

Test report No. : 13395143H-C-R1 Page : 1 of 23

Page : 1 of 23 Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

RADIO TEST REPORT

Test Report No.: 13395143H-C-R1

Applicant : Panasonic Corporation of North America

Type of EUT : Body Worn Camera

Model Number of EUT : WV-BWC4000

FCC ID : ACJ9TAWV-BWC4000

Test regulation : FCC Part 15 Subpart E: 2020

(DFS test only)

*Client without radar detection

Test Result : Complied (Refer to SECTION 3.2)

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

2. The results in this report apply only to the sample tested.

- 3. This sample tested is in compliance with the limits of the above standard.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.
- 10. This report is a revised version of 13395143H-C. 13395143H-C is replaced with this report.

Representative test engineer:

Takafumi Noguchi
Engineer
Consumer Technology Division

Approved by:

Tsubasa Takayama
Leader

Leader
Consumer Technology Division

CERTIFICATE 5107.02

_	_	The testing in which			outside the accre	editation scopes in	UL Japan.
ſ	\times	There is no testing it	em of "Non-accredit	tation".			

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 2 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

REVISION HISTORY

Original Test Report No.: 13395143H-C

Revision	Test report No.	Date	Page revised	Contents
-	13395143H-C	August 24, 2020	-	-
(Original)				
1	13395143H-C-R1	September 11, 2020	P13	Corrected Model number of Item No. A;
				WV-BWC-4000 →WV-BWC4000
1	13395143H-C-R1	September 11, 2020	P13	Added Item F and G, Cable No. 5 to 7

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 3 of 23

Modulation and Coding Scheme

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

Reference: Abbreviations (Including words undescribed in this report)

MCS The American Association for Laboratory Accreditation ACAlternating Current MR A Mutual Recognition Arrangement AFH N/A Not Applicable Adaptive Frequency Hopping Amplitude Modulation NIST National Institute of Standards and Technology AMNS Amp, AMP Amplifier No signal detect. American National Standards Institute ANSI NSA Normalized Site Attenuation Ant, ANT Antenna NVLAP National Voluntary Laboratory Accreditation Program AP Access Point OBW Occupied Band Width ASK Amplitude Shift Keying **OFDM** Orthogonal Frequency Division Multiplexing Atten., ATT Attenuator P/M Power meter AVPCB Printed Circuit Board Average BPSK Binary Phase-Shift Keying PER Packet Error Rate BR Bluetooth Basic Rate PHY Physical Layer ВТ Bluetooth PK Peak BT LE Bluetooth Low Energy PN Pseudo random Noise BandWidth PRBS BW Pseudo-Random Bit Sequence Cal Int Calibration Interval PSD Power Spectral Density CCK Complementary Code Keying QAM Quadrature Amplitude Modulation Ch., CH Channel QP Quasi-Peak CISPR Comite International Special des Perturbations Radioelectriques QPSK Quadri-Phase Shift Keying CW Continuous Wave RBW Resolution Band Width DBPSK Differential BPSK RDS Radio Data System DC Direct Current RE Radio Equipment RF D-factor Distance factor Radio Frequency DFS Dynamic Frequency Selection RMS Root Mean Square DOPSK Differential OPSK RSS Radio Standards Specifications Direct Sequence Spread Spectrum Receiving DSSS Rх EDR Enhanced Data Rate Spectrum Analyzer SA, S/A SGEIRP, e.i.r.p. Equivalent Isotropically Radiated Power Signal Generator SVSWR Site-Voltage Standing Wave Ratio **EMC** ElectroMagnetic Compatibility **EMI** ElectroMagnetic Interference TR Test Receiver EN European Norm Tx Transmitting ERP, e.r.p. Effective Radiated Power VRW Video BandWidth European Union Vert. Vertical EUT Equipment Under Test WLAN Wireless LAN Fac. **FCC** Federal Communications Commission **FHSS** Frequency Hopping Spread Spectrum FM Frequency Modulation Freq. Frequency FSK Frequency Shift Keying GFSK Gaussian Frequency-Shift Keying GNSS Global Navigation Satellite System GPS Global Positioning System Horizontal Hori. ICES Interference-Causing Equipment Standard IEC International Electrotechnical Commission IEEE Institute of Electrical and Electronics Engineers Intermediate Frequency IF ILAC International Laboratory Accreditation Conference

UL Japan, Inc. Ise EMC Lab.

