|   |                                 |               | - CA                                                                                                                                                                                                                               |   |
|---|---------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2 | <b>DAG</b>                      |               | Report No.: DACE240409004RL001                                                                                                                                                                                                     |   |
|   |                                 |               |                                                                                                                                                                                                                                    |   |
|   | DAE                             | R             | F TEST REPORT                                                                                                                                                                                                                      |   |
|   | Shenzhen V                      | Ne            | eofly Innovation Technology Co.,LTD                                                                                                                                                                                                |   |
|   |                                 |               | oduct Name: Smart Watch                                                                                                                                                                                                            |   |
|   |                                 |               | Test Model(s).: Active                                                                                                                                                                                                             |   |
|   |                                 |               |                                                                                                                                                                                                                                    |   |
| 6 |                                 |               |                                                                                                                                                                                                                                    |   |
|   |                                 |               |                                                                                                                                                                                                                                    |   |
|   | Report Reference No.            | :             | DACE240409004RL001                                                                                                                                                                                                                 |   |
|   | FCC ID                          | :             | 2BF3T-ACTIVE                                                                                                                                                                                                                       | 0 |
|   |                                 |               |                                                                                                                                                                                                                                    |   |
|   | Applicant's Name                | :             | Shenzhen Weofly Innovation Technology Co.,LTD                                                                                                                                                                                      |   |
| V | Address                         | ;             | Factory Building 601-11, Nankeng Second Industrial Zone, Nankeng                                                                                                                                                                   |   |
|   |                                 | -             | Community, Bantian Street, Longgang District, Shenzhen, China                                                                                                                                                                      |   |
|   |                                 |               |                                                                                                                                                                                                                                    |   |
|   | Testing Laboratory              | :             | Shenzhen DACE Testing Technology Co., Ltd.                                                                                                                                                                                         |   |
|   | Address                         | :             | 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology<br>Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China                                                                                          |   |
|   |                                 |               |                                                                                                                                                                                                                                    |   |
|   | Test Specification Standard     | •             | 47 CFR Part 15.247                                                                                                                                                                                                                 |   |
|   |                                 | •             | ANSI C63.10-2013 & KDB 558074 D01 15.247 Meas Guidance v05r02                                                                                                                                                                      |   |
|   |                                 |               |                                                                                                                                                                                                                                    |   |
|   | Date of Receipt                 | :             | April 9, 2024                                                                                                                                                                                                                      |   |
| 6 | Date of Test                    | :             | April 9, 2024 to April 15, 2024                                                                                                                                                                                                    |   |
| 2 | Data of Issue                   | :             | April 15, 2024                                                                                                                                                                                                                     |   |
|   | Result                          | ì             | Pass                                                                                                                                                                                                                               |   |
|   |                                 |               |                                                                                                                                                                                                                                    |   |
|   |                                 |               |                                                                                                                                                                                                                                    |   |
| 1 | Testing Technology Co., Ltd. Th | is d<br>all t | duced except in full, without the written approval of Shenzhen DACE<br>locument may be altered or revised by Shenzhen DACE Testing Technology<br>be noted in the revision section of the document. The test results in the<br>ple. |   |
|   |                                 |               |                                                                                                                                                                                                                                    |   |

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 1 of 57

Report No.: DACE240409004RL001

Ce.

## **Revision History Of Report**

| Version | Description | REPORT No.         | Issue Date     |  |
|---------|-------------|--------------------|----------------|--|
| V1.0    | Original    | DACE240409004RL001 | April 15, 2024 |  |
|         |             |                    |                |  |
|         | - 26        | 6                  |                |  |
|         |             |                    |                |  |
|         |             | J.                 |                |  |

#### NOTE1:

DAG

DAG

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

NE

Compiled by:

Ben Tang Ben Tang /Test Engineer *Tom Chen* Tom Chen / Project Engineer

)De

NE

24C

Supervised by:

Approved by:

Machael MJ

Machael Mo / Manager

-

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 2 of 57

)De

C

# CONTENTS

| V1.0                                      | V                            | Report No.: DACE240409004R |
|-------------------------------------------|------------------------------|----------------------------|
|                                           |                              |                            |
|                                           | CONTENTS                     |                            |
|                                           |                              |                            |
| 1 TEST SUMMARY                            |                              |                            |
| 1.1 TEST STANDARDS                        |                              |                            |
|                                           | SULT                         |                            |
| 2 GENERAL INFORMATION                     |                              |                            |
|                                           |                              |                            |
|                                           | CE (EUT)                     |                            |
|                                           | Modes                        |                            |
|                                           | PORT UNITS<br>IRING THE TEST |                            |
|                                           | EASUREMENT UNCERTAINTY       |                            |
| 2.7 AUTHORIZATIONS                        |                              |                            |
|                                           |                              |                            |
| <b>3 EVALUATION RESULTS (EV</b>           | ALUATION)                    |                            |
| 3.1 ANTENNA REQUIREMEN                    | ит                           |                            |
|                                           |                              |                            |
|                                           | R TEST RESULTS (RF)          |                            |
|                                           |                              |                            |
|                                           |                              | _ (2                       |
| 4.1.1 E.U. I. Opera<br>4.1.2 Test Setur D | tion:                        |                            |
|                                           | iagram:                      |                            |
|                                           | 1                            |                            |
|                                           |                              |                            |
| 4 2 2 Test Setup Di                       | tion:<br>iagram:             | <u></u>                    |
| 4.2.3 Test Data:                          | - <b>3</b> -                 |                            |
|                                           | OUTPUT POWER                 |                            |
|                                           | tion:                        |                            |
| · · · · · ·                               | iagram:                      |                            |
| 4.3.3 Test Data:                          | -                            |                            |
|                                           | NSITY                        |                            |
| 4.4.1 E.U.T. Opera                        | tion:                        |                            |
| •                                         | iagram:                      |                            |
|                                           |                              |                            |
|                                           | STRICTED FREQUENCY BANDS     |                            |
|                                           | tion:                        |                            |
|                                           | iagram:                      |                            |
|                                           | ( <b>D</b>                   |                            |
|                                           | s (RADIATED)                 |                            |
| •                                         | tion:                        |                            |
| · · · · · ·                               | iagram:                      |                            |
|                                           | NCY BANDS (BELOW 1GHZ)       |                            |
|                                           | tion:                        |                            |
| •                                         | iagram:                      |                            |
|                                           |                              |                            |
|                                           | NCY BANDS (ABOVE 1GHZ)       |                            |
|                                           | tion:                        |                            |

|                                        | 1.0                            |                                   | Report No.: DACE240409004RL00 |
|----------------------------------------|--------------------------------|-----------------------------------|-------------------------------|
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   | <u></u>                       |
|                                        |                                |                                   |                               |
| 16DB BANDWIDTH.                        |                                |                                   |                               |
| 3. DUTY CYCLE                          |                                | <u> </u>                          |                               |
| 5. Power Spectral                      | DENSITY                        |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
|                                        |                                |                                   |                               |
| 101-102 Building H5 & 1/F., Building H | Hongfa Science & Technology P: | ark.Tanotou, Shivan, Bao'an Distr | rict Shenzhen Guangdong China |

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 4 of 57

-

# 1 TEST SUMMARY

## 1.1 Test Standards

DAG

NE

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

#### 1.2 Summary of Test Result

| Item                                        | Method                                                                            | Requirement                         | Result |
|---------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------|--------|
| Antenna requirement                         | /                                                                                 | 47 CFR 15.203                       | Pass   |
| Conducted Emission at AC power line         | ANSI C63.10-2013 section 6.2                                                      | 47 CFR 15.207(a)                    | Pass   |
| Occupied Bandwidth                          | ANSI C63.10-2013, section 11.8<br>KDB 558074 D01 15.247 Meas<br>Guidance v05r02   | 47 CFR 15.247(a)(2)                 | Pass   |
| Maximum Conducted Output Power              | ANSI C63.10-2013, section 11.9.1<br>KDB 558074 D01 15.247 Meas<br>Guidance v05r02 | 47 CFR 15.247(b)(3)                 | Pass   |
| Power Spectral Density                      | ANSI C63.10-2013, section 11.10<br>KDB 558074 D01 15.247 Meas<br>Guidance v05r02  | 47 CFR 15.247(e)                    | Pass   |
| Emissions in non-restricted frequency bands | ANSI C63.10-2013 section 11.11<br>KDB 558074 D01 15.247 Meas<br>Guidance v05r02   | 47 CFR 15.247(d),<br>15.209, 15.205 | Pass   |
| Band edge emissions (Radiated)              | ANSI C63.10-2013 section 6.10<br>KDB 558074 D01 15.247 Meas<br>Guidance v05r02    | 47 CFR 15.247(d),<br>15.209, 15.205 | Pass   |
| Emissions in frequency bands (below 1GHz)   | ANSI C63.10-2013 section 6.6.4<br>KDB 558074 D01 15.247 Meas<br>Guidance v05r02   | 47 CFR 15.247(d),<br>15.209, 15.205 | Pass   |
| Emissions in frequency bands (above 1GHz)   | ANSI C63.10-2013 section 6.6.4<br>KDB 558074 D01 15.247 Meas<br>Guidance v05r02   | 47 CFR 15.247(d),<br>15.209, 15.205 | Pass   |

)De

)AC

Note: 1.N/A -this device(EUT) is not applicable to this testing item

2. RF-conducted test results including cable loss.

101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Page 5 of 57 Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com

Se

|                                               | .0   | Report No.: DACE240409004RL001                                                                                                  |
|-----------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------|
| 2 <b>GENERAL IN</b><br>2.1 Client Information | _    | RMATION                                                                                                                         |
| Applicant's Name                              | :    | Shenzhen Weofly Innovation Technology Co.,LTD                                                                                   |
| Address                                       | :    | Factory Building 601-11,Nankeng Second Industrial Zone,Nankeng Community, Bantian Street, Longgang District, Shenzhen, China    |
| Manufacturer                                  | :    | Shenzhen Weofly Innovation Technology Co.,LTD                                                                                   |
| Address                                       | :    | Factory Building 601-11,Nankeng Second Industrial Zone,Nankeng<br>Community, Bantian Street, Longgang District, Shenzhen, China |
| 2.2 Description of Dev                        | vice | (EUT)                                                                                                                           |

| Product Name:          | Smart Watch                                                                                                                                                                                                                 |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model/Type reference:  | Active                                                                                                                                                                                                                      |
| Series Model:          | Active 2 ,Active 3 ,Active lite ,Active pro ,Edge ,Edge 2 ,Edge 3 ,Edge lite ,Edge<br>Pro ,Navigator ,Navigator 2 ,Navigator 3 ,Navigator lite ,Navigator pro ,Pioneer ,<br>Pioneer 2 ,Pioneer 3 ,Pioneer lite ,Pioneer pro |
| Model Difference:      | The difference between models is the appearance color and built-in software version, everything else is the same (PCB, BOM, etc.)                                                                                           |
| Trade Mark:            | Weofly                                                                                                                                                                                                                      |
| Product Description:   | Smart Watch                                                                                                                                                                                                                 |
| Power Supply:          | DC 3.7V from battery/ charging by DC5.0V                                                                                                                                                                                    |
| Operation Frequency:   | 2402MHz to 2480MHz                                                                                                                                                                                                          |
| Number of Channels:    | 40                                                                                                                                                                                                                          |
| Modulation Type:       | GFSK                                                                                                                                                                                                                        |
| Antenna Type:          | line antenna                                                                                                                                                                                                                |
| Antenna Gain:          | -3.96dBi                                                                                                                                                                                                                    |
| Hardware Version:      | V02                                                                                                                                                                                                                         |
| Software Version:      | V1.0                                                                                                                                                                                                                        |
| (Domorky The Antonno ( | Coin is sumplied by the systemer DOCE is not responsible for                                                                                                                                                                |

(Remark:The Antenna Gain is supplied by the customer.POCE is not responsible for This data and the related calculations associated with it)

| Operation Frequency each of channel |           |         |           |         |           |         |           |  |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|--|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |  |
| 1                                   | 2402 MHz  | 11      | 2422 MHz  | 21      | 2442 MHz  | 31      | 2462 MHz  |  |
| 2                                   | 2404 MHz  | 12      | 2424 MHz  | 22      | 2444 MHz  | 32      | 2464 MHz  |  |
| 3                                   | 2406 MHz  | 13      | 2426 MHz  | 23      | 2446 MHz  | 33      | 2466 MHz  |  |
| 4                                   | 2408 MHz  | 14      | 2428 MHz  | 24      | 2448 MHz  | 34      | 2468 MHz  |  |
| 5                                   | 2410 MHz  | 15      | 2430 MHz  | 25      | 2450 MHz  | 35      | 2470 MHz  |  |
| 6                                   | 2412 MHz  | 16      | 2432 MHz  | 26      | 2452 MHz  | 36      | 2472 MHz  |  |
| 7                                   | 2414 MHz  | 17      | 2434 MHz  | 27      | 2454 MHz  | 37      | 2474 MHz  |  |
| 8                                   | 2416 MHz  | 18      | 2436 MHz  | 28      | 2456 MHz  | 38      | 2476 MHz  |  |
| 9                                   | 2418 MHz  | 19      | 2438 MHz  | 29      | 2458 MHz  | 39      | 2478 MHz  |  |
| 10                                  | 2420 MHz  | 20      | 2440 MHz  | 30      | 2460 MHz  | 40      | 2480 MHz  |  |

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 6 of 57

#### Note:

DAG

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Test sharped                           | Frequency (MHz)                     |   |
|----------------------------------------|-------------------------------------|---|
| Test channel                           | BLE                                 |   |
| Lowest channel                         | 2402MHz                             |   |
| Middle channel                         | 2440MHz                             | 6 |
| Highest channel                        | 2480MHz                             | 1 |
| Remark:Only the data of the worst mode | e would be recorded in this report. |   |

## 2.3 Description of Test Modes

| No  | Title           | Description                                                                                             |  |  |  |
|-----|-----------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| TM1 | Lowest channel  | Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation. |  |  |  |
| TM2 | Middle channel  | Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation. |  |  |  |
| тмз | Highest channel | Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation. |  |  |  |

## 2.4 Description of Support Units

NE

NE

.

