Pass Pass	Pass
07/14/2020 Head 2450 1.78 35.5 Pass Pass	Pass
07/15/2020 Body 2430 2.02 53.0 Pass Pass	Pass
11/22/2019 Head 450 0.86 42.8 Pass Pass	Pass
11/22/2019 Body 430 0.95 58.4 Pass Pass	Pass
11/20/2019 Head 750 0.86 42.5 Pass Pass	Pass
12/11/2019 Body 835 1.01 53.2 Pass Pass	Pass
12/09/2019 Body 2450 2.02 50.8 Pass Pass	Pass
11/27/2019 Head 5250 7533 4.33 33.8 Pass Pass	Pass
11/29/2019 Body 5.31 44.5 Pass Pass	Pass
11/28/2019 Head 5600 4.66 34.2 Pass Pass	Pass
11/29/2019 Body 5.75 43.9 Pass Pass	Pass
11/28/2019 Head 5750 4.84 33.9 Pass Pass	Pass
11/29/2019 Body 5.94 43.7 Pass Pass	Pass
LTE	
07/03/2020 Head 750 0.85 42.7 Pass Pass	Pass
07/02/2020 Body (1 RB) 0.94 55.7 Pass Pass	Pass
07/03/2020 Head 750 0.85 42.7 Pass Pass	Pass
07/02/2020 Body (50% RB) 0.94 55.7 Pass Pass	Pass
09/02/2020 Head 835 (1 RB) 7510 0.93 40.6 Pass Pass	Pass
09/02/2020 Body 835 (50% RB) 7519 1.01 52.5 Pass Pass	Pass
07/05/2020 Head 1800 1.35 40.5 Pass Pass	Pass
07/06/2020 Body (1 RB) 1.48 51.7 Pass Pass	
07/05/2020 Head 1800 1.35 40.5 Pass Pass	Pass
07/06/2020 Body (50% RB) 1.48 51.7 Pass Pass	Pass

Table 12 (continued)

Dates		Probe Calibration Point				Measure Paran			Validation	
	P			σ	$\epsilon_{ m r}$	Sensitivity	Linearity	Isotropy		
				802.11						
12/03/2019	Head	5250		4.54	33.0	Pass	Pass	Pass		
12/06/2019	Body	3230		5.25	45.3	Pass	Pass	Pass		
12/03/2019	Head	5,000	7533	4.90	32.5	Pass	Pass	Pass		
12/09/2019	Body	5600	1555	5.85	44.7	Pass	Pass	Pass		
12/03/2019	Head	5750		5.06	32.2	Pass	Pass	Pass		
12/09/2019	Body	3730	5750	6.05	44.4	Pass	Pass	Pass		

10.2 System Verification

System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment.

Table 13

Probe Serial #	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W (W/kg)	System Check Results Measured (W/kg)	System Check Test Results when normalized to 1W (W/kg)	Tested Date
	ECC Dada	CDE A C. CL. A 150 /	2.05 . / 1.00/	4.00	4.00	08/17/2020#
	FCC Body	SPEAG CLA150 /	3.95 +/- 10%	3.91	3.91	08/18/2020
	IEEE/IEC Head	4016	3.64 +/- 10%	3.72	3.72	08/18/2020
				1.20	4.80	08/12/2020
	FCC Body	SPEAG D450V3 /	4.54 +/- 10%	1.11	4.44	08/13/2020#
		1054		1.16	4.64	08/18/2020#
	IEEE/IEC Head		4.44 +/- 10%	1.11	4.44	08/16/2020
	ECC Dada		8.75 +/- 10%	2.19	8.76	08/05/2020#
	FCC Body	SPEAG D750V3 / 1142	8.73 +/- 1070	2.10	8.40	08/07/2020
	IEEE/IEC Hand		1142	2.05	2.05	8.20
	IEEE/IEC Head		8.52 +/- 10%	2.00	8.00	08/20/2020
	FCC Body	SPEAG D750V3 /	8.63 +/- 10%	2.10	8.40	08/23/2020
7510	IEEE/IEC Head	1098	8.23 +/- 10%	2.08	8.32	08/24/2020
7519				2.44	9.76	08/09/2020
				2.32	9.28	08/10/2020
	FCC Body		0.61 . / 100/	2.54	10.16	08/11/2020
		SPEAG D835V2/	9.61 +/- 10%	2.40	9.60	08/19/2020
		4d029		2.37	9.48	09/03/2020
				2.21	8.84	09/17/2020#
	IEEE/IEC Head		9.70 +/- 10%	2.45	9.80	08/12/2020
	IEEE/IEC Head		9.70 +/- 10%	2.37	9.48	09/03/2020
	FCC Body		39.60 +/- 10%	9.31	37.24	08/06/2020#
	IEEE/IEC Head	SPEAG D1800V2 /		9.90	39.60	08/07/2020
		278	38.70 +/- 10%	9.96	39.84	08/25/2020
				8.78	35.12	08/25/2020
	FCC Body	SPEAG D2450V2 /	49.70 +/- 10%	11.60	46.40	08/04/2020#
	IEEE/IEC Head	703	52.90 +/- 10%	12.60	50.40	08/05/2020

Table 13 (continued)

Probe	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W	System Check Results	System Check Test Results when	Tested
Serial #		•	(W/kg)	Measured (W/kg)	normalized to 1W (W/kg)	Date
	FCC Body	SPEAG D450V3 / 1054	4.53 +/- 10%	1.10	4.40	08/24/2020
		SPEAG D450V3 /	4.54 +/- 10%	1.16	4.64	08/26/2020
	IEEE/IEC Head	1053	4.57 +/- 10%	1.12	4.48	08/24/2020
	IEEE/IEC Head	SPEAG D750V3 / 1098	8.23 +/- 10%	1.99	7.96	08/25/2020
	FCC Body	SPEAG D835V2 /	9.61 +/- 10%	2.37	9.48	08/24/2020#
	Tee Body	4d029	9.01 + /- 10%	2.32	9.28	08/26/2020
	FCC Body	SPEAG D2450V2 / 782	51.90 +/- 10%	11.90	47.60	08/25/2020
		SPEAG D5GHzV2_		7.17	71.70	08/07/2020
	FCC Body	5250MHz / 1026	74.50 +/- 10%	6.99	69.90	08/25/2020#
7533	IEEE/IEC Head	SPEAG D5GHzV2_ 5250MHz / 1027	80.60 +/- 10%	8.25	82.50	08/06/2020
		SPEAG		7.58	75.80	08/10/2020
	FCC Body	D5GHzV2_ 5600MHz / 1026	77.70 +/- 10%	7.72	77.20	08/11/2020
	IEEE/IEC Head FCC Body	SPEAG D5GHzV2_ 5600MHz / 1027	83.60 +/- 10%	8.46	84.60	08/06/2020
		SPEAG D5GHzV2_ 5750MHz / 1026	75.40 +/- 10%	7.35	73.50	08/11/2020
	IEEE/IEC Head	SPEAG D5GHzV2_ 5750MHz / 1027	79.70 +/- 10%	7.56	75.60	08/06/2020

Note: '#' indicates that system verification check covers next test day

10.3 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment.

