

Page 1 of 67

TEST REPORT

Product Name	:	Bluetooth Remote Control
Brand Mark	:	TZ BOX
Model No.	:	TrezorBOX
Extension model	:	OMNIVERSE plus
Report Number	:	BLA-EMC-202403-A11502
FCC ID	:	2BFM3-TZB041R3
Date of Sample Receipt	:	2024/4/1
Date of Test	:	2024/4/1 to 2024/4/11
Date of Issue	:	2024/4/11
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

SHENZHEN Newglee Technology Co., Ltd. Room E601, UNIS Harbour, Langshan Rd, North High-Tech Park, Nanshan District, Shenzhen, China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by:

Approved by:

Jozu 13 hue Theng

Date:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Add: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

REPORT REVISE RECORD

Version No.	Date	Description
00	2024/4/11	Original

TABLE OF CONTENTS

1 TEST SUMMARY	5
2 GENERAL INFORMATION	6
3 GENERAL DESCRIPTION OF E.U.T.	6
4 TEST ENVIRONMENT	8
5 TEST MODE	8
6 MEASUREMENT UNCERTAINTY	8
7 DESCRIPTION OF SUPPORT UNIT	9
8 TEST FACILITY	9
9 LABORATORY LOCATION	۰
10 TEST INSTRUMENTS LIST	
11 CONDUCTED BAND EDGES MEASUREMENT	
11.1 LIMITS	12
11.2 BLOCK DIAGRAM OF TEST SETUP	
11.3 TEST DATA	12
12 RADIATED SPURIOUS EMISSIONS	
12.1 LIMITS	13
12.2 BLOCK DIAGRAM OF TEST SETUP	
12.3 PROCEDURE	
12.4 TEST DATA	16
13 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	25
13.1 LIMITS	25
13.2 BLOCK DIAGRAM OF TEST SETUP	26
13.3 PROCEDURE	26
13.4 TEST DATA	28
14 CONDUCTED SPURIOUS EMISSIONS	33
14.1 LIMITS	33
14.2 BLOCK DIAGRAM OF TEST SETUP	33
14.3 TEST DATA	33
15 POWER SPECTRUM DENSITY	34

15.1 LIMITS	
15.2 BLOCK DIAGRAM OF TEST SETUP	
15.3 TEST DATA	
16 CONDUCTED PEAK OUTPUT POWER	
16.1 LIMITS	
16.2 BLOCK DIAGRAM OF TEST SETUP	
16.3 TEST DATA	
17 MINIMUM 6DB BANDWIDTH	
17.1 LIMITS	
17.2 BLOCK DIAGRAM OF TEST SETUP	
17.3 TEST DATA	
18 ANTENNA REQUIREMENT	
18.1 CONCLUSION	
19 APPENDIX1	
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	
APPENDIX B: PHOTOGRAPHS OF EUT	

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	N/A
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass

Remark:

N/A: Not Applicable

GENERAL INFORMATION 2

Applicant	SHENZHEN Newglee Technology Co.,Ltd.	
Address Room E601,UNIS Harbour, Langshan Rd, North High-Tech Park, N District, Shenzhen, China		
Manufacturer	SHENZHEN Newglee Technology Co.,Ltd.	
Address	Room E601,UNIS Harbour, Langshan Rd, North High-Tech Park, Nanshan District, Shenzhen, China	
Factory Dongguan Huayun Industrial Co.,Ltd.		
Address No.8 Xiangrong Road, Songmushan Village, Dalang Town, Dongguan, C		
Product Name Bluetooth Remote Control		
Test Model No. TrezorBOX		
Extension model OMNIVERSE plus		
NoteAll above models are identical in the same PCB layout, interior structure electrical circuits. The differences are model name for commercial purport		
3 GENERAL DESCRIPTION OF E.U.T.		

GENERAL DESCRIPTION OF E.U.T. 3

Hardware Version	HW001
Software Version	SW001
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Rate data:	1Mbps, 2Mbps
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	PCB Antenna
Antenna Gain:	1.5dBi (Provided by the applicant)

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
: :	: :	: :	: :	:	: :	: :	: :
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	25°C	3.0Vdc

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION
Transmitting mode	Keep the EUT in continuously transmitting mode with modulation.

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %
Unwanted Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB
Unwanted Radiated Emission (1GHz ~ 18GHz)	±4.44 dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Type Manufacturer Model Name		Serial No.	Remark
AC Adapter	UGREEN	CD112	N/A	N/A

8 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Designation No.: CN1252

BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Designation CN1252.