ISED

ISO

JAB

LAN

LIMS

A2LA

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Japan Accreditation Board

Local Area Network

Innovation, Science and Economic Development Canada

International Organization for Standardization

Laboratory Information Management System

Test report No. Page

: 13395143H-C-R1 : 4 of 23

Issued date FCC ID : September 11, 2020 : ACJ9TAWV-BWC4000

CONTENTS	PAGE
SECTION 1: Customer information	5
SECTION 2: Equipment under test (EUT)	5
SECTION 3: Scope of Report	7
SECTION 4: Test specification, procedures & results	
SECTION 5: Operation of EUT during testing	12
SECTION 6: Channel Move Time, Channel Closing Transmission Time	
SECTION 7: Non-Occupancy Period	
APPENDIX 1: Test instruments	
APPENDIX 2: Photographs of test setup	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 5 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

SECTION 1: Customer information

Applicant

Company Name Panasonic Corporation of North America				
Address	Two Riverfront Plaza, Newark, NJ 07102-5490			
Contact Person	Vir Angelo Lontoc	Ben Botros		
Telephone Number	+1-201-348-7724	+1-201-348-7760		
Facsimile Number	+1-201-392-4564	-		
E-mail	virangelo.lontoc@us.panasonic.com	Ben.Botros@us.panasonic.com		

Manufacturer

Company Name	Panasonic i-PRO Sensing Solutions Co., Ltd.		
Address	1-62, 4-chome, Minoshima, Hakata-ku, Fukuoka 812-8531 Japan		
Telephone Number	+81-80-3358-7203		
Contact Person	Koji Yamasaki		

*Remarks:

Panasonic Corporation of North America designates Panasonic i-PRO Sensing Solutions Co., Ltd. as manufacturer of the product (Body Worn Camera).

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : Body Worn Camera
Model Number : WV-BWC4000
Serial Number : Refer to SECTION 4.2
Rating : DC 3 V to DC 4.15 V

< Rechargeable Li-ion Battery Pack >

Model: WV-BWC40B1 Nominal Voltage: DC 3.6 V Rated Capacity: 2670mAh, 9.6Wh

Receipt Date : June 1, 2020

Country of Mass-production : Japan

Condition : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

Page : 6 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

2.2 Product Description

Model: WV-BWC4000 (referred to as the EUT in this report) is a Body Worn Camera.

Radio Specification

Specification of Wireless LAN (IEEE802.11b/g/a/n-20/n-40/11ac-20/11ac-40/11ac-80)

Type of radio	IEEE802.11b	IEEE802.11g/n	IEEE802.11a/n/ac	IEEE802.11n/ac	IEEE802.11ac	
		(20 M band)	(20 M band)	(40 M band)	(80 M band)	
Equipment Type	Transceiver					
Frequency	2412 MHz - 2462 MHz	2412 MHz - 2462 MHz	5280 MHz - 5320 MHz	5310 MHz	5530 MHz	
of operation			5500 MHz - 5580 MHz	5510 MHz - 5550 MHz	5690 MHz	
			5660 MHz - 5720 MHz	5670 MHz - 5710 MHz	5775 MHz	
			5745 MHz - 5825 MHz	5755 MHz - 5795 MHz		
Type of modulation	DSSS	OFDM-CCK	OFDM			
	(CCK, DQPSK, DBPSK)	(64QAM, 16QAM, QPSK, BPSK)	(64QAM, 16QAM, QPSK, B	PSK, 256QAM(IEEE802.11ac	only))	
Channel spacing	5 MHz		20 MHz	40 MHz	80 MHz	
Bandwidth	20MHz		20 MHz	40 MHz	80 MHz	
Antenna type	2.4 GHz: FPC Antenna					
	5 GHz: Pattern Antenna					
Antenna Gain	2.4 GHz: 1.5 dBi					
	5 GHz: 4 dBi					
Operating temperature	-20 deg. C. to +50 deg. C.					
range						