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Title         | Manufacturer | Model No. | Serial No. |  |
|---------------|--------------|-----------|------------|--|
| AC-DC adapter | HUAWEI       | P0005     |            |  |

AC

DE

)AC

101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Page 7 of 57 Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com

26

## 2.5 Equipments Used During The Test

DAC

| Conducted Emission at AC power line |                    |                                                 |                                   |            |              |  |  |
|-------------------------------------|--------------------|-------------------------------------------------|-----------------------------------|------------|--------------|--|--|
| Equipment                           | Manufacturer       | Model No                                        | Inventory No                      | Cal Date   | Cal Due Date |  |  |
| loop antenna                        | EVERFINE           | LLA-2                                           | 80900L-C                          | 2024-02-19 | 2025-02-18   |  |  |
| Power absorbing clamp               | SCHWARZ<br>BECK    | MESS-<br>ELEKTRONIK                             | 1                                 | 2024-03-25 | 2025-03-24   |  |  |
| Electric Network                    | SCHWARZ<br>BECK    | CAT5 8158                                       | CAT5<br>8158#207                  | 1          | 10           |  |  |
| Cable                               | SCHWARZ<br>BECK    | 1                                               | /                                 | 2024-03-20 | 2025-03-19   |  |  |
| Pulse Limiter                       | SCHWARZ<br>BECK    | VTSD 9561-F<br>Pulse limiter 10dB<br>Ateennator | 561-G071                          | 2023-12-12 | 2024-12-11   |  |  |
| 50ΩCoaxial Switch                   | Anritsu            | MP59B                                           | M20531                            | /          | /            |  |  |
| Test Receiver                       | Rohde &<br>Schwarz | ESPI TEST<br>RECEIVER                           | ID:1164.6607K<br>03-102109-<br>MH | 2023-06-13 | 2024-06-12   |  |  |
| L.I.S.N                             | R&S                | ESH3-Z5                                         | 831.5518.52                       | 2023-12-12 | 2024-12-11   |  |  |

. 6

#### Occupied Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in non-restricted frequency bands

NE

| Equipment                                 | Manufacturer          | Model No | Inventory No | Cal Date   | Cal Due Date |
|-------------------------------------------|-----------------------|----------|--------------|------------|--------------|
| RF Test Software                          | Tachoy<br>Information | RTS-01   | V2.0.0.0     | 101        | /            |
| Power divider                             | MIDEWEST              | PWD-2533 | SMA-79       | 2023-05-11 | 2026-05-10   |
| RF Sensor Unit                            | Tachoy<br>Information | TR1029-2 | 000001       | 1          | /            |
| Wideband radio<br>communication<br>tester | R&S                   | CMW500   | 113410       | 2023-06-13 | 2024-06-12   |
| Vector signal generator                   | Keysight              | N5181A   | MY48180415   | 2023-11-09 | 2024-11-08   |
| Signal generator                          | Keysight              | N5182A   | MY50143455   | 2023-11-09 | 2024-11-08   |
| Spectrum Analyzer                         | Keysight              | N9020A   | MY53420323   | 2023-12-12 | 2024-12-11   |

DAE

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Page 8 of 57 Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com

NC

NE

1

| Band edge emissions (Radiated)            |                |                         |                            |            |              |  |  |  |  |
|-------------------------------------------|----------------|-------------------------|----------------------------|------------|--------------|--|--|--|--|
| Emissions in frequency bands (below 1GHz) |                |                         |                            |            |              |  |  |  |  |
| Emissions in frequency bands (above 1GHz) |                |                         |                            |            |              |  |  |  |  |
| Equipment                                 | Manufacturer   | Model No                | Inventory No               | Cal Date   | Cal Due Date |  |  |  |  |
| EMI Test software                         | Farad          | EZ -EMC                 | V1.1.42                    | /          | 1            |  |  |  |  |
| Positioning<br>Controller                 | <u> </u>       | MF-7802                 | <u>e</u> 1                 | 1          | /            |  |  |  |  |
| High Pass filter                          | ZHINAN         | OQHPF1-M1.5-<br>18G-224 | 6210075                    | 1          |              |  |  |  |  |
| Amplifier(18-40G)                         | COM-POWER      | AH-1840                 | 10100008-1                 | 2022-04-05 | 2025-04-04   |  |  |  |  |
| Horn antenna                              | COM-POWER      | AH-1840 (18-40G)        | 10100008                   | 2023-04-05 | 2025-04-04   |  |  |  |  |
| Loop antenna                              | ZHINAN         | ZN30900C                | ZN30900C                   | 2021-07-05 | 2024-07-04   |  |  |  |  |
| Cable(LF)#2                               | Schwarzbeck    | /                       |                            | 2024-02-19 | 2025-02-18   |  |  |  |  |
| Cable(LF)#1                               | Schwarzbeck    | /                       |                            | 2024-02-19 | 2025-02-18   |  |  |  |  |
| Cable(HF)#2                               | Schwarzbeck    | AK9515E                 | 96250                      | 2024-03-20 | 2025-03-19   |  |  |  |  |
| Cable(HF)#1                               | Schwarzbeck    | SYV-50-3-1              | /                          | 2024-03-20 | 2025-03-19   |  |  |  |  |
| Power amplifier(LF)                       | Schwarzbeck    | BBV9743                 | 9743-151                   | 2023-06-13 | 2024-06-12   |  |  |  |  |
| Power amplifier(HF)                       | Schwarzbeck    | BBV9718                 | 9718-282                   | 2023-06-13 | 2024-06-12   |  |  |  |  |
| Wideband radio<br>communication<br>tester | R&S            | CMW500                  | 113410                     | 2023-06-13 | 2024-06-12   |  |  |  |  |
| Spectrum Analyzer                         | R&S            | FSP30                   | 1321.3008K40<br>-101729-jR | 2023-06-14 | 2024-06-13   |  |  |  |  |
| Horn Antenna                              | Sunol Sciences | DRH-118                 | A091114                    | 2023-05-13 | 2025-05-12   |  |  |  |  |
| Broadband Antenna                         | Sunol Sciences | JB6 Antenna             | A090414                    | 2023-05-21 | 2025-05-20   |  |  |  |  |
| Test Receiver                             | R&S            | ESCI                    | 102109                     | 2023-06-13 | 2024-06-12   |  |  |  |  |
| DIE DIE                                   |                |                         |                            |            |              |  |  |  |  |

)DE

DAG

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Tel: 86-755-29113252 Page 9 of 57 Web:http://www.poce-cert.com E-mail: service@poce-cert.com

)AC

)DE

5

V1.0

DΔG

2

2

)DE

DÌ

## 2.6 Statement Of The Measurement Uncertainty

| Test Item                                                   | Measurement Uncertainty |
|-------------------------------------------------------------|-------------------------|
| Conducted Disturbance (0.15~30MHz)                          | ±3.41dB                 |
| Occupied Bandwidth                                          | ±3.63%                  |
| RF conducted power                                          | ±0.733dB                |
| RF power density                                            | ±0.234%                 |
| Conducted Spurious emissions                                | ±1.98dB                 |
| Radiated Emission (Above 1GHz)                              | ±5.46dB                 |
| Radiated Emission (Below 1GHz)                              | ±5.79dB                 |
| $\mathbf{N} = (\mathbf{A}) \mathbf{T} \mathbf{L}^{\dagger}$ |                         |

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

## 2.7 Authorizations

DAC

| Company Name:                  | Shenzhen DACE Testing Technology Co., Ltd.                                                                                                |  |  |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Address:                       | 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park,<br>Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China |  |  |  |  |
| Phone Number:                  | +86-13267178997                                                                                                                           |  |  |  |  |
| Fax Number:                    | 86-755-29113252                                                                                                                           |  |  |  |  |
| Identification of the Responsi | ble Testing Location                                                                                                                      |  |  |  |  |
| Company Name:                  | Shenzhen DACE Testing Technology Co., Ltd.                                                                                                |  |  |  |  |
| Address:                       | 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park,<br>Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China |  |  |  |  |
| Phone Number:                  | +86-13267178997                                                                                                                           |  |  |  |  |
| Fax Number:                    | 86-755-29113252                                                                                                                           |  |  |  |  |
| FCC Registration Number:       | 0032847402                                                                                                                                |  |  |  |  |
| Designation Number:            | CN1342                                                                                                                                    |  |  |  |  |
| Test Firm Registration No.:    | 778666                                                                                                                                    |  |  |  |  |
| A2LA Certificate Number:       | 6270.01                                                                                                                                   |  |  |  |  |
|                                |                                                                                                                                           |  |  |  |  |

## 2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) We hereby declare that the laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant. the laboratory is not responsible for the accuracy of the information provided by the client. When the information provided by the customer may affect the effectiveness of the results, the responsibility lies with the customer, and the laboratory does not assume any responsibility.

DAG

DAG

NE

Report No.: DACE240409004RL001

DAG

.

## 3 Evaluation Results (Evaluation)

## 3.1 Antenna requirement

# Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

#### 3.1.1 Conclusion:

Test Requirement:

DΔC



)AC

)De

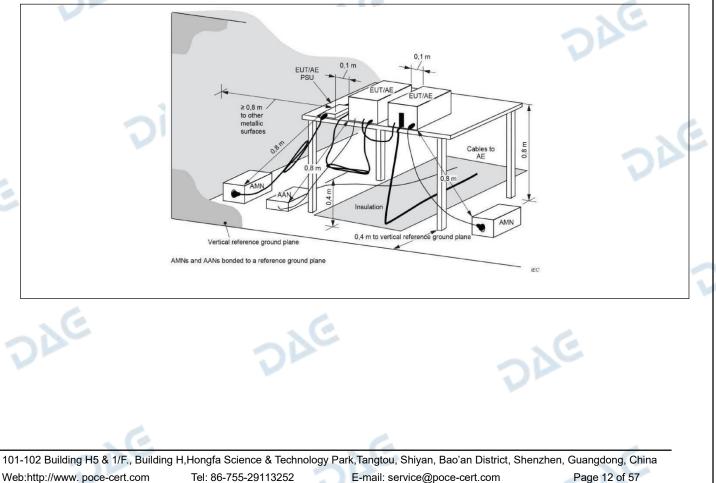
)AC

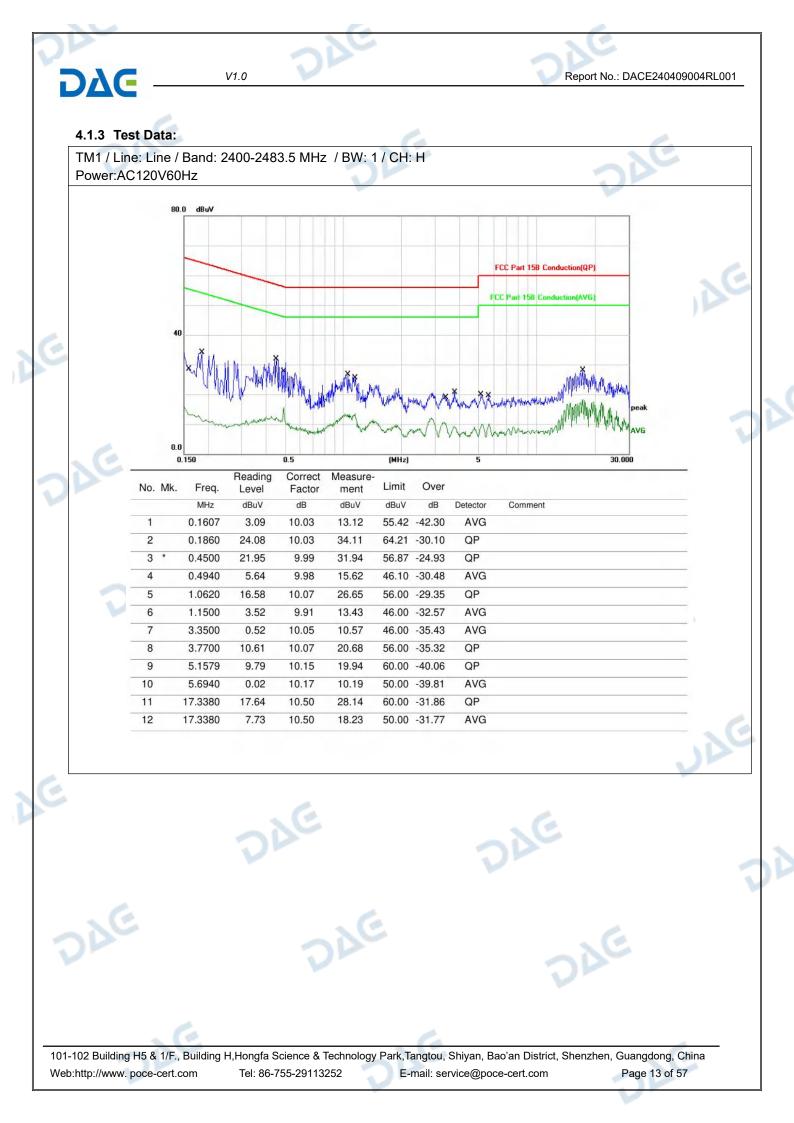
101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 11 of 57

