FCC SAR TEST REPORT

FCC ID : AK8VTG100

Brand Name : Sony Group Corporation
Applicant : Sony Group Corporation

1-7-1 Konan Minato-ku, Tokyo, 108-0075 Japan

Manufacturer : Sony Network Communications Europe B.V.

Taurusavenue 16, 2132LS Hoofddorp, Netherlands

Standard : FCC 47 CFR Part 2 (2.1093)

The product was received on Apr. 16, 2021 and testing was started from May 11, 2021 and completed on Jun. 07, 2021. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample provide by manufacturer and the test data has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and FCC KDB and has been pass the FCC requirement.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Cona Huang / Deputy Manager

lac-MRA

Report No.: FA140729-02

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan

TEL: 886-3-327-3456 Page 1 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

Page 2 of 34

Issued Date : Aug. 14, 2021

Table of Contents

1. Statement of Compliance	
2. Guidance Applied	
3. Equipment Under Test (EUT) Information	
3.1 General Information	
3.2 Device Serial Number	
3.3 General LTE SAR Test and Reporting Considerations	6
4. RF Exposure Limits	
4.1 Uncontrolled Environment	7
4.2 Controlled Environment	7
5. Specific Absorption Rate (SAR)	8
5.1 Introduction	8
5.2 SAR Definition	8
6. System Description and Setup	9
6.1 Test Site Location	9
6.2 E-Field Probe	
6.3 Data Acquisition Electronics (DAE)	10
6.4 Phantom	
6.5 Device Holder	12
7. Measurement Procedures	13
7.1 Spatial Peak SAR Evaluation	
7.2 Power Reference Measurement	14
7.3 Area Scan	14
7.4 Zoom Scan	15
7.5 Volume Scan Procedures	15
7.6 Power Drift Monitoring	15
8. Test Equipment List	16
9. System Verification	17
9.1 Tissue Verification	17
9.2 System Performance Check Results	
10. GSM/LTE Output Power (Unit: dBm)	
11. Bluetooth Output Power (Unit: dBm)	
12. SAR Test Results	
12.1 Body SAR	30
12.2 Repeated SAR Measurement	
13. Simultaneous Transmission Analysis	
13.1 Body Exposure Conditions	33
14. Uncertainty Assessment	34
15. References	34
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

TEL: 886-3-327-3456

History of this test report

Report No. : FA140729-02

Report No.	Version	Description	Issued Date
FA140729-02	01	Initial issue of report	Aug. 14, 2021

TEL: 886-3-327-3456 Page 3 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

1. Statement of Compliance

Applicant Name	Sony Group Corporation				
EUT Description	Visilion Tracker G100				
Brand Name	Sony Group Corporation				
FCC ID	AK8VTG100				
DE Evenanura Canditions	Equipment Class				
RF Exposure Conditions	Licensed	DTS			
Body (1g SAR W/kg)	1.48 0.09				
Highest Simultaneous Transmission (1g SAR W/kg)	1.56				
Date Tested	2021/5/11 ~ 2021/6/7				
Test Result	Pass				

Report No.: FA140729-02

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

Reviewed by: <u>Jason Wang</u> Report Producer: <u>Daisy Peng</u>

2. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards, the below KDB standard may not including in the TAF code without accreditation.

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- · IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05

TEL : 886-3-327-3456 Page 4 of 34
FAX : 886-3-328-4978 Issued Date : Aug. 14, 2021

3. Equipment Under Test (EUT) Information

3.1 General Information

Wireless Technologies	Frequency	Opera	ting Mode	
GSM	850 1900	I · GPRS (GMSK)	Multi-Slot Class: Class 33	
	Does device support dual transfer mod			
LTE (FDD)	Band 2 Band 4 Band 5 Band 12 Band 13 Band 26	· QPSK · 16QAM · Rel. 13 LTE Cat M1 · Duty Cycle: 30% ⁽¹⁾		
Bluetooth	2.4GHz	Version 4.2 with LE		

Report No.: FA140729-02

Remark:

3.2 <u>Device Serial Number</u>

Band	SN
WWAN & BT	P1Q20IU06014402

Note: Several samples were used with identical hardware to support SAR testing. The manufacturer has confirmed that the device tested gave the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

TEL: 886-3-327-3456 Page 5 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

^{1.} For LTE cat. M1, the uplink subframes are scheduled at three subframes every 10ms for all channel bandwidths according to 3GPP 36.521.