•ISED — CAB identifier No.: CN0028

BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered by Certification and Engineering

Bureau of ISED for radio equipment testing with CAB identifier CN0028.

9 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

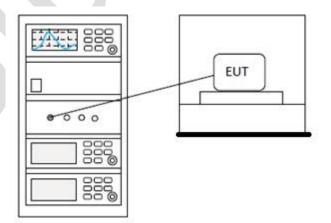
Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

10 TEST INSTRUMENTS LIST

Test Equipm	ent Of Radiated	Spurious Emissions			_
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber 1	SKET	966	N/A	2023/11/16	2026/11/15
Chamber 2	SKET	966	N/A	2021/07/20	2024/07/19
Spectrum	R&S	FSP40	100817	2023/08/30	2024/08/29
Receiver	R&S	ESR7	101199	2023/08/30	2024/08/29
Receiver	R&S	ESPI7	101477	2023/07/07	2024/07/06
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2022/10/12	2025/10/11
Horn Antenna	Schwarzbeck	BBHA9120D	01892 P:00331	2022/09/13	2025/09/12
Horn Antenna	Schwarzbeck	BBHA 9170	1106	2022/04/24	2024/04/23
Amplifier	SKET	LNPA_30M01G-30	SK2021060801	2023/07/07	2024/07/06
Amplifier	SKET	PA-000318G-45	N/A	2023/08/30	2024/08/29
Amplifier	SKET	LNPA_18G40G-50	SK2022071301	2023/07/14	2024/07/13
Filter group	SKET	2.4G/5G Filter group r	N/A	2023/07/07	2024/07/06
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A
Loop antenna	SCHNARZBE CK	FMZB1519B	00102	2022/09/14	2025/09/13
1kHZ calibration audio source	SKET	MCS-ABT-C35	N/A	2023/09/04	2024/09/03
Free Field Microphone	SKET	MGS MP 663	0414	2023/09/04	2024/09/03
Audio shielding box	SKET	SB-ABT-C35	N/A	2023/03/30	2024/03/29
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A
Signal Generator DTV	ECREDIX	DSG-1000	N/A	N/A	N/A

Test Equipment	Of RF Conducte	ed Test			
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2023/08/30	2024/08/29
Spectrum	Agilent	N9020A	MY49100060	2023/08/30	2024/08/29
Spectrum	Agilent	N9020A	MY54420161	2023/08/30	2024/08/29
Signal Generator	Agilent	N5182A	MY47420955	2023/08/30	2024/08/29
Signal Generator	Agilent	N5181A	MY46240904	2023/07/07	2024/07/06
Signal Generator	R&S	CMW500	132429	2023/08/30	2024/08/29
BluetoothTester	Anritsu	MT8852B	06262047872	2023/08/30	2024/08/29
Power probe	DARE	RPR3006W	14100889SN042	2023/09/01	2024/08/31
Power detection box	CDKMV	MW100-PSB	MW201020JYT	2023/07/07	2024/07/06
DCPowersupply	zhaoxin	KXN-305D	20K305D1221363	2023/08/30	2024/08/29
DCPowersupply	zhaoxin	RXN-1505D	19R1505D050168	2023/08/30	2024/08/29
2.4GHz/5GHz RF Test software	MTS	MTS 8310	Version 2.0.0.0	N/A	N/A
Audio Analyzer	Audio Precision	ATS-1	ATS141094	2023/07/07	2024/07/06


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

11 CONDUCTED BAND EDGES MEASUREMENT

11.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

11.2 BLOCK DIAGRAM OF TEST SETUP

11.3 TEST DATA

12 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

12.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

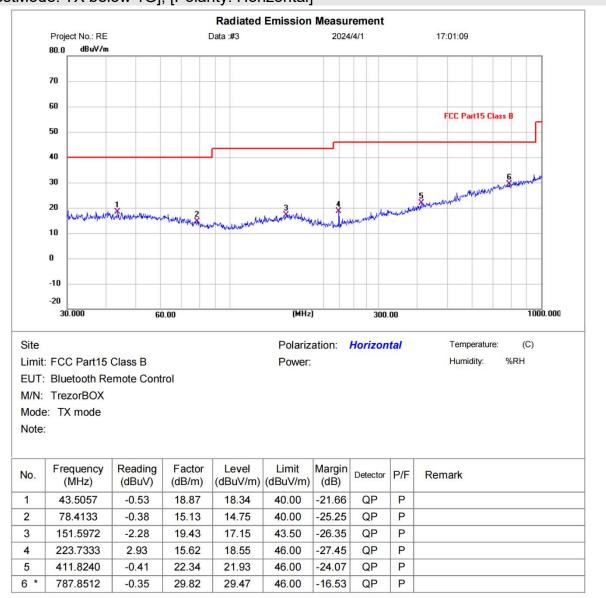
j. Repeat above procedures until all frequencies measured was complete.

Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

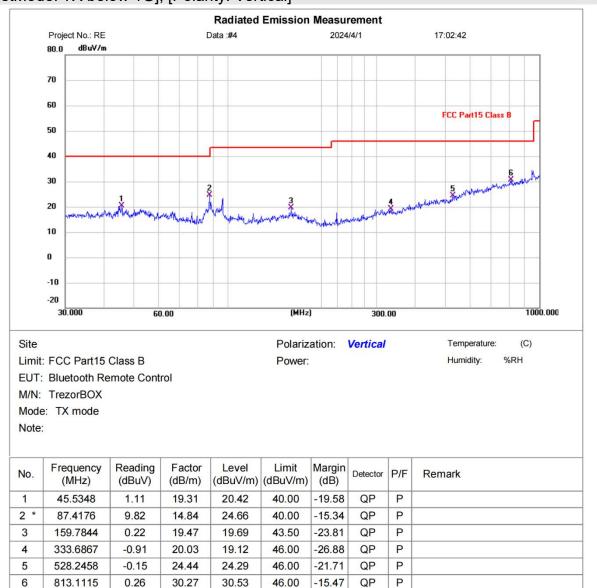
2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.

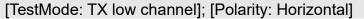
4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

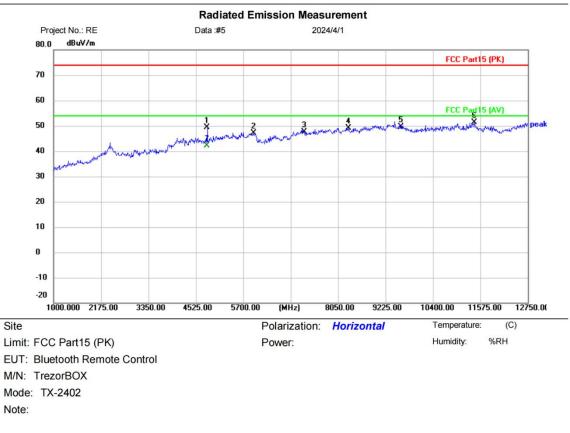
12.4 TEST DATA


Remark: During the test, pre-scan the BLE 1M, BLE 2M, and found the BLE 1M which it is worse case. [TestMode: TX below 1G]; [Polarity: Horizontal]

*:Maximum data x:Over limit !:over margin

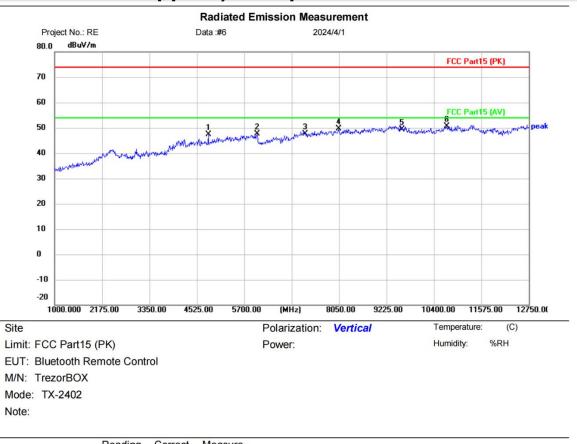
Test Result: Pass


[TestMode: TX below 1G]; [Polarity: Vertical]


*:Maximum data x:Over limit !:over margin

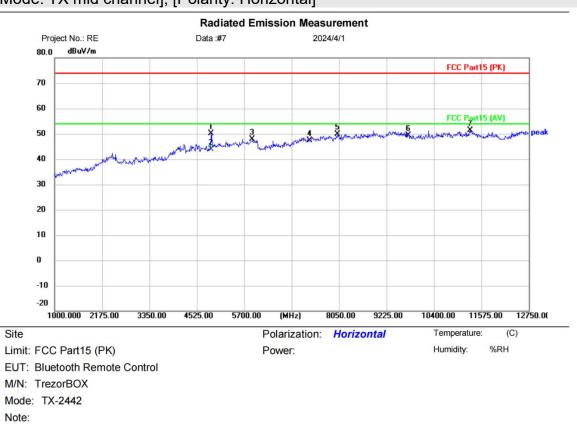
Test Result: Pass

Remark: During the test, pre-scan the BLE 1M, BLE 2M, and found the BLE 1M which it is worse case.



