MPE Calculation

Applicant:	Zhejiang Lingzhu Technology Co., Ltd.
A data a a i	Room 302,No 1 Building Huace Center,Xihu District, Hangzhou City,
Address:	Zhejiang Province,China
FCC ID:	2BEWXSC162
Product:	Smart Battery Doorbell
Model No.:	SC162-WCD3
Reference RF report #	709502310219-00B, 709502310219-00C, 709502310219-00D

According to subpart 15.247(i)and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)		
0.3–1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f²)	30		
30–300	27.5	0.073	0.2	30		
300–1,500	/	/	f/1500	30		
1,500–100,000	/	/	1.0	30		

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

S = PG/4 π R² = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

EMC_SHA_F_R_02.06E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

Page 1 of 4 Rev. 23.00

Ca	alculated Data for Wi-Fi	
	Maximum peak output power at antenna input terminal (dBm):	25.69
	Maximum peak output power at antenna input terminal (mW):	370.68
	Prediction distance (cm):	20
	Antenna Gain, typical (dBi):	0.45
	Maximum Antenna Gain (numeric):	1.1092
	The worst case is power density at predication frequency at 20 cm (mW/cm ²):	0.0818
	MPE limit for general population exposure at prediction frequency (mW/cm ²):	1.0

The max power density 0.0818 (mW/cm²) < 1 (mW/cm²) Result: Compliant

Calculated Data for BLE

Maximum peak output power at antenna input terminal (dBm):	8.18
Maximum peak output power at antenna input terminal (mW):	6.58
Prediction distance (cm):	20
Antenna Gain, typical (dBi):	0.45
Maximum Antenna Gain (numeric):	1.1092
The worst case is power density at predication frequency at 20 cm (mW/cm ²):	0.0015
MPE limit for general population exposure at prediction frequency (mW/cm ²):	1.0

The max power density 0.0015 (mW/cm²) < 1 (mW/cm²) Result: Compliant

EMC_SHA_F_R_02.06E

Calculation method for 433.92MHz

$$\text{EIRP} = p_{\text{t}} \times g_{\text{t}} = \left(E \times d\right)^2 / 30$$

where

p_{t}	is the transmitter output power in watts
$g_{\rm t}$	is the numeric gain of the transmitting antenna (dimensionless)
E	is the electric field strength in V/m
d	is the measurement distance in meters (m)

For 433.92MHz.

Field Strength (EMeas):	90.45(dBuV/m)=0.0333V/m	
	(f=433.92 MHz)	
Measurement Distance(dMeas):	3 (m)	
Equivalent Isotropically Radiated Power(EIRP):	0.000332667W=0.332667mW	

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

S = PG/4 π R² = power density (in appropriate units, e.g. mW/cm²);

PG =0.332667mW (in appropriate units, e.g., mW);

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

The max power density $0.332667 \text{mW}/4 \pi \text{R}^2 = 6.6215*10^{-5} (\text{mW/cm}^2) < 0.28928 (\text{mW/cm}^2)$

Result: Compliant

EMC_SHA_F_R_02.06E

Simultaneous transmission of MPE test exclusion for worst case configuration

(1) Wi-Fi: the ratio is 0.0818/1 433.92MHz:the ratio is 6.6215*10⁻⁵/ 0.28928=2.2889*10⁻⁴

The sum of the MPE ratios for all simultaneous transmitting antennas (433.92+2.4G Wi-Fi): 0.0818+2.2889*10⁻⁴=0.08202

As the sum of MPE ratios for all simultaneous transmitting antennas is \leq 1.0, simultaneous transmission MPE test exclusion will be applied.

(2) BLE: the ratio is 0.0015/1 433.92MHz:the ratio is 6.6215*10⁻⁵/ 0.28928=2.2889*10⁻⁴

The sum of the MPE ratios for all simultaneous transmitting antennas: $0.0015+2.688*10^{-5}=0.00173$

As the sum of MPE ratios for all simultaneous transmitting antennas is \leq 1.0, simultaneous transmission MPE test exclusion will be applied.

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Reviewed by:

Prepared by:

Tested by:

Hui TONG

EMC Section Manager

Jiaxi XU

EMC Project Engineer

Xu

Cheng Huali

Huali

EMC Test Engineer

Date: 2024-03-07

Date: 2024-03-07

Date: 2024-03-07

Cheng

EMC_SHA_F_R_02.06E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

Page 4 of 4 Rev. 23.00