Table 14

Table 14						
Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
	FCC Body	0.80	61.9	0.78	60.7	08/17/2020#
150	FCC Body	(0.76 - 0.84)	(58.8-65.0)	0.79	59.5	08/18/2020
130	IEEE/IEC Head	0.76 (0.72-0.80)	52.3 (49.7-54.9)	0.73	51.0	08/18/2020
	FCC Body	0.80	61.8	0.78	60.5	08/17/2020
155	FCC Body	(0.76 - 0.84)	(58.7-64.9)	0.79	59.4	08/18/2020
133	IEEE/IEC Head	0.76 (0.73-0.80)	52.1 (49.5-54.7)	0.74	50.8	08/18/2020
				0.95	54.5	08/12/2020#
				0.95	54.9	08/13/2020#
	FCC Body	0.94 (0.89-0.99)	56.7 (53.9-59.5)	0.95	54.4	08/18/2020#
450		(0.89-0.99)	(33.9-39.3)	0.94	54.3	08/24/2020
				0.92	54.4	08/26/2020
	IEEE/IEC	0.87	43.5	0.87	42.0	08/16/2020
	Head	(0.83-0.91)	(41.3-45.7)	0.89	42.1	08/24/2020
		0.94	56.7	0.96	54.2	08/18/2020#
460	FCC Body	(0.89-0.99)	(53.8-59.5)	0.95	54.1	08/24/2020
400	IEEE/IEC Head	0.87 (0.83-0.91)	43.4 (41.3-45.6)	0.90	41.9	08/24/2020
		, ,	,	0.96	54.2	08/12/2020#
				0.96	54.6	08/13/2020#
	FCC Body 0.94 (0.89-0.99)	I ECC Rody I	56.6 (53.8-59.5)	0.96	54.1	08/18/2020#
470		(33.8-39.3)	0.96	54.0	08/24/2020	
				0.94	54.1	08/26/2020
	IEEE/IEC	0.87	43.4	0.89	41.6	08/16/2020
	Head	(0.83-0.91)	(41.2-45.6)	0.91	41.7	08/24/2020
481	FCC Body	0.94 (0.90-0.99)	56.6 (53.8-59.4)	0.97	54.5	08/13/2020#
407	FCC Body	0.94 (0.90-0.99)	56.5 (53.7-59.3)	0.99	53.7	08/18/2020#
497	IEEE/IEC Head	0.87 (0.83-0.92)	43.2 (41.1-45.4)	0.92	41.1	08/16/2020
704	FCC Body	0.96 (0.91-1.01)	55.7 (52.9-58.5)	0.92	54.0	08/05/2020#
704	IEEE/IEC Head	0.89 (0.84-0.93)	42.1 (40.0-44.3)	0.85	42.4	08/20/2020
700	FCC Body	0.96 (0.91-1.01)	55.7 (52.9-58.5)	0.93	53.9	08/23/2020
709	IEEE/IEC Head	0.89 (0.84-0.93)	42.1 (40.0-44.2)	0.86	40.9	08/24/2020

Table 14 (continued)

Table 14 (continued)						
Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
		0.06	55.5	0.97	53.5	08/05/2020#
	FCC Body	0.96 (0.92-1.01)	55.5 (52.8-58.3)	0.93	55.3	08/07/2020
		(0.92-1.01)		0.97	53.6	08/23/2020
750				0.85	41.7	08/20/2020
	IEEE/	0.89	41.9	0.89	41.7	08/20/2020
	IEC Head	(0.85 - 0.93)	(39.8-44.0)	0.90	40.3	08/24/2020
				0.90	40.0	08/25/2020
769	IEEE/ IEC Head	0.89 (0.85-0.94)	41.8 (39.7-43.9)	0.92	38.8	08/25/2020
772	IEEE/ IEC Head	0.89 (0.85-0.94)	41.8 (39.7-43.9)	0.92	39.7	08/25/2020
775	FCC Body	0.97 (0.92-1.01)	55.4 (52.7-58.2)	0.96	55.1	08/07/2020
773	IEEE/IEC Head	0.89 (0.85-0.94)	41.8 (39.7-43.9)	0.88	42.3	08/12/2020
782	FCC Body	0.97 (0.92-1.01)	55.4 (52.6-58.2)	1.00	53.3	08/23/2020
702	IEEE/IEC Head	0.89 (0.85-0.94)	41.7 (39.7-43.8)	0.93	39.9	08/24/2020
793	FCC Body	0.97 (0.92-1.02)	55.4 (52.6-58.1)	1.01	53.0	08/05/2020#
793	IEEE/IEC Head	0.90 (0.85-0.94)	41.7 (39.6-43.8)	0.89	41.1	08/20/2020
799	FCC Body	0.97 (0.92-1.02)	55.3 (52.6-58.1)	0.98	53.2	08/24/2020#
		0.00	41.6	0.98	54.1	08/09/2020
809	FCC Body	0.90 (0.85-0.94)	41.6 (39.5-43.6)	0.98	53.7	08/10/2020
		(0.03 0.74)	(37.3 43.0)	0.97	53.8	08/26/2020
824	FCC Body	0.97 (0.92-1.02)	55.3 (52.5-58.1)	1.00	52.9	08/24/2020#
	IEEE/IEC Head	0.9 (0.85-0.94)	41.6 (39.5-43.6)	0.93	41.7	08/12/2020
				1.00	53.8	08/09/2020
				1.01	53.5	08/10/2020
				1.01	53.1	08/11/2020
	FCC Body	0.97	55.2	1.02	52.7	08/19/2020
835	ree body	(0.92-1.02)	(52.4-58.0)	1.02	52.8	08/24/2020#
833				0.99	53.6	08/26/2020
				1.01	52.5	09/03/2020
				1.00	53.2	09/16/2020#
	IEEE/	0.90	41.5	0.94	41.5	08/12/2020
	IEC Head	(0.86-0.95)	(39.4-43.6)	0.93	40.6	09/03/2020
837	IEEE/ IEC Head	0.9 (0.86-0.95)	41.5 (39.4-43.6)	0.93	40.6	09/03/2020
844	FCC Body	0.98 (0.93-1.03)	55.2 (52.4-57.9)	1.02	52.5	09/03/2020

Table 14 (continued)

Table 14 (continued)						
Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
				1.02	53.3	08/10/2020
851	FCC Body	0.99	55.2	1.03	53.0	08/11/2020
031	I CC Body	(0.94-1.04)	(52.4-57.9)	1.03	52.5	08/19/2020#
				1.02	53.0	09/16/2020#
861	FCC Body	1.00 (0.95-1.05)	55.1 (52.4-57.9)	1.03	53.0	09/16/2020#
869	FCC Body	1.01 (0.96-1.06)	55.1 (52.3-57.9)	1.04	52.9	09/16/2020#
1745	FCC Body	1.49 (1.41-1.56)	53.4 (50.8-56.1)	1.45	51.5	08/06/2020#
1743	IEEE/IEC Head	1.37 (1.3-1.44)	40.1 (38.1-42.1)	1.39	38.3	08/06/2020#
	FCC Body	1.52 (1.44-1.6)	53.3 (50.6-56.0)	1.51	51.4	08/06/2020#
1800		1.40	40.0	1.34	38.6	08/06/2020#
	IEEE/IEC Head	1.40 (1.33-1.47)	40.0 (38.0-42.0)	1.46	38.9	08/25/2020
	Ticad	(1.55-1.47)	(30.0-42.0)	1.34	38.3	08/25/2020
1860	IEEE/IEC Head	1.40 (1.33-1.47)	40.0 (38.0-42.0)	1.39	38.3	08/25/2020
1880	FCC Body	1.52 (1.44-1.60)	53.3 (50.6-56.0)	1.56	51.1	08/06/2020#
2412	FCC Body	1.91 (1.82-2.01)	52.8 (47.5-58.0)	1.99	48.1	08/25/2020
2437	FCC Body	1.94 (1.84-2.03)	52.7 (47.4-58.0)	2.03	48.0	08/04/2020#
	FCC Body	1.95	52.7	2.04	48.0	08/04/2020#
2450	I CC Body	(1.85-2.05)	(47.4-58.0)	2.04	48.0	08/25/2020
	IEEE/IEC Head	1.80 (1.71-1.89)	39.2 (35.3-43.1)	1.81	36.3	08/05/2020
	FCC Body	5.36	48.9	5.29	44.3	08/07/2020
5250	Tee Body	(4.82-5.89)	(44.1-53.8)	5.29	46.2	08/25/2020#
	IEEE/IEC Head	4.71 (4.24-5.18)	36.0 (32.4-39.5)	4.37	33.5	08/06/2020
	FCC Body	5.38	48.9	5.31	44.3	08/07/2020
5270	·	(4.84-5.92)	(44.0-53.8)	5.32	46.2	08/25/2020#
	IEEE/IEC Head	4.73 (4.26-5.20)	35.9 (32.3-39.5)	4.39	33.5	08/06/2020
	FCC Body	5.77	48.5	5.86	43.9	08/09/2020#
5600	Tee Body	(5.19-6.34)	(43.6-53.3)	5.87	43.8	08/10/2020#
	IEEE/IEC Head	5.07 (4.56-5.58)	35.5 (32.0-39.1)	4.71	33.0	08/06/2020
	FCC Body	5.80	48.4	5.90	43.8	08/09/2020#
5630	, and the second	(5.22-6.38)	(43.6-53.3)	5.91	43.8	08/10/2020#
	IEEE/IEC Head	5.10 (4.59-5.61)	35.5 (31.9-39.0)	4.74	33.0	08/06/2020
5750	FCC Body	5.94 (5.35-6.54)	48.3 (43.4-53.1)	6.08	43.6	08/10/2020#
3730	IEEE/IEC Head	5.22 (4.70-5.74)	35.4 (31.8-38.9)	4.86	32.8	08/06/2020