3.3 General LTE SAR Test and Reporting Considerations

Summarized necessary items addressed in KDB 941225 D05 v02r05												
FC	C ID		Ou		K8VTG100	items addi	C35CG III IXI	JU J41	223 D03 V021	00		
Operating Frequency Range of each LTE transmission band					ΓΕ Band 2: ΓΕ Band 4: ΓΕ Band 5: ΓΕ Band 12 ΓΕ Band 13	1710 MHz - 824 MHz ~ 2: 699 MHz - 3: 777 MHz -	~ 716 MHz ~ 787 MHz					
Channel Bandwidth uplink modulations used				[1] [1] [1] [1] Q	TE Band 2: TE Band 4: TE Band 5: TE Band 12 TE Band 13	1.4MHz, 3M 1.4MHz, 3M ::1.4MHz, 3N :: 5MHz, 10N ::1.4MHz, 3N	Hz, 5MHz, 1 Hz, 5MHz, 1 Hz, 5MHz, 1 MHz, 5MHz,	IOMHz, IOMHz 10MHz	Z			
ш	E Voice / D	ala ley	ullernerits	D.	ata Offiy							
					Table 6				ction (MPR) f			MPR (dB)
						MHz	MHz	MH	z MHz	MHz	MHz	
LTE	E MPR per	manent	tly built-in by d	esign	QPSK	> 5	> 4	> 8		> 16	> 18	≤ 1
					16 QAM	≤ 5	≤ 4	≤ 8		≤ 16	≤ 18	≤ 1
					16 QAM	> 5	> 4	> 8		> 16	> 18	≤ 2
					64 QAM	≤ 5	≤ 4	≤ 8		≤ 16	≤ 18	≤ 2
												≤ 3
					64 QAM	> 5	> 4	> 8		> 16	> 18	
1 T	E A MDD				256 QAM the base s	tation simul	ator configu	ration,	≥ 1 Network Setti	ng value is	set to NS	≤ 5
	E A-MPR ectrum plo	ts for R	B configuration	A- (M A n m	the base s -MPR durin Maximum T properly easurement included	tation simul ng SAR tes TI) configured it; therefore	ator configu ting and the base stati , spectrum preport.	ration, e LTE on sim	≥ 1 Network Settii SAR tests w nulator was r each RB allo	ng value is as transmit used for ocation and	set to NS ting on a	≤ 5
		ts for R		A- (M A n m	the base s -MPR durin Maximum T properly easurement included	tation simul ng SAR tes TI) configured nt; therefore, in the SAR	ator configuating and the base stati , spectrum preport.	ration, e LTE on sim	≥ 1 Network Setti SAR tests w nulator was	ng value is as transmit used for ocation and	set to NS ting on a	≤5 _01 to disable all TTI frames R and power
	ectrum plo		Transr	A- (M A n m no nission (H,	the base s -MPR durin Maximum T properly easuremer ot included M, L) char	tation simul ng SAR tes TI) configured nt; therefore in the SAR unel numbe	bator configurating and the base stati , spectrum preport.	ration, e LTE on sim blots for uencie	≥ 1 Network Settii SAR tests w nulator was r each RB allo	ng value is as transmit used for ocation and	set to NS ting on a the SAR offset cor	_01 to disable all TTI frames R and power ofiguration are
		า 1.4 MI	Transr	A- (M A n m no nission (H,	the base s -MPR durin Maximum T properly easuremer ot included M, L) char	tation simul ng SAR tes TI) configured tt; therefore in the SAR innel numbe LTE Ba	ator configuating and the base stati , spectrum preport.	ration, e LTE on simplots for uencie	≥ 1 Network Settii SAR tests w nulator was r each RB alloss in each LTI	ng value is as transmit used for ocation and band	set to NS ting on a the SAR offset cor	≤ 5 _01 to disable all TTI frames R and power ofiguration are
Sp	ectrum plot Bandwidth Ch. #	n 1.4 MI Freq (MHz	Transr	n A- (M A n m nc nission (H, dith 3 MHz Freq. (MHz)	the base s -MPR durin Maximum T properly easuremen ot included M, L) char Bandwid Ch. #	tation simular SAR test (TI) configured tt; therefore in the SAR (Included LTE Batth 5 MHz Freq. (MHz)	base stati , spectrum preport. ers and frequency and 2 Bandwidth	ration, e LTE on sim olots for uencie	Network Settii SAR tests w nulator was r each RB allo s in each LTI Hz Bandwid Ch. #	ng value is as transmit used for ocation and the band the 15 MHz Freq. (MHz)	set to NS, ting on a the SAR offset cor	O1 to disable all TTI frames R and power ofiguration are vidth 20 MHz Freq. (MHz)
Sp	ectrum plot Bandwidth Ch. #	n 1.4 MI Freq (MHz 1850.	Transr Hz Bandwid Ch. # 2) 18615	A- (M A m nc nission (H, dth 3 MHz Freq. (MHz) 1851.5	the base s -MPR durin Maximum T properly easuremen ot included M, L) char Bandwid Ch. # 18625	tation simular SAR testril) configured to the SAR interestrict the sar i	base stati , spectrum preport. ers and frequency and 2 Bandwidth Ch. #	ration, e LTE on sim olots for uencie 1 10 MH Freq (MHz 1855	Network Settii SAR tests w nulator was r each RB allo s in each LTI Hz Bandwic Ch. # 2) 18675	ng value is as transmit used for ocation and the stand stand stand stand standard st	set to NS, ting on a the SAR offset cor Bandw Ch. #	O1 to disable all TTI frames R and power ofiguration are vidth 20 MHz Freq. (MHz) 0 1860
Sp.	ectrum plot Bandwidth Ch. # 18607 18900	n 1.4 Ml Freq (MHz 1850.	Transr Hz Bandwid Ch. # 18615 18900	A- (M A m noission (H, dth 3 MHz Freq. (MHz) 1851.5 1880	the base s -MPR durin Maximum T properly easuremen ot included M, L) char Bandwid Ch. # 18625 18900	tation simular SAR testri) configured trip the SAR innel number LTE Batth 5 MHz Freq. (MHz) 1852.5 1880	base stati , spectrum preport. ers and freq and 2 Bandwidth Ch. #	ration, e LTE on simplets for uencie 10 MF Freq (MHz 1855	Network Settii SAR tests w mulator was reach RB allous in each LTI Bandwid Ch. # 20 18675 18900	ng value is as transmit used for ocation and the stand	set to NS, ting on a the SAR offset cor Bandw Ch. #	O1 to disable all TTI frames R and power ofiguration are vidth 20 MHz Freq. (MHz) 0 1860 0 1880
Sp.	ectrum plot Bandwidth Ch. #	n 1.4 MI Freq (MHz 1850.	Transr Hz Bandwid Ch. # 18615 18900	A- (M A m nc nission (H, dth 3 MHz Freq. (MHz) 1851.5	the base s -MPR durin Maximum T properly easuremen ot included M, L) char Bandwid Ch. # 18625	tation simular SAR testril) configured trip the SAR innel number LTE Batth 5 MHz Freq. (MHz) 1852.5 1880 1907.5	base stati , spectrum preport. ers and frequent 2 Bandwidth Ch. # 18650 18900 19150	ration, e LTE on sim olots for uencie 1 10 MH Freq (MHz 1855	Network Settii SAR tests w nulator was r each RB allous in each LTf Hz Bandwid Ch. # 18675 18900	ng value is as transmit used for ocation and the stand stand stand stand standard st	set to NS, ting on a the SAR offset cor Bandw Ch. #	O1 to disable all TTI frames R and power ofiguration are vidth 20 MHz Freq. (MHz) 0 1860 0 1880
Sp.	Bandwidth Ch. # 18607 18900 19193	1.4 Ml Freq (MHz 1850. 1880 1909.	Transr Hz Bandwid Ch. # 7 18615 0 18900 .3 19185	A- (M A m n monission (H, dith 3 MHz Freq. (MHz) 1851.5 1880 1908.5	the base s -MPR durin Maximum T properly easurement included M, L) char Bandwid Ch. # 18625 18900 19175	tation simular SAR testri) configured tt; therefore in the SAR innel number LTE Batth 5 MHz Freq. (MHz) 1852.5 1880 1907.5 LTE Batth 5 MHz	base stati, spectrum preport. ers and frequency and 2 Bandwidth Ch. # 18650 18900 19150 and 4	ration, e LTE on simplets for uencie 10 MH Freq (MHz 1855 1880	Network Setti SAR tests w nulator was r each RB allo s in each LTI Hz Bandwid Ch. # 5 18675 0 18900 5 19125	ng value is as transmit used for ocation and the stand	set to NS, ting on a the SAR offset core Bandw Ch. # 18700 18900 19100	_O1 to disable all TTI frames R and power ofiguration are vidth 20 MHz Freq. (MHz) D 1860 D 1880 D 1900
Sp.	ectrum plot Bandwidth Ch. # 18607 18900	1.4 MI Freq (MHz 1850 1880 1909	Transr Hz Bandwid Ch. # 1 18615 1 18900 3 19185 Hz Bandwid	A- (M A m noission (H, dth 3 MHz Freq. (MHz) 1851.5 1880	the base s -MPR durin Maximum T properly easurement included M, L) char Bandwid Ch. # 18625 18900 19175	tation simular SAR testril) configured trip the SAR innel number LTE Batth 5 MHz Freq. (MHz) 1852.5 1880 1907.5	base stati , spectrum preport. ers and frequent 2 Bandwidth Ch. # 18650 18900 19150	ration, e LTE on simplets for uencie 10 MH Freq (MHz 1855 1880	Network Setti SAR tests w nulator was r each RB allo s in each LTI Hz Bandwid Ch. # 5 18675 0 18900 5 19125	ng value is as transmit used for ocation and the stand	set to NS, ting on a the SAR offset core Bandw Ch. # 18700 18900 19100	O1 to disable all TTI frames R and power ofiguration are vidth 20 MHz Freq. (MHz) 0 1860 0 1880
Sp	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. #	1.4 Mi Freq (MHz 1850. 1880 1909. 1.4 Mi Freq (MHz	Transr Hz Bandwid Ch. # 18615 18900 3 19185 Hz Bandwid Ch. #	A- (M A m n monission (H, dith 3 MHz Freq. (MHz) 1851.5 1880 1908.5	the base semple during the base semple during the latest term of the l	tation simular	base stati, spectrum preport. ers and frequency and 2 Bandwidth Ch. # 18650 18900 19150 and 4	ration, e LTE on simplets for uencie 10 MH Freq (MHz 1855 1880	Network Settii SAR tests with mulator was reach RB allows in each LTI Bandwid Ch. # 18675 18900 19125 Hz Bandwid Ch. # Bandwid	ng value is as transmit used for ocation and the stand	Bandw Ch. # Bandw Ch. #	s 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Sp L M H	Bandwidth Ch. # 18607 18900 19193 Bandwidth	1.4 MI Freq (MHz 1850. 1880 1909. 1.4 MI Freq	Transr Hz Bandwid Ch. # 18615 18900 3 19185 Hz Bandwid Ch. #	A- (M A A m n nission (H, dth 3 MHz Freq. (MHz) 1851.5 1880 1908.5 dth 3 MHz Freq.	the base some Ample during the base some Ample during the assurance of included M, L) characteristics. The second of the second	tation simular	base stati , spectrum preport. ers and frequency and 2 Bandwidth Ch. # 18650 18900 19150 and 4 Bandwidth	ration, le LTE on simplots for uencie 1 10 MH Freq (MHz 1855 1880 1905	Network Settii SAR tests we nulator was reach RB allows in each LTI Hz Bandwid Ch. # 5 18675 0 18900 5 19125 Hz Bandwid Ch. # 2) Ch. # 2) Ch. #	ng value is as transmit used for ocation and the stand	Bandw Ch. # 18700 19100 Bandw	s 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Sp.	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. #	1.4 Mi Freq (MHz 1850. 1880 1909. 1.4 Mi Freq (MHz	Transr Hz Bandwid Ch. # 7 18615 18900 3 19185 Hz Bandwid Ch. # 7 19965	A- (M A A m n mission (H, dth 3 MHz Freq. (MHz) 1851.5 1880 1908.5 dth 3 MHz Freq. (MHz)	the base semple during the base semple during the latest term of the l	tation simular	base stati, spectrum preport. Frs and frequency and 2 Bandwidth Ch. # 18650 18900 19150 and 4 Bandwidth Ch. #	ration, e LTE on simplets for uencie 10 MH Freq (MHz 1855 1880 1905	Network Settii SAR tests with mulator was reach RB allows in each LTI Bandwid Ch. # 18675 18900 19125 Hz Bandwid Ch. # 20025	ng value is as transmit used for ocation and the second se	Bandw Ch. # Bandw Ch. #	s 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sp.	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. # 19957	1.4 Mi Freq (MHz 1850. 1880 1909. 1.4 Mi Freq (MHz 1710.	Transr Hz Bandwid Ch. # 7 18615 18900 3 19185 Hz Bandwid Ch. # 7 19965 5 20175	A- (M A A m n mission (H, dth 3 MHz Freq. (MHz) 1851.5 1880 1908.5 dth 3 MHz Freq. (MHz) 1711.5	the base semple during	tation simular	base stati , spectrum preport. Bandwidth Ch. #	ration, le LTE on simplots for uencie 1 10 MH Freq (MHz 1855 1880 1905	Network Settii SAR tests with mulator was reach RB allows in each LTI Bandwid Ch. # 18675 18900 19125 Hz Bandwid Ch. # 20025 15 20175	ng value is as transmit used for ocation and the second se	Bandw Ch. # 18700 Bandw Ch. # 20050	s 5 s s 5 s 5 s 5 s 5 s 5 s 5 s 5 s 5 s
Sp.	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. # 19957 20175	1.4 MI Freq (MHz 1850. 1880. 1909. 1.4 MI Freq (MHz 1710.	Transr Hz Bandwid Ch. # 7 18615 18900 3 19185 Hz Bandwid Ch. # 7 19965 5 20175	A- (M A A M A M M A M M M M M M M M M M M	the base semple during the base semple. The base semple during the b	tation simular	base stati , spectrum preport. From and frequency and 2 Bandwidth Ch. # 18650 18900 19150 and 4 Bandwidth Ch. # 20000 20175 20350	ration, le LTE on simplots for uencie 1 10 MH Freq (MHz 1855 1880 1905 1 10 MH Freq (MHz 1715	Network Settii SAR tests with mulator was reach RB allows in each LTI Bandwid Ch. # 18675 18900 19125 Hz Bandwid Ch. # 20025 15 20175	ng value is as transmit used for ocation and the second se	Bandw Ch. # 18700 19100 Bandw Ch. # 20050 20175	s 5 s s 5 s s 5 s s 5 s 5 s 5 s 5 s 5 s
Sp.	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. # 19957 20175 20393	1.4 MI Freq (MHz 1850. 1880. 1909. 1.4 MI Freq (MHz 1710. 1732.	Transr Hz Bandwid Ch. # .7 18615 0 18900 .3 19185 Hz Bandwid Ch. # .7 19965 .5 20175 .3 20385	A- (N A A M A M M A M M M M M M M M M M M M	the base semple during the base semple. The base semple during the b	tation simular	base stati , spectrum preport. From and frequency and 2 Bandwidth Ch. # 18650 18900 19150 and 4 Bandwidth Ch. # 20000 20175 20350 and 5	ration, le LTE on simplots for uencie 1 10 MH Freq (MHz 1855 1880 1905 1 10 MH Freq (MHz 1715 1732	Network Settii SAR tests with mulator was reach RB allows in each LTI Bandwid Ch. # 18675 18900 19125 Hz Bandwid Ch. # 20025 15 20175 20325	ng value is as transmit used for ocation and the stand	Bandw Ch. # Bandw Ch. # 20050 20175 20300	s 5 s s 5 s 5 s 5 s 5 s 5 s 5 s 5 s 5 s
Sp.	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. # 19957 20175 20393	1.4 MI Freq (MHz 1850. 1880. 1909. 1.4 MI Freq (MHz 1710. 1732. 1754.	Transr Hz Bandwid Ch. # 7 18615 0 18900 3 19185 Hz Bandwid Ch. # 7 19965 5 20175 3 20385	A-(N) A m m nc nission (H, th 3 MHz Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5	the base semple during	tation simular	base stati , spectrum preport. Frs and frequent 2 Bandwidth Ch. # 18650 18900 19150 and 4 Bandwidth Ch. # 20000 20175 20350 and 5 Bar	ration, le LTE on simplots for uencie 1 10 MH Freq (MHz 1855 1880 1905 1 10 MH Freq (MHz 1715 1732	Network Settii SAR tests with mulator was reach RB allows in each LTI Bandwid Ch. # 20025 Bandwid Ch. # 20025 Ch. # 20025 MZ Bandwid Ch. # 20025 MZ BANDWIG Ch. #	ng value is as transmit used for ocation and bth 15 MHz Freq. (MHz) 1857.5 1880 1902.5 thh 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5	Bandw Ch. # 18700 19100 Bandw Ch. # 20050 20175 20300	s 5 s 5 s 5 s 5 s 5 s 5 s 5 s 5 s 5 s 5
Sp.	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. # 19957 20175 20393 Banc Ch. #	1.4 MI Freq (MHz 1850. 1880. 1909. 1.4 MI Freq (MHz 1710. 1732. 1754.	Transr Hz Bandwid Ch. # .7 18615 D 18900 .3 19185 Hz Bandwid Ch. # .7 19965 .5 20175 .3 20385 1.4 MHz Freq. (MHz)	A-(N) A m m nc nission (H, th 3 MHz Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5 Ba Ch. #	the base semple during the base semple. The base semple during the b	tation simular	base stati , spectrum preport. From and frequent 2 Bandwidth Ch. # 18650 18900 19150 and 4 Bandwidth Ch. # 20000 20175 20350 and 5 Bar Ch. #	ration, le LTE on simplots for uencie 1 10 MH Freq (MHz 1855 1880 1905 1 10 MH Freq (MHz 1715 1732	Network Settii SAR tests with mulator was reach RB allows in each LTI Bandwid Ch. # 18675 18900 19125 Hz Bandwid Ch. # 2) Ch. # 5 20025 15 20175 20325 SMHz Freq. (MHz)	ng value is as transmit used for ocation and bth 15 MHz Freq. (MHz) 1857.5 1880 1902.5 thh 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5 Ba Ch.	Bandw Ch. # 20050 20175 20300 ndwidth 1	s 5 201 to disable all TTI frames R and power of the po
Sp. L M H H	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. # 19957 20175 20393 Banc Ch. # 20407	1.4 MI Freq (MHz 1850. 1880. 1909. 1.4 MI Freq (MHz 1710. 1732. 1754.	Transr Hz Bandwid Ch. # .7 18615 0 18900 .3 19185 Hz Bandwid Ch. # .7 19965 .5 20175 .3 20385 1.4 MHz Freq. (MHz) 824.7	A- (N A A M A M M A M M M M M M M M M M M M	the base semple during the base semple. The base semple during the b	tation simular	ator configurating and the base static, spectrum preport. report. Bandwidth Ch. # 18650 18900 19150 and 4 Bandwidth Ch. # 20000 20175 20350 and 5 Bar Ch. # 20425	ration, le LTE on simplots for uencie 1 10 MH Freq (MHz 1855 1880 1905 110 MH Freq (MHz 1715 1732	Network Settii SAR tests with mulator was reach RB allows in each LTI Bandwid Ch. # 20025 Bandwid Ch. # 20025 Ch. # 20025 MZ Bandwid Ch. #	ng value is as transmit used for ocation and leth 15 MHz Freq. (MHz) 1857.5 1880 1902.5 1717.5 1732.5 1747.5 Ba Ch. 2045	Bandw Ch. # 20050 20175 20300	s 5 201 to disable all TTI frames R and power of the po
Sp.	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. # 19957 20175 20393 Banc Ch. #	1.4 MI Freq (MHz 1850. 1880. 1909. 1.4 MI Freq (MHz 1710. 1732. 1754.	Transr Hz Bandwid Ch. # .7 18615 D 18900 .3 19185 Hz Bandwid Ch. # .7 19965 .5 20175 .3 20385 1.4 MHz Freq. (MHz)	A-(N) A m m nc nission (H, th 3 MHz Freq. (MHz) 1851.5 1880 1908.5 th 3 MHz Freq. (MHz) 1711.5 1732.5 1753.5 Ba Ch. #	the base semple during	tation simular	base stati , spectrum preport. From and frequent 2 Bandwidth Ch. # 18650 18900 19150 and 4 Bandwidth Ch. # 20000 20175 20350 and 5 Bar Ch. #	ration, le LTE on simplots for uencie 1 10 MH Freq (MHz 1855 1880 1905 1 10 MH Freq (MHz 1715 1732	Network Settii SAR tests with mulator was reach RB allows in each LTI Bandwid Ch. # 18675 18900 19125 Hz Bandwid Ch. # 2) Ch. # 5 20025 15 20175 20325 SMHz Freq. (MHz)	ng value is as transmit used for ocation and bth 15 MHz Freq. (MHz) 1857.5 1880 1902.5 thh 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5 Ba Ch.	Bandw Ch. # 20050 20175 20300 ndwidth 1 #	s 5 201 to disable all TTI frames R and power of the po

