

TESTING **SAMM No.0826**

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2

Motorola Solutions Inc. EME Test Laboratory

Motorola Solutions Malaysia Sdn Bhd (Innoplex) Plot 2A, Medan Bayan Lepas, Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia. **Date of Report:** 03/29/2018

Report Revision: A

Responsible Engineer: Saw Sun Hock (EME Engineer) **Report Author:** Saw Sun Hock (EME Engineer) Date/s Tested: 1/25/2018-1/26/2018; 1/29/2018 Manufacturer: Vertex Standard LMR, Inc.

Handheld Portable – BC250D-G6-4, 403-470MHz, 4W, No Keypad **DUT Description:**

Test TX mode(s): CW (PTT) Max. Power output: 5.5W **Nominal Power:** 4.6W

Tx Frequency Bands: LMR 403-470MHz

Signaling type: FM, 4FSK Model(s) Tested: BC250D-G6-4 **Model(s) Certified:** BC250D-G6-4

Serial Number(s): 3W8C011010, 3W8C011007 **Classification:** Occupational/Controlled

FCC ID: AZ489FT4949; LMR 403-470MHz

This report contains results that are immaterial for FCC equipment approval, which

are clearly identified.

FCC Test Firm Registration

Number: 823256

The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093.

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report. This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

Tiong

Tiong Nguk Ing Deputy Technical Manager Approval Date: 3/29/2018

Part 1 of 2

1.0	Introduction	4
2.0	FCC SAR Summary	4
3.0	Abbreviations / Definitions	4
4.0	Referenced Standards and Guidelines	5
5.0	SAR Limits	6
6.0	Description of Device Under Test (DUT)	6
7.0	Optional Accessories and Test Criteria	7
	7.1 Antennas	7
	7.2 Battery	7
	7.3 Body worn Accessories,	7
	7.4 Audio Accessories	8
8.0	Description of Test System	8
	8.1 Descriptions of Robotics/Probes/Readout Electronics	8
	8.2 Description of Phantom(s)	9
	8.3 Description of Simulated Tissue	9
9.0	Additional Test Equipment	10
10.0	SAR Measurement System Validation and Verification	10
	10.1 System Validation	10
	10.2 System Verification	10
	10.3 Equivalent Tissue Test Results	11
11.0	Environmental Test Conditions	12
12.0	DUT Test Setup and Methodology	12
	12.1 Measurements	12
	12.2 DUT Configuration(s)	13
	12.3 DUT Positioning Procedures	13
	12.3.1 Body	13
	12.3.2 Head	13
	12.3.3 Face	
	12.4 DUT Test Channels	
	12.5 SAR Result Scaling Methodology	
	12.6 DUT Test Plan	
13.0	DUT Test Data	
	13.1 LMR assessments at the Body for 406.1- 470 MHz band	
	13.2 LMR assessments at the Face for 406.1-470 MHz band	
	13.3 Assessment at outside FCC Part 90	
	13.4 Shortened Scan Assessment	
	Variability Assessment	
	Results Summary	
16.0	System Uncertainty	18

\mathbf{AP}	PPENDICES	
A	Measurement Uncertainty Budget	19
В	Probe Calibration Certificates	22
C	Dipole Calibration Certificates	41
Par	rt 2 of 2	
AP	PPENDICES	
D	System Verification Check Scans	2
E	DUT Scans	7
F	Shorten Scan of Highest SAR Configuration	12
G	DUT Test Position Photos	14
Н	DUT, Body worn and audio accessories Photos	15

Report Revision History

Date	Revision	Comments
03/29/2018	A	Initial release

FCC ID: AZ489FT4949 Report ID: P10483-EME-00001

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number BC250D-G6-4. This device is classified as Occupational/Controlled.

2.0 FCC SAR Summary

Table 1

Equipment Class	Frequency band (MHz)	Max Calc at Body (W/kg)	Max Calc at Face (W/kg)			
	(MHZ)	1g-SAR	1g-SAR			
TNF	406.1- 470MHz	4.09	2.83			

3.0 Abbreviations / Definitions

CNR: Calibration Not Required

CW: Continuous Wave DUT: Device Under Test EME: Electromagnetic Energy FM: Frequency Modulation LMR: Land Mobile Radio

NA: Not Applicable PTT: Push to Talk RF: Radio Frequency

RSM: Remote Speaker Microphone SAR: Specific Absorption Rate

TNF: Licensed Non-Broadcast Transmitter Held to Face

4FSK: 4 Level Frequency Shift Keying

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

FCC ID: AZ489FT4949 Report ID: P10483-EME-00001

4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1 (2005) Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997.
- IEEE 1528 (2013), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
- Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2014)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
- FCC KDB 643646 D01 SAR Test for PTT Radios v01r03
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 RF Exposure Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06

FCC ID: AZ489FT4949

5.0 SAR Limits

Table 2

	SAR (W/kg)
EXPOSURE LIMITS	(General Population /	(Occupational /
EM OSCILL ENVITS	Uncontrolled Exposure	Controlled Exposure
	Environment)	Environment)
Spatial Average - ANSI -		
(averaged over the whole body)	0.08	0.4
Spatial Peak - ANSI -		
(averaged over any 1-g of tissue)	1.6	8.0
Spatial Peak – ICNIRP/ANSI -		
(hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0
Spatial Peak - ICNIRP -		
(Head and Trunk 10-g)	2.0	10.0

6.0 **Description of Device Under Test (DUT)**

This device operates using analog frequency modulation (FM) signaling incorporating simplex two-way radio transmission protocol.

This radio contains transmit and receive circuitry for digital two way radio communications. The modulation scheme used for digital two-way radio communications is 4 Level Frequency Shift Keying (4FSK).

4FSK is a modulation technique that transmits information by altering the frequency of the carrier frequency (RF) signal. Data is converted into complex symbols, which alter the RF signal and transmit the information. When the signal is received, the change in frequency is converted back into symbols and then into the original data. The system can accommodate 2-voice channels in a standard 12.5 kHz channel as used in two-way radio.

Table 3 below summarizes the technologies, bands, maximum duty cycles and maximum output powers. Maximum output powers are defined as upper limit of the production line final test station.

Table 3

Technology	Band (MHz)	Transmission	Duty Cycle (%)	Max Power (W)
LMR	403-470MHz	FM	*50	5.50

Note - * includes 50% PTT operation

The intended operating positions are "at the face" with the DUT at least 2.5cm from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in "SAR Test Reduction Considerations for Occupational PTT Radios" FCC KDB 643646 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category. Refer to Exhibit 7B for antenna separation distances.

7.1 Antennas

FCC ID: AZ489FT4949

There are optional removable antennas offered for this product. The Table below lists their descriptions.

Table 4

Antenna No.	Antenna Models	Description	Selected for test	Tested
1	AAM32X001	Whip antenna, 400-470 MHz, ½ wave, 2 dBi	Yes	Yes
2	AAM43X001	Stubby antenna, 450-470 MHz, ½ wave, 2 dBi	Yes	Yes

7.2 Battery

There is only one battery offered for this product. The Table below lists their descriptions.

Table 5

Battery No.	Battery Models	Description	Selected for test	Tested	Comments
1	FNB-V143-LI (AAM29X001)	Impres Li-ion 2300mAh, Non UNI.	Yes	Yes	Default battery

7.3 Body worn Accessories,

There is only one body worn offered for this product. The Table below lists their descriptions.

Table 6

В	ody worn No.	Body worn Models	Description	Selected for test	Tested	Comments
	1	AAM34X001	Belt Clip 28	Yes	Yes	

7.4 Audio Accessories

There is only one audio offered for this product. The Table below lists their descriptions. Exhibit 7B illustrates photos of the tested audio accessories.

Table 7

ı	Audio	Audio Acc.		Selected for		
	No.	Models	Description	test	Tested	Comments
	1	MH-Z101B	Speaker Microphone	Yes	Yes	Default Audio

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

Table 8

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner Engineering AG SPEAG DASY 5	52.8.8.1222	DAE4	ES3DV3 (E-Field)

The DASY5TM system is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

FCC ID: AZ489FT4949

8.2 Description of Phantom(s)

Table 9

Phantom Type	Phantom(s) Used	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)
Triple Flat	NA NA	200MHz -6GHz; Er = 3-5, Loss Tangent = ≤0.05	280x175x175	(11111)	Material	(wood)
SAM	NA	300MHz -6GHz; Er = < 5, Loss Tangent = ≤0.05	Human Model	2mm +/- 0.2mm	Wood	< 0.05
Oval Flat	V	300MHz -6GHz; Er = 4+/- 1, Loss Tangent = ≤0.05	600x400x190			

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Simulated Tissue Composition (percent by mass)
Table 10

	450MHz				
Ingredients	Head	Body			
Sugar	56.00	46.50			
Diacetin	0	0			
De ionized – Water	39.10	50.53			
Salt	3.80	1.87			
HEC	1.00	1.00			
Bact.	0.10	0.10			

9.0 Additional Test Equipment

The Table below lists additional test equipment used during the SAR assessment.