Table 14 (continued)

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
5795	FCC Body	5.99 (5.39-6.59)	48.2 (43.4-53.0)	6.14	43.5	08/10/2020#
3793	IEEE/IEC Head	5.27 (4.74-5.79)	35.3 (31.8-38.8)	4.90	32.7	08/06/2020

Note: '#' indicates that tissue test result covers next test day (within 24 hours)

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein:

Table 15

	Target	Measured
Ambient Temperature	18 – 25 °C	Range: 18.4 - 24.4°C Avg. 21.7 °C
Tissue Temperature	18 – 25 °C	Range: 20.7 - 22.6°C Avg. 21.6°C

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF disturbances that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Setup and Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing.

The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

Table 16

Description		≤3 GHz	> 3 GHz			
Maximum distance from closest mea (geometric center of probe sensors)		5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$			
Maximum probe angle from probe a normal at the measurement location	xis to phantom surface	30° ± 1°	20° ± 1°			
C		≤ 2 GHz: ≤ 15 mm	$3-4$ GHz: ≤ 12 mm			
0		$2-3 \text{ GHz:} \leq 12 \text{ mm}$	$4-6$ GHz: ≤ 10 mm			
n		When the x or y dimension	on of the test device, in			
Maxim u m area scan spatial resolu	tion: Av Aran Av Aran	the measurement plane orientation, is smaller				
iviaximism area sean spatial resolu	поп. Длягса, Дуягса	than the above, the measurement resolution must				
1		be \leq the corresponding x or y dimension of the				
g		test device with at least o	ne measurement point			
u		on the test device.				
Maximumrzoom scan spatial resolut	ion: ΔxZoom, ΔyZoom	≤ 2 GHz: ≤ 8 mm	$3-4 \text{ GHz:} \leq 5 \text{ mm*}$			
a		$2-3 \text{ GHz: } \leq 5 \text{ mm*}$	$4-6 \text{ GHz: } \leq 4 \text{ mm*}$			
Maximum zoom scan spatial unifo	orm grid: ΔzZoom(n)		$3-4$ GHz: ≤ 4 mm			
resolution, normal to		≤ 5 mm	$4-5 \text{ GHz:} \leq 3 \text{ mm}$			
phantom surface			$5-6$ GHz: ≤ 2 mm			

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. KDB 941225 D05 was applied to LTE test configuration and KDB 248227 D01 applied to WLAN test configurations. CMW500 Communication Test set was used for LTE testing.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in Appendix G.

12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with and without the offered audio accessories as applicable.

12.3.2 Head

Not applicable.

12.3.3 Face

The DUT was positioned with its' front and back sides separated 2.5cm from the phantom.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

FCC ID: AZ489FT7119 / IC: 109U-89FT7119

12.4 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

$$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$

Where

 N_c = Number of channels

 $F_{high} = Upper channel$

 $F_{low} = Lower channel$

 F_c = Center channel

12.5 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

 $P_{max} = Maximum Power (W)$

P int = Initial Power (W)

Drift = DASY drift results (dB)

SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg)

DC = Transmission mode duty cycle in % where applicable

50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied:

If $P_{int} > P_{max}$, then $P_{max}/P_{int} = 1$.

Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

12.6 DUT Test Plan

The DUT was assessed at the body and face using the highest applicable configuration found during initial compliance assessment on filed with the FCC and ISED. All modes of operation identified in section 6.0 were considered during the development of the test plan.

13.0 DUT Test Data

13.1 LMR assessments for FCC

13.1.1 VHF (150.8-173.4 MHz) assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 17 (bolded) are presented in Appendix E.

Table 17

Table 17									
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#
			В	ody					
	PMLN8208A w/ NTN8266B			6.25	-0.05	0.92	0.49	AN-AB-200817-12	
		PMLN8208A w/ PMLN7965B	None	155.0000	6.20	-0.38	0.99	0.57	AN-AB-200818-06
PMAD4094A	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A			6.23	-1.07	0.85	0.58	AN-AB-200818-08
		PMLN8209A w/ RLN6486A w/ RLN6488A			6.26	-0.37	0.64	0.37	AN-AB-200818-09
			F	ace					_
PMAD4094A	NNTN9216A	None; Radio @ back	None	155.0000	6.23	-0.19	0.81	0.45	AN-FACE-200818- 15

13.1.2 UHF1 (406.125-470 MHz) assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 18 (bolded) are presented in Appendix E.

Table 18

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	SAR	Max Calc. 1g- SAR (W/kg)	Run#
			В	ody					
		PMLN8208A w/ NTN8266B		470.0000	5.44	-0.30	11.00	6.18	AM(AMN)-AB- 200813-01#
		PMLN8208A w/ PMLN7965B	PMMN4123A		5.49	-0.31	9.99	5.57	AM(AMN)-AB- 200813-02#
PMAE4049A	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A			5.44	-0.31	10.90	6.13	AM(AMN)-AB- 200813-04#
		PMLN8209A w/ RLN6486A w/ RLN6488A			5.42	-0.62	9.08	5.51	AM(AMN)-AB- 200813-05#
	•	•	F	ace	•				
PMAD4049A	NNTN9216A	None; Radio @ back	None	470.0000	5.45	-0.31	8.66	4.86	AN-FACE-200816- 09

13.1.3 UHF2 (450-512 MHz) assessments at the Body & Face

The new derivative model was asses with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 19 (bolded) are presented in Appendix E.