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4804.000	43.84	5.64	49.48	74.00	-24.52	peak		
2		5958.500	38.34	8.72	47.06	74.00	-26.94	peak		
3		7206.000	38.36	9.24	47.60	74.00	-26.40	peak		
4		8308.500	39.01	10.24	49.25	74.00	-24.75	peak		
5		9608.000	37.35	12.31	49.66	74.00	-24.34	peak		
6		11422.25	38.72	12.61	51.33	74.00	-22.67	peak		
7	*	4804.000	36.52	5.64	42.16	54.00	-11.84	AVG		

*:Maximum o	data	x:Over limit	!:over margin			<pre> Reference Only</pre>
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result:	Pas	S				


[TestMode: TX low channel]; [Polarity: Vertical]

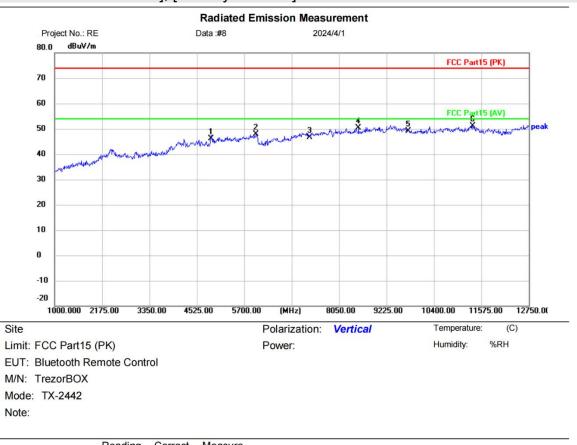
No.	Mk	. Freq.	Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4807.000	41.84	5.64	47.48	74.00	-26.52	peak		
2		6017.250	42.08	5.63	47.71	74.00	-26.29	peak		
3		7206.000	38.50	9.24	47.74	74.00	-26.26	peak		
4		8038.250	39.82	9.82	49.64	74.00	-24.36	peak		
5		9608.000	37.09	12.31	49.40	74.00	-24.60	peak		
6	*	10717.25	37.46	13.08	50.54	74.00	-23.46	peak		

*:Maximum	data	x:Over limit	!:over margin			Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
est Result	: Pas	S				

[TootModo: T	V mid ohon	noll. [Dolority	: Horizontall
Tresuvioue. I	A IIIIU CHAH		, nonzonian

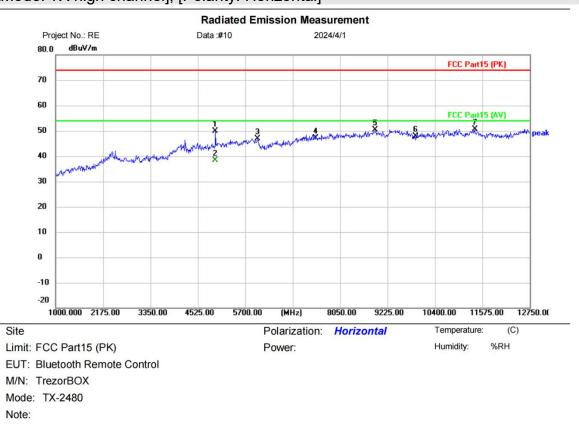
Deseller

Ormert


.....

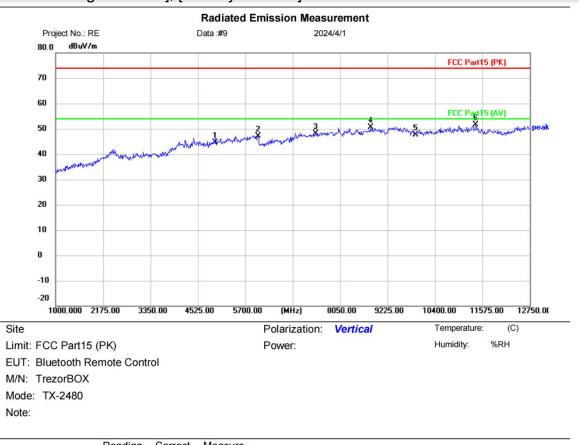
No.	Mk	. Freq.	Level	Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4877.500	44.42	5.72	50.14	74.00	-23.86	peak	
2	*	4877.500	38.12	5.72	43.84	54.00	-10.16	AVG	
3		5899.750	39.20	8.66	47.86	74.00	-26.14	peak	
4		7326.000	37.97	9.43	47.40	74.00	-26.60	peak	
5		8014.750	40.01	9.87	49.88	74.00	-24.12	peak	
6		9768.000	37.27	12.22	49.49	74.00	-24.51	peak	
7		11293.00	38.73	12.70	51.43	74.00	-22.57	peak	