NG

#### Radio Spectrum Matter Test Results (RF) 4

## 4.1 Conducted Emission at AC power line


| Test Requirement:       | Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 $\mu$ H/50 ohms line impedance stabilization network (LISN). |                        |                   |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|--|--|--|
| Test Limit:             | Frequency of emission (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conducted limit (dBµV) |                   |  |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Quasi-peak             | Average           |  |  |  |
|                         | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66 to 56*              | 56 to 46*         |  |  |  |
|                         | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56                     | 46                |  |  |  |
|                         | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60                     | 50                |  |  |  |
|                         | *Decreases with the logarithm of the                                                                                                                                                                                                                                                                                                                                                                                                                                          | frequency.             | ,                 |  |  |  |
| Test Method:            | ANSI C63.10-2013 section 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                   |  |  |  |
| Procedure:              | Refer to ANSI C63.10-2013 section<br>conducted emissions from unlicense                                                                                                                                                                                                                                                                                                                                                                                                       |                        | for ac power-line |  |  |  |
| 4.1.1 E.U.T. Operation: | .e                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                   |  |  |  |


## 4.1.1 E.U.T. Operation:

DAG

| Operating Environment: |         |     |           |        |                       |         |
|------------------------|---------|-----|-----------|--------|-----------------------|---------|
| Temperature:           | 23.3 °C |     | Humidity: | 48.2 % | Atmospheric Pressure: | 102 kPa |
| Pretest mode:          |         | TM1 |           |        | V                     |         |
| Final test mode:       |         | TM1 |           |        |                       |         |

#### 4.1.2 Test Setup Diagram:





8.83

15.06

3.71

11.17

-0.20

3.71

13.42

7.52

16.92

0.4940

0.9940

1.1380

3.2860

3.2860

9.5340

9.5700

13.9060

13.9380

9.98

10.30

9.91

10.05

10.05

10.40

10.40

10.46

10.46

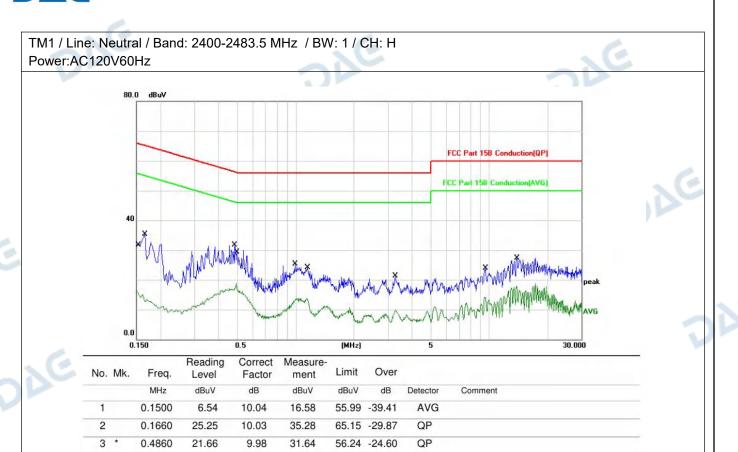
18.81

25.36

13.62

21.22

9.85


14.11

23.82

17.98

27.38

Report No.: DACE240409004RL001



46.10 -27.29

56.00 -30.64

46.00 -32.38

56.00 -34.78

46.00 -36.15

50.00 -35.89

60.00 -36.18

50.00 -32.02

60.00 -32.62

AVG

QP

AVG

QP

AVG

AVG

QP

AVG

QP

)AC

#### NOTE:

)De

4

5

6

7

8

9

10

11 12

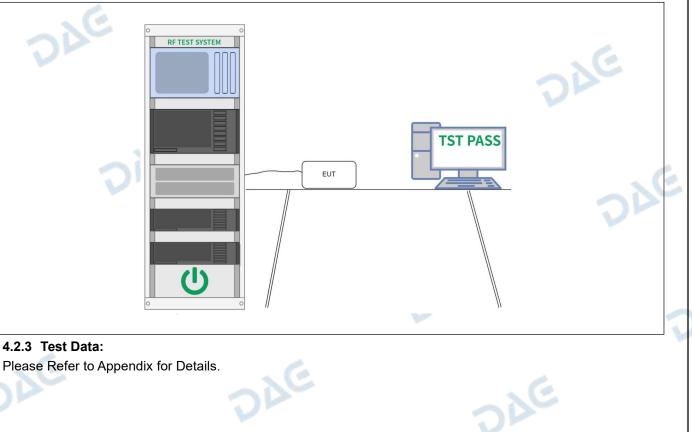
DAC

1.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. 2.Mesurement Level = Reading level + Correct Factor, Over= Mesurement - Limit

101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Page 14 of 57 Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com

NE

## 4.2 Occupied Bandwidth


DAG

| Test Requirement: | 47 CFR 15.247(a)(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:       | Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.                                                                                                                                                                                                                                                                                                                  |
| Test Method:      | ANSI C63.10-2013, section 11.8<br>KDB 558074 D01 15.247 Meas Guidance v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Procedure:        | <ul> <li>a) Set RBW = 100 kHz.</li> <li>b) Set the VBW &gt;= [3 × RBW].</li> <li>c) Detector = peak.</li> <li>d) Trace mode = max hold.</li> <li>e) Sweep = auto couple.</li> <li>f) Allow the trace to stabilize.</li> <li>g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.</li> </ul> |

#### 4.2.1 E.U.T. Operation:

| 4.0.0 Test Ost   |         |      |           |        |                       |         |  |
|------------------|---------|------|-----------|--------|-----------------------|---------|--|
| Final test mode: |         | TM1, | TM2,TM3   |        |                       |         |  |
| Pretest mode:    |         | TM1, | TM2,TM3   |        | -                     | 6       |  |
| Temperature:     | 23.3 °C |      | Humidity: | 48.2 % | Atmospheric Pressure: | 102 kPa |  |
| Operating Enviro | onment: |      |           |        |                       |         |  |

#### 4.2.2 Test Setup Diagram:



DAG

Report No.: DACE240409004RL001

)AC

## 4.3 Maximum Conducted Output Power

| Test Requirement: | 47 CFR 15.247(b)(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:       | Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. |
| Test Method:      | ANSI C63.10-2013, section 11.9.1<br>KDB 558074 D01 15.247 Meas Guidance v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Procedure:        | ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1e                | Note:<br>Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at<br>Core 0, Core 1,, Core i were first measured separately, as shown in the section<br>above(this product olny have one antenna). The measured values were then<br>summed in linear power units then converted back to dBm.<br>Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using<br>the following formula, where GN is the gain of the nth antenna and NANT, the total                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DAE               | number of antennas used.<br>For correlated unequal antenna gain<br>Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi<br>For completely uncorrelated unequal antenna gain<br>Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi<br>Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD<br>(i is the number of antennas)<br>(#VALUE! mW + mW) = #VALUE! mW = dBm<br>Sample e.i.r.p. Calculation:<br>e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)                                                                                                                                                                                                                                                                                                                                                                                                             |

6

## 4.3.1 E.U.T. Operation:

| Operating Envir  | onment: |      |           |        | N.C.                  |         |    |
|------------------|---------|------|-----------|--------|-----------------------|---------|----|
| Temperature:     | 23.3 °C |      | Humidity: | 48.2 % | Atmospheric Pressure: | 102 kPa |    |
| Pretest mode:    |         | TM1, | TM2,TM3   |        |                       |         | JN |
| Final test mode: |         | TM1, | TM2,TM3   |        |                       |         |    |

## 4.3.2 Test Setup Diagram:

NE

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 16 of 57

Se

|                   | - C                  | · (e.                          |
|-------------------|----------------------|--------------------------------|
| DAG -             | V1.0                 | Report No.: DACE240409004RL001 |
|                   |                      |                                |
| 276               | RF TEST SYSTEM       | DAC                            |
| 2                 |                      | EUT TST PASS                   |
| E                 |                      |                                |
| 4.3.3 Test Data:  |                      |                                |
| Please Refer to A | ppendix for Details. |                                |
|                   |                      |                                |
|                   |                      |                                |
|                   |                      |                                |
|                   |                      |                                |
|                   |                      |                                |
|                   |                      |                                |
|                   |                      |                                |
|                   |                      |                                |
|                   |                      |                                |
|                   |                      | Ŧ                              |
|                   |                      |                                |

Report No.: DACE240409004RL001

## 4.4 Power Spectral Density

DAC

| Test Requirement:       | 47 CFR 15.247(e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:             | Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density. |
| Test Method:            | ANSI C63.10-2013, section 11.10<br>KDB 558074 D01 15.247 Meas Guidance v05r02                                                                                                                                                                                                                                                                                                                                                                                                             |
| Procedure:              | ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.4.1 E.U.T. Operation: | LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

6

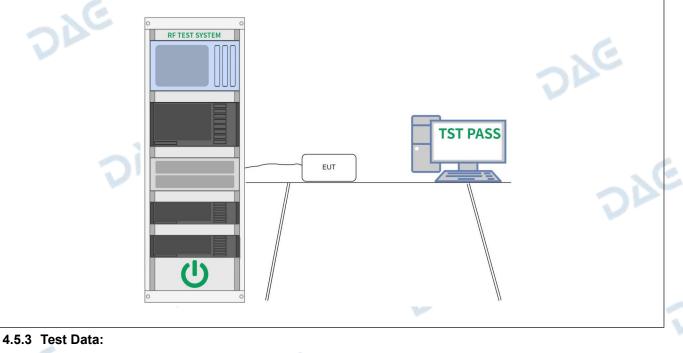
## 4.4.1 E.U.T. Operation:

| Operating Envir         | onment: | ער      |           |        | . 6                   |         |
|-------------------------|---------|---------|-----------|--------|-----------------------|---------|
| Temperature:            | 23.3 °C |         | Humidity: | 48.2 % | Atmospheric Pressure: | 102 kPa |
| Pretest mode: TM1,TM2,T |         | TM2,TM3 |           |        |                       |         |
| Final test mode: TM1,TM |         | TM2,TM3 |           |        |                       |         |

## 4.4.2 Test Setup Diagram:

| © © ©                                                                             |          |
|-----------------------------------------------------------------------------------|----------|
|                                                                                   |          |
|                                                                                   | TST PASS |
|                                                                                   |          |
| <b>4.4.3 Test Data:</b><br>Please Refer to Appendix for Details.                  | DIE      |
|                                                                                   |          |
| 01-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, S |          |

## 4.5 Emissions in non-restricted frequency bands


| Test Requirement: | 47 CFR 15.247(d), 15.209, 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:       | Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band<br>in which the spread spectrum or digitally modulated intentional radiator is operating,<br>the radio frequency power that is produced by the intentional radiator shall be at<br>least 20 dB below that in the 100 kHz bandwidth within the band that contains the<br>highest level of the desired power, based on either an RF conducted or a radiated<br>measurement, provided the transmitter demonstrates compliance with the peak<br>conducted power limits. If the transmitter complies with the conducted power limits<br>based on the use of RMS averaging over a time interval, as permitted under<br>paragraph (b)(3) of this section, the attenuation required under this paragraph shall<br>be 30 dB instead of 20 dB. Attenuation below the general limits specified in §<br>15.209(a) is not required. |
| Test Method:      | ANSI C63.10-2013 section 11.11<br>KDB 558074 D01 15.247 Meas Guidance v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Procedure:        | ANSI C63.10-2013<br>Section 11.11.1, Section 11.11.2, Section 11.11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### 4.5.1 E.U.T. Operation:

DAG

| Operating Envir          | onment: |      |           |        |                       |         |
|--------------------------|---------|------|-----------|--------|-----------------------|---------|
| Temperature:             | 23.3 °C |      | Humidity: | 48.2 % | Atmospheric Pressure: | 102 kPa |
| Pretest mode: T          |         | TM1, | TM3       |        |                       | 6       |
| Final test mode: TM1,TM3 |         |      | ~         |        |                       |         |
| 4 5 0 Test 0.4           |         |      |           |        |                       |         |

#### 4.5.2 Test Setup Diagram:



)AC

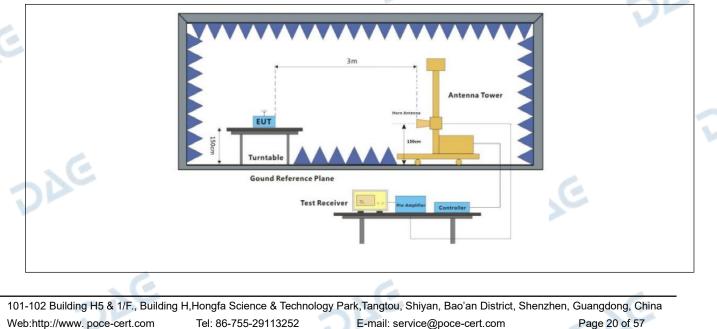
Please Refer to Appendix for Details.