Table 19

	Table 17										
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#		
			В	ody							
		PMLN8208A w/ NTN8266B		481.0000	5.44	-0.24	11.20	6.20	AM(AMN)-AB- 200813-17		
		PMLN8208A w/ PMLN7965B	NMN6274B		5.43	-0.24	10.30	5.71	AM(AMN)-AB- 200813-18		
PMAE4049A	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A			5.40	-0.34	12.00	6.85	AM(AMN)-AB- 200814-01#		
		PMLN8209A w/ RLN6486A w/ RLN6488A			5.48	-0.41	9.38	5.36	AM(AMN)-AB- 200814-02#		
			F	ace							
PMAE4049A	NNTN9216A	None; Radio @ back	None	496.5000	5.50	-0.21	8.43	4.58	AN-FACE-200816- 08		

13.1.4 769-775 MHz Assessments at the Body & Face

The new derivative model was asses with the highest applicable configuration at the Body and Face on file with the FCC. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 20 (bolded) are presented in Appendix E.

Table 20

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)		Max Calc. 1g- SAR (W/kg)	Run#
			Bod	y					
		PMLN8208A w/ NTN8266B		774.9875	2.76	-0.31	6.09	3.54	AN-AB-200807- 16
		PMLN8208A w/ PMLN7965B	PMMN4123A		2.77	-0.27	5.69	3.27	AN-AB-200807- 17
AN000296A01	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A			2.76	-0.71	6.10	3.89	AN-AB-200807- 20
		PMLN8209A w/ RLN6486A w/ RLN6488A			2.74	-0.35	6.17	3.65	AN-AB-200807- 22
	•		Face	e					
NAF5080A	NNTN9097A	None, Radio @ back	None	774.9875	2.76	-0.42	3.23	1.93	AN-FACE- 200812-12

13.1.5 799-824 MHz Assessments at the Body & Face

The new derivative model was asses with the highest applicable configuration at the Body and Face on file with the FCC. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 21 (bolded) are presented in Appendix E.

Table 21

			1 4010 21						
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#
			Bod	y					
	PMLN8208A w/ NTN8266B			3.50	-0.37	6.90	3.86	AN-AB-200809- 06	
		PMLN8208A w/ PMLN7965B	PMMN4123A		3.51	-0.28	6.55	3.58	AN-AB-200809- 07
AN000296A01	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A		808.5000	3.50	-0.64	6.93	4.13	AN-AB-200809- 09
		PMLN8209A w/ RLN6486A w/ RLN6488A			3.50	-0.20	12.00	6.46	AN-AB-200810- 09
			Face	e					
NAF5080A	NNTN9087A	None, Radio @ back	None	823.9875	3.51	-0.39	3.65	2.05	AN-FACE- 200812-13

13.1.6 851-869 MHz Assessments at the Body & Face

The new derivative model was asses with the highest applicable configuration at the Body and Face on file with the FCC. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 22 (bolded) are presented in Appendix E.

Table 22

			Table 22						
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#
			Bod	y					
	PMLN8208A w/ NTN8266B			3.43	-0.16	6.06	3.30	AM(AMN)-AB- 200810-16	
		PMLN8208A w/ PMLN7965B	PMMN4123A	851.0125	3.44	-0.20	5.72	3.13	AM(AMN)-AB- 200811-11
AN000296A01	NNTN9216A	PMLN8208A w/ RLN6486A w/ RLN6488A			3.42	-0.10	7.05	3.80	AM(AMN)-AB- 200811-12
		PMLN8209A w/ RLN6486A w/ RLN6488A			3.45	-0.26	11.50	6.37	AN-AB-200918- 01#
			Face	e					
NAF5080A	NNTN9087A	None, Radio @ back	None	868.9875	3.42	-0.73	1.97	1.23	AN-FACE- 200812-10

LMR Assessments for ISED

FCC ID: AZ489FT7119 / IC: 109U-89FT7119

13.2

13.2.1 VHF (138-173.4 MHz) assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 23 (bolded) are presented in Appendix E.

Table 23

	1 able 25										
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#		
			В	ody							
		PMLN8208A w/ NTN8266B		155.0000	6.25	-0.05	0.92	0.49	AN-AB-200817-12		
	NNTN9087A	PMLN8208A w/ PMLN7965B	None		6.20	-0.38	0.99	0.57	AN-AB-200818-06		
PMAD4094A		PMLN8208A w/ RLN6486A w/ RLN6488A			6.23	-1.07	0.85	0.58	AN-AB-200818-08		
		PMLN8209A w/ RLN6486A w/ RLN6488A			6.26	-0.37	0.64	0.37	AN-AB-200818-09		
			F	ace							
PMAD4094A	NNTN9216A	None; Radio @ back	None	155.0000	6.23	-0.19	0.81	0.45	AN-FACE-200818- 15		

13.2.2 UHF1 (406.125-430, 450-470 MHz) assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 24 (bolded) are presented in Appendix E.

Table 24

	14010 24										
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)		Max Calc. 1g- SAR (W/kg)	Run#		
			В	ody							
		PMLN8208A w/ NTN8266B	PMMN4123A	470.0000	5.44	-0.30	11.00	6.18	AM(AMN)-AB- 200813-01#		
		PMLN8208A w/ PMLN7965B			5.49	-0.31	9.99	5.57	AM(AMN)-AB- 200813-02#		
PMAE4049A	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A			5.44	-0.31	10.90	6.13	AM(AMN)-AB- 200813-04#		
		PMLN8209A w/ RLN6486A w/ RLN6488A			5.42	-0.62	9.08	5.51	AM(AMN)-AB- 200813-05#		
			F	ace							
PMAE4049A	NNTN9216A	None; Radio @ back	None	470.0000	5.45	-0.31	8.66	4.86	AN-FACE-200816- 09		

13.2.3 UHF2 (450-470 MHz) assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 25 (bolded) are presented in Appendix E.

Table 25

	14010 25										
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#		
			В	ody							
		PMLN8208A w/ NTN8266B		470.0000	5.43	-0.30	11.60	6.52	AN-AB-200814- 05#		
		PMLN8208A w/ PMLN7965B	BDN6783B w/ RLN5312B		5.43	-0.23	10.60	5.87	AN-AB-200814- 06#		
PMAE4049A	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A			5.41	-0.34	11.60	6.61	AN-AB-200814- 07#		
		PMLN8209A w/ RLN6486A w/ RLN6488A			5.40	-0.39	10.30	5.95	AN-AB-200814- 08#		
			F	ace							
PMAE4022B	NNTN9089A	None; Radio @ back	None	450.0000	5.37	-0.36	5.39	3.11	AN-FACE-200816- 07		

13.2.4 769-775 MHz assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 26 (bolded) are presented in Appendix E.

Table 26

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)		Max Calc. 1g- SAR (W/kg)	Run#
			Bod	y					
	PMLN8208A w/ NTN8266B			2.76	-0.31	6.09	3.54	AN-AB-200807- 16	
		PMLN8208A w/ PMLN7965B	PMMN4123A		2.77	-0.27	5.69	3.27	AN-AB-200807- 17
AN000296A01	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A		-	2.76	-0.71	6.10	3.89	AN-AB-200807- 20
		PMLN8209A w/ RLN6486A w/ RLN6488A			2.74	-0.35	6.17	3.65	AN-AB-200807- 22
			Face	e					
NAF5080A	NNTN9097A	None, Radio @ back	None	774.9875	2.76	-0.42	3.23	1.93	AN-FACE- 200812-12

13.2.5 799-824 MHz assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 27 (bolded) are presented in Appendix E.

Table 27

			Table 27						
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#
			Bod	y					
	PMLN8208A w/ NTN8266B			3.50	-0.37	6.90	3.86	AN-AB-200809- 06	
		PMLN8208A w/ PMLN7965B	PMMN4123A		3.51	-0.28	6.55	3.58	AN-AB-200809- 07
AN000296A01	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A		808.5000	3.50	-0.64	6.93	4.13	AN-AB-200809- 09
		PMLN8209A w/ RLN6486A w/ RLN6488A			3.50	-0.20	12.00	6.46	AN-AB-200810- 09
			Face	e					
NAF5080A	NNTN9087A	None, Radio @ back	None	823.9875	3.51	-0.39	3.65	2.05	AN-FACE- 200812-13

13.2.6 851-869 MHz assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 28 (bolded) are presented in Appendix E.