Report No. : FA140729-02

TEL: 886-3-327-3456 Page 6 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

FCC SAR TEST REPORT

ito	Report No. : FA140729-02										
						LTE Ba	nd 12				
	Bandv	vidth 1.4 MHz			Bandwidth:	3 MHz	Band	width 5 MHz		Bandwidth	10 MHz
	Ch. #	Freq. (N	ЛHz)	(Ch. #	Freq. (MHz)	Ch. #	Freq. (I	MHz)	Ch. #	Freq. (MHz)
-1	23017	699.	7	2	3025	700.5	23035	701	.5 2	23060	704
Λ	23095	707.	5	2	3095	707.5	23095	707	.5 2	23095	707.5
1	23173	715.	3	2	3165	714.5	23155	713	.5 2	23130	711
						LTE Ba	nd 13				
		В	andwidt	h 5 MI	Нz			Ba	andwidth 10 N	ЛHz	
ľ	С	hannel #			Freq.(MI	Hz)	С	hannel #		Freq.(N	ЛHz)
T		23205			779.5						
1	23230				782			23230		782	2
ı		23255			784.5						
						LTE Ba	nd 26				
	Bandwidt	dwidth 1.4 MHz Bandwidth 3 MHz Bandwidth 5 MHz Bandwidth 10		th 10 MHz	Bandwi	dth 15 MHz					
ſ	Ch. #	Freq. (MHz)	Ch.	#	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
	26697	814.7	267	05	815.5	26715	816.5	26740	819	26765	821.5
1	26865	831.5	268	65	831.5	26865	831.5	26865	831.5	26865	831.5
ł	27033	848.3	270	25	847.5	27015	846.5	26990	844	26965	841.5

4. RF Exposure Limits

4.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

4.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

^{1.} Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Page 7 of 34 TEL: 886-3-327-3456 FAX: 886-3-328-4978 Issued Date : Aug. 14, 2021

5. Specific Absorption Rate (SAR)

5.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

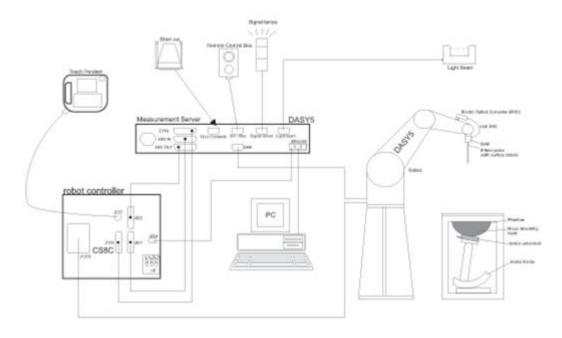
Report No.: FA140729-02

5.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)


$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

TEL: 886-3-327-3456 Page 8 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

6. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA140729-02

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

6.1 Test Site Location

The SAR measurement facilities used to collect data are within both Sporton Lab list below test site location are accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190 and 3786) and the FCC designation No. TW1190 and TW3786 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test.

Test Site	EMC & Wireless Comr	munications Laboratory	Wensan Laboratory		
Test Site Location	TW ² No.52, Huaya 1st Rd., City 333	TW3786 No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan			
	SAR01-HY	SAR03-HY	SAR08-HY	SAR09-HY	SAR15-HY
Test Site No.	SAR04-HY	SAR05-HY	SAR11-HY	SAR12-HY	
	SAR06-HY	SAR10-HY	SAR13-HY	SAR14-HY	

TEL: 886-3-327-3456 Page 9 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

6.2 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<ES3DV3 Probe>

Construction	Symmetric design with triangular core Interleaved sensors Built-in shielding against static charges
	PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz – 4 GHz; Linearity: ±0.2 dB (30 MHz – 4 GHz)
Directivity	±0.2 dB in TSL (rotation around probe axis) ±0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range	5 μW/g - >100 mW/g; Linearity: ±0.2 dB
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 3.9 mm (body: 12 mm) Distance from probe tip to dipole centers: 3.0 mm

Report No.: FA140729-02

<EX3DV4 Probe>

Construction	Symmetric design with triangular core
	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic
	solvents, e.g., DGBE)
Frequency	10 MHz – >6 GHz
	Linearity: ±0.2 dB (30 MHz – 6 GHz)
Directivity	±0.3 dB in TSL (rotation around probe axis)
	± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g – >100 mW/g
	Linearity: ±0.2 dB (noise: typically <1 µW/g)
Dimensions	Overall length: 337 mm (tip: 20 mm)
	Tip diameter: 2.5 mm (body: 12 mm)
	Typical distance from probe tip to dipole centers: 1
	mm

6.3 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 Photo of DAE

TEL: 886-3-327-3456 Page 10 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

6.4 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	/
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7 5
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No.: FA140729-02

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

2 ± 0.2 mm (sagging: <1%)	
Approx. 30 liters	
Major ellipse axis: 600 mm Minor axis: 400 mm	
	Approx. 30 liters Major ellipse axis: 600 mm

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

TEL: 886-3-327-3456 Page 11 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

6.5 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No.: FA140729-02

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

TEL: 886-3-327-3456 Page 12 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

7. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA140729-02

- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

7.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

TEL: 886-3-327-3456 Page 13 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

7.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA140729-02

7.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution of x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one

TEL: 886-3-327-3456 Page 14 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

7.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA140729-02

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz		
Maximum zoom scan s	spatial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$		
	uniform	grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$		
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

7.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

7.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

TEL: 886-3-327-3456 Page 15 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

8. Test Equipment List

Manufacturer	Name of Equipment	Type/Medal	Serial Number	Calib	ration
Manuracturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	750MHz System Validation Kit ⁽²⁾	D750V3	1107	Mar. 08, 2019	Mar. 05, 2022
SPEAG	835MHz System Validation Kit ⁽²⁾	D835V2	4d167	Nov. 25, 2019	Nov. 23, 2021
SPEAG	1750MHz System Validation Kit ⁽²⁾	D1750V2	1112	Mar. 07, 2019	Mar. 04, 2022
SPEAG	1900MHz System Validation Kit ⁽²⁾	D1900V2	5d041	Sep. 11, 2018	Sep. 08, 2021
SPEAG	1900MHz System Validation Kit ⁽²⁾	D1900V2	5d185	Mar. 07, 2019	Mar. 04, 2022
SPEAG	2450MHz System Validation Kit ⁽²⁾	D2450V2	929	Nov. 21, 2019	Nov. 19, 2021
SPEAG	Data Acquisition Electronics	DAE4	376	Nov. 23, 2020	Nov. 22, 2021
SPEAG	Data Acquisition Electronics	DAE4	1647	Jan. 07, 2021	Jan. 06, 2022
SPEAG	Dosimetric E-Field Probe	ES3DV3	3184	Sep. 23, 2020	Sep. 22, 2021
SPEAG	Dosimetric E-Field Probe	ES3DV3	3270	Sep. 23, 2020	Sep. 22, 2021
Testo	Hygro meter	608-H1	45196600	Nov. 10, 2020	Nov. 09, 2021
Testo	Hygro meter	608-H1	45207528	Nov. 10, 2020	Nov. 09, 2021
Anritsu	Radio Communication Analyzer	MT8821C	6201341950	Nov. 10, 2020	Nov. 09, 2021
Keysight	Wireless Communication Test Set	E5515C	MY50267236	Mar. 21, 2021	Mar. 20, 2022
R&S	BT Base Station	CBT32	100519	Jun. 04, 2020	Jun. 03, 2021
SPEAG	Device Holder	N/A	N/A	N/A	N/A
Anritsu	Signal Generator	MG3710A	6201502524	Nov. 11, 2020	Nov. 10, 2021
Keysight	ENA Network Analyzer	E5071C	MY46104758	Sep. 03, 2020	Sep. 02, 2021
SPEAG	Dielectric Probe Kit	DAK-3.5	1126	Sep. 16, 2020	Sep. 15, 2021
LINE SEIKI	Digital Thermometer	DTM3000-spezial	2942	Nov. 06, 2020	Nov. 05, 2021
Anritsu	Power Meter	ML2495A	1419002	Aug. 19, 2020	Aug. 18, 2021
Anritsu	Power Sensor	MA2411B	1911176	Aug. 18, 2020	Aug. 17, 2021
Anritsu	Power Meter	ML2495A	1804003	Oct. 21, 2020	Oct. 20, 2021
Anritsu	Power Sensor	MA2411B	1726150	Oct. 21, 2020	Oct. 20, 2021
Anritsu	Spectrum Analyzer	MS2830A	6201396378	Jun. 30, 2020	Jun. 29, 2021
Anritsu	Spectrum Analyzer	N9010A	MY53470118	Jan. 15, 2021	Jan. 14, 2022
Mini-Circuits	Power Amplifier	ZVE-8G+	6418	Oct. 21, 2020	Oct. 20, 2021
Mini-Circuits	Power Amplifier	ZVE-8G+	479102029	Aug. 26, 2020	Aug. 25, 2021
ATM	Dual Directional Coupler	C122H-10	P610410z-02	No	te 1
Warison	Directional Coupler	WCOU-10-50S-10	WR889BMC4B1	No	te 1
Woken	Attenuator 1	WK0602-XX	N/A	No	te 1
PE	Attenuator 2	PE7005-10	N/A	No	te 1
PE	Attenuator 3	PE7005- 3	N/A	No	te 1

Report No.: FA140729-02

General Note:

- 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.
- 2. The dipole calibration interval can be extended to 3 years with justification according to KDB 865664 D01. The dipoles are also not physically damaged, or repaired during the interval. The justification data in appendix C can be found which the return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration for each dipole.

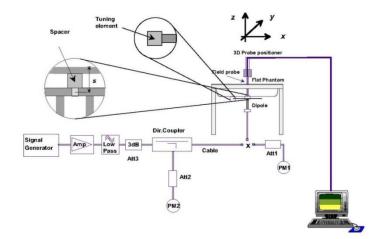
TEL: 886-3-327-3456 Page 16 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

9. System Verification

9.1 Tissue Verification

The tissue dielectric parameters of tissue-equivalent media used for SAR measurements must be characterized within a temperature range of 18° C to 25° C, measured with calibrated instruments and apparatuses, such as network analyzers and temperature probes. The temperature of the tissue-equivalent medium during SAR measurement must also be within 18° C to 25° C and within \pm 2° C of the temperature when the tissue parameters are characterized. The tissue dielectric measurement system must be calibrated before use. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements.