*:Maximum dat	a x:Over limit	!:over margin			Reference Only
Receiver:	ESR_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9120D 1G-18G		Engineer Signature		
st Result: P	ass				


[TestMode: TX mid channel]; [Polarity: Vertical]

Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	4884.000	40.35	5.75	46.10	74.00	-27.90	peak	
	5993.750	39.13	8.75	47.88	74.00	-26.12	peak	
	7326.000	37.30	9.43	46.73	74.00	-27.27	peak	
	8531.750	39.28	11.12	50.40	74.00	-23.60	peak	
	9768.000	36.94	12.22	49.16	74.00	-24.84	peak	
*	11363.50	38.55	12.65	51.20	74.00	-22.80	peak	
		MHz 4884.000 5993.750 7326.000 8531.750 9768.000 * 11363.50	Mk. Freq. Level MHz dBuV 4884.000 40.35 5993.750 39.13 7326.000 37.30 8531.750 39.28 9768.000 36.94 * 11363.50 38.55	Mk. Freq. Level Factor MHz dBuV dB 4884.000 40.35 5.75 5993.750 39.13 8.75 7326.000 37.30 9.43 8531.750 39.28 11.12 9768.000 36.94 12.22 * 11363.50 38.55 12.65	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 4884.000 40.35 5.75 46.10 5993.750 39.13 8.75 47.88 7326.000 37.30 9.43 46.73 8531.750 39.28 11.12 50.40 9768.000 36.94 12.22 49.16 * 11363.50 38.55 12.65 51.20	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 4884.000 40.35 5.75 46.10 74.00 5993.750 39.13 8.75 47.88 74.00 7326.000 37.30 9.43 46.73 74.00 8531.750 39.28 11.12 50.40 74.00 9768.000 36.94 12.22 49.16 74.00 * 11363.50 38.55 12.65 51.20 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB 4884.000 40.35 5.75 46.10 74.00 -27.90 5993.750 39.13 8.75 47.88 74.00 -26.12 7326.000 37.30 9.43 46.73 74.00 -27.27 8531.750 39.28 11.12 50.40 74.00 -23.60 9768.000 36.94 12.22 49.16 74.00 -24.84 * 11363.50 38.55 12.65 51.20 74.00 -22.80	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 4884.000 40.35 5.75 46.10 74.00 -27.90 peak 5993.750 39.13 8.75 47.88 74.00 -26.12 peak 7326.000 37.30 9.43 46.73 74.00 -27.27 peak 8531.750 39.28 11.12 50.40 74.00 -23.60 peak 9768.000 36.94 12.22 49.16 74.00 -24.84 peak * 11363.50 38.55 12.65 51.20 74.00 -22.80 peak

*:Maximum	data	x:Over limit	!:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result:	Pas	s				


No.	Mk	k. Fr	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		M	Ηz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4959.7	750	43.27	6.60	49.87	74.00	-24.13	peak	
2	*	4959.7	750	31.77	6.60	38.37	54.00	-15.63	AVG	
3		6005.5	500	41.20	5.61	46.81	74.00	-27.19	peak	
4		7440.0	000	37.54	9.64	47.18	74.00	-26.82	peak	
5		8919.5	500	38.14	12.14	50.28	74.00	-23.72	peak	
6		9920.0	000	35.81	12.14	47.95	74.00	-26.05	peak	
7		11387	.00	37.88	12.63	50.51	74.00	-23.49	peak	

*:Maximum dat	a x:Over limit	!:over margin			Reference Only
Receiver:	ESR_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9120D 1G-18G		Engineer Signature		
t Result: P	ass				

[TestMode: TX high channel]; [Polarity: Horizontal]

[TestMode: TX high channel]; [Polarity: Vertical]

No.	Mk	. Freq.	Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4960.000	38.12	6.60	44.72	74.00	-29.28	peak		
2		6017.250	41.62	5.63	47.25	74.00	-26.75	peak		
3		7440.000	38.46	9.64	48.10	74.00	-25.90	peak		
4		8802.000	38.88	11.68	50.56	74.00	-23.44	peak		
5		9920.000	35.49	12.14	47.63	74.00	-26.37	peak		
6	*	11410.50	39.10	12.61	51.71	74.00	-22.29	peak		