Specification of Bluetooth (Low Energy: LE)

	Bluetooth		
Equipment Type	Transceiver		
Frequency of operation	2402 MHz -2480 MHz		
Type of modulation	GFSK		
Bandwidth & Channel spacing	Bandwidth: 1 MHz		
	Channel spacing: 2 MHz		
Antenna type	FPC Antenna		
Antenna Gain	1.5 dBi		
Operating temperature range	-20 deg. C. to +50 deg. C.		

GNSS

Radio Type : Receiver
Frequency of Operation : See table below.
Antenna type : Active Antenna
Antenna Gain : 8.56 dBic

Supported GNSS and GNSS signals

CNCC	RNSS Frequency Band / Frequency [MHz]						
GNSS	1559 to	1610	1215 t	o 1300	1164 to	1215	
BDS	□B11	1561.098	-		-		
Galileo	□E1 1575.42	1575 40	□E6	1278.75	□E5a	1176.45	
Gameo		LE0 12/8./3	□E5b	1207.14			
GLONASS	□G1	1598.0625 - 1605.375	\Box G2	1242.9375 - 1248.625	-		
GPS	⊠L1	1575.42	□L2	1227.6	□L5	1176.45	
SBAS	□L1	1575.42	-		□L5	1176.45	

☐ Not supported GNSS signal

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} This test report applies to WLAN (5 GHz band) part.

^{*} Wireless LAN and Bluetooth Low Energy do not transmit simultaneously.

Page : 7 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

SECTION 3: Scope of Report

This report only covers DFS requirement, as specified by the following referenced procedures.

SECTION 4: Test specification, procedures & results

4.1 Test Specification

Test Specification : FCC Part 15 Subpart E

FCC Part 15 final revised on June 26, 2020 and effective July 27, 2020

except 15.258

Title : FCC 47CFR Part15 Radio Frequency Device Subpart E

Unlicensed National Information Infrastructure Devices

Section 15.407 General technical requirements

Test Specification : KDB905462 D02 UNII DFS Compliance Procedures New Rules v02

Title : COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-

NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN

THE 5250-5350MHz AND 5470-5725MHz BANDS INCORPORATING

DYNAMIC FREQUENCY SELECTION

Test Specification : KDB905462 D03 Client Without DFS New Rules v01r02

Title : U-NII CLIENT DEVICES WITHOUT RADAR DETECTION CAPABILITY

FCC Part 15.31 (e)

The test was performed with the New Battery and the stable voltage was supplied to the EUT during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 8 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

4.2 Procedures and results

Table 1: Applicability of DFS Requirements

Requirement	Operating Mode Client without Radar Detection	Test Procedures & Limits	Deviation	Results
U-NII Detection Not required Bandwidth		KDB905462 D02 UNII DFS Compliance Procedures New Rules v02	N/A	N/A
Initial Channel	Not required	FCC15.407 (h)	N/A	N/A
Availability Check Time		KDB905462 D02 UNII DFS Compliance Procedures New Rules v02		
		RSS-247 6.3		
Radar Burst at the	Not required	FCC15.407 (h)	N/A	N/A
Beginning of the Channel Availability Check Time		KDB905462 D02 UNII DFS Compliance Procedures New Rules v02		
Check Time		RSS-247 6.3		
Radar Burst at the End of the Channel Availability Check Time	Not required	FCC15.407 (h) KDB905462 D02 UNII DFS Compliance Procedures New Rules v02 RSS-247 6.3	N/A	N/A
In-Service Monitoring	Yes	FCC15.407 (h)	N/A	Complied
for Channel Move Time, Channel Closing Transmission		KDB905462 D02 UNII DFS Compliance Procedures New Rules v02		a)
Time		RSS-247 6.3		
In-Service Monitoring	Yes *	FCC15.407 (h)	N/A	Complied
for Non-Occupancy period		KDB905462 D02 UNII DFS Compliance Procedures New Rules v02		b)
		RSS-247 6.3		
Statistical Not required FCC15.407 (h) Performance Check KDB905462 D02 UNII DFS Compliance Procedures New Rules Note: UL Japan Inc.'s FMI Work Procedures No. 13-FM-W0422		KDB905462 D02 UNII DFS Compliance Procedures New Rules v02	N/A	N/A

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0422.