Table 11

E 4 T	Model	C	Calibration	Callbord on Day Date
Equipment Type	Number	Serial Number	Date	Calibration Due Date
Speag Probe	ES3DV3	3196	05/17/17	05/17/18
Speag DAE	DAE4	684	05/12/17	05/12/18
Amplifier	10W1000C	312859	CNR	CNR
Power Meter	E4419B	MY45103725	05/22/17	05/22/19
Vector Signal Generator	E4438C	MY42081753	04/08/17	04/08/18
Power Sensor	E9301B	MY50280001	06/23/17	06/23/18
BI-Direction Coupler	3020A	40295	09/04/17	09/04/18
Power Meter	E4418B	MY45100911	07/14/17	07/14/19
Power Sensor	E9301B	MY41495594	07/20/17	07/20/18
Temperature & Humidity Logger	TM320	06153216	08/11/17	08/11/18
Thermometer	HH202A	18812	10/13/17	10/13/18
Temperature Probe	JHSS-18U- RSC-6	AGIL700245	10/13/17	10/13/18
Dielectric Assessment Kit	DAK-3.5	1120	03/16/17	03/16/18
Network Analyzer	E5071B	MY42403218	08/24/17	08/24/18
Speag Dipole	D450V3	1054	10/25/17	10/25/19

10.0 SAR Measurement System Validation and Verification

DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively.

10.1 System Validation

The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below.

Table 12

Dates	Probe Calibration Point		Probe SN		ured Tissue rameters	Validation		
	Pol	Ш	SIN	σ	$\epsilon_{ m r}$	Sensitivity	Linearity	Isotropy
					V			
05/31/2017	Body	450	2106	0.92	54.6	Pass	Pass	Pass
06/01/2017	Head	450	3196	0.89	43.3	Pass	Pass	Pass

10.2 System Verification

System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment.

Table 13

Probe Serial #	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W (W/kg)	System Check Results Measured (W/kg)	System Check Test Results when normalized to 1W (W/kg)	Tested Date
	FCC Body		4.57 +/- 10%	1.25	5.00	1/24/2018*
3196	FCC Body	SPEAG D450V3 /	4.37 +/- 10%	1.25	5.00	1/29/2018
3190	IEEE/IEC Head	1054		1.22	4.88	1/25/2018*
	IEEE/IEC Head		4.48 +/- 10%	1.19	4.76	1/29/2018

Note: * System performance check cover next testing day (within 24 hours)

10.3 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment.

Table 14

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
402	FCC Body	0.93 (0.89-0.98)	57.2 (54.3-60.0)	0.92	55.2	1/29/2018
403	IEEE/ IEC Head	0.87 (0.83-0.91)	44.1 (41.9-46.3)	0.85	44.1	1/29/2018
406	FCC Body	0.93 (0.89-0.98)	57.1 (54.3-60.0)	0.92	55.1	1/29/2018
406	IEEE/ IEC Head	0.87 (0.83-0.91)	44.0 (41.8-46.2)	0.85	44.0	1/29/2018
	FCC Body	0.94	57.0	0.92	54.7	1/25/2018
422		(0.89-0.98) (54.1-59.8)		0.94	54.9	1/29/2018
	IEEE/ IEC Head	0.89 (0.85-0.93)	41.9 (39.8-44.0)	0.88	44.0	1/26/2018
	FCC Body	0.94	56.7	0.94	54.2	1/25/2018
450	FCC Body	(0.89 - 0.99)	(53.9-59.5)	0.96	54.4	1/29/2018
430	IEEE/	0.87	43.5	0.90	43.3	1/26/2018
	IEC Head	(0.83-0.91)	(41.3-45.7)	0.89	43.2	1/29/2018
1=0	FCC Body	0.94 (0.89-0.99)	56.6 (53.8-59.5)	0.96	53.8	1/25/2018
470	IEEE/	0.87	43.4	0.91	42.8	1/26/2018
	IEC Head	(0.83-0.91)	(41.2-45.6)	0.91	42.7	1/29/2018

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within \pm 0 of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein:

Table 15

	Target	Measured
		Range: 20.9 – 22.8°C
Ambient Temperature	18 – 25 °C	Avg. 21.7 °C
		Range: 20.1-21.5°C
Tissue Temperature	NA	Avg. 20.5°C

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Setup and Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing.

The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

	_	_	-	_
41	ah	lΔ	1	6

Descrip	ption	≤3 GHz	> 3 GHz		
Maximum distance from closes (geometric center of probe sens	-	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle from pronormal at the measurement loca	-	30° ± 1°	20° ± 1°		
		≤ 2 GHz: ≤ 15 mm	$3-4$ GHz: ≤ 12 mm		
		$2-3$ GHz: ≤ 12 mm	$4-6$ GHz: ≤ 10 mm		
		When the x or y dimension	on of the test device, in		
Maximum area scan spatial re	esolution: Av Area Av Area	the measurement plane of	rientation, is smaller		
Maximum area scan spatial fo	esolution. AxAlea, AyAlea	than the above, the measurement resolution must			
		be \leq the corresponding x or y dimension of the			
		test device with at least o	ne measurement point		
		on the test device.			
Maximum zoom scan spatial re	solution: ΔxZoom, ΔyZoom	\leq 2 GHz: \leq 8 mm	$3-4$ GHz: ≤ 5 mm*		
		$2-3 \text{ GHz: } \leq 5 \text{ mm*}$	$4-6$ GHz: ≤ 4 mm*		
Maximum zoom scan spatial	uniform grid: ΔzZoom(n)		$3-4$ GHz: ≤ 4 mm		
resolution, normal to		≤ 5 mm	$4-5$ GHz: ≤ 3 mm		
phantom surface			$5-6 \text{ GHz: } \leq 2 \text{ mm}$		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

12.2 DUT Configuration(s)

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646.

12.3 DUT Positioning Procedures

The positioning of the device for each body location is described below and illustrated in Appendix G.

12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with the offered audio accessories as applicable.

12.3.2 Head

Not applicable.

12.3.3 Face

The DUT was positioned with its' front side separated 2.5cm from the phantom.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

12.4 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

$$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$

Where

 N_c = Number of channels

 $F_{high} = Upper channel$

 $F_{low} = Lower channel$

 F_c = Center channel

12.5 SAR Result Scaling Methodology

The calculated 1-gram averaged SAR results indicated as "Max Calc. 1g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR are scaled using the following formula:

$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P \text{ int}} \cdot DC$$

 $P_{max} = Maximum Power (W)$

P int = Initial Power (W)

Drift = DASY drift results (dB)

SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg)

DC = Transmission mode duty cycle in % where applicable

50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied:

If $P_{int} > P_{max}$, then $P_{max}/P_{int} = 1$.

Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

12.6 DUT Test Plan

The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW modes and 50% duty cycle was applied to PTT configurations in the final results.

13.0 DUT Test Data

13.1 LMR assessments at the Body for 406.1- 470 MHz band

Battery FNB-V143LI (AAM29X001) was selected as the default battery for assessments at the Body, only offered one type battery (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within FCC allocated frequency range which are listed in Table 17. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios).

Table 17

Test Freq (MHz)	Power (W)
406.1250	5.28
422.1000	5.48
430.0000	5.47
438.0000	5.27
450.0000	5.38
460.0000	5.44
470.0000	5.45

Assessments at the Body with Body worn AAM34X001

DUT assessment with offered antennas, default battery and, default body worn accessory per KDB 643646. Refer to Table 17 for highest output power channel.