Table 28

Table 20									
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#
Body									
AN000296A01	NNTN9216A	PMLN8208A w/ NTN8266B	PMMN4123A	851.0125	3.43	-0.16	6.06	3.30	AM(AMN)-AB- 200810-16
		PMLN8208A w/ PMLN7965B			3.44	-0.20	5.72	3.13	AM(AMN)-AB- 200811-11
		PMLN8208A w/ RLN6486A w/ RLN6488A			3.42	-0.10	7.05	3.80	AM(AMN)-AB- 200811-12
		PMLN8209A w/ RLN6486A w/ RLN6488A			3.45	-0.26	11.50	6.37	AN-AB-200918- 01#
Face									
NAF5080A	NNTN9087A	None, Radio @ back	None	868.9875	3.42	-0.73	1.97	1.23	AN-FACE- 200812-10

13.3 Additional assessments for each antenna for frequency bands with SAR degradation

Frequency bands (UHF2, 799-824 MHz and 851-869 MHz) observed body SAR degradation; additional body assessment was done with the previous highest applicable configuration for each of the remaining applicable offered antennas with highest SAR body worn accessory from above UHF2, 799-824 MHz and 851-869 MHz assessment. SAR plot of the highest result per Table 29 (bolded) are presented in Appendix E.

Table 29

1 able 29									
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	-	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#
			UHF	2					
KT000026A01	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A	PMMN4123A	496.5000	5.48	-0.27	6.97	3.86	ZZ(AR)-AB- 200819-06#
PMAE4022B	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A	PMMN4123A	470.0000	5.46	-0.24	7.68	4.24	ZZ(AR)-AB- 200819-07#
PMAE4100A	NNTN9089A	PMLN8208A w/ RLN6486A w/ RLN6488A	PMMN4123A	470.0000	5.42	-0.64	6.64	4.05	AN-AB-200819- 08#
PMAE4102A	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A	PMMN4123A	460.0000	5.34	-0.31	13.10	7.51	AN-AB-200819- 09#
AN000297A01	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A	PMMN4123A	450.0000	5.35	-0.31	8.26	4.66	AN-AB-200819- 10#
			799-824	MHz					
KT000026A01	NNTN9087A	PMLN8209A w/ RLN6486A w/ RLN6488A	PMMN4123A	808.5000	3.39	-0.52	7.32	4.38	ZZ(AR)-AB- 200819-18
PMAE4022A	NNTN9087A	PMLN8209A w/ RLN6486A w/ RLN6488A	PMMN4123A	799.0125	2.79	-0.37	6.96	4.06	ZZ(AR)-AB- 200819-19
AN000297A01	NNTN9087A	PMLN8209A w/ RLN6486A w/ RLN6488A	PMMN4123A	823.9875	3.56	-0.39	4.44	2.46	ZZ(AR)-AB- 200819-20

Table 29 (continued)

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#
			851-869	MHz					
PMAE4022A	NNTN9087A	PMLN8209A w/ RLN6486A w/ RLN6488A	PMMN4123A	868.9875	3.43	-0.35	5.94	3.38	ZZ(AR)-AB- 200820-01#
AN000297A01	NNTN9087A	PMLN8209A w/ RLN6486A w/ RLN6488A	PMMN4123A	851.0125	3.47	-0.36	4.66	2.63	ZZ(AR)-AB- 200820-02#

13.4 Additional Assessments per ISED Notice 2016-DRS001

SAR degradation is observed at the Body and Face for UHF2, as per ISED Notice 2016-DRS001, additional tests were required for the low, mid and high frequency channels for the configuration with the highest SAR value.

Table 30

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)		SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#
			В	ody					
		PMLN8208A		450.0000	5.33	-0.22	10.00	5.62	ZZ-AB-200824-10
PMAE4102A	NNTN9087A	w/ RLN6486A	PMMN4123A	460.0000	5.34	-0.31	13.10	7.51	AN-AB-200819- 09#
		w/ RLN6488A		470.0000	5.34	-0.43	11.40	6.72	ZZ-AB-200824-11
			F	ace					
				450.0000	5.37	-0.36	5.39	3.11	AN-FACE-200816- 07
PMAE4022B	NNTN9089A	None; Radio @back	None	460.0000	5.37	-0.32	5.13	2.93	BL(AMN)-FACE- 200824-14
				470.0000	5.38	-0.32	4.69	2.67	BL(AMN)-FACE- 200824-15

FCC ID: AZ489FT7119 / IC: 109U-89FT7119

SAR degradation is observed at the Face for 769-775 MHz, as per ISED Notice 2016-DRS001, additional tests were required for the low, mid and high frequency channels for the configuration with the highest SAR value.

Table 31

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#
			Face	2					
				769.0125	2.75	-0.41	2.41	1.44	ZZ-FACE- 200825-06
NAF5080A	NNTN9097A	None, Radio	None	772.0000	2.76	-0.25	2.51	1.44	ZZ-FACE-
NAF5080A	INITITION	@ back	None	772.0000	2.70	-0.23	2.31	1.44	200825-07
				774.9875	2.76	-0.42	3.23	1.93	AN-FACE- 200812-12

SAR degradation is observed at the Body for 799-824 MHz, as per ISED Notice 2016-DRS001, additional tests were required for the low, mid and high frequency channels for the configuration with the highest SAR value.

Table 32

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	SAR	Max Calc. 1g- SAR (W/kg)	Run#
			Body	y					
		PMLN8209A		799.0125	2.79	-0.52	8.14	4.92	BL(AMN)-AB- 200825-01#
AN000296A01	NNTN9087A	w/ RLN6486A	PMMN4123A	808.5000	3.50	-0.20	12.00	6.46	AN-AB-200810- 09
		w/ RLN6488A		823.9875	3.52	-0.48	10.50	6.00	BL(AMN)-AB- 200825-02#

SAR degradation is observed at the Body for 851-869 MHz, as per ISED Notice 2016-DRS001, additional tests were required for the low, mid and high frequency channels for the configuration with the highest SAR value.

Table 33

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#	
	Body									
AN000296A01	NNTN9216A	PMLN8209A w/ RLN6486A	-	851.0125	3.45	-0.26	11.50	6.37	AN-AB-200918- 01#	
				860.5000	3.42	-0.47	10.20	5.98	AN-AB-200918- 02	
		w/ RLN6488A		868.9875	3.43	-0.05	9.48	5.03	AN-AB-200918- 03	

13.5 LTE Assessments for FCC & ISED

13.5.1 LTE B2 (1850-1910 MHz) assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 34 (bolded) are presented in Appendix E.

Table 34

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)		SAR Drift (dB)	CAR	Max Calc. 1g- SAR (W/kg)	Run#
			Body (5	50% RB)					
		PMLN8208A w/ NTN8266B			0.170	0.13	0.056	0.082	AN-AB-200807- 05#
	NNTN9089A	PMLN8208A w/ PMLN7965B			0.170	0.15	0.049	0.072	AN-AB-200807- 06#
AN000304A01		PMLN8208A w/ RLN6486A w/ RLN6488A	None	1880.0000	0.170	-0.39	0.029	0.047	AN-AB-200806- 18
	NNTN9087A	PMLN8209A w/ RLN6486A w/ RLN6488A			0.152	0.39	0.029	0.048	AN-AB-200807- 07#
	•		Face (5	0% RB)	•				
AN000304A01	NNTN9089A	None, Radio @ front	None	1860.0000	0.152	-0.09	0.192	0.322	BL(AR)-FACE- 200825-19

13.5.2 LTE B4 (1710-1755 MHz) assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 35 (bolded) are presented in Appendix E.