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

a) Refer to SECTION 6, clause 6.3

b) Refer to SECTION 7, clause 7.3

^{*}Although this test was not required in FCC, KDB 905462 D02, it was performed as additional test.

Page : 9 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

Table 2 DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1,2, and 3)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt and power spectral density <	-62 dBm
10dBm/MHz	
< 200 milliwatt that do not meet the power spectral	-64 dBm
density requirement	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note 3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 3 DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60
	milliseconds over remaining 10 second period.
	See Notes 1 and 2
U-NII Detection Bandwidth	Minimum 100 % of the U-NII 99 % transmission
	power bandwidth
	See Note 3

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signal will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13395143H-C-R1 Page : 10 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

Table 4 Short Pulse Radar Test Waveform

Radar Type	Pulse Width	PRI	Number of	Minimum	Minimum
	(µsec)	(µsec)	Pulses	Percentage of	Number of
				Successful	Traials
				Detection	
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique	Roundup{(1/36	60 %	30
		PRI values randomly	0)*		
		selected from the list	(19*10 ⁶ /PRI		
		of 23 PRI values in	usec)}		
		Table 5a			
		Test B: 15 unique			
		PRI values randomly			
		selected within the			
		range of 518-3066			
		μsec, with a			
		minimum increment			
		of 1 μsec, excluding			
		PRI values selected			
		in Test A			
2	1-5	150-230	23-29	60 %	30
3	6-10	200-500	16-18	60 %	30
4	11-20	200-500	12-16	60 %	30
Aggregate (Rader T	ypes 1-4)	·		80 %	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Table 5 Long Pulse Radar Test Waveform

]	Radar Type	Pulse Width (µsec)	Chip Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Burst	Minimum Percentage of Successful Detection	Minimum Number of Trials
	5	50-100	5 - 20	1000-2000	1-3	8-20	80 %	30

Table 6 Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulse per Hop (kHz)	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70 %	30

4.3 Addition to standard

No addition, exclusion nor deviation has been made from the standard.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13395143H-C-R1 Page : 11 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

4.4 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 199967 / ISED Lab Company Number: 2973C

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	[-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

4.5 Uncertainty

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2. Time Measurement uncertainty for this test was: (\pm) 0.012%

4.6 Test instruments of DFS and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13395143H-C-R1 Page : 12 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

SECTION 5: Operation of EUT during testing

5.1 Operating Modes

The EUT, which is a Client Device without Radar detection capability, operates over the W53 and W56 Band.

The channel-loading of approximately 17% or greater was used for testing, and its test data was transferred from the Master Device to the Client Device for all test configurations.

The EUT utilizes the 802.11a/n/ac architecture, with a 20MHz, 40MHz and 80MHz channel bandwidth.

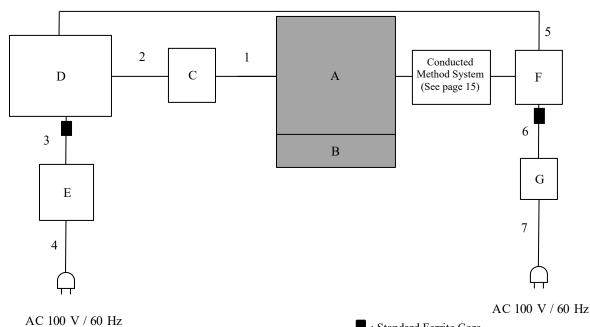
The FCC ID for the Master Device used with EUT for DFS testing is LDK102087.