*:Maximum	data	x:Over limit	!:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result:	Pas	s				

Report No.: BLA-EMC-202403-A11502 Page 24 of 67

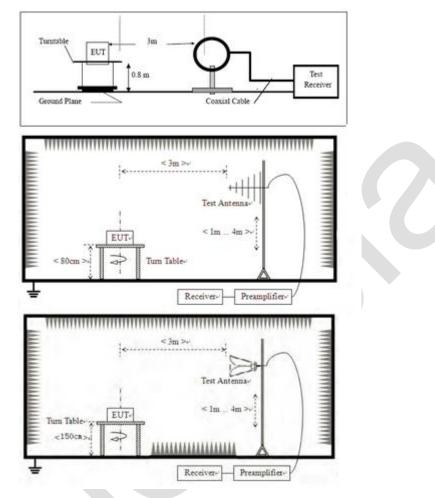
Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

13 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%


13.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

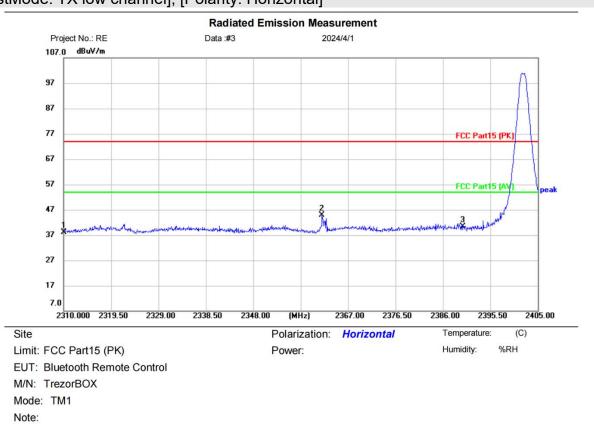
f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.


Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

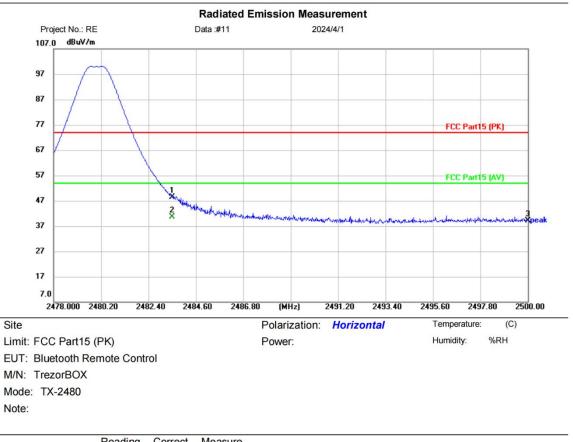
Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

13.4 TEST DATA

Remark: During the test, pre-scan the BLE 1M, BLE 2M, and found the BLE 1M which it is worse case. [TestMode: TX low channel]; [Polarity: Horizontal]

No	. MI	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2310.000	41.01	-2.89	38.12	74.00	-35.88	peak	
2	*	2361.775	47.72	-2.75	44.97	74.00	-29.03	peak	
3		2390.000	42.99	-2.70	40.29	74.00	-33.71	peak	

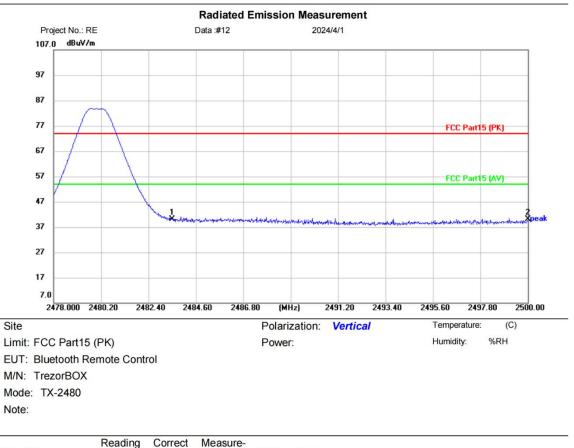
*:Maximum dat	a x:Over limit	!:over margin			Reference Only
Receiver:	SR_1		Spectrum Analyzer:	FSP40	
Antenna:	Z 9120D 1G-18G		Engineer Signature		
st Result: P	ass				