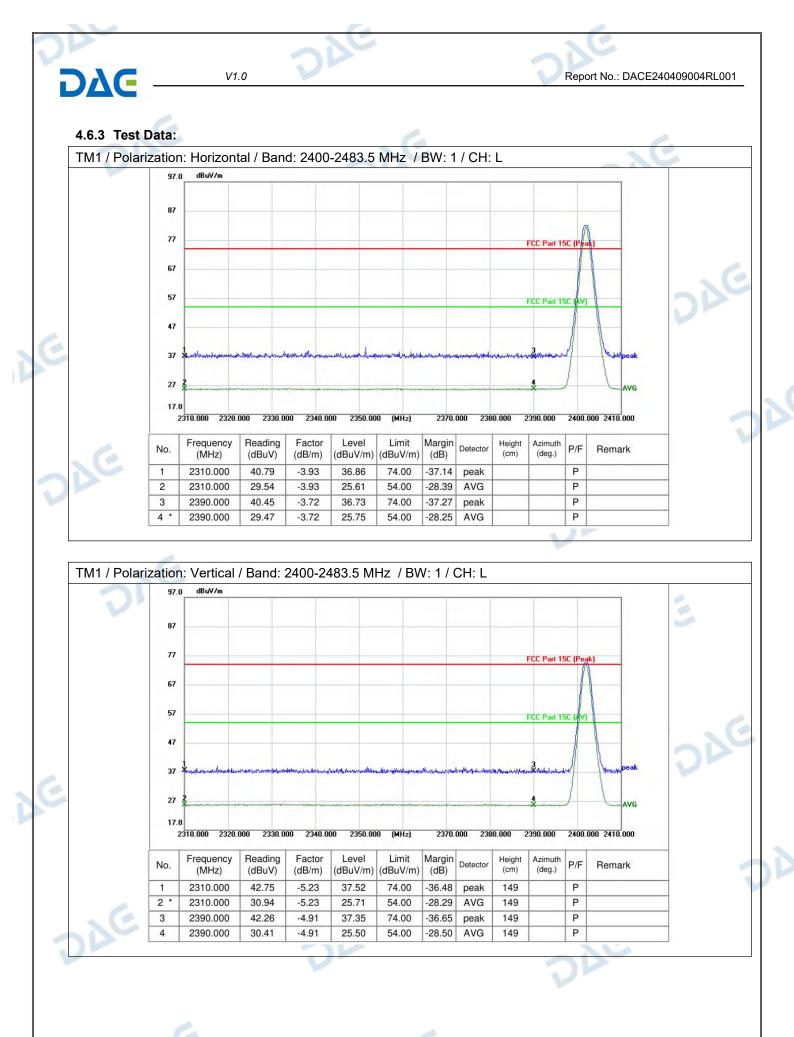
e

## 4.6 Band edge emissions (Radiated)

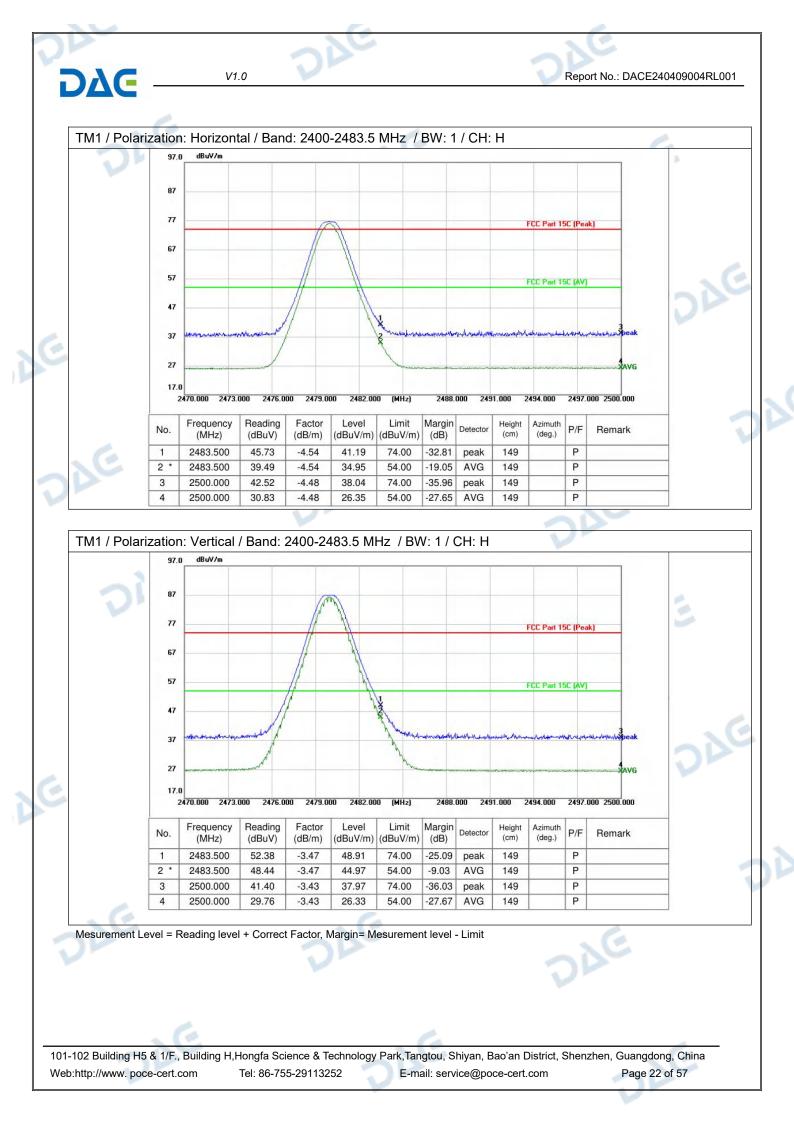
DVC

| Test Requirement:       | Refer to 47 CFR 15.247(d), I                                                                                                                                                                                                        | n addition radiated emissions wh                                                                                                                                                                                                                                                                                                           | ich fall in the                                                                                                            |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                                                                                                                                                                                     | in § 15.205(a), must also comply<br>15.209(a)(see § 15.205(c)).`                                                                                                                                                                                                                                                                           |                                                                                                                            |
| Test Limit:             | Frequency (MHz)                                                                                                                                                                                                                     | Field strength<br>(microvolts/meter)                                                                                                                                                                                                                                                                                                       | Measurement<br>distance<br>(meters)                                                                                        |
| 20                      | 0.009-0.490                                                                                                                                                                                                                         | 2400/F(kHz)                                                                                                                                                                                                                                                                                                                                | 300                                                                                                                        |
|                         | 0.490-1.705                                                                                                                                                                                                                         | 24000/F(kHz)                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                         |
|                         | 1.705-30.0                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                         | 30                                                                                                                         |
|                         | 30-88                                                                                                                                                                                                                               | 100 **                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                          |
|                         | 88-216                                                                                                                                                                                                                              | 150 **                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                          |
|                         | 216-960                                                                                                                                                                                                                             | 200 **                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                          |
|                         | Above 960                                                                                                                                                                                                                           | 500                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                          |
| AC                      | radiators operating under thi<br>54-72 MHz, 76-88 MHz, 174<br>these frequency bands is pe<br>and 15.241.<br>In the emission table above,<br>The emission limits shown in<br>employing a CISPR quasi-pe<br>110–490 kHz and above 100 | agraph (g), fundamental emissions<br>s section shall not be located in th<br>-216 MHz or 470-806 MHz. Howe<br>rmitted under other sections of thi<br>the tighter limit applies at the ban<br>the above table are based on me<br>eak detector except for the freque<br>0 MHz. Radiated emission limits is<br>employing an average detector. | the frequency bands<br>ever, operation within<br>s part, e.g., §§ 15.231<br>d edges.<br>easurements<br>ncy bands 9–90 kHz, |
| Test Method:            | ANSI C63.10-2013 section 6<br>KDB 558074 D01 15.247 Me                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            |
| Procedure:              | ANSI C63.10-2013 section 6                                                                                                                                                                                                          | .10.5.2                                                                                                                                                                                                                                                                                                                                    | LC.                                                                                                                        |
| 4.6.1 E.U.T. Operation: | V                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                            | 24                                                                                                                         |


6


#### Operating Environment:

Г

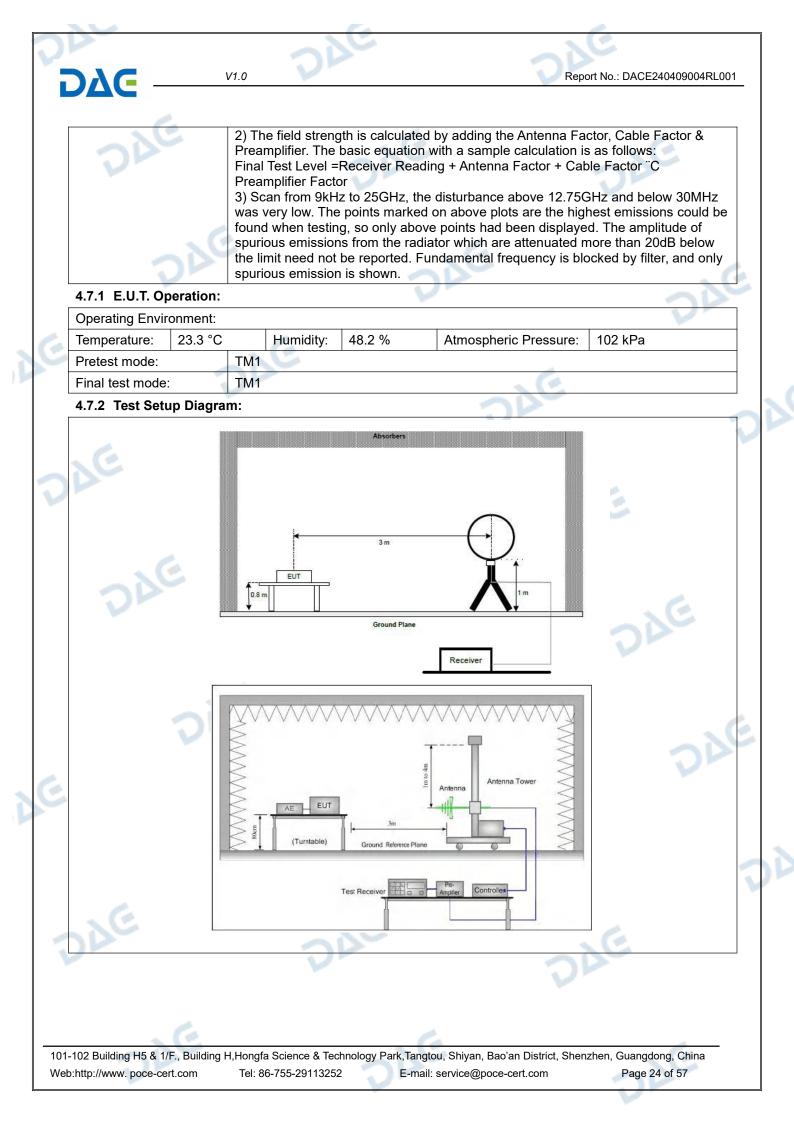

| Operating Envir  | onment:   |      |           |        |                 |         |         |  |
|------------------|-----------|------|-----------|--------|-----------------|---------|---------|--|
| Temperature:     | 23.3 °C   |      | Humidity: | 48.2 % | Atmospheric Pre | essure: | 102 kPa |  |
| Pretest mode:    |           | TM1, | TM3       |        | 6               |         |         |  |
| Final test mode: | <b>DP</b> | TM1, | TM3       |        | 200             |         |         |  |
|                  |           |      |           |        |                 |         |         |  |