The rated output power of the Master unit is >200mW(23dBm). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -64 + 1 + 0 = -63.0 dBm (threshold level + additional 1dB + antenna gain).

It is impossible for users to change DFS control, because the DFS function is written on the firmware and users cannot access it.

The EUT was set by the software as follows: Software name & version: BWC4000 0700M42

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


: 13395143H-C-R1 Test report No.

Page : 13 of 23

: Standard Ferrite Core

Issued date : September 11, 2020 : ACJ9TAWV-BWC4000 FCC ID

5.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Body Worm Camera	WV-BWC4000	48	Panasonic i-PRO	EUT
				Sensing Solutions	
				Co., Ltd.	
В	Rechargeable Li-ion	WV-BWC40B1	2003170055	Panasonic i-PRO	EUT
	Battery Pack			Sensing Solutions	
				Co., Ltd.	
С	Jig	-	-	-	-
D	Laptop PC	CF-N8HWCDPS	0BKSA08704	Panasonic	-
Е	AC Adapter	CF-AA6372B	6372BM409X17298B	Panasonic	-
F	WLAN access point	AIR-CAP3702E-	FTX182276QC	Cisco Systems	-
		A-K9			
G	AC Adaptor	AA25480L	ALD030406GR	Cisco Systems	_

List of cables used

No.	Name	Length (m)	Shield		
			Cable	Connector	
1	Signal Cable	0.17	Unshielded	Unshielded	
2	USB Cable	2.00	Shielded	Shielded	
3	DC Cable	1.00	Unshielded	Unshielded	
4	AC Cable	1.00	Unshielded	Unshielded	
5	LAN Cable	3.00	Unshielded	Unshielded	
6	DC Cable	1.90	Unshielded	Unshielded	
7	AC Cable	2.10	Unshielded	Unshielded	

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13395143H-C-R1 Page : 14 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

5.3 Test and Measurement System

SYSTEM OVERVIEW

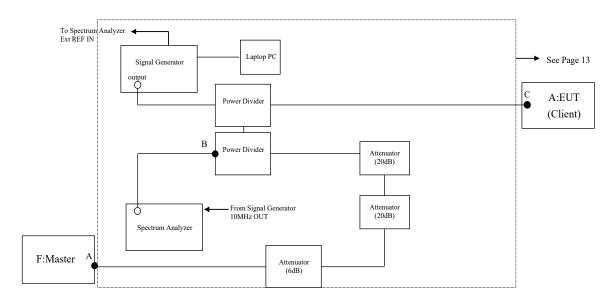
The measurement system is based on a conducted test method.

The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution. The short pulse types 1, 2, 3, and 4, the long pulse type 5, and the frequency hopping type 6 parameters are randomized at run-time.

The signal monitoring equipment consists of a spectrum analyzer with the capacity to display 8001 bins on the horizontal axis. A time-domain resolution of 2 msec/bin is achievable with a 16 second sweep time, meeting the 10 seconds short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection.

FREQUENCY HOPPING RADAR WAVEFORM GENERATING SUBSYSTEM

The first 100 frequencies are selected out of the hopping sequence of the randomized 475 hop frequencies. Only a *Burst* that has the frequency falling within the receiver bandwidth of the tested U-NII device is selected among those frequencies. (Frequency-domain simulation). The radar waveform generated at the start time of the selected *Burst* (Time-domain simulation) is download to the Signal Generator.


If all of the randomly selected 100 frequencies do not fall within the receiver bandwidth of the U-NII device, the radar waveform is not used for the test.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13395143H-C-R1 Page : 15 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

CONDUCTED METHODS SYSTEM BLOCK DIAGRM

MEASUREMENT SYSTEM FREQUENCY REFERENCE

Lock the signal generator and the spectrum analyzer to the same reference sources as follows: Connect the 10 MHz OUT on the signal generator to the EXT REF IN on the spectrum analyzer and set the spectrum analyzer Ext to On.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13395143H-C-R1 Page : 16 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

SYSTEM CALIBRATION

Step 1: Set the system as shown in Figure 3 of KDB905462 D02 7.2.2.