The liquid tissue depth was at least 15cm in the phantom for all SAR testing


<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
750	22.5	0.894	43.124	0.89	41.90	0.45	2.92	±5	2021/5/11
835	22.5	0.899	41.281	0.90	41.50	-0.11	-0.53	±5	2021/5/11
835	22.2	0.898	42.289	0.90	41.50	-0.22	1.90	±5	2021/6/7
1750	22.5	1.346	38.973	1.37	40.10	-1.75	-2.81	±5	2021/5/11
1900	22.5	1.450	40.264	1.40	40.00	3.57	0.66	±5	2021/5/11
1900	22.2	1.426	40.900	1.40	40.00	1.86	2.25	±5	2021/6/7
2450	22.5	1.763	39.969	1.80	39.20	-2.06	1.96	±5	2021/5/25

9.2 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Test Site	Date	Frequency (MHz)	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
SAR09-HY	2021/5/11	750	250	D750V3-1107	ES3DV3 - SN3184	DAE4 Sn376	2.20	8.32	8.8	5.77
SAR09-HY	2021/5/11	835	250	D835V2-4d167	ES3DV3 - SN3184	DAE4 Sn376	2.26	9.55	9.04	-5.34
SAR09-HY	2021/6/7	835	250	D835V2-4d167	ES3DV3 - SN3184	DAE4 Sn1647	2.26	9.55	9.04	-5.34
SAR09-HY	2021/5/11	1750	250	D1750V2-1112	ES3DV3 - SN3184	DAE4 Sn376	8.37	36.70	33.48	-8.77
SAR09-HY	2021/5/11	1900	250	D1900V2-5d041	ES3DV3 - SN3184	DAE4 Sn376	10.20	40.20	40.8	1.49
SAR09-HY	2021/6/7	1900	250	D1900V2-5d185	ES3DV3 - SN3184	DAE4 Sn1647	9.70	39.40	38.8	-1.52
SAR11-HY	2021/5/25	2450	250	D2450V2-929	ES3DV3 - SN3270	DAE4 Sn376	12.40	53.10	49.6	-6.59

Report No.: FA140729-02

Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

TEL: 886-3-327-3456 Page 17 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

10. GSM/LTE Output Power (Unit: dBm)

<GSM Conducted Power>

General Note:

1. Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.

Report No.: FA140729-02

- 2. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS / EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (2Tx slots) for GSM850 and GPRS (4Tx slots) for GSM1900 are considered as the primary mode.
- 3. Other configurations of GSM / GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode

GSM850	Burst	Average Power	(dBm)	Tune-up	Frame-	-Average Power	(dBm)	Tune-up
TX Channel	128	189	251	Limit	128	189	251	Limit
Frequency (MHz)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)
GSM 1 Tx slot	32.66	32.74	32.26	35.00	23.66	23.74	23.26	26.00
GPRS 1 Tx slot	32.69	32.75	32.27	35.00	23.69	23.75	23.27	26.00
GPRS 2 Tx slots	31.52	32.02	31.41	32.50	25.52	26.02	25.41	26.50
GPRS 3 Tx slots	29.40	29.92	29.38	30.50	25.14	25.66	25.12	26.24
GPRS 4 Tx slots	27.70	28.38	27.66	29.00	24.70	25.38	24.66	26.00
EDGE 1 Tx slot	25.85	26.13	25.74	30.00	16.85	17.13	16.74	21.00
EDGE 2 Tx slots	24.44	24.85	24.38	26.00	18.44	18.85	18.38	20.00
EDGE 3 Tx slots	22.91	22.79	23.01	24.00	18.65	18.53	18.75	19.74
EDGE 4 Tx slots	22.08	22.26	21.70	23.00	19.08	19.26	18.70	20.00

GSM1900	Burst	Average Power	(dBm)	Tune-up	Frame-	Average Power	r (dBm)	Tune-up	
TX Channel	512	661	810	Limit	512	661	810	Limit	
Frequency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)	
GSM 1 Tx slot	29.25	29.30	29.51	32.00	20.25	20.30	20.51	23.00	
GPRS 1 Tx slot	29.27	29.31	29.58	32.00	20.27	20.31	20.58	23.00	
GPRS 2 Tx slots	28.95	28.59	28.90	30.00	22.95	22.59	22.90	24.00	
GPRS 3 Tx slots	27.63	27.21	26.91	28.00	23.37	22.95	22.65	23.74	
GPRS 4 Tx slots	26.51	25.96	25.46	27.00	23.51	22.96	22.46	24.00	
EDGE 1 Tx slot	25.37	24.97	24.86	29.00	16.37	15.97	15.86	20.00	
EDGE 2 Tx slots	24.44	24.03	24.11	26.00	18.44	18.03	18.11	20.00	
EDGE 3 Tx slots	22.63	22.31	22.03	24.00	18.37	18.05	17.77	19.74	
EDGE 4 Tx slots	21.54	21.19	21.00	22.50	18.54	18.19	18.00	19.50	

TEL: 886-3-327-3456 Page 18 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

<LTE Conducted Power>

General Note:

 Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing.

Report No.: FA140729-02

- 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 6. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 7. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 8. For LTE B4/B5/B12/B26 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.
- 9. LTE band 5 SAR test was covered by Band 26; according to April 2015 TCB workshop, SAR test for overlapping LTE bands can be reduced if
 - a. the maximum output power, including tolerance, for the smaller band is ≤ the larger band to qualify for the SAR test exclusion
 - b. the channel bandwidth and other operating parameters for the smaller band are fully supported by the larger band

TEL: 886-3-327-3456 Page 19 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

E Donal O

LTE Ban	<u>ia 2></u>									
BW	Modulation	RB Size	RB Officet		Index		Power Low	Power Middle	Power High	
[MHz]		Size	Offset				Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	Tune-up limit
	Cha	nnel			М	н	18700	18900	19100	(dBm)
		cy (MHz)					1860	1880	1900	
20	QPSK	1	0	0	0	15	20.39	20.27	20.41	
20	QPSK	1	5	0	0	15	20.15	20.13	20.16	
20	QPSK	3	0	0	0	15	20.30	20.23	20.40	
20	QPSK	3	3	0	0	15	20.21	20.18	20.41	
20	QPSK	6	0	0	0	15	20.35	20.37	20.37	22.00
20	16QAM	1	0	0	0	15	20.15	20.00	20.22	22.00
20	16QAM	1	5	0	0	15	19.91	19.82	19.86	
20	16QAM	3	0	0	0	15	19.71	19.74	19.76	
20	16QAM	3	3	0	0	15	19.78	19.70	19.72	1
20	16QAM	5	0	0	0	15	20.17	20.22	20.20	1
	I	nnel					18675	18900	19125	Tune un limit
		cy (MHz)		_ L	M	Н	1857.5	1880	1902.5	Tune-up limit (dBm)
15	QPSK	1	0	0	0	11	20.43	20.30	20.28	, ,
			5							-
15	QPSK	1		0	0	11	20.24	20.11	20.08	4
15	QPSK	3	0	0	0	11	20.51	20.35	20.44	_
15	QPSK	3	3	0	0	11	20.57	20.30	20.49	4
15	QPSK	6	0	0	0	11	20.35	20.32	20.30	22.00
15	16QAM	1	0	0	0	11	20.02	19.86	19.82	
15	16QAM	1	5	0	0	11	19.85	19.97	19.93	
15	16QAM	3	0	0	0	11	19.66	19.77	19.77	
15	16QAM	3	3	0	0	11	19.77	19.75	19.77	
15	16QAM	5	0	0	0	11	20.25	20.20	20.15	
	Cha	nnel					18650	18900	19150	Tune-up limit
	Frequen	cy (MHz)		L	М	Н	1855	1880	1905	(dBm)
10	QPSK	1	0	0	0	7	20.32	20.29	20.32	
10	QPSK	1	5	0	0	7	20.18	20.03	20.10	1
10	QPSK	3	0	0	0	7	19.92	20.02	20.09	22.00
10	QPSK	3	3	0	0	7	19.80	19.89	19.94	1
10	QPSK	6	0	0	0	7	19.45	19.35	19.40	21.00
10	16QAM	1	0	0	0	7	20.03	20.03	19.94	21.00
		1	5	0	0	7				
10	16QAM						19.88	19.73	19.74	22.00
10	16QAM	3	0	0	0	7	19.96	20.05	20.16	_
10	16QAM	3	3	0	0	7	19.87	19.99	20.04	24.00
10	16QAM	. 5	0	0	0	7	20.22	20.14	20.12	21.00
		nnel		L.	М	н	18625	18900	19175	Tune-up limi
		cy (MHz)					1852.5	1880	1907.5	(dBm)
5	QPSK	1	0	0	0	3	20.34	20.26	20.28	22.00
5	QPSK	1	5	0	0	3	20.19	20.06	20.30	
5	QPSK	3	0	0	0	3	19.98	19.99	20.02	
5	QPSK	3	3	0	0	3	19.80	19.82	19.92	21.00
5	QPSK	6	0	0	0	3	19.44	19.41	19.51	
5	16QAM	1	0	0	0	3	20.21	19.94	20.02	22.00
5	16QAM	1	5	0	0	3	19.96	19.93	19.85	22.00
5	16QAM	3	0	0	0	3	19.99	20.02	19.97	24
5	16QAM	3	3	0	0	3	19.89	19.95	20.07	21.00
5	16QAM	5	0	0	0	3	19.39	19.19	19.27	20.00
	I						18615	18900	19185	
	Channel Frequency (MHz)					Н	1851.5	1880	1908.5	Tune-up limi (dBm)
2		T .		0	0	4				(
3	QPSK	1	0	0	0	1	20.40	20.33	20.49	22.00
3	QPSK	1	5	0	0	1	20.26	20.13	20.26	
3	QPSK	3	0	0	0	1	19.04	19.05	19.12	21.00

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Template version: 200414 Page 20 of 34 Issued Date : Aug. 14, 2021

Report No. : FA140729-02

TON LAB. F	CC SAR	TEST RE	PORT					F	Report No.	: FA140729	
3	QPSK	3	3	0	0	1	19.02	19.08	19.07		
3	QPSK	6	0	0	0	1	18.48	18.42	18.46	20.00	
3	16QAM	1	0	0	0	1	19.60	20.05	20.08	21.00	
3	16QAM	1	5	0	0	1	20.01	19.93	19.55	21.00	
3	16QAM	3	0	0	0	1	18.62	18.56	18.64		
3	16QAM	3	3	0	0	1	18.50	18.48	18.13	20.00	
3	16QAM	5	0	0	0	1	18.62	18.55	18.60		
	Channel						18607	18900	19193	Tune-up limit	
	Frequen	cy (MHz)		L	M	Н	1850.7	1880	1909.3	(dBm)	
1.4	QPSK	1	0	0	0	0	20.44	20.39	20.45	22.00	
1.4	QPSK	1	5	0	0	0	20.29	20.15	20.26	22.00	
1.4	QPSK	3	0	0	0	0	19.16	19.00	19.31	21.00	
1.4	QPSK	3	3	0	0	0	19.15	19.00	19.02	21.00	
1.4	QPSK	6	0	0	0	0	18.48	18.41	18.42	20.00	
1.4	16QAM	1	0	0	0	0	19.57	19.54	19.72	24.00	
1.4	16QAM	1	5	0	0	0	19.42	19.38	19.50	21.00	
1.4	16QAM	3	0	0	0	0	18.49	18.59	18.95		
1.4	16QAM	3	3	0	0	0	18.48	18.42	18.44	20.00	
1.4	16QAM	5	0	0	0	0	18.60	18.51	18.60		

TEL: 886-3-327-3456 Page 21 of 34 FAX: 886-3-328-4978 Issued Date : Aug. 14, 2021