Table 18

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
				406.1250					
			MH-Z101B	422.1000	5.48	-0.34	6.88	3.73	AZ(FAZ)-AB- 180125-01#
				430.0000					
AAM32X001	FNB-V143LI (AAM29X001)	AAM34X001		438.0000					
	(======================================			450.0000					
				460.0000					
				470.0000	5.47	-0.44	2.90	1.61	AZ(FAZ)-AB- 180125-02#

Table 18 (Continued)

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
				450.0000					
AAM43X001	FNB-V143LI (AAM29X001)	AAM34X001	MH-Z101B	460.0000					
	(AAWI29X001)			470.0000	5.50	-0.47	5.23	2.91	AZ(FAZ)-AB- 180125-03#

13.2 LMR assessments at the Face for 406.1-470 MHz band

Battery FNB-V143LI (AAM29X001) was selected as the default battery for assessments at the Face, only offered one type battery (refer to Exhibit 7B for battery illustration). The default battery was used during conducted power measurements for all test channels within FCC allocated frequency range which are listed in Table 17. The channel with the highest conducted power will be identified as the default channel per KDB 643646 (SAR Test for PTT Radios).

Table 19

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g-SAR (W/kg)	Run#
				406.1250					
				422.1000	5.50	-0.32	5.26	2.83	AZ(FAZ)-FACE- 180126-01#
	END 3/1421 I	@ front	@ front None	430.0000					
AAM32X001	FNB-V143LI (AAM29X001)			438.0000					
				450.0000					
				460.0000					
				470.0000					
				450.0000					
AAM43X001	FNB-V143LI	FNB-V143LI (AAM29X001) @ front	None	460.0000					
	(AAMI29X001)			470.0000	5.45	-0.50	4.03	2.28	AZ(FAZ)-FACE- 180126-02#

13.3 Assessment at outside FCC Part 90

Assessment of outside FCC Part 90 using highest SAR configuration from above. SAR plots of the highest results per Table (bolded) are presented in Appendix E.

Table 20

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g-SAR (W/kg)		Run#		
			В	ody							
AAM32X001	FNB-V143LI (AAM29X001)	AAM34X001	MH-Z101B	403.0000	5.38	-0.39	9.13	5.11	FIE-AB-180129-03		
	Face										
AAM32X001	FNB-V143LI (AAM29X001)	@ front	None	403.0000	5.38	-0.48	8.14	4.65	ZR(FAZ)-FACE- 180129-08		

13.4 Shortened Scan Assessment

A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F.

Table 21

					Init	SAR	Meas.	Max Calc.	
		Carry	Cable	Test Freq	Pwr	Drift	1g-SAR	1g-SAR	
Antenna	Battery	Accessory	Accessory	(MHz)	(W)	(dB)	(W/kg)	(W/kg)	Run#
AAM32X001	FNB-V143LI (AAM29X001)	AAM34X001	MH-Z101B	422.10000	5.49	-0.19	7.81	4.09	FIE-AB-180129-05

14.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is required because SAR results are above 4.0 W/kg (Occupational).

The Table below includes test results of the original measurement(s), the repeated measurement(s), and the ratio (SAR_{high}/SAR_{low}) for the applicable test configuration(s).

Table 22

Run#	Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq. (MHz)	Adj Calc. 1g-SAR (W/kg)	Ratio	Comments
AZ(FAZ)-AB-180125- 01#	AAM32X001	FNB-V143LI	AAM34X001	MH-Z101B	422.10000	3.73	1.10	No additional repeated scans is required due to
FIE-AB-180129-05	AAM32X001	(AAM29X001)	AAM34X001	MH-ZIUIB	422.10000	4.09	1.10	the Ratio $(SAR_{high}/SAR_{low}) < 1.20$

FCC ID: AZ489FT4949 Report ID: P10483-EME-00001

15.0 Results Summary

Based on the test guidelines from section 4.0 and satisfying frequencies within FCC, US Frequency band, the highest Operational Maximum Calculated 1-gram average SAR values found for this filing:

Table 23

Designator	Frequency band (MHz)	Max Calc at Body (W/kg)	Max Calc at Face (W/kg)	
	(MITZ)	1g-SAR	1g-SAR	
FCC, US	406.1- 470	4.09	2.83	

16.0 System Uncertainty

A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value Occupational exposure is less than 7.5W/kg.

Per the guidelines of ISO 17025/IEC 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.

FCC ID: AZ489FT4949 Report ID: P10483-EME-00001

Appendix A Measurement Uncertainty Budget

Table A.1: Uncertainty Budget for Device Under Test, for 450 MHz

Table 11:1: Checitamity Budget 16				95, 101 10	UTVILLE		h =	<i>i</i> =	
				0(11)				•	,
a	b IEEE	С	d	e = f(d,k)	f	g	cxf/e	c x g / e	k
		Tol.	Prob		c_i	c_{i}	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_{i}	
Uncertainty Component	section			Div.			(±%)	(±%)	v_i
Measurement System									
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	8
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	×
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	8
Probe Positioner Mech. Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	8
Combined Standard Uncertainty			RSS				12	11	482
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				23	23	

Notes for uncertainty budget Tables:

- a) Column headings a-k are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Table A.2: Uncertainty Budget for System Validation (dipole & flat phantom) for 450 MHz

Tubit 12021 Chieff tuling Duraget	202 DJ.			. (,		
				0(11)			h =	<i>i</i> =	
a	b	С	d	e = f(d,k)	f	g	cxf/e	c x g / e	k
	IEEE 1528	Tol.	Prob.		c_{i}	c_{i}	1 g	10 g	
		(± %)	Dist.		(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
Uncertainty Component	section			Div.			(±%)	(±%)	v_{i}
Measurement System									
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	∞
Axial Isotropy	E.2.2	4.7	R	1.73	1	1	2.7	2.7	∞
Spherical Isotropy	E.2.2	9.6	R	1.73	0	0	0.0	0.0	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t. Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	2.0	R	1.73	1	1	1.2	1.2	∞
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	E.3.3	3.3	R	1.73	0.64	0.43	1.2	0.8	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	E.3.3	1.9	R	1.73	0.6	0.49	0.6	0.5	∞
Combined Standard Uncertainty			RSS				10	9	99999
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				19	18	

Notes for uncertainty budget Tables:

- a) Column headings *a-k* are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

FCC ID: AZ489FT4949 Report ID: P10483-EME-00001

Appendix B Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: ES3-3196_May17

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MY

CALIBRATION CERTIFICATE

CALIBRATION CI	ERTIFICATE
----------------	------------

Object

ES3DV3 - SN:3196

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

May 17, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
	1.0		
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

Calibrated by:

| Signature | Calibrated by: | Jeton Kastrati | Laboratory Technician | Calibrated by: | Katja Pokovic | Technical Manager | Calibrated by: | Issued: May 18, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3196_May17

Page 1 of 18

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D

DCP

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

o rotation around probe axis

Polarization 9

3 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3196_May17

Page 2 of 18

ES3DV3 - SN:3196

May 17, 2017

Probe ES3DV3

SN:3196

Manufactured: Calibrated:

June 16, 2008 May 17, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3196_May17

Page 3 of 18

E\$3DV3- SN:3196

May 17, 2017

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.25	1.26	1.30	± 10.1 %
DCP (mV) ⁸	101.5	100.5	99.8	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc
			dB	dB√μV		dB	mV	(k=2)
0	CW	Х	0.0	0.0	1.0	0.00	191.9	±3.5 %
		Y	0.0	0.0	1.0		203.8	
		Z	0.0	0.0	1.0		204.9	

Note: For details on UID parameters see Appendix.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3-SN:3196

May 17, 2017

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^C (mm)	Unc (k=2)
150	52.3	0.76	7.46	7.46	7.46	0.08	1.25	± 13.3 %
300	45.3	0.87	7.36	7.36	7.36	0.12	1.60	± 13.3 %
450	43.5	0.87	7.11	7.11	7.11	0.20	1.60	± 13.3 %
750	41.9	0.89	6.82	6.82	6.82	0.71	1.27	± 12.0 %
835	41.5	0.90	6.63	6.63	6.63	0.53	1.40	± 12.0 %
900	41.5	0.97	6.45	6.45	6.45	0.74	1.20	± 12.0 %
1450	40.5	1.20	5.78	5.78	5.78	0.74	1.15	± 12.0 %
1810	40.0	1.40	5.58	5.58	5.58	0.42	1.62	± 12.0 %
1900	40.0	1.40	5.42	5.42	5.42	0.71	1.26	± 12.0 %
2100	39.8	1.49	5.44	5.44	5.44	0.78	1.22	± 12.0 %
2300	39.5	1.67	5.00	5.00	5.00	0.74	1.27	± 12.0 %
2450	39.2	1.80	4.74	4.74	4.74	0.65	1.38	± 12.0 %
2600	39.0	1.96	4.60	4.60	4.60	0.75	1.25	± 12.0 %