#### 4.6.2 Test Setup Diagram:





101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 21 of 57




DΔC

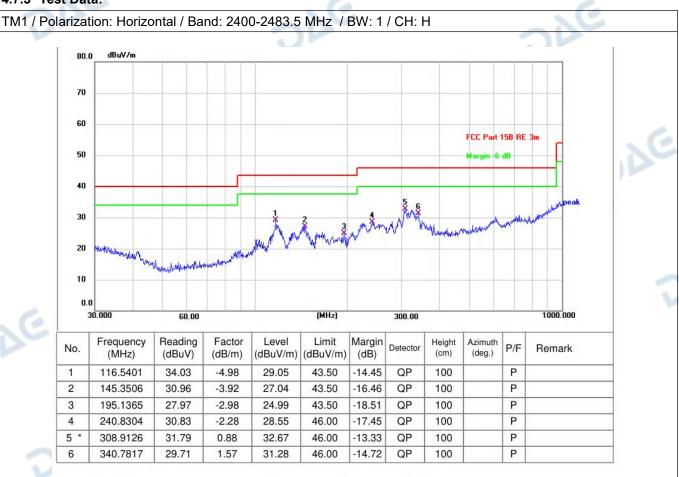
## 4.7 Emissions in frequency bands (below 1GHz)

|             | rement: Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ēst Limit:  | Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Field strength<br>(microvolts/meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Measurement distance<br>(meters)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|             | 0.009-0.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2400/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|             | 0.490-1.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24000/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|             | 1.705-30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|             | 30-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|             | 88-216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 150 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|             | 216-960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|             | Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|             | 54-72 MHz, 76-88 MHz, 174<br>these frequency bands is per<br>and 15.241.<br>In the emission table above<br>The emission limits shown i<br>employing a CISPR quasi-p                                                                                                                                                                                                                                                                                                                                                                                                                             | is section shall not be loc<br>4-216 MHz or 470-806 MI<br>ermitted under other secti<br>, the tighter limit applies a<br>n the above table are bas<br>eak detector except for th<br>00 MHz. Radiated emissi                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ated in the frequency bands<br>Hz. However, operation within<br>ons of this part, e.g., §§ 15.23<br>at the band edges.<br>sed on measurements<br>he frequency bands 9–90 kHz<br>on limits in these three bands                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| est Method: | ANSI C63.10-2013 section<br>KDB 558074 D01 15.247 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|             | above the ground at a 3 or<br>360 degrees to determine th<br>b. For above 1GHz, the EU<br>above the ground at a 3 me<br>degrees to determine the po<br>c. The EUT was set 3 or 10<br>which was mounted on the<br>d. The antenna height is van<br>determine the maximum val<br>polarizations of the antenna<br>e. For each suspected emiss<br>the antenna was tuned to he<br>below 30MHz, the antenna<br>was turned from 0 degrees<br>f. The test-receiver system<br>Bandwidth with Maximum H<br>g. If the emission level of the<br>specified, then testing could<br>reported. Otherwise the emi | 10 meter semi-anechoic of<br>the position of the highest<br>T was placed on the top of<br>ter fully-anechoic chamber<br>osition of the highest radia<br>meters away from the int<br>top of a variable-height and<br>ried from one meter to fou<br>ue of the field strength. B<br>are set to make the mean<br>sion, the EUT was arrang<br>eights from 1 meter to 4 r<br>was tuned to heights 1 m<br>to 360 degrees to find the<br>was set to Peak Detect F<br>lold Mode.<br>the EUT in peak mode was<br>be stopped and the pean<br>issions that did not have<br>ak, quasi-peak or average<br>at channel, the middle chan<br>nts are performed in X, Y<br>and the X axis positioning | of a rotating table 1.5 meters<br>er. The table was rotated 360<br>ation.<br>erference-receiving antenna,<br>ntenna tower.<br>ur meters above the ground to<br>both horizontal and vertical<br>surement.<br>ged to its worst case and then<br>neters (for the test frequency<br>eter) and the rotatable table<br>e maximum reading.<br>unction and Specified<br>10dB lower than the limit<br>k values of the EUT would be<br>10dB margin would be re-<br>e method as specified and the<br>annel, the Highest channel.<br>, Z axis positioning for<br>which it is the worst case. |  |  |

101-102 Building H5 & 1/F., Building H, Hongra Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 23 of 57



Report No.: DACE240409004RL001


NE

## 4.7.3 Test Data:

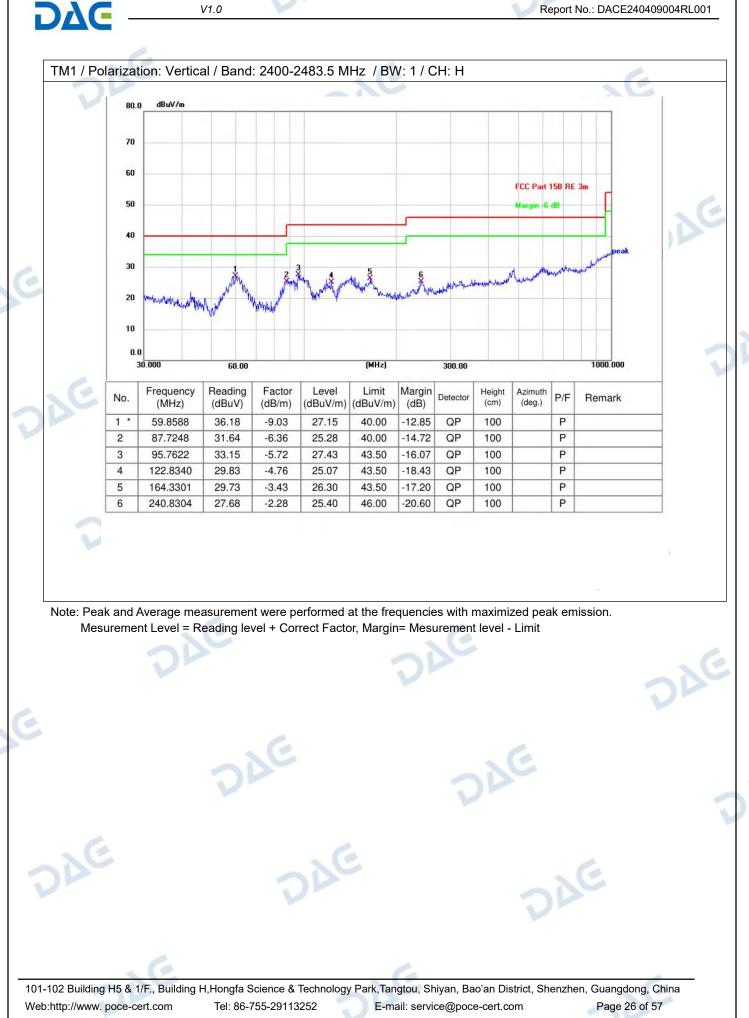
DAG

V

)AE



)AC


)De

DAG

)AC

)AC

Report No.: DACE240409004RL001



DΔC

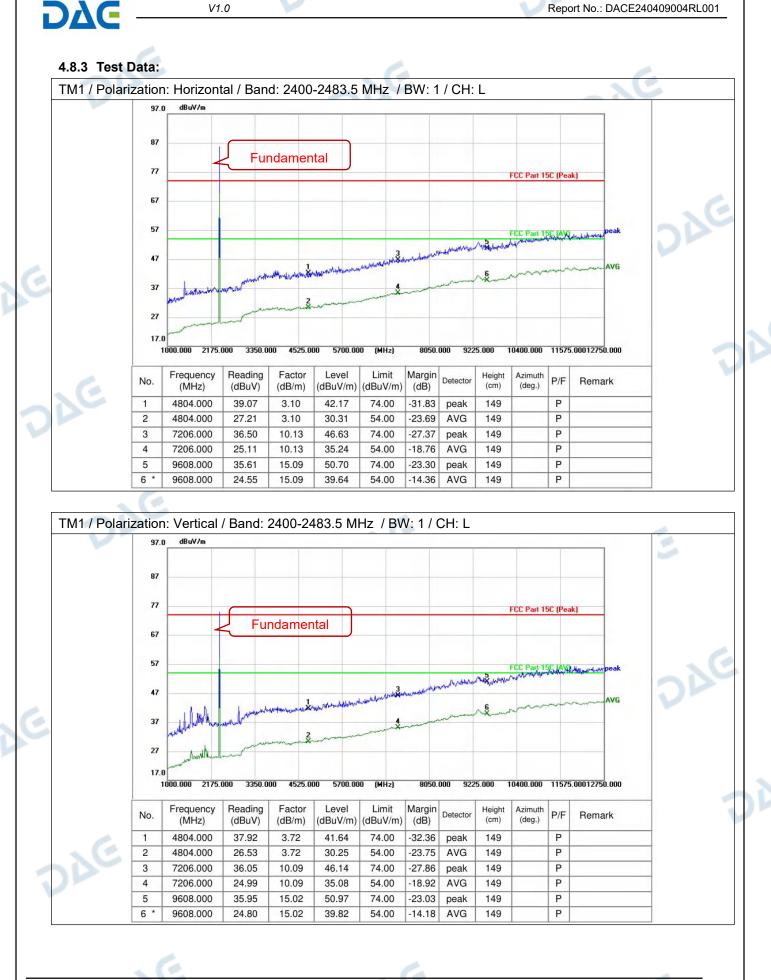
Web:http://www.poce-cert.com

Tel: 86-755-29113252

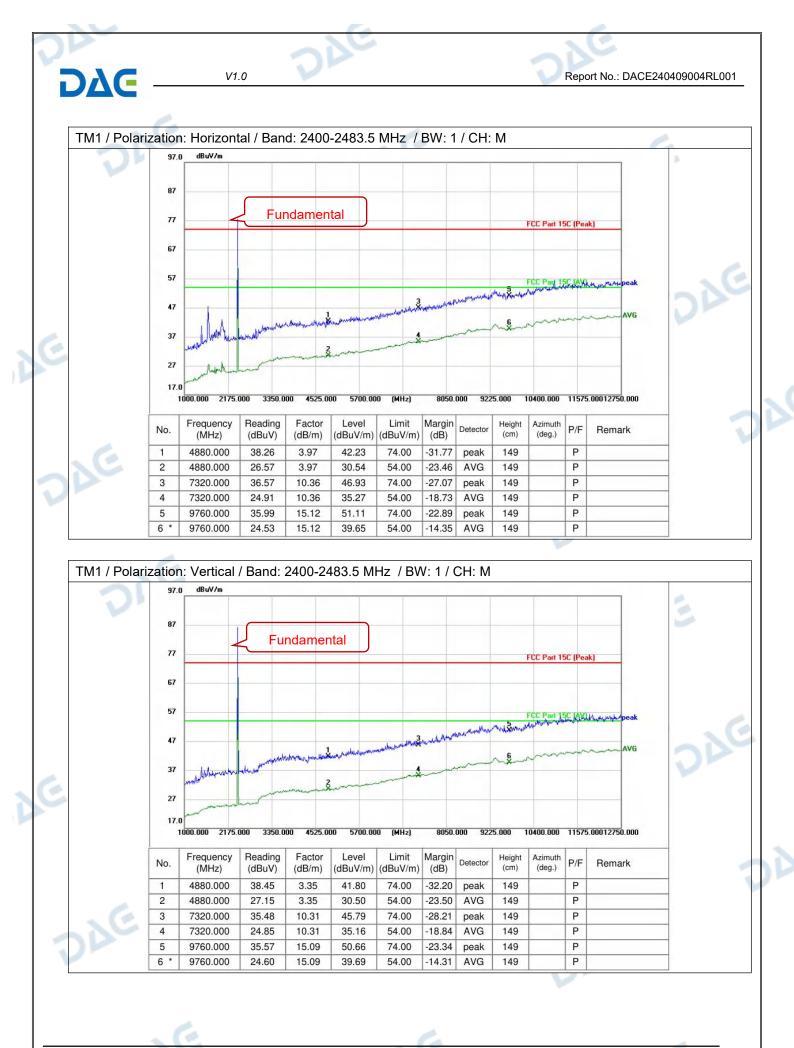
Report No.: DACE240409004RL001

Page 27 of 57

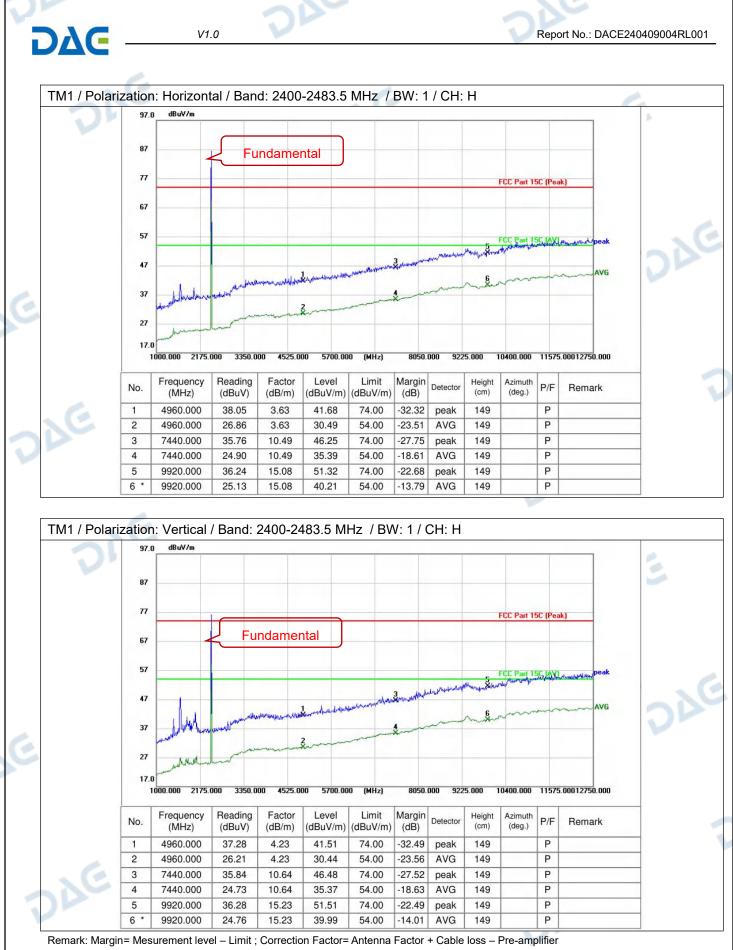
## 4.8 Emissions in frequency bands (above 1GHz)


