

1601 North A.W. Grimes Blvd., Suite B

Round Rock, TX 78665 e-mail: info@ptitest.com

(512) 244-3371 Fax: (512) 244-1846

1.0 Maximum Permissible Exposure Evaluation (Supplements the test report.)

The measured power is considered for the intended use of the device and resulting RF exposure to the user.

1.2 Criteria

Section Reference	Date
447498 D01 General RF Exposure Guidance v06 //	2 Oct 2020
RSS-102 Issue 5	2 OCI 2020

1.3 Procedure

Using measurement of peak power and considering the intended application, determine the permissible exposure level, applicability of exclusion, or whether additional exposure tests (SAR) are indicated. When applicable justify conclusion for selected exposure level and separation distance.

1.4 Power to Exposure Calculation

This device is operated typically indoors, either wall-mounted or on a desk. The operating band is 24000-24250 MHz. Power is determined from the measured field strength. The uncontrolled public separation distance is 20 cm.

Table 1.4.1 Power Calculation						
Measured Power Field Strength dBµV/m*	At Distance	EIRP Power dBm	Source Duty Cycle Factor dB	Calculated Average Power dBm	Calculated EIRP mW	
107.7	3 m	12.5	0	12.5	17.7	

^{*}This is the peak measurement.

1.5 SAR Exemption Calculation – FCC

FCC LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range	Strength (E)	Strength (H)	(S)	$ E ^2$, $ H ^2$ or S
(MHz)	(V/m)	(A/m)	(mW/cm ²)	(minutes)
		E1		
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)*$	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

Field density is determined at 20 cm as:

 $S = EIRP / (4 \pi 20^2)$

Ref. FCC Bulletin OET-65 Equation (4)

 $S = 17.7 \text{ mW} / 5026.55 \text{ cm}^2$

 $S = 0.0035 \text{ mW/cm}^2$

Therefore $0.0035 \text{ mW/cm}^2 < 1 \text{ mW/cm}^2$

This device meets the **OET 65 Limits for General Population/Uncontrolled Exposure,** limit for field density of 1 mW/m² criteria in table (B), row 1500-100000 MHz.

1.6 SAR Exemption Calculation – IC

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Reference Period (minutes)
$0.003-10^{21}$	83	90	-	Instantaneous*
0.1-10	₽ ,	0.73/ f	-	6**
1.1-10	$87/f^{0.5}$	-	-	6**
10-20	27.46	0.0728	2	6
20-48	58.07/ f 0.25	$0.1540/f^{0.25}$	8.944/ f 0.5	6
48-300	22.06	0.05852	1.291	6
300-6000	$3.142 f^{0.3417}$	$0.008335 f^{0.3417}$	$0.02619f^{0.6834}$	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/ f ^{1.2}
150000-300000	$0.158 f^{0.5}$	$4.21 \times 10^4 f^{0.5}$	6.67 x 10 ⁻⁵ f	616000/ f 1.2

Table 4 line 15000-150000 MHz power density limit:

 $10 \text{ W/m}^2 \text{ or } 1 \text{ mW/cm}^2$

Therefore $0.0035 \text{ mW/cm}^2 < 1 \text{ mW/cm}^2$

This device meets the **Table 4 Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment), row 15000-150000 MHz,** limit for field density of 10 W/m² criteria (or restated as 1 mW/m²) in RSS-102.

Signed:

Eric Lifsey