⁰ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency

Certificate No: ES3-3196_May17

Page 5 of 18

below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 126, 150 and 220 MHz respectively. Active 5 GHz requerity validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

ES3DV3-SN:3196

May 17, 2017

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

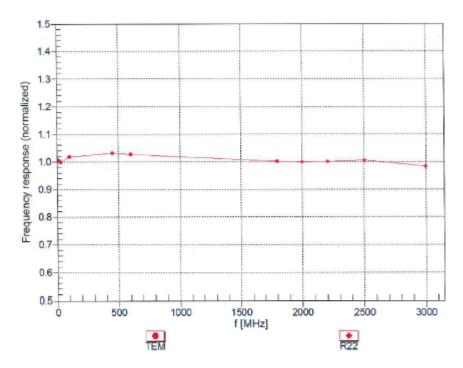
Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	7.06	7.06	7.06	0.09	1.25	± 13.3 %
300	58.2	0.92	6.92	6.92	6.92	0.10	1.60	± 13.3 %
450	56.7	0,94	7.00	7.00	7.00	0.13	1.60	± 13.3 %
750	55.5	0.96	6.44	6.44	6.44	0.80	1.13	± 12.0 %
835	55.2	0.97	6.31	6.31	6.31	0.50	1.47	± 12.0 %
900	55.0	1.05	6.27	6.27	6.27	0.52	1.47	± 12.0 %
1450	54.0	1.30	5.40	5.40	5.40	0.71	1.19	± 12.0 %
1810	53.3	1.52	5.11	5.11	5.11	0.40	1.83	± 12.0 %
1900	53.3	1.52	4.91	4.91	4.91	0.60	1.47	± 12.0 %
2100	53.2	1.62	5.24	5.24	5.24	0.60	1.49	± 12.0 %
2300	52.9	1.81	4.72	4.72	4.72	0.80	1.27	± 12.0 %
2450	52.7	1.95	4.58	4.58	4.58	0.80	1.13	± 12.0 %
2600	52.5	2.16	4.40	4.40	4.40	0.80	1.20	± 12.0 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^r At frequencies below 3 GHz, the validity of tissue parameters (s and \(\text{a} \)) can be released to ± 10% if liquid comparisation formula is applied to

Certificate No: ES3-3196_May17

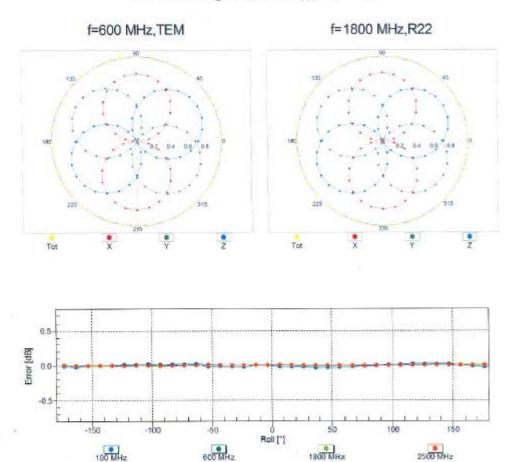

Page 6 of 18

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

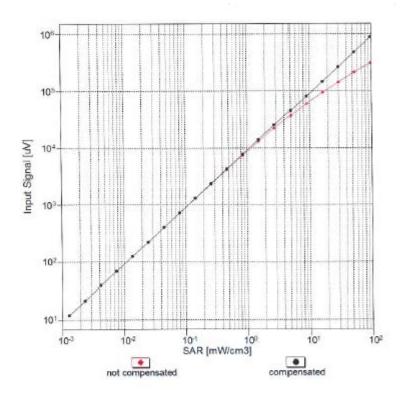
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

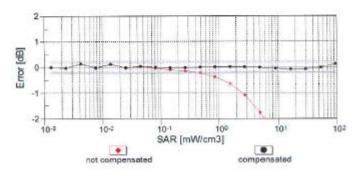
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

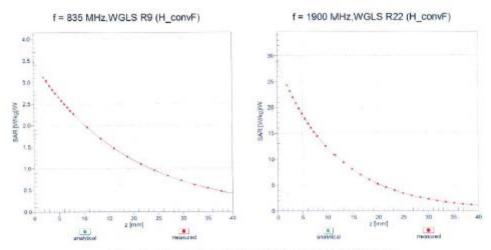
Certificate No: ES3-3196_May17


Page 7 of 18


Receiving Pattern (\$\phi\$), 9 = 0°

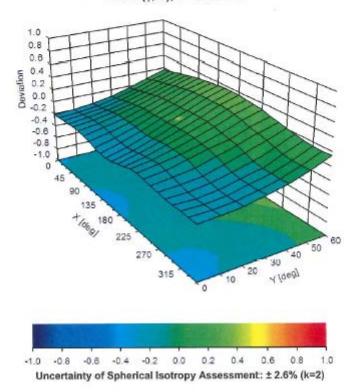
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3196_May17


Page 9 of 18

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (φ, θ), f = 900 MHz

Certificate No: ES3-3196_May17

Page 10 of 18

ES3DV3-SN:3196

May 17, 2017

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3196

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	6.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3196_May17

Page 11 of 18

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^t (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	191.9	±3.5 %
		Υ	0.0	0.0	1.0		203.8	
		Z.	0.0	0.0	1.0		204.9	
10011- CAB	UMTS-FDD (WCDMA)	х	3.15	66.2	18.1	2.91	131.3	±0.7 %
		Y	3.25	66.4	17.9		143.9	
		Z	3.34	67.3	18.9		144.4	
10097- CAB	UMTS-FDD (HSDPA)	×	4.57	66.5	18.5	3.98	141.0	±0.9 %
		Υ	4.44	65.6	17.9		129.2	
		Z	4.57	66.5	18.7		131.2	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	Х	4.63	66.8	18.7	3.98	141.2	±0.9 %
		Y	4.48	65.8	18.0		129.6	
		Z	4.56	66.4	18.7		130.5	
10100- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	6.64	68.4	20.3	5.67	148.8	±1.4 %
		Υ	6.31	66.9	19.3		134.7	
		Z	6.47	67.7	20.0		137.4	
10101- CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	7.41	67.5	20.1	6.42	132.2	±1.9 %
		Y	7.45	67.4	19.8		144.4	
		Z	7.62	68.2	20.6		147.4	
10108- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.50	67.9	20.2	5.80	144.9	±1.4 %
		Y	6.20	66.5	19.1		132.7	
		Z	6.38	67.4	20.0	0.10	134.5	- 4 70 04
10109- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	×	7.19	67.3	20.0	6.43	128.8	±1.7 %
		Y	7.22	67.1	19.7	1	141.7	
		Z	7.36	67.8	20.5		143.1	
10110- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	×	6.14	67.1	19.8	5.75	140.8	±1.4 %
		Υ	5.93	66.1	19.0		128.6	
		Z	6.05	66.8	19.7	6.44	131.2	±1.7 %
10111- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	×	7.21	68.0	20.5	6.44	137.4	±1.7 %
		Y	6.96	66.8	19.6	1	137.4	
10417	NEED OOD AND UNITED A ASSESSMENT	Z	7.09	67.5	20.3	8.07	138.9	±2.7 %
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	10.47	69.6	21.8	6.07	135.7	£2.7 %
		Y	10.30	69.0	21.3		124.4	
40440	LTE-FDD (SC-FDMA, 100% RB, 15	Z	10.27	69.1	21.6	6.49	133.4	±1.7 %
10140- CAC	MHz. 16-QAM)	X	7.66	67.8		0.48	145.3	21.7 70
		Z	7.64	67.6 68.4	20.0	 	148.8	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	7.83 5.97	67.0	19.8	5.73	137.4	±1.7 %
	GF GF()	Y	5.99	66.8	19.4		149.4	—
		ż	5.87	66.5	19.6		128.3	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	×	6.96	67.8	20.4	6.35	145.0	±1.4 %
One	10-00-000	Y	6.67	66.5	19.4		130.6	
		Z	6.87	67.4	20.3		135.1	