| Test Requirement: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mply with the radiated emiss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | icted bands, as defined in §<br>sion limits specified in §                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:       | Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Field strength (microvolts/meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Measurement<br>distance (meters)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | 0.009-0.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2400/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | 0.490-1.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24000/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | 1.705-30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | 30-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | 88-216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | 216-960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | these frequency bands<br>and 15.241.<br>In the emission table ab<br>The emission limits sho<br>employing a CISPR qua<br>110–490 kHz and above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s permitted under other sec<br>ove, the tighter limit applies<br>wn in the above table are ba<br>si-peak detector except for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sed on measurements<br>the frequency bands 9–90 kHz<br>sion limits in these three bands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Test Method:      | ANSI C63.10-2013 sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 Meas Guidance v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | 360 degrees to determine<br>b. For above 1GHz, the<br>above the ground at a 3<br>degrees to determine th<br>c. The EUT was set 3 or<br>which was mounted on<br>d. The antenna height is<br>determine the maximum<br>polarizations of the anter<br>e. For each suspected of<br>the antenna was tuned<br>below 30MHz, the anter<br>was turned from 0 degree<br>f. The test-receiver syste<br>Bandwidth with Maximu<br>g. If the emission level of<br>specified, then testing c<br>reported. Otherwise the<br>tested one by one using<br>reported in a data sheet<br>h. Test the EUT in the lo<br>i. The radiation measure<br>Transmitting mode, and<br>j. Repeat above proced | the the position of the highes<br>EUT was placed on the top<br>meter fully-anechoic chamb<br>e position of the highest rad<br>10 meters away from the in<br>the top of a variable-height a<br>s varied from one meter to for<br>a value of the field strength.<br>Inna are set to make the me<br>emission, the EUT was arran<br>to heights from 1 meter to 4<br>ana was tuned to heights 1 n<br>tees to 360 degrees to find the<br>em was set to Peak Detect F<br>m Hold Mode.<br>of the EUT in peak mode wa<br>pould be stopped and the peak<br>emissions that did not have<br>peak, quasi-peak or average. | of a rotating table 1.5 meters<br>ber. The table was rotated 360<br>iation.<br>Interference-receiving antenna,<br>antenna tower.<br>Four meters above the ground to<br>Both horizontal and vertical<br>asurement.<br>Inged to its worst case and ther<br>meters (for the test frequency<br>neter) and the rotatable table<br>for maximum reading.<br>Function and Specified<br>as 10dB lower than the limit<br>ak values of the EUT would be<br>10dB margin would be re-<br>ge method as specified and the<br>mannel, the Highest channel.<br>If, Z axis positioning for<br>which it is the worst case. |
|                   | Remark:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

E-mail: service@poce-cert.com


|     |                  |                                                         | 2                                                                                                                         | ye                                                                                                                                             | 20                                                                                                                                                                                                                                         |                                                                                           |                                                   |
|-----|------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------|
| 1 7 | DAC -            | V1.0                                                    |                                                                                                                           |                                                                                                                                                | Repo                                                                                                                                                                                                                                       | ort No.: DACE2                                                                            | 40409004RL00                                      |
|     | 240              | Pre<br>Fina<br>Pre<br>3) S<br>was<br>four<br>spu<br>the | amplifier. The<br>al Test Level =<br>amplifier Facto<br>can from 9kH<br>very low. The<br>nd when testin<br>rious emissior | basic equation w<br>Receiver Readir<br>or<br>Iz to 25GHz, the<br>points marked o<br>og, so only above<br>ns from the radia<br>be reported. Fur | by adding the Antenna Fac<br>vith a sample calculation is<br>ig + Antenna Factor + Cab<br>disturbance above 12.75G<br>on above plots are the high<br>points had been displayed<br>tor which are attenuated m<br>ndamental frequency is blo | as follows:<br>le Factor "C<br>Hz and belo<br>nest emissic<br>d. The ampl<br>nore than 20 | ow 30MHz<br>ons could be<br>itude of<br>0dB below |
|     | 4.8.1 E.U.T. Op  | · ·                                                     |                                                                                                                           |                                                                                                                                                |                                                                                                                                                                                                                                            |                                                                                           | 2                                                 |
|     | Operating Enviro |                                                         |                                                                                                                           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                         |                                                                                                                                                                                                                                            |                                                                                           | V                                                 |
|     | Temperature:     | 23.3 °C                                                 | Humidity:                                                                                                                 | 48.2 %                                                                                                                                         | Atmospheric Pressure:                                                                                                                                                                                                                      | 102 kPa                                                                                   |                                                   |
| Ce  | Pretest mode:    |                                                         | 1,TM2,TM3                                                                                                                 | 1                                                                                                                                              |                                                                                                                                                                                                                                            |                                                                                           |                                                   |
|     | Final test mode: |                                                         | 1,TM2,TM3                                                                                                                 |                                                                                                                                                | - 6                                                                                                                                                                                                                                        |                                                                                           |                                                   |
|     | 4.8.2 Test Setu  |                                                         | . , -                                                                                                                     |                                                                                                                                                | 200                                                                                                                                                                                                                                        |                                                                                           |                                                   |
|     | Dr               |                                                         | Gound Refer                                                                                                               | Test Receiver                                                                                                                                  | Pre Amplifier Controller                                                                                                                                                                                                                   |                                                                                           |                                                   |
|     |                  |                                                         |                                                                                                                           |                                                                                                                                                |                                                                                                                                                                                                                                            |                                                                                           |                                                   |
|     |                  | DAE                                                     | ,                                                                                                                         |                                                                                                                                                | )AC                                                                                                                                                                                                                                        |                                                                                           | DA                                                |
| E   |                  |                                                         | )ÀE                                                                                                                       |                                                                                                                                                | DAE                                                                                                                                                                                                                                        |                                                                                           | OD                                                |
| E   | DAG              |                                                         |                                                                                                                           | Je                                                                                                                                             |                                                                                                                                                                                                                                            | JE                                                                                        | OV                                                |
|     |                  |                                                         |                                                                                                                           | AC                                                                                                                                             |                                                                                                                                                                                                                                            | LE<br>L                                                                                   | 20                                                |

D


Report No.: DACE240409004RL001



101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 29 of 57

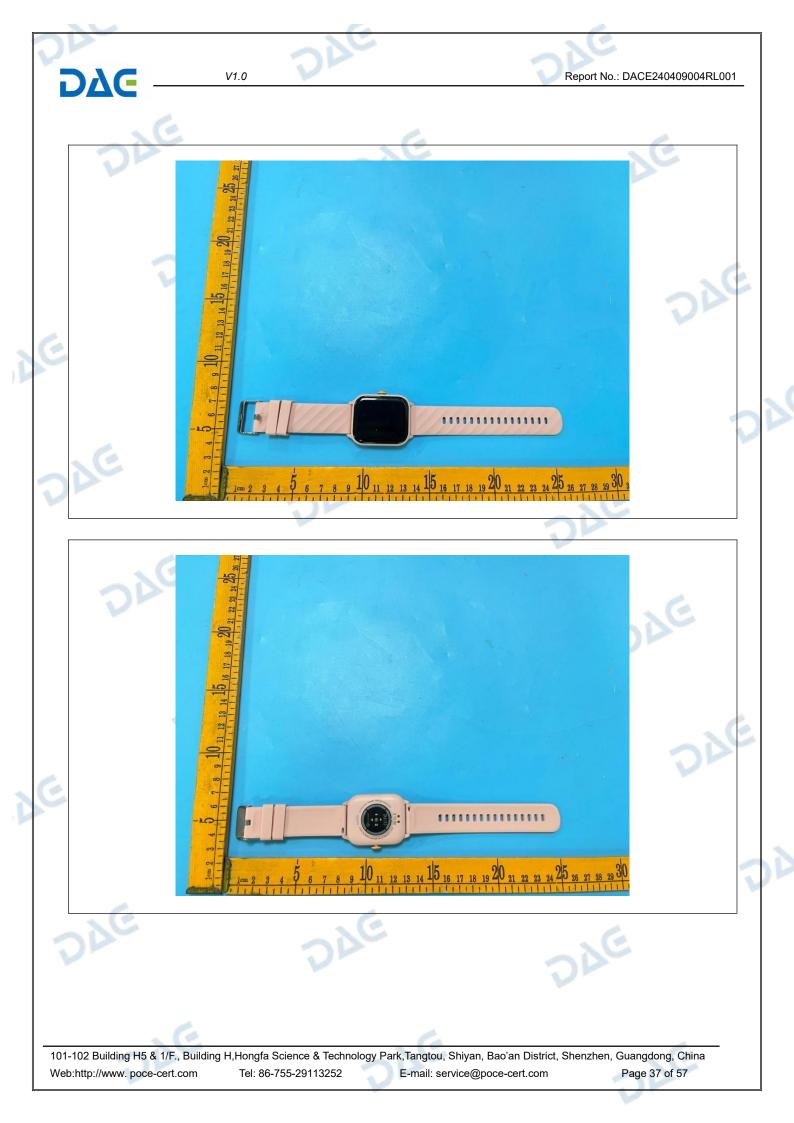


101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 30 of 57 Web:http://www.poce-cert.com

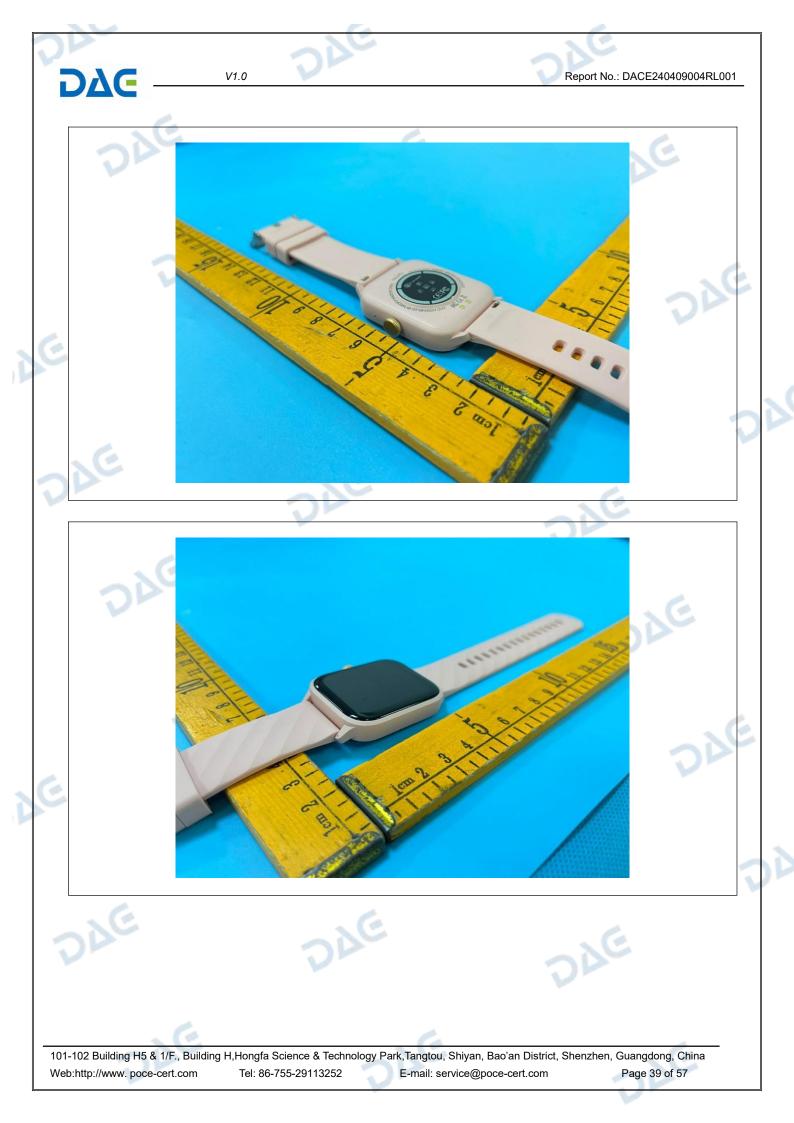


Level=Test receiver reading + correction factor

101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Page 31 of 57 Tel: 86-755-29113252 Web:http://www.poce-cert.com E-mail: service@poce-cert.com

