Table 35

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	CAR	Max Calc. 1g- SAR (W/kg)	Run#
			Body	(1 RB)					
		PMLN8208A w/ NTN8266B			0.200	0.31	0.063	0.079	AN-AB-200807- 04#
	NNTN9089A	PMLN8208A w/ PMLN7965B			0.200	-0.06	0.048	0.061	AN-AB-200807- 03#
AN000304A01		PMLN8208A w/ RLN6486A w/ RLN6488A	None	1745.0000	0.200	-0.28	0.047	0.063	AN-AB-200806- 17
	NNTN9087A	PMLN8209A w/ RLN6486A w/ RLN6488A			0.182	0.24	0.022	0.030	AM(AMN)-AB- 200806-11
			Face	(1 RB)					
AN000304A01	NNTN9216A	None, Radio @ front	None	1745.0000	0.200	-0.10	0.209	0.267	AM(AMN)- FACE-200807- 11#

13.5.3 LTE B5 (824-849 MHz) assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 36 (bolded) are presented in Appendix E.

Table 36

			Table 3						
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#
			Body (5	50% RB)					
		PMLN8208A w/ NTN8266B			0.137	0.00	0.020	0.036	FAZ-AB- 200903-02
		PMLN8208A w/ PMLN7965B			0.137	0.02	0.020	0.036	FAZ-AB- 200903-03
AN000304A01	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A	None	844.0000	0.137	0.38	0.016	0.029	FAZ-AB- 200903-05
		PMLN8209A w/ RLN6486A w/ RLN6488A			0.137	0.02	0.025	0.046	FAZ-AB- 200903-06
			Face	(1 RB)					
AN000304A01	NNTN9087A	None, Radio @ front	None	836.5000	0.174	-0.13	0.071	0.105	AR-FACE- 200903-08

13.5.4 LTE B12 (699-716 MHz) assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 37 (bolded) are presented in Appendix E.

Table 37

			Table 3						
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)		SAR Drift (dB)	CAR	Max Calc. 1g- SAR (W/kg)	Run#
			Body	(1 RB)					
		PMLN8208A w/ NTN8266B			0.174	-0.06	0.019	0.028	AN-AB-200805- 13
		PMLN8208A w/ PMLN7965B			0.174	0.16	0.018	0.026	AN-AB-200805- 15
AN000304A01	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A	None	704.0000	0.174	-0.13	0.018	0.027	AN-AB-200805- 17
		PMLN8209A w/ RLN6486A w/ RLN6488A			0.174	0.03	0.035	0.050	AN-AB-200806- 01#
			Face (5	0% RB)					
AN000304A01	NNTN9087A	None, Radio @ front	None	704.0000	0.174	-0.23	0.064	0.097	ZZ(AR)-FACE- 200820-10

13.5.5 LTE B13 (777-787 MHz) assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 38 (bolded) are presented in Appendix E.

Table 38

	Table 30										
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	CAR	Max Calc. 1g- SAR (W/kg)	Run#		
			Body (5	50% RB)	•			•			
		PMLN8208A w/ NTN8266B	•		0.145	-0.14	0.022	0.039	ZZ-AB-200823- 07		
		PMLN8208A w/ PMLN7965B			0.145	0.03	0.021	0.036	ZZ-AB-200823- 08		
AN000304A01	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A	None	782.0000	0.145	-0.16	0.024	0.043	FAZ-AB- 200824-02		
		PMLN8209A w/ RLN6486A w/ RLN6488A			0.145	0.17	0.050	0.086	FAZ-AB- 200824-03		
			Face (5	0% RB)							
AN000304A01	NNTN9087A	None, Radio @ front	None	782.0000	0.145	-0.08	0.055	0.097	BL(AR)-FACE- 200824-10		

13.5.6 LTE B14 (788-798 MHz) assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 39 (bolded) are presented in Appendix E.

Table 39

			Table 3						
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	CAR	Max Calc. 1g- SAR (W/kg)	Run#
			Body	(1 RB)	•			•	
		PMLN8208A w/ NTN8266B			0.178	-0.02	0.035	0.049	AN-AB-200806- 04#
		PMLN8208A w/ PMLN7965B			0.178	0.02	0.033	0.046	AN-AB-200806- 05#
AN000304A01	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A	None	793.0000	0.178	0.00	0.039	0.055	AN-AB-200806- 07#
		PMLN8209A w/ RLN6486A w/ RLN6488A			0.178	-0.23	0.067	0.099	AM(AMN)-AB- 200806-09#
			Face	(1 RB)					
AN000304A01	NNTN9087A	None, Radio @ front	None	793.0000	0.178	-0.14	0.057	0.083	FAZ-FACE- 200820-08

13.5.7 LTE B17 (704-716 MHz) assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 40 (bolded) are presented in Appendix E.

.

Table 40

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#
			Body	(1 RB)					
		PMLN8208A w/ NTN8266B			0.185	-0.21	0.010	0.014	ZZ-AB-200823- 02
		PMLN8208A w/ PMLN7965B			0.185	-0.04	0.013	0.018	ZZ-AB-200823- 03
AN000304A01	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A	None	709.0000	0.185	-0.01	0.020	0.027	ZZ-AB-200823- 05
		PMLN8209A w/ RLN6486A w/ RLN6488A			0.185	0.09	0.023	0.031	ZZ-AB-200823- 06
			Face	(1 RB)					
AN000304A01	NNTN9216A	None, Radio @ front	None	709.0000	0.185	0.03	0.082	0.111	BL(AR)-FACE- 200824-09

13.6 WLAN Assessments for FCC & ISED

13.6.1 WLAN 2.4 GHz Assessments at the Body & Face

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 41 (bolded) are presented in Appendix E.

Table 41

			1 abic 7						
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	SAR	Max Calc. 1g- SAR (W/kg)	Run#
			В	ody					
		PMLN8208A w/ NTN8266B			0.164	-0.37	0.052	0.069	AN-AB-200805- 02#
		PMLN8208A w/ PMLN7965B			0.164	-0.28	0.049	0.064	AN-AB-200805- 03#
AN000304A03 N	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A	None	2437.0000	0.164	-0.23	0.086	0.111	AN-AB-200805- 05#
		PMLN8209A w/ RLN6486A w/ RLN6488A			0.164	0.12	0.045	0.055	AM(AMN)-AB- 200805-07#
			F	ace				•	
AN000304A03	NNTN9089A	None, Radio @ front	None	2462.0000	0.164	-0.11	0.094	0.119	AM(AMN)- FACE-200805- 10

13.6.2 WLAN 5.0 GHz Assessments at the Body & Face

(U-NII-2A 5.25-5.35 GHz)

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 42 (bolded) are presented in Appendix E.

Table 42

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)		SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#
			В	ody					
		PMLN8208A w/ NTN8266B			0.112	0.21	0.014	0.022	ZZ-AB-200826- 02#
		PMLN8208A w/ PMLN7965B			0.112	0.24	0.025	0.039	AM-AB-200807- 06
AN000304A03	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A	None	5270.0000	0.112	0.37	0.020	0.031	ZZ-AB-200807- 07
		PMLN8209A w/ RLN6486A w/ RLN6488A			0.112	-0.32	0.035	0.059	ZZ-AB-200807- 09
			F	ace					
AN000304A03	NNTN9216A	None, Radio @ front	None	5270.0000	0.112	-0.16	0.229	0.373	AM-FACE- 200806-12

13.6.3 WLAN 5.0 GHz Assessments at the Body & Face

(U-NII-2C 5.47-5.65 GHz)

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 43 (bolded) are presented in Appendix E.