Step 2: Adjust each attenuator to fulfill the following three conditions:

- WLAN can be communicated, and
- Rader detection threshold level is bigger than Client Device traffic level on the spectrum analyzer, and
- Master Device traffic level is not displayed on the spectrum analyzer.

Step 3: Terminate 50 ohm at B and C points, and connect the spectrum analyzer to the point A. (See the figure on page 13)

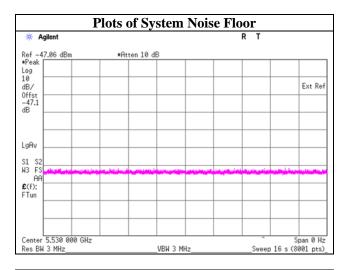
At the point A, adjust the signal generator and spectrum analyzer to the center frequency of the channel to be measured.

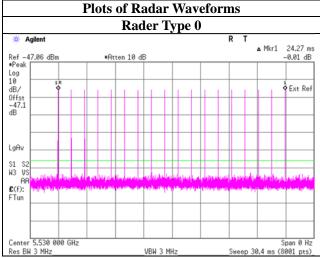
Download the applicable radar waveforms to the signal generator. Select the radar waveform, trigger a burst manually and measure the amplitude on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold.

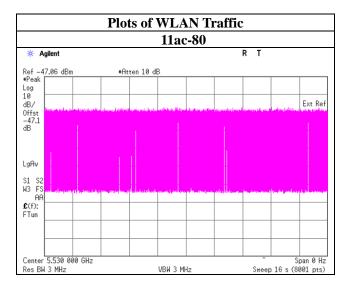
Separate signal generator amplitude settings are determined as required for each radar type.

Step 4: Without changing any of the instrument settings, restore the system setting to Step 2 and adjust the Reference Level Offset of the spectrum analyzer to the level at Step 3.

By taking the above steps 1 to 4, the spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device.


See Clause 5.4 for Plots of Noise, Rader Waveforms, and WLAN signals.


4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


Test report No. : 13395143H-C-R1 Page : 17 of 23

Page : 17 of 23 Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

5.4 Plots of Noise, Rader Waveforms, and WLAN signals

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13395143H-C-R1 Page : 18 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

SECTION 6: Channel Move Time, Channel Closing Transmission Time

6.1 Operating environment

Test place Ise EMC Lab.No.6 Shielded Room

Date 08/04/2020
Temperature/ Humidity 25deg. C / 47% RH
Engineer Takafumi Noguchi

Mode 11ac-80

6.2 Test Procedure

Transmit the data from the Master Device to the Client Device on the test Channel for the entire period of the test. The Radar Waveform generator sends a Burst of pulses for one of the Short Pulse Radar Types 0 at levels defined, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

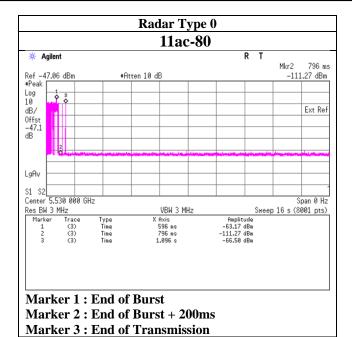
Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds.

6.3 Test data

11ac-80

Test Item	Unit	Measurement Time	Limit	Results
Channel Move Time *1)	[sec]	0.500	10.000	Pass
Channel Closing				
Transmission Time *2)	[msec]	10	60	Pass

^{*1)} Channel Move Time is calculated as follows:


(Channel Move Time) = (End of Transmission) - (End of Burst) = 1.096-0.596

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Channel Closing Transmission Time is calculated from (End of Burst + 200msec) to (End of Burst + 10sec) (Channel Closing Transmission Time) = (Number of analyzer bins showing transmission) × (dwell time per bin) = 5 × 2 [msec]

Test report No. : 13395143H-C-R1 Page : 19 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