Radiated Emission Measurement Data :#4 2024/4/1 Project No.: RE 107.0 dBuV/m 97 87 77 FCC Part15 (PK) 67 57 FCC Part15 (AV 47 Ş 1 37 27 17 7.0 2310.000 2319.50 2329.00 2338.50 2348.00 (MHz) 2367.00 2376.50 2395.50 2405.00 2386.00 Site Polarization: Vertical Temperature: (C) Humidity: %RH Limit: FCC Part15 (PK) Power: EUT: Bluetooth Remote Control M/N: TrezorBOX Mode: TM1 Note:

[TestMode: TX low channel]; [Polarity: Vertical]

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2310.000	41.88	-2.89	38.99	74.00	-35.01	peak	
2	*	2390.000	42.47	-2.70	39.77	74.00	-34.23	peak	

*:Maximum	data	x:Over limit	!:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result	Pas	S				



[TestMode: TX high channel]; [Polarity: Horizontal]

No.	Mł	c. Freq.	Level	Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2483.500	51.26	-2.91	48.35	74.00	-25.65	peak	
2	*	2483.500	43.50	-2.91	40.59	54.00	-13.41	AVG	
3		2500.000	42.20	-3.00	39.20	74.00	-34.80	peak	

*:Maximum	data	x:Over limit	l:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
est Result:	Pas	S				

[TestMode: TX high channel]; [Polarity: Vertical]

No.	М	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2483.500	43.13	-2.91	40.22	74.00	-33.78	peak	
2	*	2500.000	43.25	-3.00	40.25	74.00	-33.75	peak	

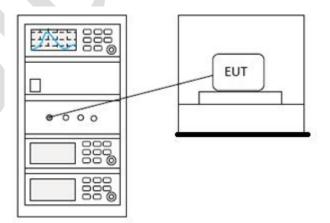
*:Maximum	data	x:Over limit	l:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result:	Pas	S				

Report No.: BLA-EMC-202403-A11502 Page 32 of 67

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com


Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11			
Test Mode (Pre-Scan)	ТХ			
Test Mode (Final Test)	ТХ			
Tester	Jozu			
Temperature	25°C			
Humidity	60%			

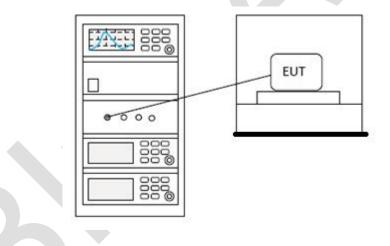
14 CONDUCTED SPURIOUS EMISSIONS

14.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 TEST DATA


15 POWER SPECTRUM DENSITY

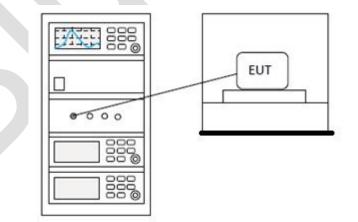
Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.10.2				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Jozu				
Temperature	25°C				
Humidity	60%				

15.1 LIMITS

Limit: | ≤8dBm in any 3 kHz band during any time interval of continuous transmission

15.2 BLOCK DIAGRAM OF TEST SETUP

15.3 TEST DATA


16 CONDUCTED PEAK OUTPUT POWER

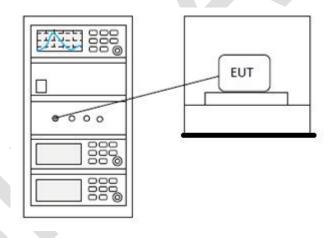
Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.5				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Jozu				
Temperature	25 ℃				
Humidity	60%				

16.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)			
	1 for \geq 50 hopping channels			
902-928	0.25 for $25 \le$ hopping channels < 50			
	1 for digital modulation			
	1 for \geq 75 non-overlapping hopping channels			
2400-2483.5	0.125 for all other frequency hopping systems			
	1 for digital modulation			
5705 5050	1 for frequency hopping systems and digital			
5725-5850	modulation			

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 TEST DATA


17 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.8.1				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Jozu				
Temperature	25°C				
Humidity	60%				

17.1 LIMITS

Limit: \geq 500 kHz

17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 TEST DATA

18 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

18.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The best case gain of the antenna is 1.5dBi.