Table 43

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	SAR	Max Calc. 1g- SAR (W/kg)	Run#
			В	ody					
		PMLN8208A w/ NTN8266B			0.121	0.20	0.027	0.039	AM(AR)-AB- 200810-02#
		PMLN8208A w/ PMLN7965B			0.121	0.39	0.025	0.036	AM(AR)-AB- 200810-03#
AN000304A03	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A	None	5630.0000	0.121	0.36	0.023	0.033	AM(AR)-AB- 200810-04#
		PMLN8209A w/ RLN6486A w/ RLN6488A			0.121	0.34	0.028	0.041	AM(AR)-AB- 200811-02#
			F	ace					_
AN000304A03	NNTN9216A	None, Radio @ front	None	5630.0000	0.121	-0.35	0.482	0.760	ZZ-FACE- 200806-13

13.6.4 WLAN 5.0 GHz Assessments at the Body & Face

(U-NII-3 5.65-5.85 GHz)

The new derivative model was assessed with the previous highest applicable configuration at the Body and Face. Body assessments are done with the newly introduced body-worn accessories which are compatible with this new derivative model. SAR plot of the highest result per Table 44 (bolded) are presented in Appendix E.

Table 44

			Table 4	-	1				
Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	-	SAR Drift (dB)	SAR	Max Calc. 1g- SAR (W/kg)	Run#
			В	ody					
		PMLN8208A w/ NTN8266B			0.125	0.16	0.018	0.025	ZZ-AB-200811- 04#
		PMLN8208A w/ PMLN7965B			0.125	0.07	0.018	0.025	ZZ-AB-200811- 05#
AN000304A03	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A	None	5795.0000	0.125	-0.41	0.021	0.032	ZZ-AB-200811- 06#
		PMLN8209A w/ RLN6486A w/ RLN6488A			0.125	0.25	0.023	0.032	ZZ-AB-200811- 10#
			Fa	ace	•				
AN000304A03	NNTN9216A	None, Radio @ front	None	5795.0000	0.120	-0.24	0.495	0.767	ZZ-FACE- 200806-14

13.6.5 Additional Assessments per ISED Notice 2016-DRS001

Since SAR degradation is observed at the Body for WLAN 2.4GHz, as per ISED Notice 2016-DRS001, additional tests were required for the low, mid and high frequency channels for the configuration with the highest SAR value.

Table 45

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)		SAR Drift (dB)	σ_	Max Calc. 1g- SAR (W/kg)	Run#
			Во	ody					
		PMLN8208A		2412.0000	0.168	-0.10	0.045	0.055	ZZ-AB-200825- 10
AN000304A03	NNTN9087A	w/ RLN6486A	None	2437.0000	0.164	-0.23	0.086	0.111	AN-AB-200805- 05#
		w/ RLN6488A		2462.0000	0.162	0.26	0.074	0.092	ZZ-AB-200825- 11

13.7 Shortened Scan Assessment

A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F.

Table 46

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)		SAR Drift (dB)	1g- SAR	Max Calc. 1g- SAR (W/kg)	Run#
PMAE4102A	NNTN9087A	PMLN8208A w/ RLN6486A w/ RLN6488A	PMMN4123A	460.0000	5.38	-0.18	12.00	6.63	BL(AMN)-AB- 200824-12

FCC ID: AZ489FT7119 / IC: 109U-89FT7119

14.0 Simultaneous Transmissions

14.1 Simultaneous Transmission for LMR and LTE

Table 47 (FCC)

			Standa	alone SAR	R (W/kg)			Sum of S	AR (W/kg)	
Exposure	Body Worn		L	MR			VHF	UHF1	UHF2	
condition	Accessories	VHF	UHF1	UHF2	7/800	LTE	+ LTE	+ LTE	+ LTE	7/800 + LTE
	PMLN8208A w/ NTN8266B	0.49	6.18	6.20	3.86	0.082	0.57	6.26	6.28	3.94
	PMLN8208A w/ PMLN7965B	0.57	5.57	5.71	3.58	0.072	0.64	5.64	5.78	3.65
Body	PMLN8208A w/ RLN6486A w/ RLN6488A	0.58	6.13	7.51	4.13	0.063	0.64	6.19	7.57	4.19
	PMLN8209A w/ RLN6486A w/ RLN6488A	0.37	5.51	5.36	6.46	0.099	0.47	5.61	5.46	6.56
Face	NA	0.45	4.86	4.58	2.05	0.322	0.77	5.18	4.90	2.37

Table 48 (ISED)

				alone SAR				Sum of S	AR (W/kg)	
Exposure	Body Worn		L	MR			VHF	UHF1	UHF2	7/900
condition	Accessories	VHF	UHF1	UHF2	7/800	LTE	LTE	LTE	+ LTE	7/800 + LTE
	PMLN8208A w/ NTN8266B	0.49	6.18	6.52	3.86	0.082	0.57	6.26	6.60	3.94
	PMLN8208A w/ PMLN7965B	0.57	5.57	5.87	3.58	0.072	0.64	5.64	5.94	3.65
Body	PMLN8208A w/ RLN6486A w/ RLN6488A	0.58	6.13	7.51	4.13	0.063	0.64	6.19	7.57	4.19
	PMLN8209A w/ RLN6486A w/ RLN6488A	0.37	5.51	5.95	6.46	0.099	0.47	5.61	6.05	6.56
Face	NA	0.45	4.86	3.11	2.05	0.322	0.77	5.18	3.43	2.37

14.2 Simultaneous Transmission for LMR and WLAN 2.4 GHz

Table 49 (FCC)

			Stand	alone SAR	(W/kg)		Sum of SAR (W/kg)				
Exposure	Body Worn		LN	MR			VHF	UHF1 +	UHF2 +	7/800	
condition	Accessories	VHF	UHF1	UHF2	7/800	WLAN 2.4 GHz	+ WLAN 2.4 GHz	WLAN 2.4 GHz	WLAN 2.4 GHz	+ WLAN 2.4 GHz	
	PMLN8208A w/ NTN8266B	0.49	6.18	6.20	3.86	0.069	0.56	6.25	6.27	3.93	
	PMLN8208A w/ PMLN7965B	0.57	5.57	5.71	3.58	0.064	0.63	5.63	5.77	3.64	
Body	PMLN8208A w/ RLN6486A w/ RLN6488A	0.58	6.13	7.51	4.13	0.111	0.69	6.24	7.62	4.24	
	PMLN8209A w/ RLN6486A w/ RLN6488A	0.37	5.51	5.36	6.46	0.055	0.43	5.57	5.42	6.52	
Face	NA	0.45	4.86	4.58	2.05	0.119	0.57	4.98	4.70	2.17	

Table 50 (ISED)

			Stand	alone SAR	(W/kg)		Sum of SAR (W/kg)				
			L	ΛR							
Exposure condition	Body Worn Accessories	VHF	UHF1	UHF2	7/800	WLAN 2.4 GHz	VHF + WLAN 2.4 GHz	UHF1 + WLAN 2.4 GHz	UHF2 + WLAN 2.4 GHz	7/800 + WLAN 2.4 GHz	
	PMLN8208A w/ NTN8266B	0.49	6.18	6.52	3.86	0.069	0.56	6.25	6.59	3.93	
	PMLN8208A w/ PMLN7965B	0.57	5.57	5.87	3.58	0.064	0.63	5.63	5.93	3.64	
Body	PMLN8208A w/ RLN6486A w/ RLN6488A	0.58	6.13	7.51	4.13	0.111	0.69	6.24	7.62	4.24	
	PMLN8209A w/ RLN6486A w/ RLN6488A	0.37	5.51	5.95	6.46	0.055	0.43	5.57	6.01	6.52	
Face	NA	0.45	4.86	3.11	2.05	0.119	0.57	4.98	3.23	2.17	