10145- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	х	5.66	66.4	19.5	5.76	132.2	±1.4 %
		Υ	5.72	66.4	19.3		145.5	
		Z	5.83	67.1	20.0		146.9	
10146- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	6.59	67.3	20.2	6.41	134.3	±1.7 %
		Υ	6.70	67.5	20.1		148.7	
		Z	6.57	67.3	20.2		128.0	
10149- CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	×	7.42	68.1	20.5	6.42	148.9	±1.7 %
		Y	7.16	66.9	19.7		137.3	
		Z	7.32	67.6	20.4		139.9	
10154- CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	×	6.08	66.9	19.7	5.75	135.0	±1.4 %
		Y	5.91	66.0	19.0		128.3	
10155	LTE EDD 100 EDMA FOW DR 40 MIL	Z	6.02	66.6	19.7	L	129.1	
10155- CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	7.10	67.6	20.3	6.43	144.0	±1.7 %
		Y	6.93	66.7	19.6		135.0	
10156-	LTE-FDD (SC-FDMA, 50% RB, 5 MHz.	Z	7.06	67.4	20.3	5.70	136.1	14 4 47
CAD	QPSK)	×	5.86	66.6	19.6	5.79	132.5	±1.4 %
		Υ	5.94	66.6	19.4		148.0	
10157-	LTE-FDD (SC-FDMA, 50% RB, 5 MHz,	Z	6.04	67.3	20.1	0.40	149.4	
CAD	16-QAM)	Х	6.88	67.5	20.3	6.49	139.1	±1.4 %
		Y	6.70	66.6	19.6		130.0	
10160-	LTE-FDD (SC-FDMA, 50% RB, 15 MHz,	Z	6.83	67.3	20.3	E 00	131.8	-1.1.5
CAC	QPSK)	Х	6.52	67.4	19.9	5.82	139.8	±1.4 %
		Y	6.31	66.4	19.2			
10161- CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	6.47 7.46	67.2 68.0	19.9 20.5	6.43	134.3 147.9	±1.7 %
		Υ	7.28	67.2	19.6		139,9	
		Z	7.40	67.8	20.4		141.3	
10166- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	Х	5.26	67.0	19.8	5.46	146.2	±1.2 %
		Υ	5.10	65.9	18.9		137.5	
		Z	5.20	66.6	19.7		140.5	
10167- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	Х	6.21	68.0	20.5	6.21	147.9	±1.4 %
		Υ	6.11	67.3	19.9		141.5	
		Z	6.20	67.9	20.6		145.1	
10169- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	5.11	67.1	20.0	5.73	137.1	±1.2 %
		Υ	4.97	66.1	19.2		128.7	
40470	LTE EDD (DO CDU) 1 CD CO LE	Z	5.09	66.9	20.1		134.8	
10170- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	Х	6.01	68.6	21.2	6.52	140.6	±1.7 %
		Y	5.76	67.1	20.0		128.6	
10175	LTE-EDD (SC EDWA A DD 40 M)	Z	5.90	68.0	21.0	E 70	135.3	-4
10175- ÇAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	5.08	67.0	19.9	5.72	138.1	±1.7 %
		Y	5.19	67.1	19.8		149.2	
10170	LTE EDD (OC EDWA 4 DD 40 LD	Z	5.09	66.9	20.1		135.6	-4
10176- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	5.98	68.5	21.1	6.52	139.5	±1.7 %
		Υ	5.72	67.0	20.0		127.8	
		Z	5.92	68.1	21.0		136.1	

Certificate No: ES3-3196_May17

Page 13 of 18

10177- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	х	5.09	67.0	20.0	5.73	137.8	±1.7 %
		Y	5.15	66.9	19.7		149.7	
		z	5.09	66.9	20.1		135.5	
10178- CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	х	5.96	68.4	21.0	6.52	139.4	±1.4 %
		Y	5.74	67.0	20.0		128.0	
		z	5.93	68.2	21.1		135.7	
10181- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	х	5.08	67.0	20.0	5.72	137.3	±1.4 %
		Υ	5.15	66.9	19.7		149.8	
		Z	5.08	66.9	20.0		136.0	
10182- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	Х	5.99	68.5	21.1	6.52	140.2	±1.4 %
		Υ	5.75	67.1	20.1		128.3	
		Z	5.92	68.1	21.0		136.0	
10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	Х	5.08	67.0	20.0	5.73	137.5	±1.4 %
		Υ	5.13	66.8	19.6		149.7	
		Z	5.08	66.8	20.0		135.5	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	×	5.99	68.5	21.1	6.51	140.4	±1.4 %
		Y	5.77	67.2	20.1		128.7	
		Z	5.95	68.3	21.1		135.9	
10187- CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	×	5.10	67.0	20.0	5.73	137.7	±1.2 %
		Υ	4.94	65.9	19.1		127.3	
		Z	5.11	66.9	20.1		135.0	
10188- CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	Х	5.99	68.5	21.1	6.52	141.3	±1.7 %
		Y	5.75	67.1	20.1	-	129.1	
		Z	5.94	68.2	21.0		136.0	
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	10.32	69.9	22.1	8.10	149.3	±2.5 %
		Y	9.93	68.6	21.2		136.9	
		Z	10.25	69.7	22.1		144.6	
10225- CAB	UMTS-FDD (HSPA+)	Х	6.96	66.8	19.5	5.97	126.9	±1.4 %
		Y	7.05	67.0	19.4		142.8	
		Z	7.10	67.3	19.9		144.5	1 2 2
10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rei8.10)	×	6.05	67.2	19.2	4.87	146.9	±1.2 %
		Y	5.88	66.4	18.5		136.3	
		Z	6.02	67.0	19.2	0.00	140.4	40.0 °
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	4.38	66.5	18.7	3.96	128.6	±0.9 %
		1 Y	4.48	66.7	18.6	-	141.5	-
400	LEE FOR 100 FOLLS FOR DE COLO	Z	4.53	67.1	19.2	6.04	134.6	16.6.00
10297- AAB	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	6.39	67.4	20.0	5.81	126.6	±1.4 %
		Y	6.16	66.3	19.1		130.2	-
10298-	LTE-FDD (SC-FDMA, 50% RB, 3 MHz,	X	6.34 5.70	67.1 66.4	19.9 19.5	5.72	128.8	±1.4 %
AAC	QPSK)	+	6.70	DD E	10.4	+	144.2	<u> </u>
	+	Y	5.79	66.5	19.4	+	146.6	
	LTE FOR /OC FOMA FOW DR 2 MILE	Z	5.89	67.2	20.1	E 20	135.5	±1.4 %
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	6.71	67.5	20.2	6.39	127.4	11.4 76
<u> </u>		Y	6.54	66.6	19.5	+	129.0	-
		Z	6.64	67.2	20.2	1	129.0	

Certificate No: ES3-3196_May17

Page 14 of 18

ES3DV3- SN:3196 May 17, 2017

10311- AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	7.01	68.2	20.4	6.06	141.6	±1.7 %
		Y	6.76	67.1	19.6		133.7	
		Z	6.92	67.8	20.3		135.3	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	Х	2.59	67.8	18.6	1.54	148.4	±0.7 %
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	The part of the pa	Υ	2.50	66.6	17.5		141.3	
		Z	2.62	68.0	19.0		142.7	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	×	10.26	69.8	22.1	8.14	147.2	±2.5 %
		Y	9.97	68.8	21.4		139.1	
	-	Z	10.18	69.6	22.1		141.7	
10430- AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	Х	9.52	69.2	22.0	8.28	133.2	±1.9 %
		Y	9.19	68.0	21.1		124.7	
		Z	9.46	69.0	22.0		127.4	
10431- AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	×	10.13	69.7	22.3	8.38	141.6	±2.5 %
		Y	9.84	68.7	21.5		133.3	
		Z	10.08	69.6	22.3		136.1	
10432- AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	Х	10.35	69.9	22.3	8.34	145.3	±2.5 %
		Υ	10.06	68.8	21.5		137.2	
		Z	10.28	69.7	22.3		139.8	
10433- AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	Х	10.59	70.1	22.4	8.34	149.7	±2.5 %
		Υ	10.26	69.0	21.5		139.9	L
		Z	10.53	69.9	22.4		144.9	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	Х	9.81	69.7	22.5	8.60	132.3	±2.2 %
		Y	9.51	68.5	21.6		125.0	
		Z	9.78	69.6	22.5		129.2	
10435- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	7.19	72.9	24.2	7.82	127.6	±2.2 %
		Y	7.59	73.8	24.4		147.3	
		Z	7.07	72.3	24.1		124.7	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	8.35	67.3	20.1	6.62	139.7	±1.4 %
		Y	8.12	66.5	19.4		128.3	
		Z	8.32	67.2	20.1		135.4	
10460- AAA	UMTS-FDD (WCDMA, AMR)	X	2.90	68.0	19.1	2.39	143.8	±0.9 %
		Y	2.85	67.4	18.5		132.5	
		Z	2.99	68.8	19.7		138.4	
	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	7.38	73.6	24.6	7.82	132.5	±3.0 %
		Y	7.55	73.6	24.3		145.4	
		Z	7.23	72.9	24.4		126.5	
10462- LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz AAA 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	7.72	73.8	24.9	8.30	126.2	±2.7 %
		Y	8.15	74.7	25.1		140.6	
		Z	8.45	76.2	26.4		149.1	
10464- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	7.27	73.2	24.4	7.82	127.9	±2.5 %
		Y	7.46	73.4	24.2		140.3	
		Z	7.79	75.0	25.6		148.8	