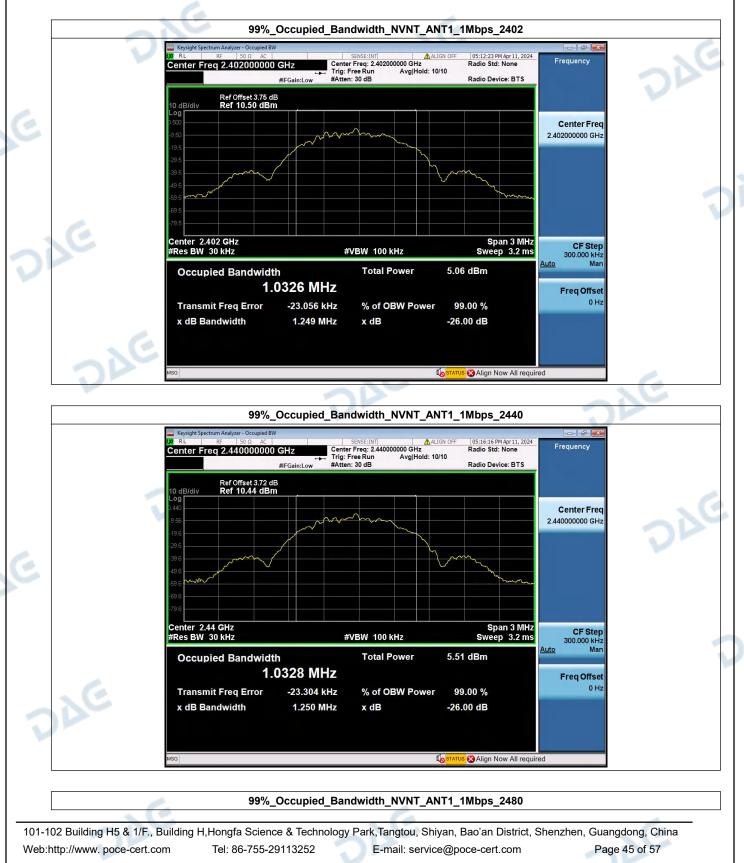





DAG V1.0 Report No.: DACE240409004RL001 Appendix e -6dB Bandwidth 1. Condition Antenna -6dB BW(kHz) Rate Frequency (MHz) limit(kHz) Result NVNT ANT1 1Mbps 2402.00 668.44 500 Pass NVNT ANT1 669.21 Pass 1Mbps 2440.00 500 NVNT ANT1 2480.00 667.16 1Mbps 500 Pass -6dB\_Bandwidth\_NVNT\_ANT1\_1Mbps\_2402 SENSE:INT ALGN O. Center Freq: 2.402000000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 30 dB 05:12:02 PM Apr 11, 2024 Radio Std: None Frequency Center Freq 2.402000000 GHz #IFGain:Low Radio Device: BTS Ref Offset 3.75 dB Ref 12.50 dBm Center Fred 2.402000000 GHz . Center 2.402 GHz #Res BW 100 kHz Span 3 MHz Sweep 1 ms CF Step 300.000 kHz #VBW 300 kHz Mai Auto Total Power 4.66 dBm **Occupied Bandwidth** 1.0431 MHz **Freq Offset** 0 Hz -27.403 kHz Transmit Freg Error % of OBW Power 99.00 % 668.4 kHz --6.00 dB x dB Bandwidth x dB Align Now All required 1 -6dB\_Bandwidth\_NVNT\_ANT1\_1Mbps\_2440 )DE )AC DAG )AC DAG

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 43 of 57

DAC V1.0 Report No.: DACE240409004RL001 Keysight Spectrum Analyzer - Occupied BV SENSE:INT ALIGN O Center Freq: 2.440000000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 30 dB 05:15:56 PM Apr 11, 2024 Radio Std: None Frequency Center Freq 2.440000000 GHz #IFGain:Low Radio Device: BTS Ref Offset 3.72 dB Ref 12.44 dBm **Center Freq** 2.44000000 GHz Center 2.44 GHz #Res BW 100 kHz Span 3 MHz Sweep 1 ms CF Step 300.000 kHz Man #VBW 300 kHz Auto **Occupied Bandwidth Total Power** 4.93 dBm 1.0454 MHz **Freq Offset** 0 Hz Transmit Freq Error -28.932 kHz % of OBW Power 99.00 % x dB Bandwidth 669.2 kHz x dB -6.00 dB 6 Align Now All required -6dB\_Bandwidth\_NVNT\_ANT1\_1Mbps\_2480 Keysight Spectrum An SENSE:INT ALIGN OFF Center Freq: 2.480000000 GHz Trig: Free Run Avg|Hold: 10/10 #Atten: 30 dB 05:19:52 PM Apr 11, 2024 Radio Std: None Frequency Center Freq 2.480000000 GHz #IFGain:Lov Radio Device: BTS Ref Offset 3.85 dB Ref 18.70 dBm 0 dB/di **Center Freq** 2.480000000 GHz Span 3 MHz Sweep 1 ms Center 2.48 GHz #Res BW 100 kHz CF Step 300.000 kHz Man #VBW 300 kHz Auto **Total Power** 5.71 dBm **Occupied Bandwidth** 1.0455 MHz Freq Offset 0 H: -29.653 kHz % of OBW Power Transmit Freq Error 99.00 % 4 667.2 kHz -6.00 dB x dB Bandwidth x dB 4 Align Now All required DAG )AC DAG


101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 44 of 57

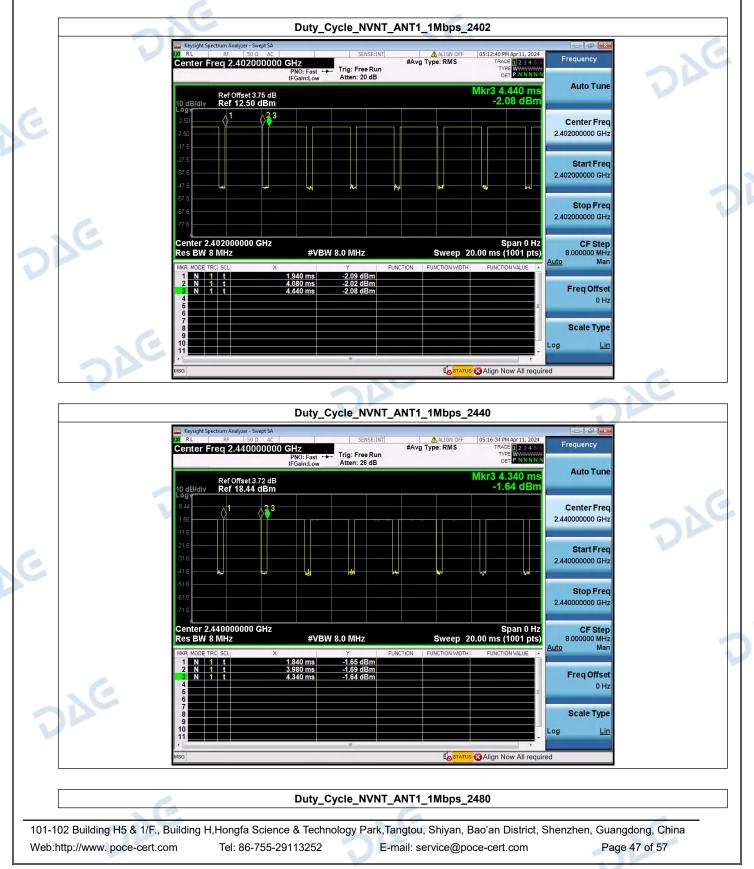
Report No.: DACE240409004RL001

### 2. 99% Occupied Bandwidth

DAC

| Condition | Antenna | Rate  | Frequency (MHz) | 99%%BW(MHz) |
|-----------|---------|-------|-----------------|-------------|
| NVNT      | ANT1    | 1Mbps | 2402.00         | 1.033       |
| NVNT      | ANT1    | 1Mbps | 2440.00         | 1.033       |
| NVNT      | ANT1    | 1Mbps | 2480.00         | 1.035       |




|       | 1C                                                                                                                     | N.C.                                                        |
|-------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| DAG - | V1.0                                                                                                                   | Report No.: DACE240409004RL001                              |
|       |                                                                                                                        |                                                             |
| - Se  | Keysight Spectrum Analyzer - Occupied BW           χet         RL         RF         50 Ω         AC         SENSE:INT | ALIGN OFF 05:20:12 PM Apr 11, 2024                          |
| DL    | Center Freq 2.480000000 GHz<br>#IFGain:Low<br>Center Freq: 2.480000000<br>Trig: Free Run Av<br>#Atten: 30 dB           | IGHz Radio Std: None<br>rg Hold: 10/10<br>Radio Device: BTS |
|       | Ref Offset 3.85 dB<br>10 dB/div Ref 16.70 dBm                                                                          |                                                             |
|       | 6.70<br>3.30<br>                                                                                                       | 2.48000000 GHz                                              |
|       | 233                                                                                                                    |                                                             |
| V     | 433<br>533<br>633                                                                                                      |                                                             |
|       | 733 Center 2.48 GHz                                                                                                    | Span 3 MHz                                                  |
| E     | #Res BW 30 kHz         #VBW 100 kHz           Occupied Bandwidth         Total Power                                   | Sweep 3.2 ms                                                |
|       | 1.0351 MHz                                                                                                             | FreqOffset                                                  |
|       | Transmit Freq Error-25.681 kHz% of OBWx dB Bandwidth1.251 MHzx dB                                                      | Power 99.00 % 0 Hz<br>-26.00 dB                             |
|       |                                                                                                                        |                                                             |
| AC .  | MSG                                                                                                                    |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |
|       |                                                                                                                        |                                                             |

Report No.: DACE240409004RL001

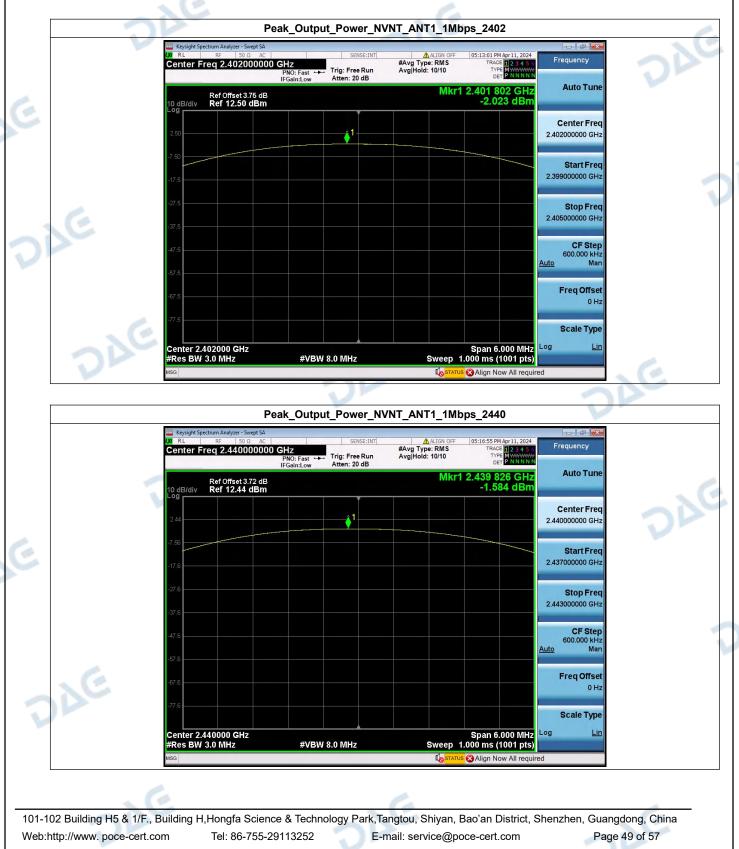
#### 3. Duty Cycle

DAC

| Condition | Antenna | Rate  | Frequency (MHz) | Dutycycle(%) | Duty_factor |
|-----------|---------|-------|-----------------|--------------|-------------|
| NVNT      | ANT1    | 1Mbps | 2402.00         | 86.40        | 0.63        |
| NVNT      | ANT1    | 1Mbps | 2440.00         | 86.40        | 0.63        |
| NVNT      | ANT1    | 1Mbps | 2480.00         | 86.40        | 0.63        |



| DAG - | w Keysight Spectrum Analyzer - Swept SA<br>W RL RF 50Ω AC<br>Center Freq 2.480000000 GHz<br>PNO: Fast →<br>IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SENSE:INT ▲ALIGN OFF<br>#Avg Type: RMS<br>Trig: Free Run<br>Atten: 26 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 05:20:31 PM Apr11, 2024         Frequency           TRACE         2 3 4 3 5           TYPACE         2 3 4 3 5           OPE         PNNINN           Mkr3 4.620 ms         Auto Tune | E |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|       | Ref 0f5et3.85 dB<br>10 dB/div Ref 18.70 dBm<br>1.30<br>-1.30<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1.31<br>-1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.94 dBm<br>Center Freq<br>2.48000000 GHz<br>Start Freq<br>2.48000000 GHz                                                                                                            |   |
|       | -41.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V 8.0 MHz Sweep :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.48000000 GH2<br>2.48000000 GH2<br>2.48000000 GH2<br>2.48000000 GH2<br>2.48000000 GH2<br>2.48000000 GH2<br>2.48000000 GH2                                                            |   |
| E     | Res BW 8 MHz         #VBW           MKR MODE TRC SCL         X           1         N         1         t         2.120 ms           2         N         1         t         4.260 ms           3         N         1         t         4.620 ms           4         5         5         5           6         7         7         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y         Sweep         A           Y         Function         Function | Auto Man                                                                                                                                                                              |   |
| DIE   | 9<br>10<br>11<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Log Lin                                                                                                                                                                               |   |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                       |   |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                       |   |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                       |   |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                       |   |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                       |   |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                       |   |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V                                                                                                                                                                                     |   |