14.3 Simultaneous Transmission for LMR and WLAN 5.0 GHz

Table 51 (FCC)

			Stand	alone SAl	R (W/kg)		Sum of SAR (W/kg)					
Exposure	Body Worn		L	MR			VHF	UHF1	UHF2	7/800		
condition	Accessories	VHF	UHF1	UHF2	7/800	WLAN 5.0 GHz	WLAN 5.0 GHz	WLAN 5.0 GHz	WLAN 5.0 GHz	WLAN 5.0 GHz		
	PMLN8208A w/ NTN8266B	0.49	6.18	6.2	3.86	0.039	0.53	6.22	6.24	3.90		
	PMLN8208A w/ PMLN7965B	0.57	5.57	5.71	3.58	0.039	0.61	5.61	5.75	3.62		
Body	PMLN8208A w/ RLN6486A w/ RLN6488A	0.58	6.13	7.51	4.13	0.033	0.61	6.16	7.54	4.16		
	PMLN8209A w/ RLN6486A w/ RLN6488A	0.37	5.51	5.36	6.46	0.059	0.43	5.57	5.42	6.52		
Face	NA	0.45	4.86	4.58	2.05	0.767	1.22	5.63	5.35	2.82		

Table 52 (ISED)

		Standalone SAR (W/kg)					Sum of SAR (W/kg)				
Exposure condition	Body Worn Accessories	LMR					VHF				
		VHF	UHF1	UHF2	7/800	WLAN 5.0 GHz	+ WLAN 5.0 GHz	UHF1 + WLAN 5.0 GHz	UHF2 + WLAN 5.0 GHz	7/800 + WLAN 5.0 GHz	
Body	PMLN8208A w/ NTN8266B	0.49	6.18	6.52	3.86	0.039	0.53	6.22	6.56	3.90	
	PMLN8208A w/ PMLN7965B	0.57	5.57	5.87	3.58	0.039	0.61	5.61	5.91	3.62	
	PMLN8208A w/ RLN6486A w/ RLN6488A	0.58	6.13	7.51	4.13	0.033	0.61	6.16	7.54	4.16	
	PMLN8209A w/ RLN6486A w/ RLN6488A	0.37	5.51	5.95	6.46	0.059	0.43	5.57	6.01	6.52	
Face	NA	0.45	4.86	3.11	2.05	0.767	1.22	5.63	3.88	2.82	

15.0 Results Summary

Based on the test guidelines from section 4.0 and satisfying frequencies within FCC bands and ISED Canada Frequency bands, the highest Operational Maximum Calculated 1-gram average SAR values found for this filing:

Table 53 (FCC)

Table 55 (FCC)									
Technologies	Frequency band	Max Calc at Body (W/kg)	Max Calc at Face (W/kg)						
	(MHz)	1g-SAR	1g-SAR						
	150.8-173.4	0.58	0.45						
	406.125-470	6.18	4.86						
LMR	450-512	7.51	4.58						
LWK	769-775	3.89	1.93						
	799-824	6.46	2.05						
	851-869	6.37	1.23						
	LTE B2	0.082	0.322						
	LTE B4	0.079	0.267						
	LTE B5	0.046	0.105						
LTE	LTE B12	0.050	0.097						
	LTE B13	0.086	0.097						
	LTE B14	0.099	0.083						
	LTE B17	0.031	0.111						
XX/I A NI	2.4 GHz	0.111	0.119						
WLAN	5.0 GHz	0.059	0.767						
Highest Simultaneous Transmission SAR (W/kg)		7.62	5.63						

All results are scaled to the maximum output power.

Table 54 (ISED)

Technologies	Frequency band	Max Calc at Body (W/kg)	Max Calc at Face (W/kg)	
	(MHz)	1g-SAR	1g-SAR	
	138-173.4	0.58	0.45	
	406.125-430, 450-470	6.18	4.86	
LMR	450-512	7.51	3.11	
	769-775	3.89	1.93	
	799-824	6.46	2.05	
	851-869	6.37	1.23	
	LTE B2	0.082	0.322	
	LTE B4	0.079	0.267	
	LTE B5	0.046	0.105	
LTE	LTE B12	0.050	0.097	
	LTE B13	0.086	0.097	
	LTE B14	0.099	0.083	
	LTE B17	0.031	0.111	
XX/I A NI	2.4 GHz	0.111	0.119	
WLAN	5.0 GHz	0.059	0.767	
Highest Simultaneous Transmission SAR	Sum of SAR (W/kg)	7.62	5.63	

All results are scaled to the maximum output power.

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093.

FCC ID: AZ489FT7119 / IC: 109U-89FT7119

16.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is required for each frequency band with measured SAR results above 4.0 W/kg for occupational exposure condition.

The Tables below include test results of the original measurement, the repeated measurement, and the ratio (SAR_{high}/SAR_{low}) for the highest SAR configuration in each of the frequency bands that fulfill the guidelines mentioned above.

Table 55 (UHF1)

Run#	Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq. (MHz)	Adj. 1g-SAR (W/kg)	Ratio	Comments
AM(AMN)-AB- 200813-01#			PMLN8208A			5.89		No additional repeated scans is required due to
BL(AMN)-AB- 200826-11	PMAE4049A	NNTN9087A	w/ NTN8266B	PMMN4123A	470.0000	5.54	1.06	the Ratio (SAR _{high} /SAR _{low}) < 1.20

Table 56 (UHF2)

Run#	Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq. (MHz)	Adj. 1g-SAR (W/kg)	Ratio	Comments
AN-AB- 200819-09#	PMAE4102A		PMLN8208A w/			7.03		No additional repeated scan is required due to the Ratio (SAR_{high}/SAR_{low}) < 1.20
BL(AMN)- AB-200824-12		NNTN9087A	RLN6486A w/ RLN6488A	PMMN4123A	460.0000	6.25	1.12	

Table 57 (799-824 MHz)

Run#	Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq. (MHz)	Adj. 1g-SAR (W/kg)	Ratio	Comments
AN-AB- 200810-09			PMLN8209A w/			6.28		No additional repeated scans is required due to
BL(AMN)-AB- 200826-14	AN000296A01	NNTN9087A	RLN6486A w/ RLN6488A	PMMN4123A	808.5000	5.96	1.05	the Ratio (SAR_{high}/SAR_{low}) < 1.20

Table 58 (851-869 MHz)

Run#	Antenna	Battery	Carry Accessory	Cable Accessory	_	Adj. 1g-SAR (W/kg)	Ratio	Comments
AN-AB- 200918-01#			PMLN8209A w/			6.10		No additional repeated scans is required due to
AN-AB- 200917-25	AN000296A01	NNTN9087A	RLN6486A w/ RLN6488A	PMMN4123A	851.0125	5.63	1.08	the Ratio (SAR_{high}/SAR_{low}) < 1.20

FCC ID: AZ489FT7119 / IC: 109U-89FT7119 Report ID: P12464-EME-00206

17.0 System Uncertainty

A system uncertainty analysis is required for this report per KDB 865664 because the highest report SAR value for Occupational exposure is more than 7.5W/kg.

Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.

Motorola Solutions Inc. EME Form-SAR-Rpt-Rev. 13.27