<LTE Band 4>

<lie ban<="" th=""><th><u> </u></th><th></th><th></th><th></th><th></th><th></th><th>Down</th><th>Down</th><th>Down</th><th></th></lie>	<u> </u>						Down	Down	Down	
BW [MHz]	Modulation	RB Size	RB Offset		Index		Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit
	Cha	nnel					20050	20175	20300	(dBm)
	Frequen	cy (MHz)		- L	М	Н	1720	1732.5	1745	
20	QPSK	1	0	0	0	15	20.73	20.93	20.95	
20	QPSK	1	5	0	0	15	20.59	20.90	20.83	
20	QPSK	3	0	0	0	15	20.81	20.99	20.98	
20	QPSK	3	3	0	0	15	20.67	21.02	20.88	
20	QPSK	6	0	0	0	15	20.68	21.01	21.00	
20	16QAM	1	0	0	0	15	20.63	21.02	20.92	22.00
20	16QAM	1	5	0	0	15	20.40	20.84	20.75	
20	16QAM	3	0	0	0	15	20.79	21.00	20.99	
20	16QAM	3	3	0	0	15	20.74	20.95	20.90	1
20	16QAM	5	0	0	0	15	20.73	20.82	20.94	1
	Cha	nnel					20025	20175	20325	Tune-up limit
	Frequen	cy (MHz)		L	М	Н	1717.5	1732.5	1747.5	(dBm)
15	QPSK	1	0	0	0	11	20.73	21.04	20.91	
15	QPSK	1	5	0	0	11	20.56	20.84	20.75	
15	QPSK	3	0	0	0	11	20.76	20.91	21.36	
15	QPSK	3	3	0	0	11	20.66	20.82	21.26	
15	QPSK	6	0	0	0	11	20.59	20.84	21.05	
15	16QAM	1	0	0	0	11	20.57	21.00	21.03	22.00
15	16QAM	1	5	0	0	11	20.34	20.67	20.97	
15	16QAM	3	0	0	0	11	20.80	20.97	21.08	
15	16QAM	3	3	0	0	11	20.69	20.91	21.12	
15	16QAM	5	0	0	0	11	20.51	20.81	21.06	
		nnel					20000	20175	20350	Tune-up limit
		cy (MHz)		- L	М	Н	1715	1732.5	1750	(dBm)
10	QPSK	1	0	0	0	7	20.80	20.98	21.14	
10	QPSK	1	5	0	0	7	20.67	20.97	20.91	
10	QPSK	3	0	0	0	7	20.75	20.90	21.35	22.00
10	QPSK	3	3	0	0	7	20.71	20.79	21.26	1
10	QPSK	6	0	0	0	7	19.61	19.87	20.02	21.00
10	16QAM	1	0	0	0	7	20.56	20.88	21.00	21.00
10	16QAM	1	5	0	0	7	20.33	21.01	20.83	1
10	16QAM	3	0	0	0	7	20.76	21.00	21.09	22.00
10	16QAM	3	3	0	0	7	20.69	20.91	21.01	
10	16QAM	5	0	0	0	7	20.90	21.00	21.00	21.00
		nnel				•	19975	20175	20375	
		cy (MHz)		L	М	Н	1712.5	1732.5	1752.5	Tune-up limit (dBm)
5	QPSK	1	0	0	0	3	20.84	21.04	21.19	, ,
5	QPSK	1	5	0	0	3	20.64	20.94	20.97	22.00
5	QPSK	3	0	0	0	3	20.79	20.94	21.35	
5 5	QPSK	3	3	0	0	3	20.79	20.98	21.35	21.00
5 5	QPSK	6	0	0	0	3	19.60	20.90	20.08	21.00
5 5	16QAM	1	0	0	0	3	20.50	21.18	21.03	
5 5	16QAM	1	5	0	0	3	20.37	20.95	20.84	22.00
				_	0					
5 5	16QAM 16QAM	3	0	0	0	3	20.76	20.99	21.21 21.12	21.00
			3	0			20.66	20.90		20.00
5	5 16QAM 5 0 Channel				0	3	19.46	19.81	19.93	20.00
	Frequency (MHz)					н	19965	20175	20385	Tune-up limit (dBm)
		, , , , , , , , , , , , , , , , , , ,				4	1711.5	1732.5	1753.5	— (GDIII)
3	QPSK	1	0	0	0	1	20.66	21.19	21.07	22.00
3	QPSK	1	5	0	0	1	20.45	21.03	21.03	00.77
3	QPSK	3	0	0	0	1	19.67	19.92	20.21	21.00

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Template version: 200414

Page 22 of 34 Issued Date : Aug. 14, 2021

Report No. : FA140729-02

RTON LAB.	CC SAR	TEST RE	PORT					I	Report No.	: FA140729-0
3	QPSK	3	3	0	0	1	19.55	19.78	20.07	
3	QPSK	6	0	0	0	1	18.57	19.01	19.00	20.00
3	16QAM	1	0	0	0	1	19.97	20.38	20.88	21.00
3	16QAM	1	5	0	0	1	19.86	20.21	20.70	21.00
3	16QAM	3	0	0	0	1	19.66	19.94	20.00	
3	16QAM	3	3	0	0	1	19.46	19.83	19.99	20.00
3	16QAM	5	0	0	0	1	18.80	19.25	19.27	
	Cha	nnel					19957	20175	20393	Tune-up limit
	Frequenc	cy (MHz)			M	Н	1710.7	1732.5	1754.3	(dBm)
1.4	QPSK	1	0	0	0	0	20.77	21.02	21.19	22.00
1.4	QPSK	1	5	0	0	0	20.56	20.85	21.00	22.00
1.4	QPSK	3	0	0	0	0	19.76	19.92	20.13	21.00
1.4	QPSK	3	3	0	0	0	19.68	19.80	20.03	21.00
1.4	QPSK	6	0	0	0	0	18.50	18.95	19.10	20.00
1.4	16QAM	1	0	0	0	0	19.93	19.66	20.54	04.00
1.4	16QAM	1	5	0	0	0	19.78	19.44	20.80	21.00
1.4	16QAM	3	0	0	0	0	19.36	19.52	19.72	
1.4	16QAM	3	3	0	0	0	19.45	19.39	19.53	20.00
1.4	16QAM	5	0	0	0	0	18.73	19.08	19.32	

TEL: 886-3-327-3456 Page 23 of 34 FAX: 886-3-328-4978 Issued Date : Aug. 14, 2021