Certificate No: ES3-3196_May17

Page 15 of 18

ES3DV3-- SN:3196 May 17, 2017

10465-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-	Х	7.64	73.4	24.7	8.32	124.5	±3.0 %
AAA	QAM, UL Subframe=2,3,4,7,8,9)	~	0.40	74.7	05.4		140.5	
		Y	8.16	74.7	25.1			
10467	LTE TOD (SO FOLKS A DD F MIL.	Z	8.38	75.9	26.3	7.00	147.0	-0.E.W
10467- AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	7.11	72.6	24.1	7.82	125.3	±2.5 %
		Y	7.44	73.3	24.2		139.5	
		Z	7.82	75.2	25.6		149.0	
10468- AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Х	8.57	76.6	26.4	8.32	149.6	±3.0 %
		Υ	8.14	74.6	25.1		140.9	
		Z	8.46	76.3	26.4		149.0	
10470- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.89	75.4	25.6	7.82	148.3	±2.7 %
		Y	7.51	73.6	24.3		140.6	
		Z	7.81	75.1	25.6		148.1	
10471- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Х	8.51	76.4	26.3	8.32	149.0	±3.0 %
		Υ	8.14	74.6	25.1		141.1	
		Z	8.44	76.2	26.4		148.4	
10473- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	7.86	75.3	25.5	7.82	148.1	±2.7 %
		Υ	7.48	73.5	24.3		141.1	
		Z	7.76	74.9	25.5		147.8	
10474- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	х	8.51	76.4	26.3	8.32	149.1	±3.0 %
		Y	8.13	74.6	25.1		141.7	
		Z	8.40	76.0	26.3		147.9	
10477- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	×	8.57	76.7	26.5	8.32	148.4	±3.0 %
		Υ	8.17	74.7	25.2		142.2	
		Z	8.39	76.0	26.3		148.1	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	7.41	72.1	23.7	7.74	130.6	±2.7 %
		Υ	7.11	70.5	22.6		126.0	
		Z	7.44	72.1	23.9		130.3	
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	х	8.20	73.1	24.4	8.18	136.4	±3.0 %
		Y	7.90	71.6	23.3		130.3	
		z	8.19	73.0	24.5		134.3	
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	8.16	73.0	24.1	7.71	142.7	±3.3 %
		Υ	7.79	71.3	22.9		136.9	
		Z	8.07	72.6	24.1		140.2	
10483- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	8.56	71.7	23.7	8.39	127.2	±2.7 %
		Υ	9.01	72.7	24.0		148.0	
		Z	9.13	73.5	24.9		148.2	
10485- AAB		Х	8.29	73.3	24.2	7.59	148.2	±2.5 %
		Y	7.91	71.7	23.0		140.3	
		Z	8.08	72.6	24.0		141.9	
10486- AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	8.80	71.9	23.9	8.38	130.9	±2.7 %
		Υ	9.04	72.2	23.7		149.2	
		Z	8.62	71.3	23.6		125.3	
10488- AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	8.12	71.6	23.3	7.70	128.9	±2.7 %
		Y	8.42	72.1	23.3		147.2	
		Z	8.65	73.3	24.4		147.8	

Certificate No: ES3-3196_May17

May 17, 2017

ES3DV3- SN:3196

10489-	LTE-TDD (SC-FDMA, 50% RB, 10 MHz.	х	9.11	70.0	22.0	8.31	137.4	±2.7 %
AAB	16-QAM, UL Subframe=2,3,4,7,8,9)	^	9.11	72.0	23.9	0.31	137.4	22.7 76
		Υ	8.58	70.0	22.4		127.9	
		Z	8.95	71.5	23.6		130.3	
10491- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	8.67	72.3	23.5	7.74	135.2	±2.5 %
		Υ	8.08	70.0	22.1		125.2	
		Z	8.48	71.6	23.3		128.7	
10492- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	9.70	72.6	24.1	8.41	144.0	±2.7 %
		Υ	9.18	70.6	22.8		135.3	
		Z	9.54	72.0	23.9		138.6	
10494- AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	8.68	72.5	23.7	7.74	133.9	±2.5 %
		Υ	8.08	70.2	22.2		124.5	
		Z	8.51	71.9	23.5		127.7	
10495- AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	9.60	72.5	24.1	8.37	142.9	±2.7 %
		Y	9.17	70.8	22.9		135.6	
1015		Z	9.48	72.1	23.9		137.9	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	8.00	72.9	24.1	7.67	144.0	±3.0 %
		Y	7.60	71.0	22.7		136.2	
		Z	7.89	72.4	24.0		139.2	
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	8.34	71.4	23.6	8.40	124.4	±3.0 %
		Y	8.78	72.3	23.8		144.6	
		Z	8.94	73.3	24.8		145.4	
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	7.79	71.1	23.1	7.67	125.5	±2.5 %
		Υ	8.03	71.5	23.0		140.7	
	<u> </u>	Z	8.44	73.3	24.4		146.1	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	8.98	72.0	24.0	8.44	133.9	±2.7 %
		Υ	8.50	70.0	22.6		125.3	
		Z	8.84	71.5	23.8		128.5	
10503- AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	8.11	71.6	23.3	7.72	128.9	±2.5 %
		Υ	8.46	72.3	23.4		147.4	
		Z	8.77	73.7	24.6		149.9	
10504- AAB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	9.12	72.1	23.9	8.31	137.9	±3.0 %
		Y	8.56	69.9	22.4		127.3	
		Z	8.98	71.6	23.7		132.5	
10506- AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,6,9)	Х	8.66	72.5	23.7	7.74	133.6	±2.2 %
		Y	8.00	70.0	22.1		122.6	
		Z	8.54	72.0	23.6		129.3	
10507- AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	9.56	72.4	24.0	8.36	142.4	±3.0 %
		Υ	9.00	70.3	22.6		132.3	
		Z	9.54	72.3	24.1		139.8	
10509- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	х	9.43	73.2	24.1	7.99	139.9	±2.7 %
		Υ	8.75	70.8	22.6		128.7	
		Z	9.34	72.9	24.1		135.9	

Certificate No: ES3-3196_May17

Page 17 of 18

ES3DV3- SN:3196 May 17, 2017

10510- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	9.51	71.0	23.2	8.49	122.3	±2.7 %
	00010110-2,0,4,7,0,0	Υ	9.71	71.2	23.1		140.2	
		ż	10.19	72.9	24.4		147.3	
10512- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	9.02	72.8	23.7	7.74	135.0	±2.5 %
		Y	8.41	70.7	22.3		126.5	
		Z	9.01	72.8	23.8		133.0	
10513- LTE-TDD (SC-FDMA, 100% RB, 20 AAB MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	10.08	73.0	24.3	8.42	147.1	±2.7 %	
		Y	9.44	70.8	22.8		136.6	
		Z	10.02	72.8	24.3		144.2	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	2.69	68.5	18.9	1.58	145.5	±0.7 %
		Y	2.62	67.5	18.1		139.0	
		Z	2.73	68.7	19.3		143.9	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	Х	10.41	69.9	22.3	8.25	146.6	±2.2 %
		Y	10.14	68.9	21.5		138.8	
		Z	10.38	69.8	22.3		142.6	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	Х	3.47	71.3	20.1	1.99	145.7	±0.7 %
		Y	3.22	69.4	19.0		137.6	
		Z	3.47	71.3	20.4		142.7	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	Х	3.56	71.9	20.4	1.99	144.9	±0.7 %
		Y	3.39	70.5	19.4		138.7	
		Z	3.52	71.7	20.6		142.1	
10575- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 90pc duty cycle)	X	10.83	70.6	22.9	8.59	146.0	±2.7 %
		Y	10.51	69.5	22.0		140.4	
		Z	10.78	70.4	22.9		142.4	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	Х	10.88	70.7	22.9	8.60	147.2	±2.7 %
		Y	10.55	69.6	22.1		139.9	
		Z	10.79	70.5	22.9		141.6	
10591- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	×	10.96	70.7	22.9	8.63	148.2	±2.7 %
		Y	10.64	69.6	22.0		142.7	
40500	LEEE COD 44- CITATION A COLOR	Z	10.91	70.5	22.9	0.70	144.1	10 7 0
10592- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	×	11.14	70.9	23.1	8.79	147.7	±2.7 %
		Y	10.84	69.8	22.3		143.1	
10599-	JEEE 000 44- /UT Mind 400/21	Z	11.11	70.8	23.1	0.20	144.3	10.00
10599- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	11.15	70.1	22.5	8.79	126.8	±2.5 %
		Y	10.76	69.0	21.7		121.8	
10000	1555 000 44 - WITHE - 1 404 C	Z	11.13	70.1	22.6		124.8	
10600- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	×	11.22	70.2	22.6	8.88	126.7	±2.2 %
		Y	10.85	69.1	21.8	-	122.4	
		Z	11.24	70.2	22.7		124.7	

⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ES3-3196_May17

Page 18 of 18

FCC ID: AZ489FT4949 Report ID: P10483-EME-00001

Appendix C Dipole Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client Motorola Solutions MY

Certificate No: D450V3-1054_Oct17

Calibration procedure for dipole validation kits below 700 MHz Calibration date: October 25, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humkity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Prower meter NRP SN: 104778 04-Apr-17 (No. 217-02521/02522) Apr-18 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 SN: 103245 04-Apr-17 (No. 217-02522) Apr-18 SN: 5277 (20x) 07-Apr-17 (No. 217-02529) Apr-18 SN: 5277 (20x) 07-Apr-17 (No. 217-02529) Apr-18 SN: 5277 (20x) 07-Apr-17 (No. 217-02529) Apr-18 SN: 5472 2 / 06327 07-Apr-17 (No. 217-02529) Apr-18 SN: 3877 31-Dec-16 (No. EX3-3877_Dec-16) Dec-17 Dec-17 SN: 664 24-Jul-17 (No. DAE4-654_Jul17) Jul-18 Secondary Standards ID # Check Date (in house) Scheduled Check Dower sensor E4412A SN: MY41498087 06-Apr-16 (No. 217-02285) In house check: Jun-18 Prower sensor E4412A SN: MY41498087 06-Apr-16 (No. 217-02285) In house check: Jun-18 SN: US37390585 N: US37390585 N: US37390585 N: US37390585 N: US37390585 N: US37390585 N: US376101010 N: Usardory Technician Signature Jeton Kastrati Laboratory Technician Signature Jeton Kastrati	Object	D450V3 - SN:10	54	
Calibration date: October 25, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Prower sensor NRP-291 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 Apr-18 Apr-18 O4-Apr-17 (No. 217-02522) Apr-18 Reference 20 diB Attenuator SN: 5277 (20x) 07-Apr-17 (No. 217-02522) Apr-18 Reference 20 diB Attenuator SN: 5277 (20x) 07-Apr-17 (No. 217-02529) Apr-18 Reference Probe EX3DV4 SN: 3837 31-Dec-16 (No. EX3-3877_Dec-16) Dec-17 DAE4 SN: 654 24-Jul-17 (No. DAE4-654_Jul-17) Jul-18 Secondary Standards ID # Check Date (in house) Scheduled Check Shewer meter E4419B SN: GB41293874 06-Apr-16 (No. 217-02285) In house check: Jun-18 Power sensor E4412A SN: WY41498087 06-Apr-16 (No. 217-02285) In house check: Jun-18 Power sensor E4412A SN: US3642U01700 04-Aug-99 (in house check Jun-16) In house check: Jun-18 She generator HP 8648C SN: US36390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Name Function Signature Jeton Kastrati	Calibration procedure(s)	THE RESIDENCE OF THE PARTY OF T		
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Diff Cal Date (Certificate No.) Scheduled Calibration Primary Standards Diff Cal Date (Certificate No.) Scheduled Calibration Scheduled Calibration Apr-18 Power sensor NRP-291 SN: 104778 04-Apr-17 (No. 217-02521) Apr-18 Apr-18 SN: 103244 04-Apr-17 (No. 217-02522) Apr-18 SN: 103245 04-Apr-17 (No. 217-02528) Apr-18 Sype-N mismatch combination SN: 5047.2 (2 06327 07-Apr-17 (No. 217-02528) Apr-18 September Probe EX3DV4 SN: 3877 31-Dec-16 (No. EX3-3877_Dec-16) Dec-17 JAE4 SN: 654 24-Jul-17 (No. DAE4-654_Jul17) Jul-18 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor E4412A SN: GB41293874 06-Apr-16 (No. 217-02285) In house check: Jun-18 Power sensor E4412A SN: MY41498087 06-Apr-16 (No. 217-02285) In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 Secondary Standards SN: US3642U01700 06-Apr-16 (No. 217-02285) In house check: Jun-18 In house check: Oct-18 Name Function Signature Jeton Kastrati		Calibration proce	edure for dipole validation kits bel	ow 700 MHz
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Definition In the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Definition In the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Sh: 103245 Of-Apr-17 (No. 217-02521) Apr-18 Apr-18 Apr-18 Apr-18 Sh: 5277 (20x) Of-Apr-17 (No. 217-02528) Apr-18 Apr-18 Apr-18 Apr-18 Sh: 5277 (20x) Of-Apr-17 (No. 217-02529) Apr-18 Apr-18 Apr-18 Apr-18 Sh: 5277 (20x) Of-Apr-16 (No. 217-02529) Apr-18 Dec-17 DAE-18 Secondary Standards ID # Check Date (in house) Scheduled Check Apr-16 (No. 217-02285/02284) In house check: Jun-18 Decendence Probe E4412A Sh: MY41498007 Of-Apr-16 (No. 217-02285) In house check: Jun-18 Apr-18 Decendence Probe E4412A Sh: MY41498007 Of-Apr-16 (No. 217-02285) In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 Apr-18 Decendence Probe E4412A Sh: W141498007 Of-Apr-16 (No. 217-02284) In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 Apr-18	Calibration date:	October 25, 2017	7	
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards December 1	This calibration certificate docum	nents the traceability to nat	ional standards, which realize the physical ur	nits of measurements (SI).
Cal Date (Certificate No.) Scheduled Calibration	ne measurements and the unce	artainties with confidence p	robability are given on the following pages ar	nd are part of the certificate.
Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-17 (No. 217-02521/02522) Apr-18 Ap	All calibrations have been condu	cted in the closed laborato	ry facility: environment temperature (22 ± 3)°c	C and humidity < 70%.
Secondary Standards	Calibration Equipment used (M&	TE critical for calibration)		
Power meter NRP SN: 104778 04-Apr-17 (No. 217-02521/02522) Apr-18 Power sensor NRP-Z91 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02522) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02522) Apr-18 Power sensor NRP-Z91 SN: 503245 04-Apr-17 (No. 217-02522) Apr-18 Power sensor NRP-Z91 SN: 5047.2 / 06327 07-Apr-17 (No. 217-02528) Apr-18 Power SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) Apr-18 Power SN: 3877 31-Dec-16 (No. EX3-3877_Dec-16) Dec-17 Power SN: 654 24-Jul-17 (No. DAE4-654_Jul17) Jul-18 Power meter E4419B SN: GB41293674 08-Apr-16 (No. 217-02285/02284) In house check: Jun-18 Power sensor E4412A SN: MY41498087 06-Apr-16 (No. 217-02285) In house check: Jun-18 Power sensor E4412A SN: 000110210 06-Apr-16 (No. 217-02284 In house check: Jun-18 Power sensor E4412A SN: US3642U01700 04-Aug-99 (in house check Jun-16) In house check: Jun-18 Power Sensor E4412A SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Power Sensor E4412A SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Power Sensor E4412A SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Power Sensor E4412A SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Power Sensor E4412A SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Power Sensor E4412A SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Power Sensor E4412A SN: US37390585 In-Oct-01 (in house check Oct-17) In house check: Oct-18 Power E4412A SN: US37390585 In-Oct-01 (in house check Oct-17) In house check: Oct-18 Power E4412A SN: US37390585 In-Oct-01 (in house check Oct-17) In house check: Oct-18 Power E4412A SN: US37390585 In-Oct-01 (in house check Oct-17) In house check: Oct-18 Power E4412A SN: US37390585 In-Oct-01 (in house check Oct-17) In-Oct-01 (in house check Oct-01 (in house check Oct-01 (in house check	rimary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
SN: 103245 04-Apr-17 (No. 217-02522) Apr-18	ower meter NRP	SN: 104778		
eference 20 dB Attenuator	ower sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
SN: 5277 (20x) 07-Apr-17 (No. 217-02528) Apr-18 Apr-18 Apr-18 Apr-18 SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) Apr-18 Apr-18 SN: 3877 31-Dec-16 (No. EX3-3877_Dec-16) Dec-17 AE4 SN: 654 24-Jul-17 (No. DAE4-654_Jul17) Jul-18 Apr-18	ower sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) Apr-18		SN: 5277 (20x)		
### SN: 3877 31-Dec-16 (No. EX3-3877_Dec-16) Dec-17	eference 20 dB Attenuator			
SN: 654 24-Jul-17 (No. DAE4-654_Jul17) Jul-18	The state of the s	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	ADT-18
SN: GB41293674 06-Apr-16 (No. 217-02285/02284) In house check: Jun-18 (No. 217-02285/02284) In house check: Jun-18 (No. 217-02285/02284) In house check: Jun-18 (No. 217-02285) In house check: Jun-18 (No. 217-02284) In house check: Jun-18 (No. 217-02284	ype-N mismatch combination			
SN: GB41293874 06-Apr-16 (No. 217-02285/02284) In house check: Jun-18 SN: MY41498087 06-Apr-16 (No. 217-02285) In house check: Jun-18 SN: MY41498087 06-Apr-16 (No. 217-02285) In house check: Jun-18 SN: 000110210 06-Apr-16 (No. 217-02284 In house check: Jun-18 SN: US3642U01700 04-Aug-99 (in house check Jun-16) In house check: Jun-18 In house check: Jun-18 SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Name Function Signature Salibrated by: Jeton Kastrati Laboratory Technician	ype-N mismatch combination Reference Probe EX3DV4	SN: 3877	31-Dec-16 (No. EX3-3877_Dec16)	Dec-17
SN: MY41498087 06-Apr-16 (No. 217-02285) . In house check: Jun-18 SN: 000110210 06-Apr-16 (No. 217-02284 In house check: Jun-18 SN: US3642U01700 04-Aug-99 (in house check Jun-16) In house check: Jun-18 In house check: Oct-18 In h	Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 3877 SN: 654	31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. DAE4-654_Jul17)	Dec-17 Jul-18
SN: 000110210 06-Apr-16 (No. 217-02284 In house check: Jun-18 SN: US3642U01700 04-Aug-99 (in house check Jun-16) In house check: Jun-18 SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Name Function Signature Allbrated by: Jun-18 In house check Oct-17) Signature	ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards	SN: 3877 SN: 654	31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house)	Dec-17 Jul-18 Scheduled Check
SN: US3642U01700 04-Aug-99 (in house check Jun-16) In house check: Jun-18 SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Name Function Signature Allbrated by: Jeton Kastrati Laboratory Technician	ype-N mismatch combination deference Probe EX3DV4 AE4 secondary Standards lower meter E4419B	SN: 3877 SN: 654 ID # SN: GB41293874	31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (No. 217-02285/02284)	Dec-17 Jul-18 Scheduled Check In house check: Jun-18
etwork Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Name Function Signature Alibrated by: Jeton Kastrati Laboratory Technician	ype-N mismatch combination leference Probe EX3DV4 AE4 econdary Standards lower meter E4419B lower sensor E4412A	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087	31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285)	Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18
allbrated by: Jeton Kastrati Laboratory Technician	ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210	31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02284	Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
	ype-N mismatch combination leference Probe EX3DV4 AE4 secondary Standards lower meter E4419B lower sensor E4412A lower sensor E4412A F generator HP 8648C	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02284 04-Aug-99 (in house check Jun-16)	Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
approved by: Katja Pokovic Technical Manager	Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A RF generator HP 8648C	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498067 SN: 000110210 SN: US3642U01700 SN: US37390585	31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02284 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-17)	Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Oct-18
Technical Manager	Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498067 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02284 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-17)	Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Oct-18
	Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498067 SN: 000110210 SN: US3642U01700 SN: US37390585 Name Jeton Kastrati	31-Dec-16 (No. EX3-3877_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02284 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-17) Function Laboratory Technician	Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Oct-18