Report No.: DACE240409004RL001

V1.0

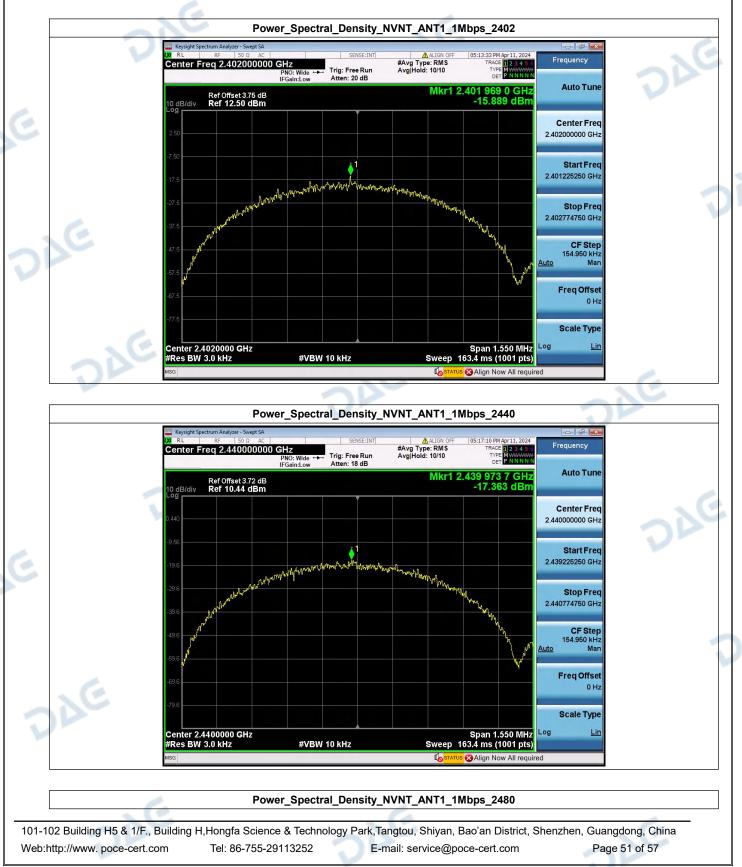
## 4. Peak Output Power

DΔC

| Condition | Antenna | Rate  | Frequency<br>(MHz) | Max. Conducted<br>Power(dBm) | Max. Conducted<br>Power(mW) | Limit(mW) | Result |
|-----------|---------|-------|--------------------|------------------------------|-----------------------------|-----------|--------|
| NVNT      | ANT1    | 1Mbps | 2402.00            | -2.02                        | 0.63                        | 1000      | Pass   |
| NVNT      | ANT1    | 1Mbps | 2440.00            | -1.58                        | 0.69                        | 1000      | Pass   |
| NVNT      | ANT1    | 1Mbps | 2480.00            | -0.81                        | 0.83                        | 1000      | Pass   |



| .E                  | Peak_Output_Power_N      | IVNT_ANT1_1Mbps_2480                                                                         | -                                          |
|---------------------|--------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------|
| LXU RI              | ter Freg 2.480000000 GHz | ALIGN OFF 05:20:52 PM Apr11, 202<br>#Avg Type: RMS TRACE 0 2:3 4 S<br>Avg Hold:>10/10 TYPE N | Frequency                                  |
| 10 dE               | IFGain:Low Atten: 26 dB  | Mkr1 2.479 712 GH<br>-0.806 dBr                                                              | Auto Tune                                  |
| L <b>og</b><br>8,70 |                          |                                                                                              | Center Freq<br>2.480000000 GHz             |
| -1.30               | <b>↓</b> 1               |                                                                                              | Start Freq<br>2.477000000 GHz              |
| -11.3               |                          |                                                                                              | Start Freq<br>2.477000000 GHz<br>Stop Freq |
| -31.3               |                          |                                                                                              | 2.483000000 GHz                            |
| -41.3               |                          |                                                                                              | 600.000 kHz<br><u>Auto</u> Man             |
| -61.3               |                          |                                                                                              | Freq Offset<br>0 Hz                        |
| -71.3<br>Cen        | ter 2.480000 GHz         | Span 6.000 MH                                                                                | Scale Type<br>Log <u>Lin</u>               |
| #Res                | BW 3.0 MHz #VBW 8.0 MHz  | Sweep 1.000 ms (1001 pts<br>Costatus CAlign Now All req                                      | 2                                          |
|                     |                          |                                                                                              | DAC                                        |
|                     |                          |                                                                                              |                                            |
|                     |                          |                                                                                              |                                            |
|                     |                          |                                                                                              |                                            |
|                     |                          |                                                                                              |                                            |
|                     |                          |                                                                                              |                                            |
|                     |                          |                                                                                              |                                            |
|                     |                          |                                                                                              |                                            |
|                     |                          |                                                                                              |                                            |
|                     |                          |                                                                                              |                                            |
|                     |                          |                                                                                              |                                            |
|                     |                          |                                                                                              |                                            |
|                     |                          |                                                                                              |                                            |
|                     |                          |                                                                                              |                                            |
|                     |                          |                                                                                              |                                            |


D

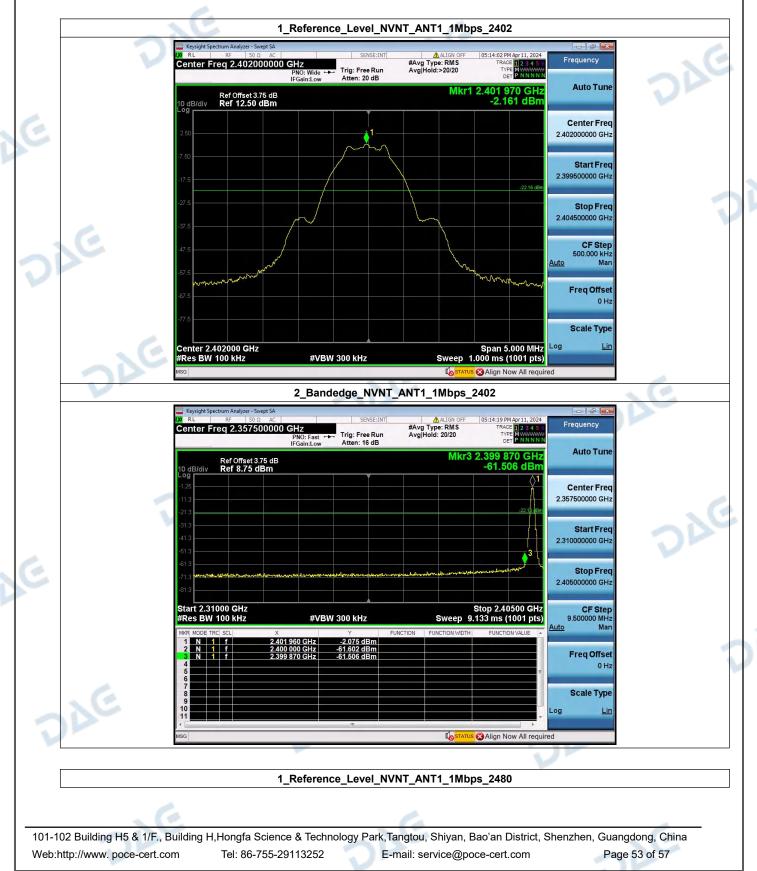
Report No.: DACE240409004RL001

### 5. Power Spectral Density

DAG

| Condition | Antenna | Rate  | Frequency (MHz) | Power Spectral Density(dBm) | Limit(dBm/3kHz) | Result |
|-----------|---------|-------|-----------------|-----------------------------|-----------------|--------|
| NVNT      | ANT1    | 1Mbps | 2402.00         | -15.89                      | 8               | Pass   |
| NVNT      | ANT1    | 1Mbps | 2440.00         | -17.36                      | 8               | Pass   |
| NVNT      | ANT1    | 1Mbps | 2480.00         | -16.09                      | 8               | Pass   |




| DAG - | V1.0                                                                    |                                                                                                                                       | Report No.: DACE24040                                                           | 09004RL001 |
|-------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------|
| DAC   | 02 RL RF 50 Ω AC<br>Center Freq 2.480000000 GHz<br>PN0: Wide ↔→         | #Avg Type: RMS         TRAC           Frig: Free Run         Avg Hold: 10/10         TVP           Atten: 16 dB         DE         DE | 14pr11, 2024<br>12 2 3 4 5 1<br>TP NNNNN                                        |            |
| 2     | -1.30<br>-11.3<br>-21.3<br>-31.3                                        | 1<br>mining Marine                  | 2.48000000 GHz<br>Start Freq<br>2.479223750 GHz                                 |            |
| E     | -41.3<br>-51.3                                                          |                                                                                                                                       | CF Step<br>2.480776250 GHz<br>CF Step<br>155.250 kHz<br>Auto Man<br>Freq Offset |            |
| E     | 71.3<br>-81.3<br>Center 2.4800000 GHz<br>#Res BW 3.0 kHz #VBW 10<br>MSG | Span 1.<br>0 kHz Sweep 163.7 ms (<br>Sweep 263.7 ms (                                                                                 | 553 MHz<br>Log Lin<br>1001 pts)                                                 |            |
| DDD   | DAC                                                                     |                                                                                                                                       | DAG                                                                             |            |
|       |                                                                         |                                                                                                                                       | DAG                                                                             |            |
|       |                                                                         |                                                                                                                                       |                                                                                 |            |
| E     |                                                                         |                                                                                                                                       |                                                                                 |            |
|       |                                                                         |                                                                                                                                       |                                                                                 |            |
|       |                                                                         |                                                                                                                                       |                                                                                 |            |
|       | Building H,Hongfa Science & Technol                                     | ogy Park Tangtou, Shiyan, Bao'an F                                                                                                    | Nation Shanshan Quanadana (                                                     | China      |

Report No.: DACE240409004RL001

# 6. Bandedge

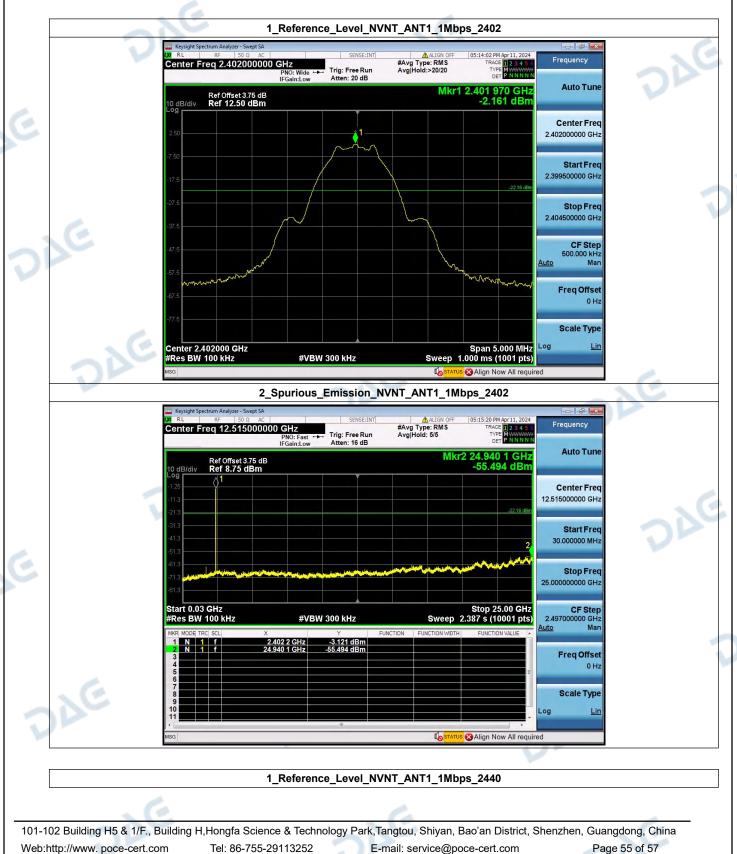
DΔC

| Condition | Antenna | Rate  | TX_Frequency<br>(MHz) | Max. Mark Frequency<br>(MHz) | Spurious<br>level(dBm) | limit(dBm) | Result |
|-----------|---------|-------|-----------------------|------------------------------|------------------------|------------|--------|
| NVNT      | ANT1    | 1Mbps | 2402                  | 2399.870                     | -61.506                | -22.161    | Pass   |
| NVNT      | ANT1    | 1Mbps | 2480                  | 2485.500                     | -59.055                | -20.917    | Pass   |



\_\_\_\_\_

V1.0




Report No.: DACE240409004RL001

#### 7. Spurious Emission

DAC

| Condition | Antenna | Rate  | TX_Frequency(MHz) | Spurious MAX.Value(dBm) | Limit   | Result |
|-----------|---------|-------|-------------------|-------------------------|---------|--------|
| NVNT      | ANT1    | 1Mbps | 2402.00           | -55.494                 | -22.161 | Pass   |
| NVNT      | ANT1    | 1Mbps | 2440.00           | -55.392                 | -21.749 | Pass   |
| NVNT      | ANT1    | 1Mbps | 2480.00           | -49.227                 | -20.917 | Pass   |