<LTE Band 5>

Firequency (MHz)	BW [MHz]	Modulation	RB Size	RB Offset		Index		Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit
Ferquency (MHz)		Cha	nnel					20450	20525	20600	(dBm)
10		Frequen	cy (MHz)		L	IVI	н	829	836.5	844	
10	10	QPSK	1	0	0	0	7	20.75	20.86	20.73	
10	10	QPSK	1	5	0	0	7	20.47	20.75	20.55	00.00
10	10	QPSK	3	0	0	0	7	20.89	21.05	20.78	22.00
10	10	QPSK	3	3	0	0	7	20.95	20.99	20.75	
10	10	QPSK	6	0	0	0	7	19.72	19.96	19.81	21.00
10	10	16QAM	1	0	0	0	7	20.57	20.75	20.70	
10	10	16QAM	1	5	0	0	7	20.32	20.47	20.44	1
10	10	16QAM	3	0	0	0	7	21.19	21.26	21.06	22.00
Channel L M H 20425 20525 20625 Tune- (clip Clip Cli	10	16QAM	3	3	0	0	7	21.09	21.11	20.96	
Frequency (MHz) 5 QPSK 1 0 0 0 3 20.66 21.08 20.85 5 QPSK 1 5 0 0 3 20.63 20.94 20.66 5 QPSK 3 3 0 0 0 3 20.87 20.99 20.78 5 QPSK 6 0 0 0 3 20.87 20.99 20.78 5 QPSK 6 0 0 0 3 20.87 20.99 20.78 5 QPSK 6 0 0 0 3 20.87 20.99 20.78 5 16QAM 1 0 0 0 3 20.77 20.91 20.83 5 16QAM 3 0 0 0 3 20.97 20.91 20.83 5 16QAM 3 0 0 0 3 20.95 20.96 20.97 5 16QAM 3 0 0 0 3 20.95 20.96 20.97 5 16QAM 3 0 0 0 3 20.95 20.96 20.97 5 16QAM 5 0 0 0 3 20.95 20.96 20.97 5 16QAM 5 0 0 0 3 20.95 20.96 20.97 5 16QAM 5 0 0 0 1 20.92 20.96 Channel Frequency (MHz) A M H A 20415 20525 20635 Tuneled A 2053 20.95 20.96 A 2054 20.97 20.91 A 2055 20.95 20.96 A 2056 20.97 20.91 A 2056 20.97 20.91 A 2057 20.98 20.97 A 2058 20.98 A 2058	10	16QAM	5	0	0	0	7	20.80	21.00	21.00	21.00
Frequency (MHz) 5		Cha	nnel					20425	20525	20625	Tune-up limit
5					L	M	Н				(dBm)
5	5		<u> </u>	0	0	0	3				
5											22.00
S											
5											21.00
5 16QAM 1 0 0 0 3 20.70 20.91 20.83 22 5 16QAM 1 5 0 0 3 20.49 20.72 20.58 22 5 16QAM 3 0 0 0 3 20.91 20.96 20.97 21 5 16QAM 3 0 0 3 20.81 20.89 20.91 21 5 16QAM 5 0 0 0 3 19.71 19.77 19.85 20 Channel L M H 20415 20525 20635 Tune-Channel Frequency (MHz) L M H 20415 20525 20635 Tune-Channel 3 QPSK 1 5 0 0 1 20.92 21.09 21.18 22 3 QPSK 3 0 0 1 19.74 1											21.00
5 16QAM 1 5 0 0 3 20.49 20.72 20.58 22 5 16QAM 3 0 0 0 3 20.95 20.96 20.97 21 5 16QAM 3 3 0 0 3 20.81 20.89 20.91 21 Channel L M H 20415 20525 20635 Tune-Gold (dl Frequency (MHz) L M H 20.92 21.09 21.18 22 20.05 38.65 847.5 (dl 3 QPSK 1 0 0 0 1 20.92 21.09 21.18 22 20.05 3 30.0 0 1 19.74 19.92 20.05 21 3 20.87 20.98 22 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05 20.05					_						
5 16QAM 3 0 0 0 3 20.95 20.96 20.97 21 5 16QAM 3 3 0 0 3 20.81 20.89 20.91 21 5 16QAM 5 0 0 0 3 19.71 19.77 19.85 20 Channel L M H 20415 20525 20635 Tune-(dl Frequency (MHz) L M H 20415 20525 20635 Tune-(dl 3 QPSK 1 5 0 0 1 20.92 21.09 21.18 22 20.05 21.09 21.18 22 20.05 20.09 20.05 23.09 20.05 20.09 21.18 22 20.05 20.00 21.18 20.05 20.00 21.33 20.95 20.05 21.09 21.18 20.05 20.05 21.18 20.05 20.05 20.00 2											22.00
S											
5 16QAM 5 0 0 0 3 19.71 19.77 19.85 20 Channel L M H 20415 20525 20635 Tune-(did 3 QPSK 1 0 0 0 1 20.92 21.09 21.18 22 3 QPSK 1 5 0 0 1 20.92 21.09 21.18 22 3 QPSK 1 5 0 0 1 20.92 21.09 21.18 22 3 QPSK 3 0 0 0 1 19.74 19.92 20.05 21 3 QPSK 3 3 0 0 1 19.67 19.84 20.05 20.05 20.05 20.00 20 3 160AM 1 0 0 0 1 18.80 18.85 19.00 20 20.00 20.91 20.95 20.0					_						21.00
Channel L M H 20415 20525 20635 Tune-(dl Frequency (MHz) L M H 20415 20525 20635 Tune-(dl 3 QPSK 1 0 0 0 1 20.92 21.09 21.18 22 3 QPSK 3 0 0 1 19.74 19.92 20.05 21 3 QPSK 3 3 0 0 1 19.67 19.84 20.05 21 3 QPSK 6 0 0 0 1 19.67 19.84 20.05 20.05 21 3 QPSK 6 0 0 0 1 19.86 20.05 20.00 20 21 3 16QAM 1 5 0 0 1 19.86 20.05 20.00 21 19.87 19.71 21 3 16QAM 3										-	22.22
Frequency (MHz) 3	5			0	0	0	3				20.00
3					L	М	н				Tune-up limit
3											(dBm)
3 QPSK 1 5 0 0 1 20.80 20.87 20.98 3 QPSK 3 0 0 0 1 19.74 19.92 20.05 3 QPSK 3 3 0 0 1 19.67 19.84 20.05 3 QPSK 6 0 0 0 1 18.80 18.85 19.00 20 3 16QAM 1 0 0 0 1 19.79 19.87 19.71 3 16QAM 3 0 0 1 19.18 19.55 19.58 3 16QAM 3 0 0 1 19.18 19.55 19.58 3 16QAM 3 0 0 0 1 19.14 19.37 19.42 20 3 16QAM 5 0 0 0 1 18.63 18.73 18.80 Channel L M H 20407 20525 20.643 Tune- (di Tune- Frequency (MHz) 1.4 QPSK 1 0 0 0 0 21.09 21.22 21.13 22 1.4 QPSK 3 0 0 0 0 20.91 20.98 20.95 1.4 QPSK 3 0 0 0 0 20.91 20.98 20.95 1.4 QPSK 3 0 0 0 0 20.91 20.98 20.95 1.4 QPSK 3 0 0 0 0 20.21 19.97 19.80 1.4 QPSK 6 0 0 0 0 0 18.97 18.97 19.00 20 1.4 16QAM 1 0 0 0 0 0 20.06 20.09 20.06 1.4 16QAM 1 0 0 0 0 0 19.84 19.88 19.85 1.4 16QAM 1 5 0 0 0 0 19.84 19.88 19.85 1.4 16QAM 1 5 0 0 0 0 19.71 19.69 19.65	3		1	0	0		1	20.92	21.09		22.00
3 QPSK 3 3 0 0 1 19.67 19.84 20.05 3 QPSK 6 0 0 0 0 1 18.80 18.85 19.00 20 3 16QAM 1 0 0 0 1 19.79 19.87 19.71 3 16QAM 3 0 0 0 1 19.18 19.55 19.58 3 16QAM 3 0 0 0 1 19.14 19.37 19.42 20 3 16QAM 3 0 0 0 1 19.14 19.37 19.42 20 3 16QAM 5 0 0 0 1 18.63 18.73 18.80 Channel L M H 20407 20525 20643 Tune-Green Companies of Companie	3		1	5	0		1		20.87		
3 QPSK 3 3 0 0 1 19.67 19.84 20.05 3 QPSK 6 0 0 0 0 1 18.80 18.85 19.00 20 3 16QAM 1 0 0 0 1 19.79 19.87 19.71 3 16QAM 3 0 0 0 1 19.18 19.55 19.58 3 16QAM 3 0 0 0 1 19.14 19.37 19.42 20 3 16QAM 5 0 0 0 1 18.63 18.73 18.80 Channel Frequency (MHz) 1.4 QPSK 1 0 0 0 0 21.09 21.22 21.13 1.4 QPSK 3 0 0 0 0 20.91 20.98 20.95 1.4 QPSK 3 0 0 0 0 20.91 20.98 20.95 1.4 QPSK 3 0 0 0 0 20.91 20.98 20.95 1.4 QPSK 3 0 0 0 0 20.21 19.97 19.80 1.4 QPSK 6 0 0 0 0 18.97 18.97 19.00 20 1.4 QPSK 6 0 0 0 0 20.06 20.09 20.06 1.4 16QAM 1 0 0 0 0 0 19.84 19.88 19.85 1.4 16QAM 1 5 0 0 0 0 19.84 19.88 19.85 1.4 16QAM 1 5 0 0 0 0 19.71 19.69 19.65	3	QPSK	3	0	0	0	1	19.74	19.92	20.05	21.00
3	3	QPSK	3	3	0	0	1	19.67	19.84	20.05	
3	3	QPSK	6	0	0	0	1	18.80	18.85	19.00	20.00
3	3	16QAM	1	0	0	0	1	19.86	20.05	20.00	21.00
3	3	16QAM	1	5	0	0	1	19.79	19.87	19.71	21.00
3	3	16QAM	3	0	0	0	1	19.18	19.55	19.58	
Channel L M H 20407 20525 20643 Tune-lead (dl.) 1.4 QPSK 1 0 0 0 0 21.09 21.22 21.13 22 1.4 QPSK 1 5 0 0 0 20.91 20.98 20.95 22 1.4 QPSK 3 0 0 0 20.19 20.04 19.91 21 1.4 QPSK 3 3 0 0 0 20.21 19.97 19.80 21 1.4 QPSK 6 0 0 0 0 18.97 18.97 19.00 20 1.4 16QAM 1 0 0 0 0 20.06 20.09 20.06 21 1.4 16QAM 1 5 0 0 0 19.84 19.88 19.85 1.4 16QAM 3 0 0 0 19.	3	16QAM	3	3	0	0	1	19.14	19.37	19.42	20.00
Frequency (MHz) 1.4 QPSK 1 0 0 0 0 21.09 21.22 21.13 1.4 QPSK 1 5 0 0 0 20.91 20.98 20.95 1.4 QPSK 3 0 0 0 0 20.19 20.04 19.91 1.4 QPSK 3 0 0 0 0 20.21 19.97 19.80 1.4 QPSK 6 0 0 0 0 18.97 18.97 19.00 20 1.4 16QAM 1 0 0 0 0 20.06 20.09 20.06 1.4 16QAM 1 5 0 0 0 19.84 19.88 19.85 1.4 16QAM 3 0 0 0 0 19.71 19.69 19.65	3	16QAM	5	0	0	0	1	18.63	18.73	18.80	
Frequency (MHz) 1.4 QPSK 1 0 0 0 0 21.09 21.22 21.13 1.4 QPSK 1 5 0 0 0 20.91 20.98 20.95 1.4 QPSK 3 0 0 0 0 20.19 20.04 19.91 1.4 QPSK 3 3 0 0 0 0 20.21 19.97 19.80 1.4 QPSK 6 0 0 0 0 18.97 18.97 19.00 20.14 1.4 QPSK 6 0 0 0 0 0 20.06 20.09 20.06 1.4 16QAM 1 0 0 0 0 0 19.84 19.88 19.85 1.4 16QAM 3 0 0 0 0 19.71 19.69 19.65		Cha	nnel					20407	20525	20643	Tune-up limi
1.4 QPSK 1 5 0 0 0 20.91 20.98 20.95 1.4 QPSK 3 0 0 0 0 20.19 20.04 19.91 21 1.4 QPSK 3 3 0 0 0 20.21 19.97 19.80 21 1.4 QPSK 6 0 0 0 0 18.97 18.97 19.00 20 1.4 16QAM 1 0 0 0 20.06 20.09 20.06 1.4 16QAM 1 5 0 0 0 19.84 19.88 19.85 1.4 16QAM 3 0 0 0 19.71 19.69 19.65		Frequen	cy (MHz)		L .	IVI	н	824.7	836.5	848.3	(dBm)
1.4 QPSK 1 5 0 0 0 20.91 20.98 20.95 1.4 QPSK 3 0 0 0 0 20.19 20.04 19.91 21 1.4 QPSK 3 3 0 0 0 20.21 19.97 19.80 21 1.4 QPSK 6 0 0 0 0 18.97 18.97 19.00 20 1.4 16QAM 1 0 0 0 20.06 20.09 20.06 21 1.4 16QAM 1 5 0 0 0 19.84 19.88 19.85 1.4 16QAM 3 0 0 0 19.71 19.69 19.65	1.4	QPSK	1	0	0	0	0	21.09	21.22	21.13	00.00
1.4 QPSK 3 3 0 0 0 20.21 19.97 19.80 21 1.4 QPSK 6 0 0 0 0 18.97 18.97 19.00 20 1.4 16QAM 1 0 0 0 0 20.06 20.09 20.06 1.4 16QAM 1 5 0 0 0 19.84 19.88 19.85 1.4 16QAM 3 0 0 0 19.71 19.69 19.65	1.4	QPSK	1	5	0	0	0	20.91	20.98	20.95	22.00
1.4 QPSK 3 3 0 0 0 20.21 19.97 19.80 21 1.4 QPSK 6 0 0 0 0 18.97 18.97 19.00 20 1.4 16QAM 1 0 0 0 0 20.06 20.09 20.06 1.4 16QAM 1 5 0 0 0 19.84 19.88 19.85 1.4 16QAM 3 0 0 0 19.71 19.69 19.65	1.4	QPSK	3	0	0	0	0	20.19	20.04	19.91	
1.4 QPSK 6 0 0 0 0 18.97 19.00 20 1.4 16QAM 1 0 0 0 0 20.06 20.09 20.06 1.4 16QAM 1 5 0 0 0 19.84 19.88 19.85 1.4 16QAM 3 0 0 0 19.71 19.69 19.65				3		0					21.00
1.4 16QAM 1 0 0 0 0 20.06 20.09 20.06 1.4 16QAM 1 5 0 0 0 19.84 19.88 19.85 1.4 16QAM 3 0 0 0 19.71 19.69 19.65						0					20.00
1.4 16QAM 1 5 0 0 0 19.84 19.88 19.85 1.4 16QAM 3 0 0 0 0 19.71 19.69 19.65											
1.4 16QAM 3 0 0 0 19.71 19.69 19.65											21.00
						1					
10.00						_					20.00
1.4 16QAM 5 0 0 0 0 18.70 18.83 18.89						+					20.00

Report No. : FA140729-02

TEL: 886-3-327-3456 Page 24 of 34 FAX: 886-3-328-4978 Issued Date : Aug. 14, 2021

<LTE Band 12>

<lte band<="" th=""><th><u>a 12></u></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lte>	<u>a 12></u>									
BW [MHz]	Modulation	RB Size	RB Offset		Index		Power Low Ch. / Freg.	Power Middle Ch. / Freg.	Power High Ch. / Freq.	Tune-up limit
	Cha	nnel					23060	23095	23130	(dBm)
	Frequen	cy (MHz)		- L	М	Н	704	707.5	711	
10	QPSK	1	0	0	0	7	20.75	20.86	20.73	
10	QPSK	1	5	0	0	7	20.47	20.75	20.55	
10	QPSK	3	0	0	0	7	21.27	21.10	20.89	22.00
10	QPSK	3	3	0	0	7	21.17	20.91	20.81	
10	QPSK	6	0	0	0	7	19.72	19.96	19.81	21.00
10	16QAM	1	0	0	0	7	20.57	20.75	20.70	
10	16QAM	1	5	0	0	7	20.32	20.47	20.44	
10	16QAM	3	0	0	0	7	21.51	21.29	21.09	22.00
10	16QAM	3	3	0	0	7	21.42	21.16	21.03	
10	16QAM	5	0	0	0	7	20.89	20.92	20.85	21.00
	Cha	nnel					23035	23095	23155	Tune-up limit
	Frequen	cy (MHz)		- L	М	H	701.5	707.5	713.5	(dBm)
5	QPSK	1	0	0	0	3	20.66	21.08	20.85	
5	QPSK	1	5	0	0	3	20.63	20.94	20.66	22.00
5	QPSK	3	0	0	0	3	20.95	21.00	20.96	
5	QPSK	3	3	0	0	3	20.99	20.91	20.97	21.00
5	QPSK	6	0	0	0	3	19.83	20.16	19.88	
5	16QAM	1	0	0	0	3	20.70	20.91	20.83	
5	16QAM	1	5	0	0	3	20.49	20.72	20.58	22.00
5	16QAM	3	0	0	0	3	21.00	20.96	20.99	
5	16QAM	3	3	0	0	3	20.92	20.95	20.93	21.00
5	16QAM	5	0	0	0	3	19.90	19.92	19.96	20.00
	Cha	nnel					23025	23095	23165	Tune-up limit
	Frequen	cy (MHz)		- L	M	Н	700.5	707.5	714.5	(dBm)
3	QPSK	1	0	0	0	1	20.92	21.09	21.18	
3	QPSK	1	5	0	0	1	20.80	20.87	20.98	22.00
3	QPSK	3	0	0	0	1	20.25	20.00	20.20	
3	QPSK	3	3	0	0	1	20.14	19.94	20.22	21.00
3	QPSK	6	0	0	0	1	18.80	18.85	19.00	20.00
3	16QAM	1	0	0	0	1	19.86	20.05	20.00	
3	16QAM	1	5	0	0	1	19.79	19.87	19.71	21.00
3	16QAM	3	0	0	0	1	19.88	19.47	19.76	
3	16QAM	3	3	0	0	1	19.76	19.29	19.72	20.00
3	16QAM	5	0	0	0	1	19.42	19.00	19.15	
	Cha	nnel					23017	23095	23173	Tune-up limit
	Frequen	cy (MHz)		- L	M	Н	699.7	707.5	715.3	(dBm)
1.4	QPSK	1	0	0	0	0	21.09	21.22	21.13	22.00
1.4	QPSK	1	5	0	0	0	20.91	20.98	20.95	22.00
1.4	QPSK	3	0	0	0	0	19.82	19.83	19.79	04.00
1.4	QPSK	3	3	0	0	0	19.78	19.72	19.77	21.00
1.4	QPSK	6	0	0	0	0	18.97	18.97	19.00	20.00
1.4	16QAM	1	0	0	0	0	20.06	20.09	20.06	04.00
1.4	16QAM	1	5	0	0	0	19.84	19.88	19.85	21.00
1.4	16QAM	3	0	0	0	0	19.65	19.53	19.65	
1.4	16QAM	3	3	0	0	0	19.60	19.40	19.58	20.00
1.4	16QAM	5	0	0	0	0	19.30	18.92	19.21	