6.4 Test result

Test result: Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13395143H-C-R1 Page : 20 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

SECTION 7: Non-Occupancy Period

7.1 Operating environment

Test place Ise EMC Lab.No.6 Shielded Room

Date 08/04/2020
Temperature/ Humidity 25deg. C / 47% RH
Engineer Takafumi Noguchi

Mode 11ac-80

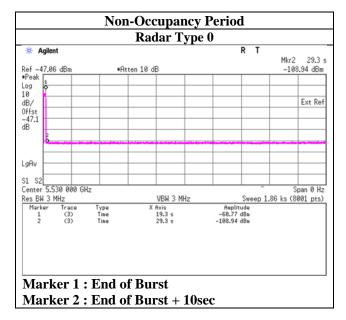
7.2 Test Procedure

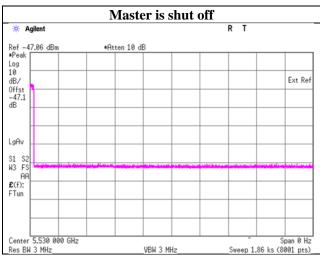
The following two tests are performed:

1). Transmit the data from the Master Device to the Client Device on the test Channel for the entire period of the test. The Radar Waveform generator sends a Burst of pulses for one of the Radar Types 0 at levels defined on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

Observe the transmissions of the EUT after the Channel Move Time on the Operating Channel for duration greater than

30 minutes.


2). Transmit the data from the Master Device to the Client Device on the test Channel for the entire period of the test. Observe the transmissions of the EUT on the Operating Channel for duration greater than 30 minutes after the Master Device is shut off.


4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13395143H-C-R1 Page : 21 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

7.3 Test data

7.4 Test result

Test result: Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13395143H-C-R1 Page : 22 of 23

Issued date : September 11, 2020 FCC ID : ACJ9TAWV-BWC4000

APPENDIX 1: Test instruments

Test equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
DFS	MSA-15	141902	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187105	2019/10/09	12
DFS *1)	MSG-18	141898	Signal Generator	Keysight Technologies Inc	N5182B	MY56200177	2019/11/25	12
DFS	COTS- MDFS-03	170949	Signal Studio for DFS Radar Profiles	EMC Instruments Corporation	N7607B	-	=	-
DFS	MCC-189	142376	Microwave Cable	Junkosha	MWX-221- 02000DMSDMS	1507S108	-	-
DFS	MCC-192	142379	Microwave Cable	Junkosha	MWX-221- 02000DMSDMS	1507S111	=	-
DFS	MCC-191	142378	Microwave Cable	Junkosha	MWX-221- 02000DMSDMS	1507S110	-	-
DFS	MCC-184	142373	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	1502S311	-	-
DFS	MAT-101	194879	Attenuator	Keysight Technologies Inc	8495A / 8495B	MY42150956 / MY42147424	-	-
DFS	MAT-59	142302	Attenuator(20dB)	Suhner	6820.19.A	-	-	-
DFS	MAT-60	142303	Attenuator(20dB)	Suhner	6820.19.A	-	-	-
DFS	MAT-19	141172	Attenuator(6dB)(above 1GHz)	HIROSE ELECTRIC CO.,LTD.	AT-106	-	2019/12/09	12
DFS	MLE-95	141728	Wireless LAN access point	Cisco Systems	AIR-CAP3702E-A- K9	FTX182276QN	-	-
DFS	MOS-24	90289	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0005	2020/01/07	12
DFS	MPSC-06	142735	Power Splitters/Combiners	PASTERNACK ENTERPRISES	ZFRSC-123-S+	ZFRSC-123-00231	-	-
DFS	MPSC-07	142736	Power Splitters/Combiners	PASTERNACK ENTERPRISES	ZFRSC-123-S+	ZFRSC-123-00232	-	-

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

DFS: Dynamic Frequency Selection

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} Signal generator is only used to generate radar test signal, and the wave form is confirmed with spectrum analyzer every time before the test.