19 APPENDIX1

Maximum Conducted Output Power

Condition	Mode	Frequency	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
		(MHz)				
NVNT	BLE 1M	2402	Antl	3.695	30	Pass
NVNT	BLE 1M	2442	Antl	3.63	30	Pass
NVNT	BLE 1M	2480	Ant1	4.136	30	Pass
NVNT	BLE 2M	2402	Ant1	3.874	30	Pass
NVNT	BLE 2M	2442	Ant1	3.619	30	Pass
NVNT	BLE 2M	2480	Ant1	4.168	30	Pass

Power NVNT BLE 1M 2402MHz Ant1

Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1

Power NVNT BLE 2M 2402MHz Ant1

Power NVNT BLE 2M 2442MHz Ant1

Power NVNT BLE 2M 2480MHz Ant1

-6dB Bandwidth

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE 1M	2402	Ant1	0.658	0.5	Pass
NVNT	BLE 1M	2442	Ant1	0.661	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.672	0.5	Pass
NVNT	BLE 2M	2402	Ant1	0.92	0.5	Pass
NVNT	BLE 2M	2442	Ant1	1.078	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.047	0.5	Pass

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

gilent Spectrum Analyzer - Occupied BV & R T RF 50 Q AC Center Freq 2.442000000		SENSE:INT Center Freq: 2.4420000 , Trig: Free Run #Atten: 30 dB	ALIGNAUTO 000 GHz Avg Hold: 100/100		04:03:28 PM Apr 02, 2024 Idio Std: None Idio Device: BTS
Ref Offset 2.53 dE 0 dB/div Ref 22.53 dB m				Mkr3	2.442336 GHz -2.6299 dBm
_og 12.5		1			
2.53	\wedge^2	l'	3		
7.47			and we have been some and		
17.5	~~~~			mont	
27.5		e			hannon
37.5	-				
47.5				2 2	2
57.5					
67.5	-	×			
Center 2.442 GHz #Res BW 100 kHz		#VBW 300 k	Hz		Span 2 MHz Sweep 1.333 ms
Occupied Bandwidth	n	Total Power	9.50 dBm		
1.0	0598 MHz				
Transmit Freq Error	4.814 kHz	OBW Power	99.00 %		
x dB Bandwidth	661.4 kHz	x dB	-6.00 dB		
SG			STATUS		

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2480MHz Ant1

R T RF 50Ω AC			ALIGNAUTO	_		PM Apr 02, 2024
nter Freq 2.48000000	GHz	Center Freq: 2.4800000	Avg Hold: 100/100	Rad	dio Std: No	one
	#IFGain:Low	#Atten: 30 dB		Rad	dio Device	BTS
Ref Offset 2.58 dE dB/div Ref 22.58 dBm				Mkr3		531 GHz 914 dBm
6		1				
	A2		▲3			
2	manne Volumen	and have a farmer	annal and a comment			
1	Murray and			man	min	
1					PLA .	my house
ANT						in the
1						
nter 2.48 GHz			• Type:			oan 3 MHz
es BW 100 kHz		#VBW 300 k	HZ		sweep	1.333 ms
Occupied Bandwidtl	1	Total Power	10.2 dBm			
	0693 MHz					
2.0	5055 IVII 12					
ransmit Freq Error	7.404 kHz	OBW Power	99.00 %			
dB Bandwidth	1.047 MHz	x dB	-6.00 dB			
<u>.</u>			STATUS			

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.0347
NVNT	BLE 1M	2442	Ant1	1.0492
NVNT	BLE 1M	2480	Ant1	1.0331
NVNT	BLE 2M	2402	Ant1	2.0327
NVNT	BLE 2M	2442	Ant1	2.0205
NVNT	BLE 2M	2480	Ant1	2.0357

OBW NVNT BLE 1M 2402MHz Ant1

OBW NVNT BLE 1M 2442MHz Ant1

OBW NVNT BLE 1M 2480MHz Ant1

OBW NVNT BLE 2M 2402MHz Ant1

OBW NVNT BLE 2M 2442MHz Ant1

OBW NVNT BLE 2M 2480MHz Ant1

T RF 50Ω AC	9		ALIGN AUTO	03:56:41 PM Apr 02, 2024
nter Freq 2.48000000	GHz	Center Freq: 2.4800000		Radio Std: None
	+++ #IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold: 100/100	Radio Device: BTS
Ref Offset 2.58 dE	3			
B/div Ref 22.58 dBm	1			
		~		
	mart	mar parte		
	1 · · · ·			month
and we have	21			Just
				- Contraction of the second se
nter 2.48 GHz es BW 30 kHz		#VBW 100 ki	4.5	Span 3 MH Sweep 3.333 ms
		#VDVV 100 KI		Sweep 5.555 m
Occupied Bandwidt	h	Total Power	10.3 dBm	
2.	0357 MHz			
ransmit Freq Error	21.394 kHz	OBW Power	99.00 %	
dB Bandwidth	2.381 MHz	x dB	-26.00 dB	