Report No. : FA140729-02

TEL: 886-3-327-3456 Page 25 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

<LTE Band 13>

BW [MHz]	Modulation	RB Size	RB Offset		Index		Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit
	Cha	nnel		L	М	Н		23230		(dBm)
	Frequen	cy (MHz)			IVI	-		782		
10	QPSK	1	0	0	0	7		20.95		
10	QPSK	1	5	0	0	7		20.69		22.00
10	QPSK	3	0	0	0	7		21.10		22.00
10	QPSK	3	3	0	0	7		21.06		
10	QPSK	6	0	0	0	7		20.00		21.00
10	16QAM	1	0	0	0	7		20.80		
10	16QAM	1	5	0	0	7		20.74		00.00
10	16QAM	3	0	0	0	7		21.27		22.00
10	16QAM	3	3	0	0	7		21.26		
10	16QAM	5	0	0	0	7		21.00		21.00
	Cha	nnel			М		23205	23230	23255	Tune-up limit
	Frequenc	cy (MHz)		- L	IVI	Н	779.5	782	784.5	(dBm)
5	QPSK	1	0	0	0	3	20.98	20.92	20.94	22.00
5	QPSK	1	5	0	0	3	20.75	20.74	20.74	22.00
5	QPSK	3	0	0	0	3	20.99	20.98	20.96	
5	QPSK	3	3	0	0	3	20.99	21.00	20.95	21.00
5	QPSK	6	0	0	0	3	20.02	20.03	20.01	
5	16QAM	1	0	0	0	3	20.84	20.92	20.87	00.00
5	16QAM	1	5	0	0	3	20.77	20.79	20.77	22.00
5	16QAM	3	0	0	0	3	21.00	20.99	20.95	04.00
5	16QAM	3	3	0	0	3	20.92	20.90	20.93	21.00
5	16QAM	5	0	0	0	3	19.96	19.92	19.93	20.00

Report No. : FA140729-02

TEL: 886-3-327-3456 Page 26 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

Report No. : FA140729-02

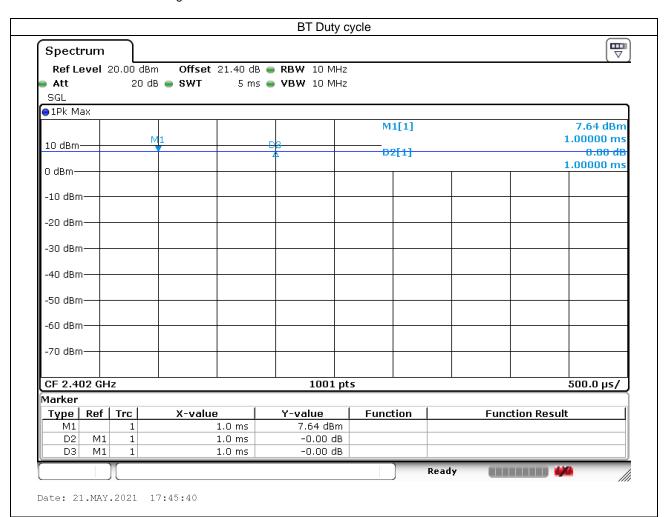
<lte ban<="" th=""><th>d 26></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lte>	d 26>									
BW [MHz]	Modulation	RB Size	RB Offset		Index		Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit
	Cha	nnel		L	М	Н	26765	26865	26965	(dBm)
	Frequen	cy (MHz)		_	IVI	- ''	821.5	831.5	841.5	
15	QPSK	1	0	0	0	11	20.08	20.06	20.10	
15	QPSK	1	5	0	0	11	19.95	19.96	20.06	
15	QPSK	3	0	0	0	11	20.08	20.25	20.51	
15	QPSK	3	3	0	0	11	20.22	20.31	20.49	
15	QPSK	6	0	0	0	11	20.23	20.32	20.37	22.00
15	16QAM	1	0	0	0	11	20.01	20.08	20.15	22.00
15	16QAM	1	5	0	0	11	19.95	19.91	20.00	
15	16QAM	3	0	0	0	11	20.50	20.57	20.69	
15	16QAM	3	3	0	0	11	20.42	20.53	20.63	
15	16QAM	5	0	0	0	11	20.28	20.46	20.43	
	Cha	innel			М	н	26740	26865	26990	Tune-up limit
	Frequen	cy (MHz)		_	IVI	- ''	819	831.5	844	(dBm)
10	QPSK	1	0	0	0	7	20.26	20.18	20.27	
10	QPSK	1	5	0	0	7	19.99	19.89	20.07	22.00
10	QPSK	3	0	0	0	7	20.49	20.30	20.48	22.00
10	QPSK	3	3	0	0	7	20.30	20.18	20.38	
10	QPSK	6	0	0	0	7	19.38	19.37	19.60	21.00
10	16QAM	1	0	0	0	7	20.27	20.00	20.16	
10	16QAM	1	5	0	0	7	19.85	19.85	20.00	22.00
10	16QAM	3	0	0	0	7	20.34	20.58	20.65	22.00
10	16QAM	3	3	0	0	7	20.45	20.54	20.60	
10	16QAM	5	0	0	0	7	20.67	20.40	20.52	21.00
	Cha	ınnel			М	н	26715	26865	27015	Tune-up limit
	Frequen	cy (MHz)			IVI		816.5	831.5	846.5	(dBm)
5	QPSK	1	0	0	0	3	20.10	20.14	20.25	22.00
5	QPSK	1	5	0	0	3	20.30	20.00	20.06	22.00
5	QPSK	3	0	0	0	3	20.50	20.63	20.55	
5	QPSK	3	3	0	0	3	20.29	20.38	20.45	21.00
5	QPSK	6	0	0	0	3	19.47	19.45	19.58	
5	16QAM	1	0	0	0	3	20.11	20.15	20.26	22.00
5	16QAM	1	5	0	0	3	20.00	19.89	20.15	22.00
5	16QAM	3	0	0	0	3	20.55	20.63	20.73	21.00
5	16QAM	3	3	0	0	3	20.45	20.64	20.65	255
5	16QAM	5	0	0	0	3	19.34	19.40	19.65	20.00
		nnel		L	М	н	26705	26865	27025	Tune-up limit
		cy (MHz)					815.5	831.5	847.5	(dBm)
3	QPSK	1	0	0	0	1	20.47	20.44	20.58	22.00
3	QPSK	1	5	0	0	1	20.36	20.21	20.42	
3	QPSK	3	0	0	0	1	19.54	19.64	19.57	21.00
3	QPSK	3	3	0	0	1	19.49	19.55	19.53	
3	QPSK	6	0	0	0	1	18.37	18.35	18.58	20.00
3	16QAM	1	0	0	0	1	19.58	19.50	19.69	21.00
3	16QAM	1	5	0	0	1	19.44	19.39	19.52	
3	16QAM	3	0	0	0	1	18.80	19.21	18.74	
3	16QAM	3	3	0	0	1	18.78	18.87	18.71	20.00
3	16QAM	5	0	0	0	1	18.34	18.39	18.63	
		nnel		L	М	н	26697	26865	27033	Tune-up limit
		cy (MHz)					814.7	831.5	848.3	(dBm)
1.4	QPSK	1	0	0	0	0	20.43	20.35	20.60	22.00
1.4	QPSK	1	5	0	0	0	20.25	20.19	20.39	
1.4	QPSK	3	0	0	0	0	20.21	20.19	20.28	21.00

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Template version: 200414 Page 27 of 34 Issued Date : Aug. 14, 2021

FCC SAR TEST REPORT

1.4	QPSK	3	3	0	0	0	20.25	20.10	20.30	
1.4	QPSK	6	0	0	0	0	18.23	18.32	18.46	20.00
1.4	16QAM	1	0	0	0	0	19.42	19.38	19.60	21.00
1.4	16QAM	1	5	0	0	0	19.32	19.24	19.43	21.00
1.4	16QAM	3	0	0	0	0	19.95	19.51	19.88	
1.4	16QAM	3	3	0	0	0	19.89	19.40	19.78	20.00
1.4	16QAM	5	0	0	0	0	18.17	18.25	18.56	

Report No.: FA140729-02


11. Bluetooth Output Power (Unit: dBm)

<2.4GHz Bluetooth>

Mode	Channel	Frequency	Average po	ower (dBm)
wode	Channel	(MHz)	1Mbps	2Mbps
	CH 00	2402	7.80	7.80
BLE	CH 19	2440	7.60	7.60
	CH 39	2480	7.40	7.40
	Tune-up Limit		9.00	9.00

General Note:

 For 2.4GHz Bluetooth SAR testing was selected 1Mbps due to its highest average power and duty cycle is 100% considered in SAR testing.

TEL: 886-3-327-3456 Page 28 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

12. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No.: FA140729-02

- b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- d. For Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- According to the Appendix D. antenna location, when the antenna distance to the surface edge is larger than 25mm; SAR testing is not necessary.

GSM Note:

- 1. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS / EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (2Tx slots) for GSM850 and GPRS (4Tx slots) for GSM1900 are considered as the primary mode.
- 2. Other configurations of GSM / GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode.

LTF Note:

- 1. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 3. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 4. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 6. For LTE B4/B5/B12/B26 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.
- 7. LTE band 5 SAR test was covered by Band 26; according to TCB workshop, SAR test for overlapping LTE bands can be reduced if
 - a. The maximum output power, including tolerance, for the smaller band is ≤ the larger band to qualify for the SAR test exclusion.
 - b. The channel bandwidth and other operating parameters for the smaller band are fully supported by the larger band.