Certificate No: D450V3-1054_Oct17

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

 iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V3-1054_Oct17

Page 2 of 8

FCC ID: AZ489FT4949

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.5 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.48 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.750 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.00 W/kg ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.2 ± 6 %	0.93 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.57 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	0.759 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	3.05 W/kg ± 17.6 % (k=2)

Certificate No: D450V3-1054_Oct17

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.9 Ω - 4.1 jΩ
Return Loss	- 21.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	54.4 Ω - 8.9 jΩ
Return Loss	- 20.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.349 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 16, 2005

Certificate No: D450V3-1054_Oct17

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 25.10.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz D450V3; Type: D450V3; Serial: D450V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.87 \text{ S/m}$; $\varepsilon_r = 43.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN3877; ConvF(10.5, 10.5, 10.5); Calibrated: 31.12.2016;

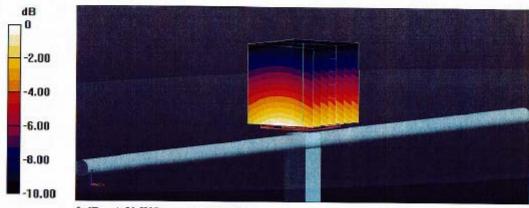
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 24.07.2017

Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003

DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

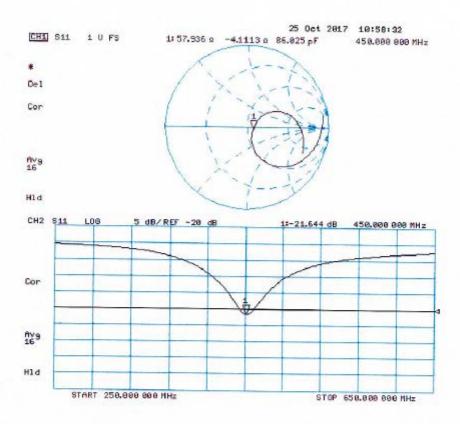

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 43.28 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.74 W/kg

SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.750 W/kg

Maximum value of SAR (measured) = 1.52 W/kg



0 dB = 1.52 W/kg = 1.82 dBW/kg

Certificate No: D450V3-1054_Oct17

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D450V3-1054_Oct17

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 25.10.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz D450V3; Type: D450V3; Serial: D450V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 55.2$; $\rho = 1000$ kg/m³

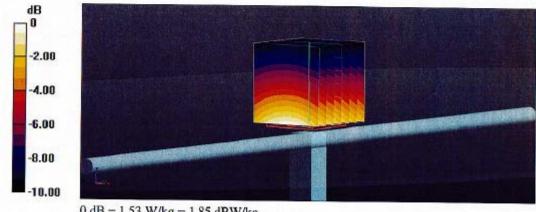
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN3877; ConvF(10.7, 10.7, 10.7); Calibrated: 31.12.2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

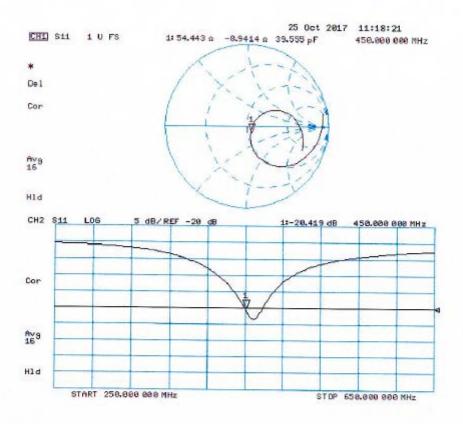

Electronics: DAE4 Sn654; Calibrated: 24.07.2017

Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003

DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 42.19 V/m; Power Drift = -0.05dB Peak SAR (extrapolated) = 1.76 W/kg SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.759 W/kgMaximum value of SAR (measured) = 1.53 W/kg



0 dB = 1.53 W/kg = 1.85 dBW/kg

Certificate No: D450V3-1054_Oct17

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D450V3-1054_Oct17

Page 8 of 8

FCC ID: AZ489FT4949 Report ID: P10483-EME-00001

Dipole Data

As stated in KDB 865664, only dipoles used for longer calibration intervals required to provide supporting information and measurement to qualify for extended calibration interval. No Dipole was exceeded the annual calibration.