TEL: 886-3-327-3456 Page 29 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

12.1 Body SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM850	GPRS (2 Tx slots)	Front	5mm	189	836.4	32.02	32.50	1.117	0.17	0.918	1.025
01	GSM850	GPRS (2 Tx slots)	Front	5mm	128	824.2	31.52	32.50	1.253	-0.12	1.180	1.479
	GSM850	GPRS (2 Tx slots)	Front	5mm	251	848.8	31.41	32.50	1.285	-0.14	0.752	0.967
	GSM850	GPRS (2 Tx slots)	Back	5mm	189	836.4	32.02	32.50	1.117	-0.1	1.160	1.296
	GSM850	GPRS (2 Tx slots)	Back	5mm	128	824.2	31.52	32.50	1.253	-0.13	1.140	1.429
	GSM850	GPRS (2 Tx slots)	Back	5mm	251	848.8	31.41	32.50	1.285	-0.03	1.050	1.350
	GSM850	GPRS (2 Tx slots)	Right Side	5mm	189	836.4	32.02	32.50	1.117	0.09	0.384	0.429
	GSM850	GPRS (2 Tx slots)	Bottom Side	5mm	189	836.4	32.02	32.50	1.117	-0.09	0.590	0.659
	GSM1900	GPRS (4 Tx slots)	Front	5mm	512	1850.2	26.51	27.00	1.119	0.19	0.786	0.880
	GSM1900	GPRS (4 Tx slots)	Front	5mm	661	1880	25.96	27.00	1.271	-0.19	0.963	1.224
02	GSM1900	GPRS (4 Tx slots)	Front	5mm	810	1909.8	25.46	27.00	1.426	0.06	0.968	1.380
	GSM1900	GPRS (4 Tx slots)	Back	5mm	512	1850.2	26.51	27.00	1.119	0.1	0.961	1.076
	GSM1900	GPRS (4 Tx slots)	Back	5mm	661	1880	25.96	27.00	1.271	-0.13	0.825	1.048
	GSM1900	GPRS (4 Tx slots)	Back	5mm	810	1909.8	25.46	27.00	1.426	0.13	0.849	1.210
	GSM1900	GPRS (4 Tx slots)	Right Side	5mm	512	1850.2	26.51	27.00	1.119	-0.01	0.201	0.225
	GSM1900	GPRS (4 Tx slots)	Bottom Side	5mm	512	1850.2	26.51	27.00	1.119	-0.13	0.882	0.987
	GSM1900	GPRS (4 Tx slots)	Bottom Side	5mm	661	1880	25.96	27.00	1.271	-0.03	0.775	0.985
	GSM1900	GPRS (4 Tx slots)	Bottom Side	5mm	810	1909.8	25.46	27.00	1.426	-0.08	0.718	1.024

Report No. : FA140729-02

TEL: 886-3-327-3456 Page 30 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

<LTE SAR>

Plot	Band	BW	Modulation	RB	RB	Test	Gap	Ch.	Freq.	Average Power	Tune-Up Limit	Tune-up Scaling	Power Drift	Measured 1g SAR	Reported 1g SAR
No.	Ballu	(MHz)	Wiodulation	Size	offset	Position	(mm)	CII.	(MHz)	(dBm)	(dBm)	Factor	(dB)	(W/kg)	(W/kg)
	LTE Band 2	20M	QPSK	1	0	Front	5mm	19100	1900	20.41	22.00	1.442	0.02	0.171	0.247
	LTE Band 2	20M	QPSK	1	0	Front	5mm	18700	1860	20.39	22.00	1.449	-0.06	0.191	0.277
03	LTE Band 2	20M	QPSK	1	0	Front	5mm	18900	1880	20.27	22.00	1.489	0.16	0.190	0.283
	LTE Band 2	20M	QPSK	3	3	Front	5mm	19100	1900	20.41	22.00	1.442	-0.16	0.168	0.242
	LTE Band 2	20M	QPSK	1	0	Back	5mm	19100	1900	20.41	22.00	1.442	-0.08	0.143	0.206
	LTE Band 2	20M	QPSK	3	3	Back	5mm	19100	1900	20.41	22.00	1.442	-0.13	0.14	0.202
	LTE Band 2	20M	QPSK	1	0	Right Side	5mm	19100	1900	20.41	22.00	1.442	0.16	0.052	0.075
	LTE Band 2	20M	QPSK	3	3	Right Side	5mm	19100	1900	20.41	22.00	1.442	0.01	0.052	0.075
	LTE Band 2	20M	QPSK	1	0	Bottom Side	5mm	19100	1900	20.41	22.00	1.442	0	0.131	0.189
	LTE Band 2	20M	QPSK	3	3	Bottom Side	5mm	19100	1900	20.41	22.00	1.442	-0.11	0.13	0.187
04	LTE Band 4	20M	QPSK	1	0	Front	5mm	20175	1732.5	20.93	22.00	1.279	-0.18	0.184	0.235
	LTE Band 4	20M	QPSK	3	3	Front	5mm	20175	1732.5	21.02	22.00	1.253	-0.18	0.180	0.226
	LTE Band 4	20M	QPSK	1	0	Back	5mm	20175	1732.5	20.93	22.00	1.279	-0.18	0.172	0.220
	LTE Band 4	20M	QPSK	3	3	Back	5mm	20175	1732.5	21.02	22.00	1.253	-0.16	0.170	0.213
	LTE Band 4	20M	QPSK	1	0	Right Side	5mm	20175	1732.5	20.93	22.00	1.279	0.04	0.048	0.061
	LTE Band 4	20M	QPSK	3	3	Right Side	5mm	20175	1732.5	21.02	22.00	1.253	0.06	0.047	0.059
	LTE Band 4	20M	QPSK	1	0	Bottom Side	5mm	20175	1732.5	20.93	22.00	1.279	-0.19	0.128	0.164
	LTE Band 4	20M	QPSK	3	3	Bottom Side	5mm	20175	1732.5	21.02	22.00	1.253	-0.17	0.127	0.159
	LTE Band 12	10M	QPSK	1	0	Front	5mm	23095	707.5	20.86	22.00	1.300	-0.12	0.094	0.122
05	LTE Band 12	10M	QPSK	3	0	Front	5mm	23095	707.5	21.10	22.00	1.230	-0.01	0.107	0.132
	LTE Band 12	10M	QPSK	1	0	Back	5mm	23095	707.5	20.86	22.00	1.300	-0.18	0.054	0.070
	LTE Band 12	10M	QPSK	3	0	Back	5mm	23095	707.5	21.10	22.00	1.230	-0.14	0.056	0.069
	LTE Band 12	10M	QPSK	1	0	Right Side	5mm	23095	707.5	20.86	22.00	1.300	-0.03	0.009	0.012
	LTE Band 12	10M	QPSK	3	0	Right Side	5mm	23095	707.5	21.10	22.00	1.230	-0.03	0.010	0.012
	LTE Band 12	10M	QPSK	1	0	Bottom Side	5mm	23095	707.5	20.86	22.00	1.300	-0.1	0.030	0.039
	LTE Band 12	10M	QPSK	3	0	Bottom Side	5mm	23095	707.5	21.10	22.00	1.230	-0.13	0.031	0.038
	LTE Band 13	10M	QPSK	1	0	Front	5mm	23230	782	20.95	22.00	1.274	-0.14	0.108	0.138
06	LTE Band 13	10M	QPSK	3	0	Front	5mm	23230	782	21.10	22.00	1.230	-0.19	0.113	0.139
	LTE Band 13	10M	QPSK	1	0	Back	5mm	23230	782	20.95	22.00	1.274	-0.14	0.083	0.106
	LTE Band 13	10M	QPSK	3	0	Back	5mm	23230	782	21.10	22.00	1.230	-0.11	0.087	0.107
	LTE Band 13	10M	QPSK	1	0	Right Side	5mm	23230	782	20.95	22.00	1.274	-0.18	0.027	0.034
	LTE Band 13	10M	QPSK	3	0	Right Side	5mm	23230	782	21.10	22.00	1.230	-0.04	0.03	0.037
	LTE Band 13	10M	QPSK	1	0	Bottom Side	5mm	23230	782	20.95	22.00	1.274	0.09	0.041	0.052
	LTE Band 13	10M	QPSK	3	0	Bottom Side	5mm	23230	782	21.10	22.00	1.230	-0.02	0.044	0.054
07	LTE Band 26	15M	QPSK	1	0	Front	5mm	26865	831.5	20.06	22.00	1.563	-0.04	0.116	0.181
	LTE Band 26	15M	QPSK	3	3	Front	5mm	26865	831.5	20.31	22.00	1.476	-0.14	0.113	0.167
	LTE Band 26	15M	QPSK	1	0	Back	5mm	26865	831.5	20.06	22.00	1.563	-0.02	0.11	0.172
	LTE Band 26	15M	QPSK	3	3	Back	5mm	26865	831.5	20.31	22.00	1.476	-0.13	0.111	0.164
	LTE Band 26	15M	QPSK	1	0	Right Side	5mm	26865	831.5	20.06	22.00	1.563	-0.12	0.036	0.056
	LTE Band 26	15M	QPSK	3	3	Right Side	5mm	26865	831.5	20.31	22.00	1.476	-0.07	0.038	0.056
	LTE Band 26	15M	QPSK	1	0	Bottom Side	5mm	26865	831.5	20.06	22.00	1.563	-0.08	0.059	0.092
	LTE Band 26	15M	QPSK	3	3	Bottom Side	5mm	26865	831.5	20.31	22.00	1.476	-0.09	0.058	0.086

<Bluetooth SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)				Duty Cycle Scaling Factor		Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	Bluetooth	LE-1Mbps	Front	5mm	0	2402	7.80	9.00	1.318	100	1.000	-0.17	0.062	0.082
	Bluetooth	LE-1Mbps	Back	5mm	0	2402	7.80	9.00	1.318	100	1.000	-0.01	0.064	0.084
	Bluetooth	LE-1Mbps	Back	5mm	19	2440	7.60	9.00	1.380	100	1.000	0.03	0.056	0.077
08	Bluetooth	LE-1Mbps	Back	5mm	39	2480	7.40	9.00	1.445	100	1.000	-0.07	0.059	0.085

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Template version: 200414 Page 31 of 34 Issued Date : Aug. 14, 2021

Report No. : FA140729-02

12.2 Repeated SAR Measurement

No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	GSM850	GPRS (2 Tx slots)	Front	5mm	128	824.2	31.52	32.50	1.253	-0.12	1.180		1.479
2nd	GSM850	GPRS (2 Tx slots)	Front	5mm	128	824.2	31.52	32.50	1.253	0.04	1.090	1.08	1.366
1st	GSM1900	GPRS (4 Tx slots)	Front	5mm	810	1909.8	25.46	27.00	1.426	0.06	0.968		1.380
2nd	GSM1900	GPRS (4 Tx slots)	Front	5mm	810	1909.8	25.46	27.00	1.426	-0.05	0.954	1.01	1.360

Report No.: FA140729-02

General Note:

- 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

13. Simultaneous Transmission Analysis

NO.	Simultaneous Transmission Configurations	Body
1.	WWAN + Bluetooth	Yes

General Note:

- The Scaled SAR summation is calculated based on the same configuration and test position.
- 2. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - i) Scalar SAR summation < 1.6W/kg.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.
 - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.

TEL: 886-3-327-3456 Page 32 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

13.1 Body Exposure Conditions

WWAN Band	Exposure Position	1	2	4.0
		WWAN	Bluetooth	1+2 Summed
	,	1g SAR	1g SAR	1g SAR (W/kg)
	Front	(W/kg) 1.479	(W/kg) 0.082	1,561
GSM850	Back	1.429	0.085	1.514
	Right side	0.429	0.000	0.429
	Bottom side	0.429		0.659
GSM1900	Front	1.380	0.082	1.462
	Back	1.210	0.085	1.402
		0.225	0.085	0.225
	Right side			1.024
	Bottom side	1.024	0.000	
LTE Band 2	Front	0.283	0.082	0.365
	Back	0.206	0.085	0.291
	Right side	0.075		0.075
	Bottom side	0.189		0.189
LTE Band 4	Front	0.235	0.082	0.317
	Back	0.220	0.085	0.305
	Right side	0.061		0.061
	Bottom side	0.164		0.164
LTE Band 12	Front	0.132	0.082	0.214
	Back	0.070	0.085	0.155
	Right side	0.012		0.012
	Bottom side	0.039		0.039
LTE Band 13	Front	0.139	0.082	0.221
	Back	0.107	0.085	0.192
	Right side	0.037		0.037
	Bottom side	0.054		0.054
LTE Band 26	Front	0.181	0.082	0.263
	Back	0.172	0.085	0.257
	Right side	0.056		0.056
	Bottom side	0.092		0.092

Report No. : FA140729-02

Test Engineer: Jeff Tsao, Charles Shen, Sheng Hsu, Kevin Guo and Jordar Jhuang

TEL: 886-3-327-3456 Page 33 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021

14. Uncertainty Assessment

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\le 30\%$, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg. Therefore, the measurement uncertainty table is not required in this report.

Report No.: FA140729-02

Declaration of Conformity:

The test results with all measurement uncertainty excluded is presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

15. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [7] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.
- [8] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [9] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [10] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [11] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.

TEL: 886-3-327-3456 Page 34 of 34
FAX: 886-3-328-4978 Issued Date: Aug. 14, 2021